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Abstract— This paper investigates the minimum dwell time
for switched linear systems. It is shown that a sequence of
upper bounds of the minimum dwell time can be computed by
exploiting homogeneous polynomial Lyapunov functions and
convex optimization based on LMIs. This sequence is obtained
by adopting two possible representations of homogeneous poly-
nomials, one based on Kronecker products, and the other on
the square matrix representation. Some examples illustrate the
use and the potentialities of the proposed approach.

I. I NTRODUCTION

This work deals with the stability of switched linear systems
under a dwell time constraint. Problems in the design of
switching control systems in which switching takes place
“slowly” between system matrices, arise frequently in prac-
tice, see for instance [1]–[9]. In such problems, one is
faced with determining the minimum time between switching
(i.e. the dwell time) such that that exponential switching
is maintained. It is well known that the computation of
the exact minimum dwell time is demanding. In [10], an
upper bound is computed on the basis of the norm of the
transition matrices associated with the system matrices, and
is further discussed in the thesis of Hespanha [11]. More
recently, an alternative method based on convex optimization
is presented in [12]. In this paper, the authors use linear
matrix inequalities and one-parameter search techniques to
compute a guaranteed dwell time. The inequalities generatea
piecewise quadratic Lyapunov functionv(x), discontinuous
at the switching instantstk, but such that the sequence
v(x(tk)), for k = 0, ⋅ ⋅ ⋅ ,∞, converges uniformly to zero.
This paper extends the result in [12] by adopting ho-
mogeneous polynomial Lyapunov functions. A candidate
Lyapunov function is looked for by using two possible
representations, the first based on Kronecker products, and
the second based on the square matrix representation (SMR)
introduced in [13]. Both representations lead to sufficient
conditions for stability of the switched linear system under
a dwell time requirement via LMI feasibility tests, which
are convex optimization problems with LMI constraints. A
bisection search over a scalar parameter produces an upper
bound of the minimum dwell time. The representation based
on Kronecker products enjoys a more explicit formulation
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and a smaller numerical complexity, while the one based on
the SMR provides less conservative results. A number of
examples illustrate the proposed approach, showing that the
exact minimum dwell time can be often obtained.
The paper is organized as follows. In Section II the ba-
sic problem is formulated and some preliminary results
are given. In Section III the proposed condition based on
Kronecker products is derived. Section IV presents the
formulation of this condition by adopting the SMR. Section
V illustrates the proposed approach through a number of
examples. Lastly, Section VI concludes the paper with some
final remarks.

II. PRELIMINARIES

We consider switched linear systems of the form

ẋ(t) = A�(t)x(t) (1)

where x(t) ∈ ℝ
n, and �(t) is a switching signal taking

values in a finite setS = {1, 2, . . . ,M}. All matricesAi,
i = 1, 2, . . . , AM , are assumed to be Hurwitz, and we
characterize switching rules by saying that the signal�(t) or-
chestrates switching between the matricesA1, A2, . . . , AM .
In this work we impose a further restriction on the system
class described by the above equation. More specifically, we
impose restrictions on the set of admissible switching signals
by defining the set

DT = {�(t) : tk+1 − tk ≥ T }

wheretk are the commutation instants andT ≥ 0. Themini-
mum dwell time problem is then to compute the minimumT
ensuring exponential stability of system (1) for all possible
�(t) ∈ DT . We define this time as

Tmin = inf{T ≥ 0 : (1) is exponentially stable

for all �(t) ∈ DT }.

Our starting point in this paper is the following Theorem
that was given in [12] for guaranteeing a dwell time.

Theorem 1 (see [12]): Assume that, for givenT > 0,

∃Pi :

⎧



⎨



⎩

Pi > 0 ∀i

A′
iPi + PiAi < 0 ∀i

eA
′
iTPje

AiT < Pi ∀i ∕= j.

(2)

Then, the system is exponentially stable for every�(⋅) ∈ DT .
□

The above result deserves a few remarks.
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(i) For given Hurwitz matricesAi, i = 1, 2, . . . , AM ,
there always existT > 0 such that (2) holds. Indeed,
as T goes to infinity, the third inequality reduces to
Pi > 0 and the feasibility of the second is guaranteed
by Hurwitz stability of the matricesAi.

(ii) If the inequalities are always satisfied forT → 0, then,
in the limit, it follows thatPj − Pi → 0 so that the
condition for quadratic stability is recovered, namely

A′
iP + PAi < 0, ∀i

whereP > 0 is the limit of Pi asT goes to0.

(iii) The function
v(x, t) = x′P�(t)x

is a Lyapunov function for system (1) for every
�(⋅) ∈ DT .

