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Abstract— In this paper we present a methodology based on
multiple models and switching for realtime estimation of center of
gravity (CG) position in automotive vehicles. The method utilizes
simple linear vehicle models and assumes availability of standard
stock automotive sensors. We demonstrate the efficacy of our
technique with numerical simulations. We also give a simple
application example for implementing the idea in automotive
vehicles as a switch for rollover controller activation.

I. INTRODUCTION

Assessment of a road vehicle’s handling behavior, per-
formance characteristics and accident behavior is primarily
correlated with the vehicle’s center of gravity (CG) position
as well as its inertial properties. Although automotive manu-
facturers often provide the measurement of these parameters,
such information often pertain to an empty vehicle with known
load distribution. Considering the fact that passenger and/or
load distribution in road vehicles can vary significantly, and
sometimes even dangerously, it is difficult to overlook the
change in the CG position and its consequences. While the
importance of this is known on the handling behavior, automo-
tive manufacturers usually employ robust active road-handling
control strategies to account for the unknown and changing
CG position; they simply design for the worst case scenario.
Another common approach in the case of Sport Utility Vehicles
(SUVs) and pickup trucks is to intentionally design the vehicle
heavier than usual by adding ballast in the undercarriage,
which aims to lower the CG position while reducing the
percent margin of the load variation and thus constraining
the variation of the CG location. While such approaches are
successful up to certain extent, they also come with obvious
drawbacks; performance loss under normal driving conditions,
requirement of a bigger engine, and efficiency loss due to
added weight.

Analysis of a recent car accident data indicates that vehicles
with a high center of gravity such as vans, trucks and SUVs
are more prone to rollover accidents than others [1]. Also
it is known that rollover accidents alone constitute only a
small percentage of all car accidents, while they cause dis-
proportionately high rates of fatalities [2]. According to recent
statistics [1], rollover occurred in only 2.6% of all vehicle
crashes during 2004 in the USA, while it was responsible for
a massive 20.5% fatality rate, rendering it to be the most

dangerous type of accident. Again according to the same
data, light trucks (pickups, vans, SUVs) were involved in
nearly 70% of all the rollover accidents, with SUVs alone
responsible for almost 35% of this total. Considering the fact
that composition of the current automotive fleet consists of
nearly 36% light trucks, minivans and SUVs [3] along with the
recent increase in the popularity of SUVs worldwide, makes
the rollover an important safety problem. As CG height is
the most prominent factor in un-tripped rollover occurrence,
this problem can greatly benefit from real-time CG position
estimation capabilities. Such estimators can be used as a
warning system to the driver or can conveniently be integrated
into active road handling or rollover prevention controllers thus
improving the overall vehicle and passenger safety. In order
to demonstrate how this can be implemented in a real vehicle,
we give a simple application example, where CG estimation
method is used as a switch for the rollover controller activation
depending on the loading condition of the vehicle.

With this background in mind, and inspired by the Multiple
Model Switching & Tuning (MMST) methodology [4], we
present in this paper a multiple model and switching estimation
algorithm based on simple linearized models and employing
only standard stock automotive sensors [5]. While simplified
linear models such as the single track model (i.e., bicycle
model) and the roll plane model can represent the real vehicle
behavior in a limited range of maneuvers and speeds, it is
possible to use a multitude of these models and switch between
them in an intelligent way in real time, to track the vehicle
behavior accurately over the complete operating conditions.
Moreover, proper parametrization of these models gives way
to the estimation of unknown and time-varying vehicle para-
meters through the selected models. Using the described multi-
model approach in conjunction with linear roll plane models,
one can estimate parameters such as the CG height and linear
suspension parameters in relation to the rollover prevention
problem, while through a similar implementation of multiple
single track models one can estimate parameters relevant to
lateral dynamics control, such as the longitudinal CG position
and linear tire stiffnesses. One of the benefits of this realtime
estimation method is the fact that the method is immune to
the nonlinear dependance of unknown vehicle parameters in
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the models.
Recent publications related to automotive CG position mea-

