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Abstract: Gaussian process (GP) is a Bayesian nonparametric regression model,
showing good performance in various applications. However, its hyperparameter-
estimation procedure suffers from numerous covariance-matrix inversions of pro-
hibitively O(N3) operations. In this paper, we propose using the quasi-Newton
BFGS O(N2)-operation formula to update recursively the inverse of covariance
matrix at every iteration. As for the involved log det computation, a power-series
expansion based approximation and compensation scheme is proposed with only
50N2 operations. A number of numerical tests are performed based on the 2D-
sinusoidal regression example and the Wiener-Hammerstein identification example.
It is shown that by using the proposed implementation, more than 80% O(N 3)
operations are eliminated, and the speedup of 5 ∼ 9 can be achieved.
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1. INTRODUCTION

The idea of using Gaussian processes for regres-
sion has been investigated for a long time; e.g.,
Mardia and Marshall (1984). Recently, Gaussian
processes have been applied to various engineering
examples; e.g., Williams and Barber (1998), Leith
et al (2002), Solak et al (2003), Leithead et al

(2003). Roughly speaking, given some noisy mea-
sured data D = {(xi, ti)}

N
i=1, where input vector

xi ∈ R
L with L denoting the dimension of input

space, output vector ti ∈ R, and N is the number
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of given data points (possibly > 1000), a proba-
bilistic description of the mapping from x to the
measured quantity is required. That probabilistic
description is a Gaussian process. Some training
procedure has to be employed to determine the
particular Gaussian process, given the data. Once
the Gaussian process has been determined, it may
then be used to make predictions at new input
points, e.g., tN+1 corresponding to xN+1.

The Gaussian process is characterized by the
covariance matrix C(Θ) ∈ R

N×N , which is a
function of a few hyperparameters Θ like length
scales and variance scales. In addition to Monte
Carlo approach, another standard and general
practice for estimating Θ is termed maximum
likelihood estimation (MLE); i.e., to minimize the
following negative log-likelihood function of D:



L(Θ) =
1

2
log det C +

1

2
tT C−1t (1)

with t := [t1, t2, · · · , tN ]. As the likelihood is in
general nonlinear and multimodal, efficient op-
timization routines usually entail the following
gradient information:

2
∂L

∂Θi

= tr

(

C−1 ∂C

∂Θi

)

− tT C−1 ∂C

∂Θi

C−1t (2)

with i = 1, 2, · · · , L + 2, and tr(·) denoting the
trace operation of a matrix. During the standard
MLE model-tuning procedure via (1) and (2),
numerous evaluations of log det and C−1 may be
required with prohibitive O(N 3) operations.

Efficient implementation for matrix-inverse prob-
lems has been tried in the last decade; e.g., Skilling
(1993), Gibbs and MacKay (1997), Williams and
Barber (1998), and Seeger (2000) to name a few.
Specifically, Skilling (1993) proposed solving for
C−1t based on its conversion to a quadratic-
programming problem and using conjugate gra-
dient (CG) methods. Gibbs and MacKay imple-
mented this O(N2)-operation approach in the GP
context by minimizing Q(u) = uT Cu/2− uT t via
the Polack-Ribiere CG method. In summarizing
this technique, Seeger (2000) pointed out that it
is suitable for large sparse matrices with some
eigenstructure conditions. Theoretically-speaking,
for quadratic programs like Q(u), the CG algo-
rithm converges to true minimum C−1t after N
steps, depending on the condition number of C
(Nocedal, 1992). Furthermore, it is observed that
the approximation accuracy of tr{C−1(∂C/∂Θi)}
by using randomized trace estimator is some-
times not sufficiently good in the GP context,
especially when only a few seeds are involved.
The less favorable performance was also noted in
Williams and Barber (1998). In light of tr(AB) =
∑N

i

∑N

j aijbji being N2-operation for known ma-
trices A and B, and also motivated by the above
observations, we may have to compute and store
C−1 for an efficient yet accurate implementation
of Gaussian processes. In addition, the O(N 2)-
operation log det approximation is worth investi-
gating, as it is an important part of Wolfe condi-
tion for guaranteeing the global convergence and
robust performance of optimization routines (No-
cedal, 1992; More and Thuente, 1994; Paciorek,
2003).

