
NON-LINEAR DYNAMICS 

IDENTIFICATION USING 

GAUSSIAN PROCESS PRIOR 

MODELS WITHIN A BAYESIAN 

CONTEXT 
 

 

By 
 

 

 

Keith Neo Kian Seng 
 

PhD Thesis 

 
Submitted to  

National University of Ireland, Maynooth (NUIM) 

Department of Electronic Engineering 

 

 
 

Hamilton Institute 

National University of Ireland, Maynooth 

Maynooth, Co. Kildare 

Ireland 

 

2008 

 
Research Supervisor: Professor W. E. Leithead





 i 

Preface 

 
This dissertation is prepared at the Hamilton Institute, National 

University of Ireland, Maynooth (NUIM) of Ireland, in partial fulfilment 

and conformity with the requirements for the degree of Doctor of 

Philosophy (Ph.D.) in Electronic Engineering. 

 

The dissertation describes the work carried out between October 2003 

and February 2007, under the supervision of Professor Bill Leithead. 

With the exception of Section 3.2.1 and Section 3.5.1, which has been 

done in collaboration with Yunong Zhang and where explicit reference is 

made to the work of others, this dissertation is the result of my own work. 

It has not, nor has any similar dissertation, been submitted for a degree or 

any qualification at this or any other university. This length of this 

dissertation does not exceed sixty thousand in words. 
 

 

 

 

 

December 2007 
 

 

 

 

 

 

Keith Neo Kian Seng 



 ii 

Abstract 

 
Gaussian process prior models are known to be a powerful non-parametric tool for 

stochastic data modelling. It employs the methodology of Bayesian inference in using 

evidence or data to modify or refer some prior belief. Within the Bayesian context, 

inference can be used for several purposes, such as data analysis, filtering, data 

mining, signal processing, pattern recognition and statistics. In spite of the growing 

popularity of stochastic data modelling in several areas, such as machine learning and 

mathematical physics, it remains generally unexplored within the realm of nonlinear 

dynamic systems, where parametric methods are much more mature and more widely 

accepted. 

 

This thesis seeks to explore diverse aspects of mathematical modelling of nonlinear 

dynamic systems using Gaussian process prior models, a simple yet powerful 

stochastic approach to modelling. The focus of the research is on the application of 

non-parametric stochastic models to identify nonlinear dynamic systems for 

engineering applications, especially where data is inevitably corrupted with 

measurement noise. The development of appropriate Gaussian process prior models, 

including various choices of classes of covariance functions, is also described in 

detail. 

 

Despite its good predictive nature, Gaussian regression is often limited by several 

O(�
3
) operations and O(�

2
) memory requirements during optimisation and prediction. 

Several fast and memory efficient methods, including modification of the log-

likelihood function and hyperparameter initialisation procedure to speed up 

computations, are explored. In addition, fast algorithms based on the generalised 

Schur algorithm are developed to allow Gaussian process to handle large-scale time-

series datasets. 

 

Models based on multiple independent Gaussian processes are explored in the thesis. 

These can be split into two main sections, with common explanatory variable and 

with different explanatory variables. The two approaches are based on different 

philosophies and theoretical developments. The benefit of having these models is to 

allow independent components with unique characteristics to be identified and 

extracted from the data. 

 

The above work is applied to a real physical wind turbine data, consisting of 24,000 

points of the wind speed, rotor speed and the blade pitch angle measurement data. A 

case study is presented to demonstrate the utility of Gaussian regression and 

encourage further application to the identification of nonlinear dynamic systems. 

 

Finally, a novel method using a compound covariance matrix to exploit both the time-

series and state-space aspects of the data is developed. This is referred to as the state-

space time-series Gaussian process. The purpose of this approach is to enable 

Gaussian regression to be applied on nonlinear dynamic state-space datasets with 

large number of data points, within an engineering context. 
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Chapter 1 

Introduction 

“Anyone who has never made a mistake has never tried anything new.” 

- Albert Einstein (1879 – 1955) 

 

 

1.1 Background 

 

Data modelling is encountered in several fields of research. When presented with an 

unknown set of data obtained from a system, it is of interest to analyse the 

measurements (or observations) and identify the system, which can be nonlinear in 

many cases. For example, it might be the future shares fluctuation in the stock market 

that investors are trying to predict, the dynamics of a wind turbine machine that 

engineers are interested in simulating, spam filtering using the Bayesian learning 

methodology, or the action-reaction relationship between genes which biologists and 

scientists are attempting to identify. With several unknown underlying factors that 

remain unclear to investigators, deterministic modelling is usually not preferred. 

Alternatively, stochastic modelling which provides a probabilistic description of the 

model given the data is a better alternative for modelling stochastic data. The model 

can be improved by the incorporation of prior knowledge about the data (system). It 

(the model) is represented by the prior beliefs about the system and the information 

about the system as provided by the data. This model can then be used to make 
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inferences using the rules of probability theory, within a Bayesian context. Gaussian 

process prior model is, therefore, one of the keys to successful implementation of 

Bayesian methods in nonlinear dynamic systems. The purpose of using Gaussian 

processes is not limited to just a mathematical breakthrough, but is also applicable to 

solving real world problems. 

 

It is perhaps of interest to go back in time a little further. The starting point was 

Bernoulli’s work (Bernoulli, 1713) on Binomial distributions and the relationship of 

uncertainty to probability. Half a century later, Bayes followed up on Bernoulli’s 

work and developed a mathematical structure (Bayes, 1763) that was previously 

lacking. With that structure, inferences can be made using models belonging to a 

distribution. However, this was only applicable to Binomial distribution at that time. 

It was not until another 50 years later that Laplace extended Bayes’ theorem to 

include all possible distributions (Laplace, 1812). Unfortunately, mathematicians at 

that time were not keen on probabilistic modelling, which was often opposed by 

objective frequentist views. 

 

 

Figure 1 History of Bayesian Inference 

 

Since then, Bayesian inference was largely ignored. It was only in recent decades that 

interest began to grow, particularly in the area of stochastic modelling (Lu and 

Adachi, 1989; Berman, 1990; Archambeau et al., 2007). Based on the work by 

Laplace, several works were developed in the late 1990s. Figure 1 presents a visual 

Bayes (1763) 

Laplace (1812) 

Box and Tiao 

(1973) 

MacKay (1992) Rasmussen (1996) Gibbs (1999) 

Bernoulli (1713) Binomial Distribution 

Mathematical Structure 

Prior belief in 

Probability 

DELVE Evidence Maximisation 
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timeline of the development of Bayesian inference. Beginning in the late 1990s, the 

interest in Gaussian processes has grown rapidly, with the aim of using them as 

models for regression (Williams and Rasmussen, 1996) and classification (Williams 

and Barber, 1998). Despite its growing popularity, dynamic modelling using Gaussian 

processes is still considered to be at its infancy (Murray-Smith et al., 1999; Kocijan et 

al., 2003). One of the many reasons is because there are several underlying constraints 

restricting the use of probabilistic modelling in dynamic systems. Data from nonlinear 

dynamic systems have particular features unlike many others. Hence, deterministic 

parametric modelling is preferred more within the engineering communities. This 

thesis aims to explore the area of identification of nonlinear dynamic systems, and 

handling large-scale measurement dataset using Gaussian process prior models. 

 

 

1.2 Outline 

 

The underlying motivation for the work reported in this thesis is the development of 

practical Gaussian regression based approaches to the identification of nonlinear 

dynamic systems from noisy measurements. Essentially, the question addressed is 

“What Gaussian process prior model should be used when applying Gaussian 

regression to identifying nonlinear dynamic systems?”. In addition, related 

improvements to the Gaussian regression algorithms are developed. 

 

In Chapter 2, the Gaussian process methodology is discussed, starting with the 

introduction of Gaussian random functions and joint probability distributions. The 

prior model is defined in detail, including the various classes of covariance functions 

that are used to parameterise the prior model. 