surement and estimation include that of Mango [6], where
he described a method for accurately calculating the CG
location based on portable wheel scales. His method requires
external measurement equipment and is not intended for online
measurement during regular driving conditions as it requires
the vehicle to be stationary. In another recent article, Allen et
al. [7] made a statistical analysis of vehicle inertial properties
and CG positions as a function of weight, width, length and
the height of the vehicle using the data for several existing
stock cars. Although their analysis is useful in demonstrating
the relationship between the several physical parameters of
vehicles to their handling characteristics, their method can
not be employed for realtime estimation purposes. As a last
remark we note in the context of rollover prevention that all
the methods suggested to date assume a known CG height
[2], [3], [8], [9], [10], [11], [12], [13]. However as we have
explained, it is particularly unrealistic to assume the CG
height to be known, as this parameter can vary significantly
with changing passenger and loading conditions especially
in large passenger vehicles such as SUVs and there may
be significant performance issues related to robust rollover
controller designs.

II. VEHICLE MODELLING

In this section we present three different models for the
lateral motion and roll plane dynamics of a car. We use linear
models to simplify the implementation of the algorithm as well
as to keep the required sensory information at a minimum
level. Note that the selection of the models here is a trade
off between complexity and sensitivity to different operating
conditions. While linear models are valid only in a short
horizon, switching between several of them eliminates the
insensitivity of these simple models.

In this paper we assume the availability of lateral accel-
eration ay, yaw rate ψ̇ , velocity vx and the steering angle
δ measurements which are available as part of the standard
sensor packs found in modern cars. Moreover we require
measurement or an estimation of the vehicle roll angle. Spring
displacement sensors commonly found in many stock SUVs
can be employed for this purpose.

Notation and definitions of the model parameters and vari-
ables are given in Table I. We assume that vehicle mass m
is known, which can be estimated as part of the braking
system, yet this is outside scope of this paper. Furthermore
Cv,Ch, lv,k,c and h are all assumed be unknown parameters
of the vehicle and are estimated through the multiple model
switching algorithm. We further assume that these parameters
vary within certain closed intervals Cv ∈ Cv, Ch ∈ Ch, lv ∈Lv,
c ∈ C , k ∈K and h ∈H , and these intervals can be found
via accurate numerical simulations as well as field tests.

In what follows we give three different dynamical equations
of the motion of the car. For a through coverage of the
derivations see [14], and [15]. Also note that, for simplicity, we
assumed in the following relations that relative to the ground

TABLE I
MODEL PARAMETERS AND DEFINITIONS

Parameter Description Unit
m Vehicle mass [kg]
g Gravitational constant [m/s2]
vx Vehicle longitudinal speed [m/s]
δ Steering angle [rad]

Jxx Roll moment of inertia at CG [kg ·m2]
Jzz Yaw moment of inertia at CG [kg ·m2]
L Axle separation [m]
T Track width [m]
lv longitudinal CG position from the front axle [m]
lh longitudinal CG position from the rear axle [m]
h CG height [m]
c suspension damping coefficient [kg ·m2/s]
k suspension spring stiffness [kg ·m2/s2]

Cv front tire tire stiffness [N/rad]
Ch rear tire tire stiffness [N/rad]
β Sideslip angle at vehicle CG [rad]
αv Front tire sideslip angle [rad]
αh Rear tire sideslip angle [rad]
φ Roll angle measured at the roll center [rad]
φ̇ Roll rate measured at the roll center [rad/s]
ψ̇ Yaw rate at vehicle CG [rad/s]

the sprung mass of the vehicle rolls about a horizontal axis
along the centerline of the body.

A. Single track model

The two state linear single track model given here represents
the horizontal dynamics of a car. It is also called as “the
linear bicycle model” in literature and is commonly used in
automotive applications. The model assumes constant velocity
and small steering angle for linearization. See Fig. 1 for the
representation and notation of the model, where the left hand
side sketch corresponds to the lateral motion. Notice that in this
model we lump left and right tires into a single one at the axle
centerline hence the name “Bicycle Model” or “Single Track
Model”. We represent the horizontal dynamics in terms of the
state variables β and ψ̇ . The lateral tire forces Sv,Sh for front
and rear tires respectively, are represented as linear functions
of the tire slip angles such that Sv = Cvαv, and Sh = Chαh.
Making use of Newton’s 2nd law of motion one can get the
following state space representation of the horizontal dynamics
of the vehicle

[
β̇
ψ̈

]
=

[
− σ

mvx

ρ
mv2

x
−1

ρ
Jzz

− κ
Jzzvx

]
·
[

β
ψ̇

]
+

[
Cv
mvx
Cvlv
Jzz

]
δ , (1)

where the auxiliary parameters σ ,ρ, and κ are defined as
follows

σ , Cv +Ch

ρ , Chlh−Cvlv (2)
κ , Cvl2

v +Chl2
h .