In this paper, firstly, we propose to approximate
explicitly and recursively the inverse of covariance
matrix, denoted by C̃, in an O(N2) fashion by ap-
plying the quasi-Newton BFGS method to solving
Q(u) at every iteration of the GP model tuning.
The approximation accuracy and performance is
guaranteed carefully by monitoring if tr(C̃C) ≈
N , otherwise C̃ is reassigned to be C−1 before
continuing with the model-tuning procedure. Sec-
ondly, the power series expansion is used to ap-

proximate log det C in an O(N 2)-operation man-
ner. Three compensation schemes are proposed
to further improve the approximation accuracy
and computation efficiency of log det computa-
tion; namely, 1) trace seeds selection and compen-
sation, 2) power-series truncation error compensa-
tion, and 3) geometric-series based re-estimation.
The detailed proof (Zhang and Leithead, 2004) is
omitted due to space limitation. Thirdly, a num-
ber of numerical experiments are performed based
on two GP regression examples. It is shown that
more than 80% O(N3)-operations are eliminated,
and a speedup of 5 ∼ 9 can be achieved over the
standard GP implementation.

2. GAUSSIAN PROCESS REGRESSION

Now let us return to the general model of data
D, ti = y(xi) + vi where vi is the noise on y(xi),
i ∈ {1, 2, · · · , N}. The data vector t is defined
here as a Gaussian process, a collection of random
variables t = [t(x1), t(x2), · · · ] for any set of input
x, having the following Gaussian joint distribution
under standard zero-mean assumption

P (t|x,Θ) ∝ exp

(

−
1

2
tT C−1(Θ)t

)

.

In the above equation, the ij-th entry of covari-
ance matrix C(Θ) is a scalar covariance function
cij(Θ), and ∝ stands for equality up to a normaliz-
ing factor. The conditional Gaussian distribution
of tN+1 is thus:

P (tN+1|D,Θ, xN+1) ∝ exp

(

−
(tN+1 − t̄N+1)

2

2σ2
N+1

)

where predictive mean t̄N+1 := κC−1(Θ)t with
row vector κ := [c(x1, xN+1; Θ), c(x2, xN+1; Θ),
· · · , c(xN , xN+1; Θ)], and the predictive variance
σ2

N+1 := c(xN+1, xN+1; Θ) − κC−1(Θ)κ. Evi-
dently, given D, the covariance function/matrix
(or simply, the hyperparameters Θ) dominates the
Gaussian process model. The following covariance
function is often used by most researchers:

cij = α exp

(

−‖xi − xj‖2
D

2

)

+ υδij (3)

where δij is the Kronecker delta. Matrix D :=
diag(d1, d2, · · · , dL) characterizes a set of length
scales corresponding to each input, and the set
of hyperparameters Θ := [α, d1, d2, · · · , dL, υ] ∈
R

L+2 with each being nonnegative.

Given the specific form of cij(Θ), we have to
estimate the distribution of hyperparameters Θ
from training data D, in order to make an ideal
prediction of tN+1. It is common practice to mini-
mize (1) to obtain the most probable values of hy-
perparameters for prediction. From the optimiza-
tion point of view, given specific D and cij(Θ),



the Gaussian process regression actually becomes
an unconstrained nonlinear optimization problem
depicted in (1) and (2) over hyperparameters Θ.
Furthermore, we can see that hyperparameters
Θ are always updated iteratively, and in most
situations, gradually/slightly. In the standard GP
implementation, however, covariance matrix C is
inverted directly with O(N3) operations (like, by
Gaussian elimination with partial pivoting), with-
out fully utilizing this iterative nature of Θ.

3. BFGS UPDATE OF C−1

To avoid O(N3) operations, the CG methods were
used to minimize Q(u) = uT Cu/2 − uT t at every
iteration of the GP model tuning (Gibbs and
MacKay, 1997). Evidently, true minimum u∗ =
C−1t because of

∇Q(u∗) :=
dQ(u)

du

∣

∣

∣

∣

u=u∗

= (Cu − t)|u=u∗ = 0.

The CG solution could be efficient. But, motivated
by the necessity of explicit C−1 for accurate
tr{C−1(∂C/∂Θi)} computation, we will apply the
quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method to minimizing Q(u) during which
covariance inverse C̃ is also updated iteratively.

