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Computing Upper-bounds of the Minimum Dwell Time of Linear
Switched Systems via Homogeneous Polynomial Lyapunov Fui@ns

G. Chesl, P. Colanef, J. C. Geromél R. Middletorf, R. Shortef

Abstract— This paper investigates the minimum dwell time and a smaller numerical complexity, while the one based on
for switched linear systems. It is shown that a sequence of the SMR provides less conservative results. A number of

upper bounds of the minimum dwell time can be computed by - gy amples illustrate the proposed approach, showing tieat th
exploiting homogeneous polynomial Lyapunov functions and exact minimum dwell time can be often obtained
convex optimization based on LMIs. This sequence is obtaime :

by adopting two possible representations of homogeneouslge ~ The paper is organized as follows. In Section Il the ba-
nomials, one based on Kronecker products, and the other on sic problem is formulated and some preliminary results

the square matrix representation. Some examples illustr&the  are given. In Section Ill the proposed condition based on

use and the potentialities of the proposed approach. Kronecker products is derived. Section IV presents the
|. INTRODUCTION formulation of this condition by adopting the SMR. Section

V illustrates the proposed approach through a number of

This work deals with the stability of switched linear system ) .
under a dwell time constraint. Problems in the design oel;xamples. Lastly, Section VI concludes the paper with some

switching control systems in which switching takes plactlgInal remarks.
“slowly” between system matrices, arise frequently in prac 1. PRELIMINARIES

tce, see for '”St.af‘ce [1]_[.9].' n Sl.JCh problems, ON€ e consider switched linear systems of the form
faced with determining the minimum time between switching
(i.e. the dwell time) such that that exponential switching (t) = Ayyz(t) (1)
is maintained. It is well known that the computation of _ o _ )
the exact minimum dwell time is demanding. In [10], anVherez(t) € R", and o(t) is a switching signal taking
upper bound is computed on the basis of the norm of thglues in a finite set' = {1,2,..., M}. All matrices 4;,
transition matrices associated with the system matrices, a! — 1»2:---, Ay, are assumed to be Hurwitz, and we
is further discussed in the thesis of Hespanha [11]. Morgharacterize switching rules by saying that the sigria] or-
recently, an alternative method based on convex optinoizati CheStrates switching between the matriegs Ay, ..., Aar.

is presented in [12]. In this paper, the authors use lined? this work we impose a further restriction on the system
matrix inequalities and one-parameter search technicues $2SS described by the above equation. More specifically, we
compute a guaranteed dwell time. The inequalities genaratdMPOSe restrictions on the set of admissible switchingaign
piecewise quadratic Lyapunov functiotiz), discontinuous PY d€fining the set

at the switching instants,, but such that the sequence Dy ={o(t): tps1 —tp > T}

v(z(tx)), for k =0,--- , 00, converges uniformly to zero.

This paper extends the result in [12] by adopting hoWhel'etk are the commutation instants athd> 0. Themini-
mogeneous polynomial Lyapunov functions. A candidatim dwell time problemis then to compute the minimuff
Lyapunov function is looked for by using two possible€nsuring exponential stability of system (1) for all posib
representations, the first based on Kronecker products, afitf) € Dr. We define this time as

Fhe second _based on the square matrix representation_(_SMR) Tpin = nf{T>0: (1) is exponentially stable
introduced in [13]. Both representations lead to sufficient

conditions for stability of the switched linear system unde forall o(t) € Dr}.

a dwell time requirement via LMI feasibility tests, which Our starting point in this paper is the following Theorem
are convex optimization problems with LMI constraints. Athat was given in [12] for guaranteeing a dwell time.
bisection search over a scalar parameter produces an upper

bound of the minimum dwell time. The representation basetheorem 1 (see [12]): Assume that, for gived” > 0,