(iv) Associated with a given a sequencetk, k = 0, 1, . . ., it
is possible to write the discrete-time switched system

x̂(k + 1) = F�̂(k)x̂(k)

where
�̂(k) = �(tk), x̂(k) = x(tk)

F�̂(k) = eA�(tk)(tk+1−tk).

Then, this system is stable under arbitrary switching
under the piecewise quadratic Lyapunov function

w(x̂, k) = x̂′P�̂(k)x̂.

(v) Theorem 1 can be easily adapted to comply with pos-
sible state jumps in the system state. Indeed, assume
that at each commutation instanttk, the system state
is reset according to the rule

x(tk) = S�(tk)x(t
−
k ). (3)

Then stability in DT is guaranteed if there exist
positive definite matricesPi satisfying

∃Pi :

⎧



⎨



⎩

Pi > 0 ∀i

A′
iPi + PiAi < 0 ∀i

eA
′
iTS′

jPjSje
AiT < Pi ∀i ∕= j.

(4)

(vi) If the sufficient condition stated in Theorem 1 is
feasible forT , then it holds also forT + � for all
� ≥ 0.

The algorithm to find an upper bound of the minimum
dwell time consists in finding the minimum value ofT such
that (2) holds. Notice that this computation only involves
the solution of a set of LMIs plus a line search over the
parameterT . However, the sufficient condition stated in
Theorem 1 is not necessary for stability inDT . This means
that a system can be stable inDT and no positive definite
matrices Pi exist satisfying (2). The reason is that the
inequalities define a Lyapunov functionv(x) = x′P�(t)x,
which is piecewise quadratic, whereas for stability inDT ,
more complex Lyapunov functions are required. This latter

observation is characterized by the following result which
can be found in [14].

Theorem 2 (see [14]): The system is exponentially stable in
DT if and only if there exist continuous functionsvi(x) such
that

⎧







⎨







⎩

vi(x) > 0 ∀x ∕= 0n ∀i

dvi(x)

dt

∣

∣

∣

∣

ẋ=Aix

< 0 ∀x ∕= 0n ∀i

vj(e
AiTx) < vi(x) ∀x ∕= 0n ∀i ∕= j.

(5)

□

Let us observe that eachvi(x) in Theorem 2 can be chosen
homogeneous due to the fact that the system is linear.

III. C ONDITIONS VIA KRONECKERPRODUCTS

The idea exploited in this paper is to adopt homogeneous
polynomial Lyapunov functions, which have the form

v(x) =
∑

i1 + . . .+ in = 2m
i1 ≥ 0, . . . , in ≥ 0

ci1,...,inx
i1
1 ⋅ ⋅ ⋅xin

n (6)

being x = (x1, . . . , xn)
′ ∈ ℝ

n the function variable,2m
the degree for a positive integerm, andci1,...,in ∈ ℝ some
coefficients.
One way to represent homogeneous polynomial Lyapunov
functions is to use Kronecker products. Indeed, for any
matrix (vector)J and positive integeri let us define the
notation

J [i] =

{

J ⊗ J [i−1] if i ≥ 1

1 if i = 0.
(7)

Then,v(x) in (6) can be rewritten as

v(x) = x[m]′Πx[m]

for a suitable symmetric matrixΠ = Π′ ∈ ℝ
nm×nm

which
contains the coefficientsci1,...,in . Let Ai,[m] ∈ ℝ

nm×nm

be
the matrix satisfying

dx[m]

dt
=

dx[m]

dx
Aix = Ai,[m]x

[m] ∀x.

It turns out that

Ai,[m+1] = Ai,[m] ⊕Ai

where the Kronecker sum of two matrices, sayX andY is
defined asX ⊕ Y = X ⊗ I + I ⊗ Y . Then, we have the
following result.

Theorem 3: Assume that, for givenT > 0 and positive
integerm,

∃Πi :

⎧



⎨



⎩

Πi > 0 ∀i

A′
i,[m]Πi +ΠiAi,[m] < 0 ∀i

eA
′
i,[m]TΠje

Ai,[m]T < Πi ∀i ∕= j.

(8)

Then, (1) is exponentially stable for every�(⋅) ∈ DT .
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Proof. Suppose that (8) holds, and define

vi(x) = x[m]′Πix
[m].

Since
(

eAitx
)[m]

= eAi,[m]tx[m] ∀t ≥ 0

it follows that (5) is satisfied thus implying that the system
is exponentially stable for every�(⋅) ∈ DT . □

Remark 1: Let us observe that, form = 1, (8) coincides
with (2).

Let us indicate withT[m] the smallest upper bound ofTmin

guaranteed by Theorem 3, i.e.