For solving unconstrained convex quadratic pro-
grams like Q(u), if C−1(uk) is computable with k
denoting the kth iteration, the Newton’s method
of iteration form uk+1 = uk − C−1(uk)∇Q(uk) is
the most powerful algorithm, requiring the fewest
number of iterations (here, normally 1) and capa-
ble of giving the most accurate answers (Nocedal,
1992). If the evaluation of C−1(uk) is costly, the
central idea of using quasi-Newton methods is
to use an approximation C̃k instead of C−1(uk).
The approximation C̃k is normally updated in a
general additive form, like, C̃k+1 = C̃k + ∆C̃k

where ∆C̃k is an updating matrix. The following
BFGS update formula, implementable with only
2N2 operations, is generally considered to be the
most effective (Nocedal, 1992; MathWorks, 2003):

∆C̃k =

(

1 +
qT
k C̃kqk

qT
k pk

)

pkpT
k

pT
k qk

−
pkqT

k C̃k + C̃kqkpT
k

qT
k pk

where pk := uk+1 − uk and qk := ∇Q(uk+1) −
∇Q(uk). As quasi-Newton methods always in-
clude a line search subroutine, the kth iteration
of minimizing Q(u) is given as Algorithm 1.

In case of static optimization problems of Q(u)
with constant C, the initial guess of approxima-
tion C̃, denoted by C̃0, can be chosen as the iden-
tity matrix I. However, for dynamic optimization
problems like minimizing Q(u) repeatedly in our
GP context, we have to adapt the initialization

Algorithm 1. The kth iteration

compute search direction ς = −C̃k∇Q(uk)
perform line-searches along ς for stepsize η
update solution vector uk+1 = uk + ης

update C̃k+1 from C̃k with ∆C̃k

update the iteration number, k = k + 1.

Algorithm 2. The lth MLE epoch

Θ(l) is updated and then C(Θ(l))
· · · · · ·
if l = 0

C̃(l) := C−1(Θ(l)) and u∗

(l) := C̃(l)t

else

k = 0, C̃0 = C̃(l−1) and u0 = u∗

(l−1)

LOOP

invoke Algorithm 1 for C̃(l), u∗

(l)

check (4) for terminating the loop
CONTINUE

check (5) for usability of C̃(l)

if not usable

restart C̃(l) with C−1(Θ(l))
end

end

evaluate (1) and (2) using C̃(l) and u∗

(l)

and termination of quasi-Newton BFGS methods
to our GP context. See Algorithm 2.

3.1 Initialization of Algorithm 1

Review the iterative-update nature of Θ and C(Θ)
in the GP model-tuning procedure. For example,
in the lth epoch of MLE optimization, Θ(l) has
been updated from Θ(l−1) via an optimization
step, and C(Θ(l)) is thus changed from C(Θ(l−1))
slightly. When using quasi-Newton method to
handle C(Θ(l)), we can re-use the result of the
last MLE epoch as the initial guess of the next
MLE epoch. For better accuracy and efficiency,
in the starting MLE epoch of l = 0, C̃(0) :=

C−1(Θ(0)) and u∗

(0) := C̃(0)t. Note that here,
an iteration is defined as the computation of
a search direction and its following line search,
while an epoch is defined as the evaluation of
an objective function and its gradient like (1)
and (2). Specifically, assume that by applying the
quasi-Newton BFGS method in the (l−1)th MLE
epoch, we have obtained the optimal solution
u∗

(l−1) to the minimization problem of Q(l−1)(u)

with good approximation C̃(l−1) for C−1(Θ(l−1)).
When proceeding to the lth MLE epoch with
updated Θ(l) and C(Θ(l)), we re-apply the quasi-

Newton BFGS method to solving Q(l)(u) and C̃(l),
but using the assignments k = 0, u0 = u∗

(l−1),

C̃0 = C̃(l−1) as the initialization of Algorithm 1.

3.2 Termination of Algorithm 1



Another important detail of the quasi-Newton
BFGS method is to check for convergence and
make termination rules of Algorithm 1. The fol-
lowing termination rules are tailored for our GP
context:

‖∇Q(uk)‖∞ 6 ε1 or m > m+, (4)

where the threshold ε1 := 0.01/N , and the num-
ber of N2 operations involved in Algorithm 2 is
monitored by m that should not exceed its upper
bound m+ := 100.