 

Although Gaussian regression is an effective tool, fast algorithms are required to 

overcome the expensive computational demands and requirements. The use of 

Hessian information in the optimisation routine to improve convergence, modification 

of the log-likelihood function to reduce the number of hyperparameters to be trained 

and development of fast algorithms, which are capable of handling large-scale 
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datasets of size up to one million data points and beyond, are all relevant. These 

improvements to the algorithms are investigated in Chapter 3. 

 

When the nonlinear relationship underlying measured data consists of two or more 

independent components, it may be required to extract one or both of the components. 

A Gaussian regression approach to so doing based on multiple Gaussian process 

models is proposed. Two cases are considered. In the first case, the independent 

components have different explanatory variables. In the second case, the independent 

components have same explanatory variable. These are discussed in Chapter 4. 

 

Chapters 3 and 4 present improvements to the Gaussian regression algorithms. A case 

study illustrating the concepts and methods developed is presented in Chapter 5. The 

data are noisy site measurements for a commercial wind turbine machine, consisting 

of rotor speed, blade pitch angle and the nacelle anemometer measurement of wind 

speed. 

 

In Chapter 6, the Gaussian process prior model, to be used when applying Gaussian 

regression to identify nonlinear dynamic systems, is investigated. In this context, the 

data set is typically obtained as a time-series but the underlying nonlinear relationship 

is dependent on some explanatory variable other than time. A prior model based on a 

pair of independent Gaussian processes that caters for this dual nature of the data is 

proposed. The dual nature model of Chapter 6 enables the time-series aspect of the 

data to be exploited by pre-filtering, particularly, when combined with the multiple 

Gaussian process prior models of Chapter 4. In combination with the fast and efficient 

algorithms of Chapter 3, it enables greatly increased data sets to be used. 

 

In Chapter 7, the application of the methods and algorithms developed in the 

preceding chapters to nonlinear dynamic system identification is discussed and 

conclusions are drawn. 
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1.3 Achievements 

 

This thesis describes the work carried out between October 2003 and February 2007, 

under the supervision of Professor Bill Leithead. With the exception of Section 3.2.1 

and Section 3.5.1 that were done in collaboration with Yunong Zhang and where 

explicit references are made to include the work of others, this thesis is the result of 

my own work. Some published works include “Gaussian regression based on models 

with two stochastic processes”, presented to IFAC 2005, “Wind turbine rotor 

acceleration: identification using Gaussian regression”, published in ICINCO 2005 

and “Multi-frequency scale Gaussian regression for noisy time-series data”, which 

was submitted to UKACC 2006. 

 

The major achievements of this thesis are the following: fast and efficient algorithms 

are developed for a class of Gaussian process prior models; a novel multiple Gaussian 

process prior model is developed for extracting and identifying components with 

different characteristics; a dual nature Gaussian process prior model for use when 

applying Gaussian regression to nonlinear dynamic system identification is 

developed. 
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Chapter 2 

Gaussian Process Models 

 

 

2.1 Brief Introduction 

 

In this chapter, Gaussian process modelling within a Bayesian context is introduced. 

Gaussian process models have some similarities to certain classes of Artificial Neural 

Networks (ANNs). The Radial Basis Function (RBF), a specific class of ANNs, 

becomes a Gaussian process when the number of nodes in the feature-vector or 

weighting tends to infinity. This places Gaussian process modelling very firmly 

within the scope of machine learning, though it is more commonly encountered in the 

field of statistical research. Early work concerned with Gaussian process models 

includes O’Hagan (1978 and 1994), but it did not spark general interest. However, 

from the late 1990s, following publications by Mackay (1998) and Williams (1999), 

interest quickly grew in the application of Gaussian process models to data analysis 

(Gibbs and Mackay, 2000; Sambu et al., 2000; Yoshioka and Ishii, 2001).  
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2.2 Random Variables – Joint, Marginal and Conditional 

Probability 

 

Gaussian process models and their applications have started to change many 

perspectives and challenge many traditional concepts. Before any further discussion 

on Gaussian process models, it is appropriate to review marginal probabilities, 

conditional probabilities and joint probability distributions. 

 

Consider ( )�xxX ,...,1= , a finite set of continuous random stochastic variables, 

�ip

i ≤≤∈ 1,Ρx , and assume that they are described by a joint probability 

distribution p(X). Let XΑ and XΒ be two subsets of X such that φ=∩ ΒΑ XX  and 

XXX =∪ ΒΑ . It follows that the marginal probability of XΑ is 

( ) ( )∫= ΒΒΑΑ XXXX dpp ,   

 

The discrete case of the marginal probability of XΑ is obtained by replacing the 

integral with a sum. If the set XΑ contains more than one variable, then the marginal 

probability itself is a joint probability. The joint distribution for X is equal to the 

product of the marginals provided that XΑ and XΒ are independent. However, it is 

always assumed in this thesis that the variables are not necessarily independent. 

 

The conditional probability distribution of XΑ given XΒ is defined as 

( ) ( )
( )Β

ΒΑ
ΒΑ

X

XX
XX

p

p
p

,
| =  

 

 

for p(XΒ) > 0, where p(XΒ) is known as the normalising probability. If XΑ and XΒ are 

independent, then the marginal probability p(XΑ) and the conditional probability 

( )ΒΑ XX |p  are equal. 

 

Given the conditional probabilities ( )ΒΑ XX |p  and ( )ΑΒ XX |p , it follows from 

Bayes’ theorem that 

( ) ( ) ( )
( )Β

ΑΒΑ
ΒΑ

X

XXX
XX

p

pp
p

|
| =  
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It is easy to use the above theorem and formulations to perform further conditioning 

on other variables.  

 

 

2.3 Gaussian Random Functions 

 

The Gaussian function is one of the simplest of all possible random functions. Its 

random nature is fully characterised by its mean function and covariance function 

(Pugachev, 1967; Papoulis, 1991). Depending on the explanatory variable of the 

Gaussian random functions, it is usually known as a Gaussian stochastic process if the 

argument is time domain; or a Gaussian random field if it represents a state belonging 

to some space. 

 

Consider the following stochastic field, f(z), DΡ⊆∀z , with mean function, 

( ) ( )[ ]zz fE=m  as z varies, and covariance function, 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )zzzzzzzz ′−′=′=′ mmC ffEf,fcov,  as z and z′  vary. 

 

The stochastic Gaussian process f(z) can be denoted by 

( ) ( ) ( )( )zzzz ′,,~ Cmf ΓΠ   

 

A Gaussian process can also be thought of as a generalisation of multivariate 

Gaussian random variables to infinite sets. When a stochastic process is Gaussian, all 

the joint probability distributions are multivariate normal. Therefore, for any given set 

of explanatory variables, Z� ≡ {z1,…,zn}, the corresponding random variables F� ≡ 

{f(z1),…,f(zn)} have a n-dimensional normal distribution 

( ) ( )( ) ( )∑,~,...,|f,...,f 11 mzzzz Νnnp   

 

where m is a n x 1 vector of the mean values and Σ is a n x n covariance matrix 

between all points of the input explanatory variable, 

( ) ( )

( ) ( )














=Σ

nnn

n

CC

CC

zzzz

zzzz

,,

,,

1

111

L

MOM

L
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i.e. ( )jiij C zz ,=Σ . 

 

 

2.4 Regression Using Gaussian Processes 

 

Regression is one of the most common data modelling problems and several methods 

exist to handle it. The Bayesian approach to regression is discussed with the emphasis 

on the application to Gaussian process modelling. The Gaussian process prior model 

and posterior model are introduced. 