T[m] = inf {T ≥ 0 : (8) holds} .

The following result provides a key property of the condition
(8), which allows one to calculateT[m] via a bisection
search where at each iteration the condition (8) is tested.

Theorem 4: Assume that (8) holds for someT > 0 and
positive integerm. Then, (8) holds also forT + � andm for
all � ≥ 0.
Proof. Suppose that (8) holds, and definevi(x) =
x[m]′Πix

[m]. Consider any� ≥ 0. From the second inequality
one has that

vi(x(�)) ≤ vi(x(0)) ∀x(0)

which implies that

eA
′
i,[m]�Πie

Ai,[m]� ≤ Πi.

Pre- and post-multiplying the third inequality of (8) by
eAi,[m]� andeA

′
i,[m]� respectively, one gets that

eA
′
i,[m](T+�)Πje

Ai,[m](T+�) < Πi.

Therefore, the theorem holds. □

The inequalities (8) are characterized by an important prop-
erty for a fixedT . Indeed, denote byΠi,[r] the positive
definite matrices satisfying (8) for a certainT andm = r.
Then, one can set

Πi,[2k+1m] = Πi,[2km] ⊗Πi,[2km], ∀k.

This means that if (8) are feasible form = 2kr, they are also
feasible form = 2k+1r. In conclusion, the sequenceT[2kr],
k = 0, 1, ⋅ ⋅ ⋅ is monotonically non-increasing with respect
to k and the limit

T[∗r] = lim
k→∞

T[2kr].

exists. Of course,T[∗r] is an upper bound of the minimum
dwell timeTmin, for eachr. As such

T[∗] = min
r>0

T[∗r] (9)

is also an upper bound ofTmin.

Remark 2: The above result can be strengthened by proving
the monotonicity with respect tok of the sequence of upper
bounds indexed bym = �kr, for � ≥ 2.

Remark 3: The sufficient condition of Theorem 3 lends itself
to be slightly modified so as to cope with the stability
analysis of system (1) under the reset condition (3). As a
matter of fact, it is enough to replace condition

eA
′
i,[m]TΠje

Ai,[m]T < Πi ∀i ∕= j

with

eA
′
i,[m]T (S

[m]
i )′ΠjS

[m]
i eAi,[m]T < Πi ∀i ∕= j.

IV. CONDITIONS VIA THE SMR

Any homogeneous polynomialℎ(x) of degree2m in x ∈ ℝ
n

can be written in a more compact and complete way by using
the SMR which was introduced in [13] to establish whether a
homogeneous polynomial is sum of squares of homogeneous
polynomials (SOS) via LMIs.
Indeed, letx{m} ∈ ℝ

d(n,m) be a vector containing a base
for the homogeneous polynomials of degreem in x ∈ ℝ

n,
where

d(n,m) =
(n+m− 1)!

(n− 1)!m!

and let us define the set

ℒm =
{

L = L′ : x{m}′

Lx{m} = 0 ∀x
}

whose dimension is given by

dpar(n,m) =
1

2
d(n,m) (d(n,m) + 1)− d(n, 2m).

Let Lm : ℝ
dpar(n,m) → ℝ

d(n,m)×d(n,m) be any linear
parametrization of the setℒm. Then, the SMR ofℎ(x) is
given by

ℎ(x) = x{m}′

(H + Lm(�)) x{m}, ∀� ∈ ℝ
dpar(n,m)

whereH ∈ ℝ
d(n,m)×d(n,m) is a suitable constant matrix.

See also [15], [16] for details on the SMR, and [17] where
homogeneous polynomial Lyapunov functions and the SMR
are exploited in order to investigate stability of uncertain
systems with time-varying uncertainties.
Let Ai,{m} ∈ ℝ

d(n,m)×d(n,m) be the matrix satisfying

dx{m}

dx
Aix = Ai,{m}x

{m} ∀x

which can be computed with the formula given in [18].
Then we have the following theorem.

Theorem 5: Assume that, for givenT > 0 and positive
integerm,

∃Πi, �i, �i,j :
⎧



⎨



⎩

Πi > 0 ∀i

A′
i,{m}Πi +ΠiAi,{m} + Lm(�i) < 0 ∀i

eA
′
i,{m}TΠje

Ai,{m}T < Πi + Lm(�i,j) ∀i ∕= j.
(10)
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Then, (1) is exponentially stable for every�(⋅) ∈ DT .
Proof. Suppose that (10) holds, and define

vi(x) = x{m}′Πix
{m}.