3.3 Restarts Technique

The resultant C̃(l) via Algorithm 2 is in general
accurate enough for tr{C−1(∂C/∂Θi)} approxi-
mation. But, sometimes C̃(l) may become “cor-
rupted” and unusable, because of round-off errors,
too large steps of Θ(l) from Θ(l−1), or other in-
accuracies. In light of the nature of the involved
trace computations, the following N 2-operation
criterion are proposed to check the approximation
accuracy and usability of C̃(l):

∣

∣

∣

∣

∣

tr(C̃(l)C(Θ(l))) − N

N

∣

∣

∣

∣

∣

6 10−4. (5)

If criterion (5) is satisfied, that means the ap-
proximation C̃(l) is accurate enough and usable

for tr{C̃(∂C/∂Θi)} computations. Otherwise, C̃(l)

is not usable and we may have to find alternative
ways to remedy the failure; e.g., to use the restarts
technique of simply setting C̃(l) := C−1(Θ(l)).
It is worth mentioning that using restarts for
C̃(l+1) is also inspired by the previous research
on conjugate-gradient methods (Nocedal, 1992).

4. APPROXIMATE LOGDET

The other problem to be solved in evaluating (1) is
to approximate log det C with O(N 2) operations.
C has to be first transformed to a matrix of
eigenvalues less than 1:

log det C = N log(c̄) + log det A (6)

where c̄ := ‖C‖∞ and A := C/c̄. Then, by Skilling
(1993), we know log det A = tr(log A) and

log(A) = −B − B2/2 − · · · − Bw/w − · · ·

where B := I − A. Thus, log det A = −tr(B) −
tr(B2)/2 · · ·− tr(Bw)/w · · · To calculate log det A
with only O(N2) operations via the above, the
randomized trace estimator can be used instead
of calculating Bw explicitly.

Proposition 1. (Barry and Pace, 1999) For ma-
trix B ∈ R

N×N and integer w, E(sT Bws/sT s) =
tr(Bw)/N , where E(sT Bws/sT s) is the mean of
sT Bws/sT s and s ∈ NN (0, I). The Gaussian ran-
dom vector, s, is also termed the seed. 2

The simple w-term power-series approximation of
log det A is thus

log det A ≈ −NE

(

w
∑

i=1

sT Bis

isT s

)

. (7)

However, this approximation may not work well
if applied directly to dense covariance matrices in
our GP context. The error is mainly from two pro-
cedures, i.e., the truncation error in power series
expansion (throughout the paper, w = 30) and the
trace estimation error (only a few seeds or even
one used). To make the approximation practically
usable, three levels of compensation schemes are
proposed as in the following propositions to rem-
edy the approximation error of log det A.

4.1 Trace-Seed Selection and Compensation

To use only one-seed trace approximation, the
first two power-series terms, tr(B) and tr(B2)
respectively of O(N) and O(N 2) operations, are
fully exploited to compare and compensate the
higher-order trace estimations in (7).

The algorithm is as follows. Step 1) generate
a seed vector s ∼ NN (0, I). Step 2) compute
the difference ∆1 between NsT Bs/(sT s) and
tr(B). Step 3) compute the difference ∆2 between
NsT B2s/(sT s) and tr(B2). Step 4) calculate the
weighted difference ∆1 + ∆2/2. Step 5) repeat
Steps 1-4 for h times, and save the smallest
weighted-difference workspace. Step 6) calculate
% = ∆2/∆1, and compensate log det A by the
ensuing Proposition 2.

Proposition 2. Given s with trace-estimation
errors ∆1 and ∆2, the seed compensation for
log det A in (7) is −(∆1/%) log(1 − %) if % <
1 and ∆1/(1 − %/2) otherwise, where % =
∆2/∆1, ∆1 = NsT Bs/(sT s) − tr(B), and ∆2 =
NsT B2s/(sT s) − tr(B2). 2

4.2 Power-Series Truncation Compensation

For the case of the eigenvalue of B near 1, the
power series converges very slowly, and the trun-
cation part after the wth term may be rela-
tively very large. The efficient and robust rem-
edy to the one-seed small-w power-series approx-
imation of general dense matrices is to compen-
sate −N

∑

∞

i=w+1 sT Bis/(isT s) as in the following
proposition.