We make use of this model mainly for the estimation of the
uncertain model parameters Cv,Ch, lv, lh based on the multiple
model structure. Note that although (1) is linear in the state
variables, it is nonlinear with respect to unknown parameter
variations.



B. Roll plane model

For the realtime estimation of CG height h as well as
the parameters of the suspension system k and c based on
the multiple model switching method, we use the 2-state roll
plane model described here. This is the simplest model that
captures the roll dynamics of the car and it is free from the
effects of uncertainties originating from unknown tire stiffness
parameters, which in turn makes it suitable for the estimation
task.

Assuming that all vehicle mass is sprung, and linear forces
exerted by the suspension system are such that Fspring = k φ ,
and Fdamper = c φ̇ , then we can apply a torque balance in the
roll plane of the vehicle in terms of the suspension forces (see
Fig. 1 right hand side for the schematic and the notation of
the roll plane model), and obtain the following relationship

Jxeq φ̈ + cφ̇ + kφ = mh(aycosφ +gsinφ), (3)

where Jxeq is the equivalent roll moment of inertia derived
using the parallel axis theorem of mechanics taking into
account the CG height as described below

Jxeq , Jxx +mh2. (4)

For small φ we can approximate nonlinear terms as cosφ ≈ 1,
sinφ ≈ φ and represent this equation as in the following state
space form

[
φ̇
φ̈

]
=

[
0 1

− k−mgh
Jxeq

− c
Jxeq

]
·
[

φ
φ̇

]
+

[
0

mh
Jxeq

]
ay. (5)

Note that at steady state one can calculate the CG height by
a single model using the relationship

h =
kφ

m(gφ +ay)
, (6)

given that the roll angle φ , and the lateral acceleration ay
measurements as well as an accurate knowledge of the spring
stiffness k are available. While former can be measured using
suitable sensors, k is unknown and needs to be calculated
depending on the specific maneuver and loading condition,
and is effected by various other factors. As will be explained
in section III, using the multiple model switching method we
neither need the exact knowledge of the suspension parameters,
nor steady state type excitation to get an accurate estimation
of the CG height. As a final remark note that although (5)
is linear in the state variables, it is nonlinear with respect to
unknown parameter variations of k,c and h.

C. Single track model with roll degree of freedom

While we utilize the previous two models for the estimation
task of the unknown vehicle parameters, we employ the linear
bicycle model with roll degree of freedom described here,
to generate the reference vehicle behavior. The model is the
simplest model with coupled lateral and roll dynamics, which
assumes that δ ,φ ,β are small and all vehicle mass is sprung.

Fig. 1. Linear bicycle model with roll degree of freedom.

We can write the equations of motion for the single track model
with the extended roll degree of freedom as follows

ẋ =




− σ
mvx

Jxeq
Jxx

ρ
mv2

x

Jxeq
Jxx
−1 − hc

Jxxvx

h(mgh−k)
Jxxvx

ρ
Jzz

− κ
Jzzvx

0 0
− hσ

Jxx

hρ
vxJxx

− c
Jxx

mgh−k
Jxx

0 0 1 0


x

+




Cv
mvx

Jxeq
Jxx

Cvlv
Jzz
hCv
Jxx
0


δ , (7)

where x =
[
β ψ̇ φ̇ φ

]T is the state vector. State responses
to a step steering input are shown in Fig. 2 below, where the
steering magnitude was 30◦ with a steering ratio of 1 : 18.
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Fig. 2. State responses of the single track model with roll degree of freedom
to a step steering input of 30◦/18 in magnitude.