Since
x{m}′

Lx{m} = 0

and
(

eAitx
){m}

= eAi,{m}tx{m} ∀t ≥ 0

it follows that (5) holds, hence implying that the system is
exponentially stable for every�(⋅) ∈ DT . □

Remark 4: Observe that, form = 1, (10) coincides with (8)
and (2).

To see that the condition (10) is not more conservative than
the condition (8), the following result is noted.

Theorem 6: Assume that, for givenT > 0 and positive
integerm, (8) holds. Then, (10) holds for the sameT and
m.
Proof. Let Πi be such that (10) holds forT andm. We now
show that there exist̃Πi, �i, �i,j such that (10) holds for the
sameT andm.
Define the homogeneous polynomial Lyapunov functions of
degree2m vi(x) = x[m]′Πix

[m]. We have that (5) holds with
these Lyapunov functions. Now, let us define

Π̃i = K ′
0ΠiK0 (11)

whereK0 is the matrix satisfying

x[m] = K0x
{m} ∀x.

We have that

vi(x) = x{m}′

Π̃ix
{m}

Π̃i > 0.

Then, let us define

Φi = K ′
0

(

A′
i,[m]Πi +ΠiAi,[m]

)

K0.

We have that

dvi(x)

dt

∣

∣

∣

∣

ẋ=Aix

= x{m}′

Φix
{m}

Φi < 0

and

∃�i : A′
i,{m}Π̃i + Π̃iAi,{m} + Lm(�i) = Φi

becauseA′
i,{m}Π̃i + Π̃iAi,{m} andΦi are SMR matrices of

the same homogeneous polynomials. Lastly, let us define

Φi,j = K ′
0

(

eA
′
i,[m]TΠje

Ai,[m]T −Πi

)

K0.

We have that

vj(e
AiTx)− vi(x) = x{m}′

Φi,jx
{m}

Φi,j < 0

and

∃�i,j : eA
′
i,{m}T Π̃je

Ai,{m}T − Π̃i − Lm(�i,j) = Φi,j

becauseeA
′
i,{m}T Π̃je

Ai,{m}T − Π̃i and Φi,j are SMR
matrices of the same homogeneous polynomials. Therefore,
the theorem holds. □

Let us indicate withT{m} the smallest upper bound ofTmin

guaranteed by Theorem 5, i.e.

T{m} = inf {T ≥ 0 : (10) holds} . (12)

The following result is analogous to Theorem 4 and allows
one to calculateT{m} via a bisection search where at each
iteration the condition (10) is tested.

Theorem 7: Assume that (10) holds for someT > 0 and
positive integerm. Then, (10) holds also forT + � andm

for all � ≥ 0.
Proof. Suppose that (10) holds, and definevi(x) =
x{m}′

Πix
{m}. Consider any� ≥ 0. From the second

inequality one has that

vi(x(�)) ≤ vi(x(0)) ∀x(0)

which implies that

eA
′
i,{m}�Πie

Ai,{m}� ≤ Πi.

Pre- and post-multiplying the third inequality of (10) by
eAi,{m}� andeA

′
i,{m}� respectively, one gets that

eA
′
i,{m}(T+�)Πje

Ai,{m}(T+�)

< Πi + eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�.

Lastly, let us observe that

x{m}′

eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�x{m}

=
(

eAi�x
){m}′

Lm(�i,j)
(

eAi�x
){m}

= 0

which implies that

eA
′
i,{m}�Lm(�i,j)e

Ai,{m}� ∈ ℒm.

Hence,

∃�̃i,j : Lm(�̃i,j) = eA
′
i,{m}�Lm(�i,j)e

Ai,{m}�

and, therefore, the theorem holds. □

Remark 5: For the stability analysis of system (1) under the
reset condition (3), it is enough to replace, in the statement
of Theorem 5, the condition

eA
′
i,{m}TΠje

Ai,{m}T < Πi + Lm(�i,j) ∀i ∕= j

with

eA
′
i,{m}TK ′

0(S
{m}
i )′ΠjS

{m}
i K0e

Ai,{m}T

< Πi + Lm(�i,j) ∀i ∕= j

whereK0 is the full column matrix already defined in (11).
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Since the upper boundT{m} in (12) is obtained by exploiting
the SMR for establishing positivity of homogeneous polyno-
mials, the conservatism ofT{m} is related to the possibility
of expressing positive homogeneous polynomials as SOS,
see for instance [19]–[21].

V. EXAMPLES

In this section, some examples are presented to illustrate
the usefulness of our computational method. The obtained
bounds are compared with the one provided in the pioneering
paper [10], i.e.

THM = max
i

inf
�>0,�>0

{

�

�
: ∥eAit∥ ≤ e�−�t, ∀t > 0

}

.