 

 

2.4.1 Gaussian Process Model 

 

What is a Gaussian process prior model? A Gaussian function is a stochastic process, 

whereas a Gaussian process model is a mathematical model for a nonlinear 

relationship, f(z), which depends on some explanatory variable, z. In a random 

function model, any particular nonlinear relationship is one realisation of the random 

function, or more precisely, the model for all possible nonlinear relationships is 

simply the class of realisations for the random function. This model places a 

probability distribution over the set of all possible relationships; to be precise, for any 

finite set of values for the explanatory variable, [z1,…,z�], the joint probability 

distribution for [f(z1),…,f(z�)] is specified. The random function is chosen to be 

Gaussian, thus defining the Gaussian process model for the nonlinear relationship. It 

is completely specified by its mean function, m(z), and its covariance function, 

( )zz ′,C , see §2.3. 

 

It is important to note that a Gaussian process model is a non-parametric model. In 

standard models, the function is explicitly parameterised. An example of a parametric 

model is the class of linear functions, ba += zy  with the values of a and b 

belonging to some set. In Gaussian process prior models, a probability distribution is 

placed on the space of all possible functions. In the former, only a restricted class of 

functions dependent on the parameterisation is possible, whereas all functions are 

possible in the latter, but not with equal probabilities. 
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In Gaussian regression, a Gaussian process model with a particular choice of the 

Gaussian field or process is selected; this is the Gaussian process prior model. (The 

selection process may involve a specification of a class of mean functions and 

covariance functions, parameterised by some set of hyperparameters with the values 

of the hyperparameters being subsequently set. This selection is informed by any prior 

knowledge relevant to the nature of the nonlinear relationship, i.e. general features, 

such as periodicity, and specific features, such as appropriate lengthscales, etc.). The 

Gaussian process prior model is then conditioned on data to obtain the posterior 

model. The posterior model remains a Gaussian field or a Gaussian process. The 

model of all possible nonlinear relationships conditioned on the data is the class of 

realisations for the Gaussian process posterior model. It places a modified probability 

distribution over the set of all possible relationships, to be precise, the joint 

probability distributions for ( ) ( )[ ]� ′′′ zz f,...,f 1 , for any finite set of values for the 

explanatory variable [ ]� ′′′ zz ,...,1 , for any � ′ . The mean of the posterior model as a 

function is interpreted to be the best fit to the data. The confidence interval as a 

function of z, defined to be twice the standard deviation, is used to express the 

uncertainty of the fit to the data.  

 

Gaussian process models are widely used today in regression and classification 

problems, ranging from data analysis to applications in system identification. A 

simple example is presented below to illustrate how Gaussian process prior models 

can be used in a regression problem with a one-dimensional explanatory variable. 

 

Example 2.1 (Simple Regression in One-Dimension). Consider a simple regression 

problem for a one-dimensional explanatory variable, denoted by z. In Figure 2, four 

sample functions are drawn at random from the prior distribution over functions 

specified by a particular Gaussian process. It is observed that the functions are rather 

smooth in nature reflecting the choice of prior to represent prior belief about the 

nature of the underlying relationship. Note that, it is assumed that the prior mean, at 

any particular value of z is zero. The means at any fixed z over the functions depicted 

in Figure 2 are not particularly close to zero. However, the values of the mean of f(z) 

for any fixed z tend to zero as more sample functions are included. The two times 
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standard deviations at any value of z of the sample functions are also illustrated in the 

figure by dashed lines. As the prior variance of the Gaussian process does not depend 

on z, the standard deviation does not change as z varies. 

 

Suppose that a data set, ( )( ) ( )( ){ }2211 f,,f, zzzz=∆  consisting of two observations 

( )( ) ( )5.1,0.1f, 11 −=zz  and ( )( ) ( )0.1,5.2f, 22 −=zz , is given. It is required to consider 

only functions that pass through these two data points exactly. The grey lines shown 

in Figure 3 are sample functions drawn from the posterior distribution over the 

functions. Based on all possible realisations of the Gaussian process prior model, the 

prediction of the mean values of the posterior distribution is portrayed in bold. The 

confidence intervals indicating the uncertainty of this mean prediction is also shown. 

Notice that the uncertainty reduces when it is close to the two data points, and 

enlarges as it moves away from the observations. Likewise, if more data points are 

included in the dataset, the uncertainty close to these data points is also reduced. 

 

 

Figure 2 Four samples are drawn from the prior distribution. The dashed lines indicate the 

two times standard deviations. 
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Figure 3 Mean prediction (in bold) with two times standard deviations (black). Four samples 

(grey) from the posterior are shown as dashed lines. 

 

Let the set of values of the explanatory variable be denoted by { }�

ii 1=≡ zZ  and the set 

of function values corresponding to Z be denoted by ( ){ }�

ii 1
f =≡ zF . For both the 

Gaussian process prior model and posterior model, the joint probability distribution 

for F is 

( ) ( ) ( ) ( )QQp ,~
2

1
exp

1
| 1T µµµ Ν

Ζ 




 −−−= −
FFZF  (1) 

 

where Q is the covariance matrix and µ is the mean vector. In this thesis, the Gaussian 

process prior model is generally zero-mean, assuming no prior information is 

available to contradict this hypothesis. It follows that the probability distribution 

becomes 

( ) ( )∑,0~| ΝZFp   

 

Non-zero mean prior processes have also been covered in the literature (Pugachev, 

1967; O’Hagan, 1978; Cressie, 1993). 
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Why use Gaussian regression? In the literature, several regression techniques have 

been developed, e.g. artificial neural network (ANN) and automatic relevance 

determination (ARD). With a rich pool of techniques available, it almost seems that 

this area of interest has matured. Gaussian regression was used in the early 1960s, but 

was confined mainly to the statistics community. Their general-purpose capability 

was neglected with only a narrow range of applications. It is only during the 1990s 

that Gaussian regression started to arouse wider interest.  

 

 

2.4.2 Bayesian Regression 

 

In Bayesian regression, a nonlinear relationship, f(z), is assumed to underlie some 

measured dataset, ( ){ }�

nnn y
1

, == z∆ , where zn denotes the values of the explanatory 

variable of dimension D (covariates) and yn denotes the scalar measured value 

(target). Given this set of � observations, it is of interest to infer the nonlinear 

relationship, f(z). Subsequently, predictions of the function value for new values of 

the explanatory variable can be made. The measured values are assumed to be 

corrupted by measurement noise. A variety of noise models has been investigated 

(MacKay, 1997; Gibbs, 1997; Goldberg et al., 1998; Murray-Smith and Girard, 2001) 

over the last decade or so. However, attention is focused here on additive Gaussian 

white noise, which is statistically independent and identically distributed across the 

observation data. The corresponding relationship of measurement data to noise is 

denoted by 

( ) �iy iii ,...,1f =∀+= εz  (2) 

 

where f(zi) is the noise-free value at zi and the noise, εi ~ Ν(0,σ). The set of values of 

the explanatory variable is denoted by { }�

ii 1=≡ zZ  and the set of corresponding target 

values by the vector { }�

iiy
1=≡Y . The set of function values corresponding to the 

explanatory variable Z is denoted by vector ( ){ }�

ii 1
f =≡ zF . Finally, the set of values 

for the noise vector is described by { }�

ii 1=≡ εe . For notational simplicity, let 

( )
iii

ii

wy

w

ε+=∴

= zf
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Given a prior joint probability distribution, ( )Fp , over the space of function values, 

F, and a prior joint probability distribution, ( )ep , over the noise, the probability of the 

data is given by 

( ) ( ) ( ) ( )∫= eFeFeFZYZY ddpppp ,,||  (3) 

 

Consider the vector [ ]11 ,,..., +≡′
�� wyyY  constructed from Y and w�+1, the 

conditional probability distribution of w�+1 can be written as 

( ) ( )
( )ZY

zZY
z

|

,|
,| 1

11
p

p
wp �

��
+

++

′
=∆  

 

 

This conditional distribution can be used to make predictions about w�+1. Generally, 

given the data-noise relationship in (2), ( )eFZY ,,|p  is simply a product of delta 

functions ( )( )∏ −=
i

iii y zfεδ . By assuming Gaussian noise and integrating over the 

noise data, it follows that equation (3) becomes 

( ) ( ) ( )[ ]∫ ∑








−−=
=

FzFZY dypp
�

i

ii

1

2
f

2

1
exp

1
,|

β
β

Ζ
 

 

 

where β is the variance of the noise and Ζ is a normalising constant. In the specific 

case where F is Gaussian, p(Y|Z) is itself Gaussian with mean defined as the sum of 

the means of F and e and the variance defined as the sum of the variances of F and e. 