on Kronecker products enjoys a more explicit formulation
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(i) For given Hurwitz matricesA;, i = 1,2,..., Ay, observation is characterized by the following result which
there always exist” > 0 such that (2) holds. Indeed, can be found in [14].
as T goes to infinity, the third inequality reduces to
P; > 0 and the feasibility of the second is guaranteedheorem 2 (see [14]): The system is exponentially stable in
by Hurwitz stability of the matricesi,. Dy if and only if there exist continuous functiongx) such
that
(ii) I.f the ingqya{ities are always satisfied for— 0, then, vi(z) >0 Vo #£0, Vi
in the limit, it follows thatP; — P, — 0 so that the dvs(z)
condition for quadratic stability is recovered, namely th <0 VYxr#0,Vi (5)
, . t=A;x
AP+ PA; <0, Vi (et Tx) <vilw) Va# 0, Vi .
where P > 0 is the limit of P, asT goes to0. ]
(iii) The function ) Let us observe that eaeh(x) in Theorem 2 can be chosen
v(x,t) = 2" Poyx homogeneous due to the fact that the system is linear.
is( )5‘ Lly)apunov function for system (1) for every [Il. CONDITIONS VIA KRONECKERPRODUCTS
) € Dp.
7 4 The idea exploited in this paper is to adopt homogeneous
(iv) Associated with a given a sequenge k = 0,1, . .., it polynomial Lyapunov functions, which have the form
is possible to write the discrete-time switched system v(x) = Z Ciyooin Zit . gin (6)
2(k+1)=Fsp2(k i1+ ...+, =2m
( ) (k) () i1207---,in20
where . , , . .
o(k) = o(ty), @(k)=x(t) beingx = (z1,...,z,) € R™ the function variable2m
Fy = oA (b1 —tk). the d_e_gree for a positive integet, andc;,, . ;, € R some
(k) coefficients.
Then, this system is stable under arbitrary switchingne way to represent homogeneous polynomial Lyapunov
under the piecewise quadratic Lyapunov function  functions is to use Kronecker products. Indeed, for any
w(i, k) = &' Py . matrlx (vector) J and positive integer let us define the
notation _ _
(v) Theorem 1 can be easily adapted to comply with pos- [i] J Jimif i > 1
. . . JW = o (7)
sible state jumps in the system state. Indeed, assume 1 if i =0.
that at each commutation instafi, the system state ] .
is reset according to the rule Then,v(z) in (6) can be rewritten as
z(tk) = Sg(tk)l'(t;) (3) ’U(x) = m[m] Hm['rn]
Then stability in Dy is guaranteed if there exist for a suitable symmetric matrild = II' € R™"*"" which
positive definite matrice®; satisfying contains the coefficients;, . ;,. Let A; ,,) € R* *"" be
the matrix satisfyin
P>0 Wi ying
3P { AP+ PA; <0 Vi @) o) A e~ Ay Va
/ ., dt dr " i '
eAiT S p.S.edT < P, Vi # j.
_ - 7 _ #J It turns out that
(vi) If the sufficient condition stated in Theorem 1 is

feasible forT, then it holds also forl’ + ¢ for all A mt1) = Aijm] © As

§=0. where the Kronecker sum of two matrices, s@yandY is

The algorithm to find an upper bound of the minimunyefined asx Y = X 9 I+ I ® Y. Then, we have the
dwell time consists in finding the minimum value Bfsuch following result.

that (2) holds. Notice that this computation only involves

the solution of a set of LMIs plus a line search over themegrem 3;: Assume that, for giveri’ > 0 and positive
parameterT’. However, the sufficient condition stated injntegery,,

Theorem 1 is not necessary for stability ih-. This means

that a system can be stable Iy and no positive definite I; >0 Vi

matrices P; exist satisfying (2). The reason is that the 1, Al
inequalities define a Lyapunov functian(z) = 2' P, z,
which is piecewise quadratic, whereas for stabilityIi-,

'L',['rn]Hi + HiAi,[m] <0 Wi (8)

AL T A, T . .
eAuim T eAimT < T1; Vi # j.

more complex Lyapunov functions are required. This latteFhen, (1) is exponentially stable for evesy-) € Dr.
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Proof. Suppose that (8) holds, and define Remark 2: The above result can be strengthened by proving
- the monotonicity with respect tb of the sequence of upper
vi(x) = 2™ Iia™. bounds indexed byn = ¢¥r, for ¢ > 2.