III. MULTIPLE MODELS & SWITCHING METHOD FOR
VEHICLE PARAMETER IDENTIFICATION

Well-established linear least squares type identification
techniques are the conventional approaches to parameter es-
timation, yet such methods are susceptible to loss of iden-
tifiability due to feedback [16], [17] as is the case for the



problem described here. Also, the linear models introduced
in preceding section are nonlinear in the unknown vehicle
parameters further complicating the formulation of the esti-
mation problem using the traditional approaches. Although
linear regression techniques typically converge quickly, they
tend do so more effectively when the measurement signals are
persistently exciting [16], [18]. For CG estimation problem this
would mean to impose some specific maneuver requirements
on the driver input such that all the modes of excitation
are covered and a dependable estimation of the unknown
parameters could be made. Such a demand on the driver input
would not only be unrealistic but also unreliable. Thus there
is a need for a different approach for the parameter identifi-
cation task, which imposes no restriction on the driver input,
has fast convergence rates and requires minimum additional
output information (sensors). Here we introduce a multiple
model switching algorithm [5] to identify unknown vehicle
parameters rapidly in real-time, which meets the estimation
requirements described earlier. In what follows, we take a
modular approach of decoupling the vehicle dynamics into
subsystems by assuming a weak relationship between the
lateral and roll dynamics. We then present our methodology
and give numerical simulation results corresponding to the
decoupled identification algorithms.

A. Realtime estimation of longitudinal CG position

In order to estimate the longitudinal CG position lv along
with the tire stiffness parameters Cv and Ch, here we introduce
the multiple model & switching estimation algorithm, which
makes use of the lateral dynamics model (1). We assume
that each unknown model parameter belongs to a closed
interval such that Cv ∈ Cv, Ch ∈ Ch, and lv ∈ Lv. These
intervals are divided into certain number of grid points and
they can be represented as Cv = {Cv1 ,Cv2 ,Cv3 , . . . ,Cvp}, Ch =
{Ch1 ,Ch2 ,Ch3 , . . . ,Chq}, and Lv = {lv1 , lv2 , lv3 , . . . , lvr} with di-
mensions p,q and r respectively.

As the basis of the multiple model scheme, we form n = p×
q×r different models corresponding to the cross combinations
of the grid points in the parameter space. Utilizing (1) the
equations of motion corresponding to each model can be
represented as
[

β̇i
ψ̈i

]
=

[
− σi

mvx

ρi
mv2

x
−1

ρi
Jzz

− κi
Jzzvx

]
·
[

βi
ψ̇i

]
+

[ (Cv)i
mvx

(Cv)ilvi
Jzz

]
δ , (8)

where i = 1,2, . . . ,n denotes the model number. We assume
that all models have zero initial conditions such that βi(0) = 0,
and ψ̇i(0) = 0, for i = 1,2, . . . ,n. Furthermore, each model
is driven by the same inputs δ and vx as depicted in Fig.
3, measurements of which are assumed to be provided by
suitable set of sensors. In order to select the model with
the correct parametrization we utilize the identification error,
which is the difference between the model and the plant
outputs. Mathematically, we can express the identification error
ei corresponding ith model as

ei = yplant − (ymodel)i, (9)

.
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Fig. 3. Multiple Model System Identification Algorithm.

where y denotes the model or the plant output. For the
longitudinal CG position estimation problem, we select the
model and plant outputs as y = [ay, ψ̇], measurements of which
are available through a suitable set of sensors. Thus we can
represent the identification error for the ith model as follows

ei(t) =
[

ay(t)−ay,i(t)
ψ̇(t)− ψ̇i(t)

]
, i = 1,2, . . . ,n. (10)

Inspired by the quadratic cost optimization techniques, we
next compute a cost function Ji corresponding to the ith

identification error as in the following form

Ji(t) = α||ei(t)||+β
∫ t

0
e−λ (t−τ)||ei(τ)||dτ, (11)

which was originally suggested by Narendra et al. in [4] as
a switching scheme. In this cost function α , and β are free
design parameters controlling the relative weights given to
transient and steady state measures respectively, whereas λ
is the forgetting factor. Note that it is possible to use other
type of cost functions depending on the specific estimation
requirements from the problem at hand. Here we selected the
model with the least cumulative identification error according
to (11) using

i? = arg min
i=1,...,N

Ji(t). (12)

Within the parameter space described by Cv,Ch and Lv,
selected model i? and the corresponding model parameters
C?

v ,C?
h and l?v have the minimum cumulative distance to the

parameters of the plant.
Numerical Analysis: In the following figures we present the

estimation results for the algorithm based on simulated sensor
signals generated by the vehicle model (7). The reference
model parameters used are given in Table II.