 

 

2.4.3 Posterior Joint Probability Distribution 

 

Given the prior distribution, the posterior distribution is derived by conditioning it on 

data. Assume the general case of predicting w�+1, the value of the nonlinear 

relationship at z�+1 given the dataset { }YZ,=∆  where [ ]T

1..., �zzZ =  and 

[ ]T

1..., �yy=Y , the conditional probability for w�+1 is calculated using Bayes’ 

theorem 

( ) ( )
( )ZY

zZY
z

|

,|
,| 11

11
p

p
wp ��

��
++

++ =∆  
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where [ ]T1

T

1 , ++ = �� wYY . 

 

It follows from the zero-mean Gaussian prior assumption that 

( ) [ ]





























−∝ +

−

+

+
+++

Y
YzY

1

1

1

T

1T

111
2

1
exp|,

�

��

�

���

w

Qk

k
wwp

κ
 

 

 

where κ is E[w�+1, w�+1], the ij
th

 element of the covariance matrix Q� is E[yi, yj], and 

the i
th

 element of vector k�+1 is E[yi, w�+1]. Both κ and k�+1 depends on the posterior 

explanatory variable. It might be easier to explain the relationship of the covariance 

matrix as shown in (4). A larger covariance matrix, Q�+1, is constructed from a 

smaller matrix, Q�, vector k�+1 and scalar κ. 





















=
























+

+

+

+

+
��

�

�

�
Qk

k

Q�
1

T

1

1

11

κ44 844 76

 (4) 

 

Generally, the data that is used for training should be different from the data that is to 

be used for prediction, i.e. ∆⊆∉+ �� Zz 1 . However, this distinction is frequently 

ignored because of insufficient data. 

 

Applying the partitioned matrix lemma, it follows that 

( ) ( ) ( )




 −−−∝ +
−

+++ wwwwwp ����
ˆˆ

2

1
exp,| 1

1

z111 λz∆  
 

 

with the mean, 

Y
1T

1
ˆ −

+= �� Qkw   

 

interpreted to be a fit for the data and 

1

1T

1z +
−

+−= ��� kQkκλ   

 

interpreted to be the variance for the posterior. It is interesting to note that both the 

mean and the variance contain 1−
�Q  and not 1

1

−
+�Q . ŵ  is interpreted to be the best fit to 
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the data at z�+1. The standard deviation for the mean is simply the square-root of λz, 

i.e. zλ . Generally, a 95% confidence interval is used on the best fit of the data; that 

is, two times the value of the standard deviation. 

 

� ′  predictions, [ ]T

1,..., �ww ′′′=′W , can be made simultaneously at different values of 

the explanatory variable, { }�

ii

′

=
′

1
z . It follows that, for the posterior joint probability 

distribution, the mean vector is 

YW
1T −

′Λ=′
�� Q   

 

and the covariance matrix is 

���z Q ′
−

′ ΛΛ−Λ=Λ′ 1T

κ   

 

where Λκ is [ ]TE WW ′′ and � ′Λ  is [ ]TE WY ′ . 

 

The posterior process model requires the definition of the mean function and the 

covariance function. The mean function is defined by ŵ  as z varies. From the 

prediction for w and w′  at z and z′ , the covariance function for the posterior process 

model is defined using the joint probability distribution for w and w′ , namely by 

[ ] [ ] [ ]wwww ′−′ EEE , as z and z′  vary. 

 

 

Figure 4 Conditional probability distribution.
 

 

 

f(z1) 

f(z2) 

1f  

2f  

( ) ( )( )112 ff|f =zzp  
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An illustration of the conditional probability is provided by the simple example 

depicted in Figure 4. The figure shows the Gaussian joint probability density of two 

function values, f(z1) and f(z2). Given a particular value of ( ) 11 ff =z , the Gaussian 

conditional distribution of ( ) ( )( )112 ff|f =zzp  can be determined and calculated to 

find the most probable prediction of f(z2) given ( ) 11 ff =z  as shown in Figure 4. 

 

 

2.5 Model Selection 

 

How to choose the covariance function? Various classes of covariance functions exist 

(Abramowitz and Stegun, 1965; Stein, 1999). Some are general-purpose, whereas 

others are more case specific. Basically, covariance functions can be classified into 

two types; that is, stationary (Yaglom, 1987) and non-stationary (Neal, 1996) 

covariance functions. Different classes of covariance functions are discussed in §2.6. 

Covariance functions, characterised by a set of free parameters, are the fundamental 

building blocks of Gaussian processes. Generally, these free parameters are known as 

hyperparameters
1
. Based on the prior knowledge about the nonlinear relationship, a 

particular class of covariance functions that is best suited for the application is first 

chosen, i.e. choosing a specific form of the mean function and covariance function 

parameterised by some set of hyperparameters, Θ. These hyperparameters 

characterise the class of Gaussian process from which the Gaussian process prior 

model is to be chosen (Rasmussen and Williams, 2006). Hence, a proper choice of the 

class of covariance functions is essential to the development of Gaussian regression. 

 

The values of the hyperparameters, Θ, of the Gaussian process prior model need to be 

specified. Two methods are commonly used. In the first approach, specific values are 

chosen for Θ by maximising the likelihood function. In the second method, a 

Bayesian approach is used to place a prior over the values of hyperparameters. The 

former method is known as Likelihood maximisation (MacKay, 1992) and the latter is 

the Monte Carlo approach (Williams and Rasmussen, 1996; Neal, 1997), and both are 

equally legitimate techniques to define the model. 

                                                 
1
 Hyperparameters are normally referred to parameters of the covariance function to emphasise their 

characteristics belonging to a non-parametric model. 
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2.5.1 Likelihood Maximisation 

 

Once a specific class of covariance functions is chosen, the values for the 

hyperparameters must be selected. Likelihood maximisation allows hyperparameters 

Θp to be chosen for the model, 

( )P�� Cwp Θ++ ,,,| f11 ∆z   

 

In Likelihood maximisation, the most probable hyperparameter values are computed. 

This can be done through the use of a standard gradient-based optimisation algorithm, 

such as the conjugate gradient method and the trust-region method. Gradient-based 

optimisation requires user-supplied gradient information, or more specifically, first 

order derivative information of the likelihood function.  

 

To obtain a model given the data, the hyperparameters are adapted to maximise the 

log-likelihood function, or equivalently, minimise the negative log-likelihood 

function,  

( ) YY
1T

2

1
log

2

1 −+=Θ QQΛ  (5) 

 

where |.| refers to the determinant operator of a matrix. It follows that its derivative 

with respect to hyperparameter θi is 

( )
YY

11T1

2

1

2

1 −−−

∂
∂

−








∂
∂

=
∂

Θ∂
Q

Q
Q

Q
Qtr

iii θθθ
Λ

 (6) 

 

where tr(.) is the trace operator of a matrix. 

 

During the optimisation procedure, two potential problems arise as a result of training 

the hyperparameters. Firstly, because of the multi-modal log-likelihood function, 

finding the most probable (and sensible) values of the hyperparameters is highly 

dependent on the chosen initial values. The log-likelihood function is generally multi-

modal with respect to Θ and these modes correspond to different values of the 

hyperparameters resulting in different priors (see Example 2.2). This is partly due to 
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the optimisation algorithm being used with different initial values for the 

hyperparameters. Proper choice of initial values for the hyperparameters ensures that 

optimisation converges faster to a maximum point. This is discussed in more detail in 

Chapter 3.4. Secondly, it is important to note that every evaluation of the negative 

log-likelihood function and its gradient information requires the evaluation of Q
-1

. 