Since
(eALvtx) ] _ A it lm] g >0 Remark 3: The sufficient condition of Theorem 3 lends itself

to be slightly modified so as to cope with the stability
it follows that (5) is satisfied thus implying that the systemanalysis of system (1) under the reset condition (3). As a
is exponentially stable for every(-) € Dr. O  matter of fact, it is enough to replace condition

ALty TTT . pAs ) T . : :
Remark 1: Let us observe that, fom = 1, (8) coincides elutm T et <1l Vi # j

with (2). with

.. . Al m m . . .
Let us indicate withT},,) the smallest upper bound @f,,;,, e T (ST 8 eAum T < 1L Vi # .

guaranteed by Theorem 3, i.e. IV. CONDITIONS VIA THE SMR

Tty = inf {T">0: (8) holds . Any homogeneous polynomialz) of degre€m in z € R"

can be written in a more compact and complete way by using
the SMR which was introduced in [13] to establish whether a
homogeneous polynomial is sum of squares of homogeneous
polynomials (SOS) via LMis.

Indeed, letz{™} e R¥™™) pe a vector containing a base
The(.)rem.d': Assume that (8) holds for somé > 0 and for the homogeneous polynomials of degreein x € R",
positive integermn. Then, (8) holds also fdr + £ andm for where

all £ > 0. (n+m—1)!

Proof. Suppose that (8) holds, and defing(z) = d(n,m) = (n—1)im!

#Im'I1,2Im . Consider anyg > 0. From the second inequality

one has that

The following result provides a key property of the conditio
(8), which allows one to calculatdj,, via a bisection
search where at each iteration the condition (8) is tested.

and let us define the set

_ 7. m}’ m} _
0i((€)) < vi(@(0) Va(0) Lo ={L =L otV Lot =0 v}

which implies that whose dimension is given by

, 1
A im T, e e tmE < T, dpar(n, m) = Ed(n, m) (d(n,m) + 1) — d(n, 2m).
Pre- and post-multiplying the third inequality of (8) bylLet L,, : Réver(nm) — Ri(nm)xd(n.m) phe any linear
eAitmé andeim® respectively, one gets that parametrization of the sef,,. Then, the SMR ofi(x) is
given by

e'A;w[m](T+£)HjeAiv[m'](T+§) <11, /
h(x) — m{m} (H + Lm(a)) m{m}7 Yo € Rdmr(n,m)
Therefore, the theorem holds. d
where H ¢ Ré(mm)xd(nm) s g suitable constant matrix.
The inequalities (8) are characterized by an important profee also [15], [16] for details on the SMR, and [17] where
erty for a fixedT. Indeed, denote byl, [, the positive homogeneous polynomial Lyapunov functions and the SMR
definite matrices satisfying (8) for a certainandm = . are exploited in order to investigate stability of uncertai
Then, one can set systems with time-varying uncertainties.
Let A; () € RéUmm)xd(nm) pe the matrix satisfying
Hi.[2k+17rb] = Hi,[Q""rn] ® Hi.[ka]v k. /
' ' dx{m}
This means that if (8) are feasible for = 2%, they are also dr

feasible form = 2**1r. In conclusion, the sequendgyx,), . . . .
k = 0,1,--- is monotonically non-increasing with respecﬂ'rvﬁécnhwcfrr:asz t%%rr;gllljés\?in\éwttnegﬁzn:ormUIa given in [18]

to £ and the limit

AZ‘I = Ai7{,,n}l'{m} YV

Twr) = lm Tigr,). Theorem 5: Assume that, for giverii’ > 0 and positive
k—o00 ;
integerm,
exists. Of courseT},,) is an upper bound of the minimum

dwell time T},,;,,, for eachr. As such AL,y vy i

. II, >0 Vi
Ty = min Ty ) Ly LA gy + Do) <0 Vi
is also an upper bound &,,;,,. eAitm T eAitmdT < T + Ly (ci ) Vi # 5.