Proposition 3. By calculating the (w−1)th and
wth power-series terms respectively as Λw−1 =
NsT Bw−1s/(sT s) and Λw = NsT Bws/(sT s), the
power-series truncation-error compensation for
log det A of (7) is Λw{log(1−λ̄w)+

∑w

i=1 λ̄i
w/i}/λ̄w

w,
where λ̄w := Λw/Λw−1 < 1. 2

4.3 Geometric-Series Based Re-estimation

Based on the compensation in Propositions 2 and
3, we have a finite sequence during the approxi-



Table 1. Thirty Numerical Tests of Example 1

N = 484 N = 961 N = 1444 N = 1936 N = 2500 N = 2916

EPO (RST) 160 (28) 135 (25) 95 (15) 100 (16) 90 (15) 75 (12)

ITE (N2) 2 (9) 3 (12) 2 (9) 2 (8) 2 (8) 2 (8)

SPEEDUP 5.71 5.40 6.33 6.25 6.00 6.25

EPO (RST) 75 (11) 80 (12) 70 (11) 75 (12) 80 (13) 75 (12)

ITE (N2) 1 (6) 1 (7) 1 (7) 2 (8) 2 (8) 2 (8)

SPEEDUP 6.82 6.67 6.36 6.25 6.15 6.25

EPO (RST) 70 (11) 135 (22) 90 (14) 80 (13) 95 (16) 90 (15)

ITE (N2) 1 (7) 1 (5) 1 (7) 1 (7) 2 (7) 1 (6)

SPEEDUP 6.36 6.14 6.43 6.15 5.94 6.00

EPO (RST) 80 (14) 80 (13) 85 (13) 90 (15) 85 (13) 90 (15)

ITE (N2) 2 (11) 2 (9) 2 (8) 2 (10) 2 (9) 2 (8)

SPEEDUP 5.71 6.15 6.54 6.00 6.54 6.00

EPO (RST) 135 (22) 140 (25) 80 (13) 75 (12) 90 (14) 85 (14)

ITE (N2) 1 (6) 1 (6) 1 (7) 2 (8) 2 (8) 2 (7)

SPEEDUP 6.14 5.60 6.15 6.25 6.43 6.07

Table 2. Thirty Numerical Tests of Example 2

N = 500 N = 1000 N = 1500 N = 2000 N = 2500 N = 3000

EPO (RST) 154 (19) 224 (26) 154 (19) 126 (14) 119 (14) 147 (17)
ITE (N2) 2 (8) 1 (5) 1 (6) 1 (4) 1 (7) 1 (6)

SPEEDUP 8.11 8.62 8.11 9.00 8.50 8.65

EPO (RST) 161 (20) 147 (18) 140 (17) 189 (24) 175 (22) 133 (16)
ITE (N2) 2 (8) 1 (5) 1 (6) 1 (3) 1 (6) 1 (5)

SPEEDUP 8.05 8.17 8.24 7.88 7.95 8.31

EPO (RST) 203 (25) 154 (18) 119 (14) 119 (14) 154 (19) 133 (16)

ITE (N2) 1 (7) 1 (7) 1 (6) 1 (4) 1 (6) 1 (5)
SPEEDUP 8.12 8.56 8.50 8.50 8.11 8.31

EPO (RST) 182 (22) 189 (24) 133 (16) 133 (16) 168 (21) 154 (19)
ITE (N2) 2 (8) 1 (5) 1 (6) 1 (4) 1 (5) 1 (5)

SPEEDUP 8.27 7.88 8.31 8.31 8.00 8.11

EPO (RST) 147 (18) 98 (11) 133 (16) 140 (17) 140 (17) 126 (15)
ITE (N2) 1 (7) 1 (6) 1 (6) 1 (4) 1 (6) 1 (6)

SPEEDUP 8.17 8.91 8.31 8.24 8.24 8.40

mation as w terms sum up; i.e., the g-term result
of log det A is in (8) and its limiting value is given
by Proposition 4.