Exact inversion of a matrix has an expensive computational cost of O(�
3
) operations. 

This results in an extremely time-consuming process when training large-scale 

datasets. Moreover, exact matrix inversion computation has an O(�
2
) memory 

requirement and standard MATLAB optimisation routines normally fail, due to lack 

of memory space, at around � = 3,000. 

 

Example 2.2 (Optimisation with Log-Likelihood Function). Suppose a dataset 

{ }5

1
, ==

iii yz∆  has five measurement points, i.e. {-1,4}, {-2.5,1.5}, {0.5,0.5}, {3,2} 

and {4,2.1}, as shown in Figure 5 and Figure 6. Given this prior information, a 

specific class of covariance functions is selected for the Gaussian process prior 

models, such that 

( ) ( ) 




 −−= 2

f
2

exp, jiji zz
d

azzC  
 

 

The correlation between measurement points, yi and yj, is 

( ) ( )
ijjiji bzzCyyC δ+= ,, f   

 

where a, b and d are hyperparameters. Hyperparameters in the covariance function are 

adapted to minimise the function (5). Two different sets of initial values for the 

optimisation are selected. With one set of initial values, the optimisation converges to 

a minimum point with hyperparameter values of a = 1.6, d = 0.3 and b = 1.4x10
-14

. 

The resulting prediction with confidence intervals is shown in Figure 5. With the 

second set of initial values, the optimisation also converges to a minimum point with 

adapted hyperparameter values a = 1.9, d = 0.002 and b = 0.53. Its prediction is 

illustrated in Figure 6. The latter indicates that the fit is a long lengthscale, whereas 

the former is a short lengthscale. Clearly, both are maxima of the likelihood function. 

Thus, it is obvious that the log-likelihood function is a multi-modal nonlinear 

function. 
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Figure 5 Data points and prediction with two times standard deviations of the fit from using a 

set of hyperparameter values. 

 

 

Figure 6 Data points and prediction with two times standard deviations of the fit from using a 

different set of hyperparameter values. 
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2.5.2 Monte Carlo Method 

 

Hyperparameters are not necessarily assigned specific values but have prior 

distributions imposed on them. To select the model with hyperparameters having prior 

distributions, an approach known as the Monte Carlo Markov chain is used. In 

Gaussian process, the Monte Carlo approach uses the idea of sampling to approximate 

the posterior joint probability distribution. This approach has a completely different 

philosophy from Likelihood maximisation. 

 

Ideally, it is plausible to integrate over all the undetermined hyperparameters; that is, 

( ) ( ) ( )∫ ΘΘΘ= ++++ dCpCwpCwp ���� ff11f11 ,|,,,|,,| ∆∆∆ zz  (7) 

 

where Cf is defined as the covariance function for the model. Unfortunately, 

computing this integration is analytically difficult, particularly for an arbitrary 

covariance function Cf, an alternative method is required if Gaussian processes are to 

be computed in a less complicated way. 

 

In the Bayesian context, the posterior probability distribution over the weights is 

likelihood marginal

priorlikelihood
posterior

×
=  

 

 

It follows that the posterior joint probability distribution of Θ can be written as 

( ) ( ) ( )
( )f

f
f

,|

,,|
,|

Cp

pCp
Cp

ZY

ZY ΘΘ
=Θ ∆  (8) 

 

The probability, ( )Θ,,| fCp ZY , is the probability of the target values given the set of 

values of the explanatory variable, Z, and the covariance function, Cf. The term p(Θ) 

denotes the prior distribution of the hyperparameters that define the mean function 

and covariance function. The normalising constant ( )f,| Cp ZY  is also known as the 

marginal likelihood and is independent of Θ. Thus, it can be safely ignored here as the 

intent here is to compute the most probable hyperparameters. The normalising 

constant is given by 
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( ) ( ) ( )∫ ΘΘΘ= dpCpCp ff ,|,| ZYZY  (9) 

 

The posterior in (8) integrates the information about the likelihood and the prior 

together and encapsulates the knowledge of the hyperparameters. 

 

By approximating the integral in (7), the equation can be re-written as 

( ) ( )∑
=

++++ Θ≅
T

t

t���� Cwp
T

Cwp
1

f11f11 ,,,|
1

,,| ∆∆ zz  
 

 

where Θt are samples drawn from the posterior distribution over Θ, ( )f,| Cp ∆Θ . 

Since each term in the summation of the above equation is a Gaussian, the Monte 

Carlo approximation is a mixture of Gaussians. It is worthwhile noting that accuracy 

increases as more samples are drawn from the posterior over Θ. However, if the 

sample is not taken from a particular region of hyperparameter space that has a high 

associated probability to the posterior, then the accuracy of Monte Carlo 

approximation will be poor. Much research on Monte Carlo methods for Gaussian 

process regression, such as Hybrid Monte Carlo algorithm (Duane et al., 1987), has 

been undertaken. 

 

If it is assumed that the posterior joint probability distribution over Θ has a sharp peak 

around the region near ΘP relative to ( )P�� Cwp Θ++ ,,,| f11 ∆z , then the approximation 

of ( )P�� Cwp Θ++ ,,,| f11 ∆z  gives similar result to the Likelihood Maximisation 

approach. 

 

A comparison of these two methods has been undertaken by Gibbs (1997) and 

Rasmussen (1996). In general, there is no conclusive answer as to which method is 

superior. The Likelihood maximisation method of obtaining the values for the 

hyperparameters is generally good as predictions made using these values are often 

found to be very close to those using the true posterior joint probability distribution 

(MacKay, 1993). The Monte Carlo approach has been found to perform better for 

smaller datasets when matrix storage is not an issue. Computation using this approach 

results in better solutions for a fixed amount of computational time. On the other 

hand, Likelihood maximisation is preferred for computations involving large datasets. 
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It was found (Rasmussen, 1996) that the optimisation method produces more accurate 

results and faster computations in large datasets. 

 

 

2.6 Covariance Functions 

 

In studying Gaussian processes, it is necessary to understand the role of the 

covariance function, a crucial and elementary component. A covariance function 

specifies the covariance between pairs of random variables. In a stochastic process, 

the covariance function determines the correlation between the function values and 

provides a distinct indication of how they are connected to each other. For instance, in 

supervised learning, a basic assumption is that data points that are close to each other 

are likely to have similar target values, and therefore have higher correlation 

compared to data points that are far apart. Similarly, in Gaussian process, the 

covariance function defines the closeness or similarity of function values in the 

Euclidean space of inputs. A variety of covariance functions has been investigated by 

several researchers (Gibbs, 1997; Mackay, 1998; Rasmussen, 1996). 

 

 

2.6.1 Stationary Covariance Functions 

 

This section explores some covariance functions that are commonly used in the 

machine learning community. Attention is focused on a few classes of covariance 

functions relevant to the application of interest here. Covariance functions can be 

classified into stationary and non-stationary ones. Primarily, a stationary covariance 

function is one that is function of zz ′− , that is invariant to translations in the input 

space. The covariance function of a stationary process can also be represented by the 

Fourier transform of a positive measure. 

 

Theorem 2.1 (Bochner’s theorem). A complex-valued function k on Ρ∆
 is the 

covariance function of a weakly stationary mean square continuous complex-valued 

random process on Ρ∆
 if and only if it can be represented as 
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( ) ( )∫=
D

sdek is

Ρ

µτ τπ .2   

 

where µ is a positive finite measure (Rasmussen and Williams (2006)).  

 

One such example is the squared exponential
2
 covariance function 

( ) ( )( ) ( ) 






 −−==
2

f
2

1
exp,f,fcov jijiji C zzzzzz  (10) 

 

For this particular covariance function, the covariance approaches unity when the 

inputs are very close to each other, and decreases as distance in the input space 

increases. Note that the covariance of the outputs is written as a function of the input. 