(10)
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Then, (1) is exponentially stable for evesy-) € Dr. and
Proof. Suppose that (10) holds, and define : _ _
PP ( ) 3041'7j : €Ai*{m}THj€A7"{m}T — Hz — Lm(am-) = q)i,j
) _ {m}’H. {m}
vilr) = i L . / - -
() becauseeAL‘w{m}THjeAMm}T — II; and ®;; are SMR
Since ) matrices of the same homogeneous polynomials. Therefore,
2 pptmt = the theorem holds. O
and Let us indicate withr,,,, the smallest upper bound @f,.:,,

At {m} _ Ayt {m :
(eta) ™ = eitmitadm) vt > 0 guaranteed by Theorem 5, i.e.

it follows .that (5) holds, hence implying that the system is Ty = inf {T'>0: (10) holdg . (12)
exponentially stable for every(-) € Dr. O
The following result is analogous to Theorem 4 and allows

Remark 4: Observe that, fom = 1, (10) coincides with (8) one to calculatef,,, via a bisection search where at each

and (2). iteration the condition (10) is tested.

To see that the condition (10) is not more conservative thatheorem 7. Assume that (10) holds for sonE > 0 and

the condition (8), the following result is noted. positive integern. Then, (10) holds also fof + ¢ andm
for all £ > 0.

Theorem 6: Assume that, for giverl’ > 0 and positive Proof. Suppose that (10) holds, and defing(z) =
integerm, (8) holds. Then, (10) holds for the sarieand ™} IL;z{™}. Consider any¢ > 0. From the second
m. inequality one has that

Proof. Let II; be such that (10) holds faf andm. We now

show that there exidil;, a;, o; ; such that (10) holds for the vi(2()) < vi((0)) va(0)
sameT andm. which implies that
Define the homogeneous polynomial Lyapunov functions of
degree@m v;(x) = 2™ II;2I™). We have that (5) holds with

these Lyapunov functions. NOW let us define Pre and post multiplying the third inequality of (10) by
I, = KL K, (11) Aitm€ and e i om € respectively, one gets that

eAi,{m}ﬁHieAi,{m}f <TI,.

where K| is the matrix satisfying e tm (TFOL eAinmy (T+6)

Al ,
L B ) < I +e «{m}iLm(ozw)eAl,{m}E.
Lastly, let us observe that
We have that ;e
vi(z) = a{mVz{im wtmd eAim S L, (ay g)ettmSgims
m > o = (eM2) " L (i) (ehi8a)

Then, let us define 0

. which implies that
o, = K, (A 1L + H,L-AZ-,[m]) Ko

e““;v{m}ng(ozz-,j)e"liv{m}E € L.
We have that

dvi(z) Hence,
i = im}Y P pim} /
At |ic i ’ Zx 3 0 Ln(@ig) = €0 0m Ly (g g)etitm
® < 0 and, therefore, the theorem holds. O

and
Remark 5: For the stability analysis of system (1) under the

3ai o A oy T+ TLA; oy + L (i) = @ reset condition (3), it is enough to replace, in the statemen

becauseA’ H +1LA; {m} and®; are SMR matrices of of Theorem 5, the condition

the same homogeneous polynomials. Lastly, let us define eAQW{m}THjeA«{m}T <ILi+ Lp(as;) Yi#j
o, = K (eAL m T eAm T — Hi) Ko. with

We have that ey T K (SIS K e A om T
vj(eAiTz) —vi(z) = x{m}/q)i,j:r{m} < i+t Ln(aig) Vi

®;; < 0 where K is the full column matrix already defined in (11).
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Since the upper bourifi;,,,, in (12) is obtained by exploiting B. Example 2
the SMR for establishing positivity of homogeneous polyno
mials, the conservatism dfy,,, is related to the possibility
of expressing positive homogeneous polynomials as SOS, A = { -1 -1 } Ay = [ -1 2 ]
see for instance [19]-[21]. -1 ’