In addition, we consider

TLB = min

{

T ≥ 0 s.t. max
q

∣

∣

∣

∣

∣

�q

(

M
∏

p=1

eBp�

)∣

∣

∣

∣

∣

< 1,

∀� > T

}

where �q denotes a generic eigenvalue and
{B1, B2, ⋅ ⋅ ⋅ , BM} are matrices corresponding to any
permutation among those of the set{A1, A2, ⋅ ⋅ ⋅ , AM}. Of
course

TLB ≤ Tmin,

i.e. TLB is a lower bound of the minimum dwell time.
Despite all our attempts, we were not able to work out a
third order example withT{∗} > Tmin.

A. Example 1

Consider

A1 =

[

0 1
−2 −1

]

, A2 =

[

0 1
−9 −1

]

.

We get the following upper bounds:

m T[m] T{m}

1 0.6222 0.6222
2 0.6216 0.6079
3 0.6207 0.6073
4 0.6197 0.6073

In this exampleTHM = 2.2321 and TLB = 0. It turns
out that the true minimum dwell timeTmin coincides with
the T{∗}. Indeed, this is confirmed by finding a switching
sequence withtk+1 − tk = 0.6073 − � yielding a non
asymptotically stable system. For instance, it can be easily
verified that taking the periodic signal of periodt1 + t2

�(t) =

{

1, t ∈ [0, t1)
2, t ∈ [t1, t1 + t2)

with t1 = 0.8800 and t2 = 0.6073, the associated periodic
systemẋ(t) = A�(t)x(t) is not asymptotically stable (the
maximum modulus of the characteristic multipliers is equal
to one). Therefore,Tmin = T{∗} = T{4} = 0.6073.

B. Example 2

Consider

A1 =

[

−1 −1
1 −1

]

, A2 =

[

−1 2
−3 −1

]

,

A3 =

[

1 1
−3 −2

]

.

We get the following upper bounds:

m T[m] T{m}

1 0.6437 0.6437
2 0.6281 0.3629
3 0.4607 0.3510
4 0.3747 0.3510

In this exampleTHM = 2.9816 andTLB = 0. Analogously
to Example 1, it can be easily verified that taking the periodic
signal of periodt1 + t3

�(t) =

{

1, t ∈ [0, t1)
3, t ∈ [t1, t1 + t3)

with t1 = 0.3510 and t3 = 0.4700, the associated periodic
systemẋ(t) = A�(t)x(t) is not asymptotically stable (the
maximum modulus of the characteristic multipliers is equal
to one). Therefore,Tmin = T{∗} = T{4} = 0.3510.

C. Example 3

Consider

A1 =

⎡

⎣

−1 −1 1
−1 −1 0
−2 1 −1

⎤

⎦ , A2 =

⎡

⎣

−1 0 6
−2 −1 −5
0 3 −1

⎤

⎦ .

We get the following upper bounds:

m T[m] T{m}

1 1.9135 1.9135
2 1.9108 1.9065
3 1.9087 1.9023
4 1.9070 1.8997

In this exampleTHM = 15.7089 andTLB = 1.8788. Proba-
bly T{4} is not tight this time, nevertheless it is expected that
one can reachTmin for values ofm larger than4. Observe
that, clearly,Tmin ∈ [TLB, T{4}] = [1.8788, 1.8997].

D. Example 4

Consider

A1 =

⎡

⎣

−1 1 0
0 −2 −1
−1 0 −2

⎤

⎦ , A2 =

⎡

⎣

−1 0 1
−1 −1 0
0 1 −1

⎤

⎦ ,

A3 =

⎡

⎣

−1 0 6
−1 −1 −5
0 1 −1

⎤

⎦ .

We get the following upper bounds:
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m T[m] T{m}

1 0.3930 0.3930
2 0.2616 0.0549
3 0.0027 0.0000
4 0.0000 0.0000

HenceT{∗} = 0. In this exampleTHM = 2.2395. Of course
Tmin = TLB = 0.

VI. CONCLUSIONS

This paper has addressed stability of switched linear systems
under a dwell time constraint. LMI conditions have been
proposed to compute upper bounds of the minimum dwell
time, based on the use of Kronecker products and the SMR
of homogeneous polynomials. The examples show that the
exact minimum dwell time can be arbitrarily approached by
increasing the degree of the homogeneous polynomial. This
is in accordance with our conservatism results in [22] where
it is shown that the class of homogeneous polynomials is not
conservative for dwell time investigations of switched linear
systems. Further work will be devoted to derive upper bounds
of the degree of the homogeneous polynomial Lyapunov
function required to achieve non-conservatism.
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