This squared exponential covariance function is also positive definite, and a 

covariance function is said to be positive definite if 

( ) ( ) ( ) ( ) ( ) 0ff,f >∫ jijiji ddC zzzzzz µµ   

 

It is also interesting to establish if a covariance function is mean square continuous 

and differentiable. There are applications which require infinite differentiability in the 

stochastic process, which is discussed in later chapters. Firstly, to describe mean 

continuous and differentiability of a stochastic process, let z1, z2,… be a sequence of 

data points and z
*
 be a fixed point in Ρ∆

, such that 0* →− zz k  as ∞→k . 

Consequently, a stochastic process f(z) is mean continuous in z
*
 if 

( ) ( ) 0ffE
2

* →



 − zz k . If this is true for all ∆Ρ⊆∈ A*

z , then f(z) is known to be 

continuous in mean square over A (Adler, 1981). The mean square derivative of the 

stochastic field, f(z) in the i
th

 direction is defined as 

( ) ( ) ( )
λ

λ
λ

zezz ff
lim

f

0

−+
=

∂
∂

→

i

iz
 (11) 

 

where the limit exists in mean square and ei denotes the unit basis vector in the i
th

 

direction, is well-defined in the limit as λ → 0, such that the complete description 

exists for all the necessary probability distributions. The expectation of the mean 

square derivative of the stochastic field, f(z), in the i
th

 direction as z varies, is 

                                                 
2
 The squared exponential covariance function is sometimes known as the Radial Basis Function or 

Gaussian. 
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interpreted to be the derivative of the fit to f(z). Provided that the mean function and 

covariance function are sufficiently differentiable, it is well known (O’Hagan, 1978) 

that the derivative stochastic process is itself Gaussian and that  

( ) ( ) ( ) ( )[ ]zz
zz

fE;
f

E f
f =

∂

∂
=









∂
∂

h
z

h

z ii

 (12) 

 

where zi denotes the i
th

 element of z; that is, the expected value of the derivative 

stochastic process is just the derivative of the expected value of the stochastic process. 

Furthermore, 

( ) ( ) ( ) ( ) ( ) ( )[ ]zzzzzz
zz

vuvuvuji

j

v

i

u CC
zz

f,fE,;,
f

,
f

E ff

21 =∇∇=












∂

∂

∂

∂
 (13) 

 

where ( )vuiC zz ,f

1∇  denotes the partial derivative of Cf(zu,zv) with respect to the i
th

 

element of its first argument, etc. The above procedure can be repeated to construct 

second derivative processes. It follows that the covariance of the mean square 

derivative (11) is given by ( ) jivu zzC ∂∂∂ zz ,f

2 . The procedure can be extended to 

higher order derivatives. Note that, for a squared exponential covariance function, its 

second order partial derivative exists for all ∆Ρ⊆z . In addition, the squared 

exponential covariance function has infinite order of partial derivatives. 

 

The squared exponential covariance function (10) has a basic form dependent only on 

the explanatory variable. Parameters can be introduced to span different class of 

squared exponential covariance functions, such as in (14) and (15).  

( ) ( )( ) 






 −−=
2

2
expf,fcov jiji

d
zzzz  (14) 

 

( ) ( )( ) 






 −−=
2

2
expf,fcov jiji

d
a zzzz  (15) 

 

In (14), the parameter, d, defines the characteristic lengthscale of the correlation 

between pairs of input data points. This covariance function has mean square 

derivative of all orders and thus is infinitely differentiable. It is also a clear indication 

that the derivatives are smooth. Although it has been argued that such strong 

smoothness in the characteristics of the covariance function (Stein, 1999) is 
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unrealistic in real life scenario, it is still probably the most widely used kernel in the 

machine learning community. The parameter, a, in (15) relates to the amplitude of the 

measured variable. 

 

Another type of stationary covariance function is the Matérn class of covariance 

functions, given by 

( ) ( )( )
( ) 









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 −


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
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Γ
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l
Q

l

jiji

ji

zzzz
zz

νν

ν ν

ν
ν 222

f,fcov
1

 (16) 

 

where ν and l are positive parameters, and Qν is a modified Bessel function 

(Abramowitz and Stegun, 1965). Named after the work of Matérn, the process for the 

Matérn class covariance function is k-times mean square differentiable, if and only if 

ν > k. 

 

Another interesting class of covariance function is the γ-exponential covariance 

function given by 

( ) ( )( )
























 −
−=

γ

l

ji

ji

zz
zz expf,fcov  20 ≤<∀ γ   

 

This covariance function is similar to the Matérn class covariance function, except it 

is not mean square differentiable if γ is not equal to 2. Several other covariance 

functions also exist in the literature, such as piece-wise polynomial covariance 

function and the exponential covariance function of the Ornstein-Uhlenbeck process 

(Rasmussen and Williams, 2006). 

 

 

2.6.1.1 Squared Exponential Covariance Function 

 

Throughout this thesis, unless otherwise specified, the correlation between measured 

values of the following form is used 

( ) ( ) ( ) ( ) ijjijiijjiji bDabCyyC δδ +






 −−−=+= zzzzzz

T

f
2

1
exp,,  (17) 

 



Gaussian Process Models 

_____________________________________________________________________ 

27 

where a, b and D = diag{d1,…,dk} are a set of values of hyperparameters. The 

hyperparameter, a, gives the overall vertical scale relative to the mean of the Gaussian 

process in the output space. The hyperparameter, b, represents the noise model, 

indicating the noise variance in the data. The term, di, refers to the lengthscale in the 

i
th

 dimension of the explanatory variable, z. It characterises the distance over which 

the amount of averaging of data is done. For example, a short lengthscale means there 

is more contribution of nearby values of the input explanatory variable than values 

that are far apart. On the other hand, a long lengthscale would expect averaging to be 

done over a larger distance; values far apart still contribute to a reasonable amount to 

the smoothing of the input values of the explanatory variable. For dataset with one-

dimensional explanatory variable, the correlation between measured values can be 

simplified to 

( ) ( ) ijjiji b
d

ayyC δ+






 −−= 2

zz
2

exp,   

 

where Ρ∈z . 

 

Discussion 2.1 (Squared Exponential Covariance Functions of GP Derivative). In the 

context of the squared exponential covariance functions; these functions are infinitely 

differentiable. The covariance between a derivative observation and function 

observation, and covariance between two derivative observations are shown in (18) 

and (19) respectively, where z
k
 refers to the k

th
 dimension of the explanatory variable 

z. Let the underlying function be w = f(z) such that wi refers to the i
th

 entry of w and 

m

iw  refers to the i
th

 entry of the derivative of w. 

( ) ( )jimj

m

i wwww ,cov
z

,cov
∂

∂
=  (18) 

 

( ) ( )
jinm

n

j

m

i wwww ,cov
zz

,cov
2

∂∂
∂

=  (19) 

 

where ( )j

m

i ww ,cov  is the covariance between a derivative point and a function point, 

and ( )n

j

m

i ww ,cov  is the covariance between corresponding input derivative points. 
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The following identities are necessary for the construction of the derivative Gaussian 

process prior model. 

( ) ( ) ( )
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
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2

1
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and 

( ) ( )( ){ } ( ) ( )






 −−−−−−= jiji

n

j

n

i

m

j

m
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j

m

i DdadwwC zzzz
T

,
2

1
expzzzz, δ  (22) 

 

 

 

2.6.2 Con-stationary Covariance Functions 

 

Most of the priors are stationary, although all posteriors are automatically non-

stationary. For completeness, a brief introduction of non-stationary covariance 

functions is introduced in this section. Non-stationary covariance functions are 

commonly used in neural network, e.g. mappings that describes a single hidden layer 

neural network 

( ) ( )∑
=

+=
�

i

ii ;hbf
1

uzz ν   

 

where νi refers to the hidden-to-output weight and h(z;u) is the hidden unit transfer 

function, which depends on the input-to-hidden weights u. A common feature vector 

function is h(z;u) = tanh(z.u). This sigmoid kernel is viewed as a non-stationary 

covariance function. Other variants of non-stationary covariance functions also exist, 

e.g. the Wiener process. Further details can be traced to related research work in 

Grimmett and Stirzaker (1992). 