Proposition 4. By calculating the last three
values of Γg in (8), i.e., g = (w−2), (w−1), w, the
limiting value of Γw can be estimated as follows
based on geometric series:

lim
w→∞

Γw = Γw−2 +
(Γw−1 − Γw−2)

2

2Γw−1 − Γw−2 − Γw

,

where for index g varying from 1 to w,

Γg := − N

(

g
∑

i=1

sT Bis

isT s

)

+ Λgλ̄
−g
g

(

log(1 − λ̄g) +

g
∑

i=1

λ̄i
g

i

)

+

{

−∆1 log(1 − %)/% if % < 1,

∆1/(1 − %/2) otherwise.

(8)

2

Remarks. Evidently, the total computational
cost for approximating log det C is (w+2h)N 2 op-
erations in terms of the leading order (as w = 30
and h = 10, thus 50N2). The geometric-series re-
estimation can be done twice or multiple times,
or multiplied by a coefficient between 1.0 and
1.1. A large number of numerical tests (totally

50531 randomly-generated matrices of dimensions
484 through 3000) have shown that the average
approximation error is only 0.0887, and that the
proposed scheme gives a consistent and robust
trend of true log det C values.

5. NUMERICAL TESTS

Numerical experiments are performed based on
two Gaussian-process regression examples; i.e.,
the 2D-sinusoidal regression example and the
Wiener-Hammerstein identification example as
depicted in Leithead et al (2003). Data sets of
size N around 500, 1000, 1500, 2000, 2500 and
3000 are tested five times with random initial
conditions. The results are tabulated that include
the numbers of MLE epoches, restarts, BFGS iter-
ations and N2 operations on average for replacing
explicit C−1. As shown in the tables (specifically,
the last line of every cell), the speedup is a sim-
ple estimate of the ratio of the number of N 3

operations involved in optimization using exact
inverse to the N3 operations using the proposed
approach.

Example 1. The underlying 2D sinusoidal func-
tion is of form y(x) = β0 sin(β1x

(1) + β2x
(2)).



The GP model is trained via the proposed effi-
cient implementation, starting with random Θ(0).
Thirty tests are illustrated in Table 1, where
EPO (RST) denotes the numbers of MLE epoches
and restarts (with the latter in brackets), ITE
(N2) denotes the numbers of BFGS iterations
and N2 operations (with the latter in brackets)
for approximating C−1, and SPEEDUP denotes
the estimated speedup ratio corresponding to that
trial. On average, for this example, the number
of BFGS iterations and N2 operations required
for approximating C−1 are respectively 2 and 8.
The average speedup is 6.17, and 83% O(N 3)
operations are eliminated.

Example 2. Consider a transversal Wiener-
Hammerstein system. The system dynamics of
interest is yi = 0.3(H1R)3 + 0.165(H3R)3, i =
1, 2, · · · , N , where the reformulated input over
time instants τi is defined as R = [r(τi) r(τi−1)
r(τi−2) r(τi−3)]

T (i.e., L = 4), and H1 and
H3 are defined as [0.9184, 0.3674, 0, 0] and
[0, 0, 0.9184, 0.3674], respectively. The output in
response to a random input is measured for 0.1N
seconds with sampling interval 0.1 and Gaussian
noise of v = 0.2. The GP model is trained via the
proposed efficient implementation. Table 2 shows
thirty tests, where the meaning of the symbols
is the same as in Table 1. On average, for this
example, the number of BFGS iterations and N 2

operations for approximating C−1 are respectively
1 and 6. The average speedup is 8.29, and 88%
O(N3) operations are eliminated. By carefully
using criteria like (4) and (5) and the restarts
technique, the proposed efficient implementation
is also accurate and robust in the sense that no
optimization failures is encountered during the
GP model-tuning procedure.

6. CONCLUSIONS

By exploiting the iterative nature of covariance-
matrix updating, this paper has proposed us-
ing the 2N2-operation quasi-Newton BFGS for-
mula to approximate the inverse of covariance
matrix recursively. Being another important part
of the MLE hyperparameters estimation, the ef-
ficient computation of log det has also been in-
vestigated in a 50N2-operation manner. The ex-
amples have substantiated that the proposed
quasi-Netwon BFGS and power-series approxima-
tion/compensation scheme is efficient, accurate
and robust for general GP hyperparameters es-
timation.
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