Consider

Ao — 1 1
V. EXAMPLES 3T | 3 —9 |-

In this section, some examples_, are presented to |IlusfcrE\9§e get the following upper bounds:
the usefulness of our computational method. The obtaine

bounds are compared with the one provided in the pioneering

paper [10], i.e. | Tim) | Timy

m
1 | 0.6437 | 0.6437
2
3

0.6281 | 0.3629
0.4607 | 0.3510
4 | 0.3747 | 0.3510

In this examplel'yy, = 2.9816 and T = 0. Analogously
to Example 1, it can be easily verified that taking the pedodi
signal of periodt; + t3

Ty =max  inf {% et < e Pt vt > o}.

i a>0,8>0
M
Byt
(11
p=1

Vr > T} () { ; t€[0,t1)

In addition, we consider

T, = min {T >0 s.t. max <1,

q

te [ﬁl,l‘,l + t3)

where A, denotes a generic eigenvalue andyith +; = 0.3510 and¢; = 0.4700, the associated periodic

{B1,Bs,---, By} are matrices corresponding to anysystemi(t) = A, z(t) is not asymptotically stable (the
permutation among those of the dety, Az, -+, Ax}. OF  maximum modulus of the characteristic multipliers is equal
course to one). Thereforel,,in, = T,y = T4y = 0.3510.
T < Tmin,
. . o . C. Example 3
i.e. Trp is a lower bound of the minimum dwell time. .
Despite all our attempts, we were not able to work out £Onsider
third order example Wity > T'yip- -1 -1 1 -1 0 6
A= -1 -1 0 |, Ab=1| -2 -1 -5
A. Example 1 -2 1 -1 0o 3 -1
Consider We get the following upper bounds:
K P A

m | Ty | Timy
We get the following upper bounds: 1 ] 1.9135 | 1.9135

2 | 1.9108 | 1.9065

3 | 1.9087 | 1.9023

m | T | Tomy

1 ] 0.6222 | 0.6222 4 | 1.9070 | 1.8997
2

3

0.6216 | 0.6079 In this example€l'y; = 15.7089 andT,p = 1.8788. Proba-
0.6207 | 0.6073 bly T4y is not tight this time, nevertheless it is expected that
4 | 0.6197 | 0.6073 one can reacH’,,;, for values ofm larger thand. Observe

In this exampleTy = 2.2321 and Trp — 0. It turns  ab cleary. T € [Trp, Tiyy] = [1.8788,1.8997].

out that the true minimum dwell tim&,,;,, coincides with
the T.,. Indeed, this is confirmed by finding a switching .
sequence witht,,; — t, = 0.6073 — € yielding a non Consider

D. Example 4

asymptotically stable system. For instance, it can be yeasil 1 1 0 1 0 1
verified that taking the periodic signal of period+ t, A= 0 -2 -1, Ap=| -1 -1 0 |,
o) = 1, te[0,t) -1 0 =2 0 1 -1
B 2, te [ﬁl,l‘,l +t2) -1 0 6
) . . As=1| -1 -1 -5
with ¢; = 0.8800 andt, = 0.6073, the associated periodic 0 1 —1

systemi(t) = A, x(t) is not asymptotically stable (the
maximum modulus of the characteristic multipliers is equalVe get the following upper bounds:
to one). Thereforel i, = T,y = Ty4y = 0.6073.
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m | T[m] | T{m}

1 | 0.3930 | 0.3930
2 | 0.2616 | 0.0549
3 | 0.0027 | 0.0000
4 | 0.0000 | 0.0000

HenceTy,, = 0. In this examplely y, = 2.2395. Of course
Tmin = TLB = 0.

This paper has addressed stability of switched linear syste

VI. CONCLUSIONS
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under a dwell time constraint. LMI conditions have beeﬁzz]
proposed to compute upper bounds of the minimum dwell
time, based on the use of Kronecker products and the SMR
of homogeneous polynomials. The examples show that the
exact minimum dwell time can be arbitrarily approached by
increasing the degree of the homogeneous polynomial. This
is in accordance with our conservatism results in [22] where
it is shown that the class of homogeneous polynomials is not
conservative for dwell time investigations of switchecekn
systems. Further work will be devoted to derive upper bounds
of the degree of the homogeneous polynomial Lyapunov
function required to achieve non-conservatism.
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