The maneuver was conducted at 108km/h, and as seen in
Fig. 4 for the steering input plot, the maneuver tested was an
obstacle avoidance maneuver commonly known as the elk-
test, with a peak magnitude of 30◦ at the steering wheel
(the steering ratio is 1/18 between the tires and the steering
wheel). The model space consisted of 140 models in total. The
uniformly distributed parameter space were selected as Cv =



TABLE II
REFERENCE MODEL PARAMETERS

parameter value unit
m 1300 [kg]
g 9.81 [m/s2]
vx 30 [m/s]

δpeak 30 · 1
18 [deg]

Jxx 400 [kg ·m2]
Jzz 1200 [kg ·m2]
lv 1.2 [m]
lh 1.3 [m]
L 2.5 [m]
h 0.7 [m]
c 5000 [kg ·m2/s]
k 36000 [kg ·m2/s2]

Cv 60000 [N/rad]
Ch 90000 [N/rad]

[50000,80000] with intervals of 10000, Ch = [60000,100000]
with intervals of 10000 corresponding to the range of tire
stiffness parameters, and Lv = [1,1.6] with intervals of 0.1
corresponding to the space of possible longitudinal CG posi-
tions.
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Fig. 4. Steering input

In Fig. 5 the simulated sensor data is compared against
the selected model outputs, while in Fig. 6 the correspond-
ing longitudinal CG position estimation is presented. The
discontinuous jumps in Fig. 6 occur due to the switching
between the models. We observe that based on the simulated
measurement data, the multiple model switching algorithm
successfully estimated the longitudinal CG location to be 1.2m,
precisely matching the reference model. When there is no exact
model match in the parameter space, a small offset is expected
due to the unique shape of the selected cost function (11) in
the parameter space. However, with proper selection and/or
redistribution of models, one can overcome this problem to
yield the closest model match.

B. Realtime estimation of CG height

Here we present the multiple model switching algorithm to
estimate CG height h along with the linear suspension parame-
ters k and c based on the roll-plane model (5). We assume that
each unknown parameter belongs to a closed interval such that
h ∈H , k ∈K , and c ∈ C . These intervals are divided into
sufficient number of grid points and they can be represented
as H = {h1,h2,h3, . . . ,hp}, K = {k1,k2,k3, . . . ,kq}, and C =
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Fig. 5. Sensor and the selected model output comparison for the longitudinal
CG position estimation
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{c1,c2,c3, . . . ,cr} with dimensions p,q and r respectively. We
then form n = p×q× r different models corresponding to the
cross combinations of the grid points in the parameter space.
Utilizing (5) the equations of motion corresponding to each
model can be represented as
[

φ̇i
φ̈i

]
=

[
0 1

− ki−mghi
Jxeq,i

− ci
Jxeq,i

]
·
[

φi
φ̇i

]
+

[
0

mhi
Jxeq,i

]
ay, (13)

where i = 1,2, . . . ,n denotes the model number. We assume
that all models have zero initial conditions such that φi(0) = 0,
and φ̇i(0) = 0, for i = 1,2, . . . ,n. Similar to what is shown in
Fig. 3, every model is driven by the same input ay, which is
measured. According to (9) we again calculate identification
errors ei, however this time the plant and model outputs to
compare are the roll angles, as follows

ei(t) = φ(t)−φi(t), i = 1,2, . . . ,n. (14)

Note that one can also include the roll rate φ̇ measurement if
available, in the output vector. However, the influence of φ̇ on
the estimation results were relatively insignificant as compared



to the roll angle φ , thus was omitted here. This is also in
accordance with our assumption of no additional sensors to
the available ones.

Now one can compute cost functions (11) corresponding to
each identification error. Switching among the models based on
(12) yields the one with the minimum cumulative identification
error and the selected k?,c? and h? represent the plant in the
parameter space described by K , C and H respectively.

Numerical Analysis: The CG height estimation results for
the simulated measurement data described in the previous
subsection is given here. The model space consisted of 240
models in total, where the uniformly distributed parameter
space were selected as K = [30000,40000] with intervals of
2000, C = [4000,6000] with intervals of 500 corresponding
to the parameter space for suspension parameters, and H =
[0.5,0.85] with intervals of 0.05 corresponding to the range
of possible CG heights. In Fig. 7 sensor and the switched
model outputs are compared whereas in Fig. 8 the CG height
estimation results are shown. Based on the results, we again
observe that the multiple model switching algorithm success-
fully estimated the CG height to be 0.7 m, precisely matching
the reference vehicle data.