 

Other non-stationary covariance functions which are used in a later chapter are the 

linear form covariance function and quadratic form covariance function, and are 

briefly discussed here. The linear covariance function is defined in equation (23) and 

the quadratic covariance function in equation (24).  
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( ) ( )( ) ∑
=
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k
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ikji wff
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( ) ( )( ) ( ) ( )∑
=

=
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k

k

j

k

ikji wff
1

22
zz,cov zz  (24) 

 

{ }K

kkw
1=  are defined to be the values of the hyperparameters and k

iz  defined to be the 

k
th

 element of the i
th

 value of the explanatory variable, z. Unlike stationary covariance 

functions, nearby data points do not necessarily have strong correlation as shown in 

equations (23) and (24). These two covariance functions are useful if there is a belief 

that some linear or quadratic trend exists in the data. An application of using non-

stationary covariance functions such as these is discussed in Chapter 5.3. 
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Chapter 3 

Fast Algorithm Implementation for 

Gaussian Regression 

 

 

3.1 Computation Issues 

 

Gaussian process regression involves several matrix computations of O(�
3
) 

operations, such as matrix inversion and the calculation of the log-determinant of a 

�� ×  covariance matrix (Leithead et al, 2005c). In addition, these covariance 

matrices have an O(�
2
) storage requirement, for any explicit computations. These 

limitations effectively restrict the number of training cases, �, to at most a few 

thousand cases. Though it may be possible to use super computers to handle these 

computations, this approach is undoubtedly effective but inefficient. To overcome the 

computational limitation issues and cater for large-scale dataset application, numerous 

authors have recently suggested a wealth of sparse approximations (Schwaighofer and 

Tresp, 2003; Seeger et al., 2003; Smola and Bartlett, 2001). Quiñonero-Candela and 

Rasmussen (2005) have further provided a unified view of sparse Gaussian process 

approximation, which includes a comparison of work published by various authors. 

Common to all these approximation methods is that only a subset of the latent 

variables is treated exactly, with the remaining variables given some approximate, but 
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computationally cheaper approach (Quiñonero-Candela and Rasmussen, 2005). 

However, it is of interest of this thesis to investigate and research upon exact 

implementation of Gaussian process using all the latent variables, instead of a subset 

of them; hence the approach of using sparse approximation methodologies is avoided. 

In this chapter, fast and memory efficient algorithms are developed for the class of 

full, exact implementation of Gaussian process models to handle large number of 

training cases, e.g. one million data points. This work is in contrast to other authors, 

whose works are focused either upon deterministic approach or method that does not 

correspond exactly to a Gaussian process (Quiñonero-Candela and Rasmussen, 2005). 

 

 

3.2 Effective Hessian Matrix Exploitation 

 

Discussions on maximum likelihood estimation (MLE) optimisation problems are 

rarely available in the Gaussian regression literature, and are mostly centred on 

steepest-descent and conjugate-gradient approaches. Although these gradient-based 

optimisation algorithms are sufficient to guarantee convergence to stationary points, 

they are not fast enough. 

 

Hessian, or more precisely the second order derivative information, provides 

additional information to check the nature of the converged solution, such as maxima 

or minima stationary point, and provides the possibility of rejecting saddle points. It is 

known that Hessian information provides a more efficient and effective optimisation 

(Moller, 1993), especially for ravine-type problems. Most large-scale gradient-based 

optimisation, such as the trust-region algorithm (MathWorks, 2003), is able to employ 

Hessian information to speed up the training procedure. 

 

This section reviews the work of Zhang and Leithead (2005), where the optimisation 

performance, from explicit use of the Hessian matrix on a particular class of 

covariance functions, can be improved hence allowing faster convergence. Its exact 

implementation is then compared with approximation to the second order information 

using finite-differencing. It follows from the negative log-likelihood function, (5), and 

its derivative, (6), that its second order derivative is 
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The Hessian derivation is shown in Appendix B. 

 

 

3.2.1 Simplification of Hessian Matrices 

 

Zhang and Leithead (2005) have shown that the explicit computation of the Hessian 

matrix, as given by (25) is rather efficient, but further improvement is possible by 

exploiting the chosen form of covariance function (17). Since the squared-exponential 

covariance function is often encountered and used in this thesis, this simplification 

method shall be discussed here as a formality. 

 

As the hyperparameters, θ = {a, b, D}, are constrained to be positive scalars, they can 

be re-written to take exponential form, i.e., αea = , ( )βα += eb  and Γ= eD , where Γ = 

diag{γ1,…,γk}. These revised exponential hyperparameters { }kγγβαθ ,...,,, 1=  are 

adapted to minimise the negative log-likelihood function in an unconstrained 

optimisation, between minus infinity and plus infinity. The covariance matrix is 

modified to 

( )IQ Q βα ++Λ= exp   

 

where the covariance matrix ΛQ is defined as 
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





 −−−=Λ jijijiQ D zzzzzz

T

2

1
expexp, α   

 

with { }keediageD
γγ ,...,1== Γ . The first and second order partial derivatives of Q 

with respect to hyperparameter α are 
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The partial derivatives of Q with respect to β are 



Fast Algorithm Implementation for Gaussian Regression 

_____________________________________________________________________ 

33 

( )Ie
QQ βα

ββ
+=

∂
∂

=
∂
∂

2

2

; 0
2

=
∂∂

∂

k

Q

γβ
, Kk ,...,1=∀   

 

and the partial derivatives of Q with respect to γ are 
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Due to symmetry of the Hessian matrix, ( )
pkQ γγ ∂∂∂2  need only be computed for 

Kk ,...,1=∀  and k < p ≤ K. It follows from (25) that the α-related Hessian terms 

simplify to 
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In addition, the β-related Hessian terms simplify to 
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Finally, the γ-related Hessian term is 
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Since 
k

Q
Q

γ∂
∂−1 , for k = 1,…, K, is frequently required at each iteration in the Gaussian 

regression implementation, these matrices are computed once and stored for 

subsequent usage. 

 

 

3.2.2 Experimental Result 

 

A straightforward example is chosen for this experiment, since the focus of this 

section is about understanding the theoretical foundations of the simplification 

approach rather than investigating the necessary heuristics needed to turn the scheme 

into actual practical algorithms. 

 

TABLE I Performance comparison between optimisations user-supplied Hessian and 

Hessian approximation 

Result Iterations Timing (minutes) 

Dataset size, � Approx. User Approx. User 

200 64.2 64.3 0.13 0.05 

400 58.4 58.4 0.53 0.19 

600 85.9 85.5 2.11 0.86 

800 123.8 123.9 5.60 2.07 

1,000 88.0 86.6 7.47 2.75 

1,200 139.9 145.7 18.45 7.41 

1,400 97.3 98.8 18.34 7.10 

1,600 107.6 107.7 29.73 12.02 

1,800 150.6 150.2 53.53 20.64 

2,000 149.7 147.2 78.92 31.99 

Based on time-series datasets, unconstrained optimisation is performed to 

compare explicit user-supplied Hessian to approximated Hessian results, where user 

only supplies log-likelihood and gradient information. Experiment is carried on an 

Intel® Pentium® IV 2.8GHz machine with 512MB RAM. 

 

The chosen test function is ( ) ( ) ( )zzzf 5cos6.0sin += , where [ ]10,0∈z  is a one-

dimensional explanatory variable. Gaussian white noise, ni, of variance 0.01 is added 

to the function, i.e. ( ) ( ) iii nzfzy += , for �i ,...,1= . For each set of data size, �, 10 

sample tests, each with different noise and starting values for the optimisation, are 

conducted. The performance, in terms of timing and number of iterations, of both 

user-supplied Hessian information and Hessian approximation by finite-differencing 
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is being investigated and compared, with the results tabulated in TABLE I. The 

average timing and number of iterations are calculated for every �. Clearly, 

performance is better with user-supplied Hessian information, with an efficiency of 

about 1.5 to 2.5 times faster being evident. 