Based on the simulation results presented in the preced-
ing and current subsections we conclude that the estimation
method gives fast and accurate results, which makes it suitable
for use in active automotive handling control.
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Fig. 7. Sensor and the selected model output comparison for the CG height
estimation

IV. AN APPLICATION EXAMPLE: LOAD CONDITION
ESTIMATOR

In this section we introduce a problem related to rollover
prevention for implementing our estimation technique. The
problem originates from a particular robust rollover controller
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design in an SUV class vehicle such that when the vehicle
is empty excluding the weight of driver, there is no risk of
un-tripped rollover. In this case, a possible intervention of the
controller results in a loss of performance and must be avoided.
In what follows, we give a version of the multiple model &
switching algorithm to estimate whether the load condition of
the vehicle is above the threshold weight. The threshold weight
here is defined by the total weight of the empty vehicle and the
driver. For this problem we employed the roll plane model (5)
and further assumed the availability of the set of the roll angle
(φ ), and the lateral acceleration (ay) sensors. We also assumed
that we know the parameters of the vehicle corresponding to
the threshold loading condition.

For the multiple model switching algorithm we set the
known mass m, CG height h, damping coefficient c, and roll
moment of inertia Jxx corresponding to the threshold loading
condition to be the same in every model, where the models are
parameterized with different spring stiffnesses. We assumed
that spring stiffness belongs to a closed interval such that
k∈K , where the interval is divided into n grid points such that
K = {k1,k2,k3, . . . ,kn}. In other words we have n different
models corresponding to the different k values. The equations
of motion for the models with zero initial conditions can
be expressed with (13). While each model is driven by the
same input ay, the corresponding identification errors ei are
calculated according to (14). Given this setup, one can compute
cost functions (11) corresponding to each identification error
and switching among the models based on (12) yields the one
with the minimum cumulative identification error. The selected
k? represent the plant in the parameter space K , and if it is
different than that of the vehicle with threshold load condition
then we can conclude that there is more load on the vehicle
than the threshold value.

Numerical Analysis: In our simulations we chose para-
meters given in Table II to represent the threshold loading
of the vehicle. We also used the same obstacle avoidance
maneuver introduced in the preceding section, at the speed
of 108km/h and with a steering profile as shown in Fig. 4.
We tested 9 different loading scenarios as described in Table
III, where the first case corresponds to the threshold loading
condition. The model space consisted of 11 models in total,
where the uniformly distributed parameter space was chosen
as K = [30000,40000] with intervals of 1000. Based on the



TABLE III
LOADING SCENARIOS

Case Weight [kg] CG height [m] Threshold Loading?
1 1300 0.70 yes
2 1350 0.70 no
3 1400 0.70 no
4 1450 0.70 no
5 1500 0.70 no
6 1300 0.75 no
7 1300 0.80 no
8 1300 0.85 no
9 1300 0.90 no

described algorithm, only the first case was recognized as the
threshold loading condition, and the recognition took less then
1.5 seconds into the maneuver in all the cases.

Based on the results, we conclude that this version of the
multiple model & switching algorithm can successfully be used
to rapidly recognize a specific loading condition of the vehicle
based on the dynamics of the car alone, and utilizing only a
small number of models.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a multiple model & switching
approach to realtime parameter estimation as applied to online
CG location estimation in road vehicles. Numerical simulation
results demonstrate the efficacy of the suggested technique
in terms of estimation speed and accuracy. Also the load
condition estimator example demonstrated that a version of
the suggested algorithm can easily be integrated into current
rollover or lateral dynamics controllers to enhance their per-
formance. In the follow-up of this work we shall compare
our technique to the instrumental-variable type methods to
fully assess its potential. Furthermore, we shall look into
adaptive versions of the multiple model algorithm to deal with
the case when the parameter sets do not include the exact
vehicle parameterizations. Finally, with the scope of testing the
algorithm in a real vehicle, we shall develop and integrate our
method with direct rollover prevention and lateral dynamics
controllers and compare their performance to that of alternative
robust control approaches.
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