 

 

3.3 Efficient Optimisation by Hyperparameter Reduction 

 

Another efficient yet simple optimisation technique, through modifying the log-

likelihood function, is introduced in this section. This is a novel work that has not 

been discussed previously. Covariance functions are generally dependent on some 

parameter set, for instance in the case of explanatory variable that is one-dimensional, 

the squared exponential covariance function is given by 

( )



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 −− 2

zz
2

exp ji

d
a   

 

with the parameter set being {a, d}. It follows that the covariance function defining 

the noisy data is 
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zz
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where b is the noise variance hyperparameter and δij is the Kronecker delta function. 

As mentioned earlier, the training procedure consists of O(�
3
) operations. This 

section demonstrates how a simple modification to the log-likelihood function and 

adapting the covariance function to it can speed up the optimisation routine. 

 

Let anb = , the covariance function (26) is re-written to the form 
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zz
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Next, denote C = aCn, where Cn is a normalised covariance function. It follows that 

the negative log-likelihood function, Λ, can be written in terms of P, the covariance 

matrix for the covariance function Cn. 
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where |.| is the determinant operator and � is the dataset size. The gradient with 

respect to a hyperparameter, θ, is zero at the turning point. Thus, the partial derivative 

of the log-likelihood function with respect to a is obtained and equated to zero, i.e., 
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Substituting the solution back into (27), and removing non-hyperparameter terms and 

redundant factors, the revised log-likelihood function is formulated as 

( ) ( ) ( ) YY
1T ,log,log

−+= ndP�ndPθΛ  (29) 

 

Subsequently, the derivative with respect to the hyperparameter, θi, is 
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where tr(.) is the trace operator. The Hessian information is then derived as follow, 
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Discussion 3.1 (Solution for a Maximum Point): Note that (28) is a solution for a 

maximum point. The proof is illustrated by substituting (27) and (28) into the 

equation above. 
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Hence, the solution is a maximum point. The optimisation of Λ  is purely dependent 

on d and n. 

 

Unlike §3.2.2, Hessian implementation may not necessarily be as efficient when 

applied on the revised log-likelihood function (29). This is due to additional 

computations of matrix-matrix tensor products required for the revised log-likelihood 

function. The performance of using hyperparameter reduction is investigated in the 

next sub-section. 

 

Discussion 3.2 (Dataset with scalar explanatory variable): Assume a dataset with 

scalar explanatory variable, i.e. Ρ∈z , is available and that the lengthscale 

hyperparameter, d, is fixed (scalar). From (29), the partial derivative with respect to n 

is reduced to 
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3.3.1 Experimental Result 

 

The hyperparameter reduction method is an appealing approach for low-dimensional 

datasets, e.g. datasets with explanatory variable that is one-dimensional. The 

advantage is clearly evident since the optimisation routine trains only two 

hyperparameters; instead of three. As the dimension increases, the number of 

hyperparameters required to be adapted also increases. As a result, the effect of the 
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hyperparameter reduction becomes insignificant as the dimension of the explanatory 

variable becomes large, i.e. two-dimensional and above.  

 

To compare the performance of using the modified log-likelihood function from the 

standard log-likelihood function, a simple experiment is carried out on ten samples of 

the time-series data, with each sample having different data size, �, such that � = 

{200, 400, …, 2000}. Gaussian regression is applied on these ten samples, whereby 

different noise data is introduced in each sample. In addition, the initial values for the 

optimisation routine are chosen to be different for every sample. The timing and 

number of iterations for convergence are tabulated in TABLE II. Note that, Hessian 

information is supplied in both cases. 

 

TABLE II illustrated that by using hyperparameter reduction approach, the number of 

iterations required for convergence is greatly reduced; that is, at least ten times fewer 

as many recurrences to train the hyperparameters as the standard approach. 

Consequently, the convergence is much faster. It is apparent that by eliminating the 

requirement to train an additional hyperparameter, it reduces the optimisation 

complexity, therefore speeding up the process. 

 

TABLE II Performance comparison between optimisations using standard and revised 

log-likelihood function 

Result Iterations Timing (minutes) 

Dataset size, � 3-hyp 2-hyp 3-hyp 2-hyp 

200 82.8 8.3 0.08 0.01 

400 153.3 6.9 0.87 0.05 

600 199.9 8.5 3.00 0.15 

800 191.5 7.5 5.36 0.26 

1,000 164.2 9.7 8.21 0.64 

1,200 161.2 8.1 12.89 0.84 

1,400 121.7 6.9 14.39 1.05 

1,600 170.4 6.7 30.51 1.55 

1,800 159.1 6.5 36.46 1.95 

2,000 116.5 7.1 36.29 2.88 

3-hyp refers to the standard optimisation techniques using the negative log-

likelihood function (5) and adapting three hyperparameters of the squared exponential 

covariance function, whereas the 2-hyp refers to the use of revised log-likelihood 

function (29), in which two hyperparameters are adapted to maximise the function. 

Both cases are performed with user-supplied Hessian information. Experiment is 

carried on an Intel® Pentium® IV 3.0GHz machine with 512MB RAM. 
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The hyperparameter reduction technique is particularly useful for one-dimensional 

dataset. Dataset with explanatory variable that is more than one dimension may not 

benefit much from this approach, such that its benefit reduces as the number of 

training hyperparameters increases. The evidence is shown in TABLE III, where a 

similar experiment is conducted on datasets with explanatory variable that is two-

dimensional. 

 

TABLE III Performance comparison between optimisations using standard and 

revised log-likelihood function on dataset with explanatory variable that is two-

dimensional. 

Result Iterations Timing (hour) 

Dataset size, � 4-hyp 3-hyp 4-hyp 3-hyp 

484 15.7 18.3 0.005 0.010 

787 22.2 15.0 0.022 0.036 

1,156 28.0 23.0 0.075 0.122 

1,600 42.8 23.5 0.293 0.300 

2,116 40.1 21.5 1.077 0.689 

2,704 38.9 25.5 3.550 3.740 

3-hyp refers to the standard optimisation techniques using the negative log-

likelihood function (5) and adapting three hyperparameters of the squared exponential 

covariance function, whereas the 2-hyp refers to the use of revised log-likelihood 

function (29), in which two hyperparameters are adapted to maximise the function. 

Both cases are performed with user-supplied Hessian information. Experiment is 

carried on an Intel® Pentium® IV 3.0GHz machine with 512MB RAM. 

 

Apparently, from the table, the hyperparameter reduction approach is perhaps more 

suitable for datasets with explanatory variable that is one-dimensional. 

 

 

3.4 Hyperparameter Initialisation 

 

Hyperparameter initialisation is another novel idea that can be applied on Gaussian 

regression to speed up optimisation routine. However, the condition is much more 

restrictive, as it can only be applied to time-series datasets. As discussed in Chapter 

2.5 on model selection, the minimisation of the negative log-likelihood function (5) is 

not a simple convex problem; multiple local minima exist within the log-likelihood 

space mapping. These local minima can be associated with different aspects of the 
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data. For example, a time-series data consisting of a long lengthscale component and 

a short lengthscale component, one minimum may correspond to the former and the 

other corresponds to the latter (see Chapter 4.2 for more detail). Depending on the 

choice of initial values for the hyperparameters, the outcome of the optimisation could 

be a model of either. To acquire faster optimisation of the training procedure and 

proper values of the hyperparameters, it is essential that appropriate initial values are 

chosen for the optimisation routine. A procedure for doing so is presented in this 

section. 

 

 

Figure 7 Power spectrum of a simple data. 

 

Suppose that the mean of the time-series data is zero (if not it can always be made to 

be zero). The initial values of the hyperparameters { }bda ,,=θ  for the covariance 

function (26) are determined by the following procedure, using data with the power 

spectral density, as shown in Figure 7, as an illustration. 
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Procedure 3.1 (Hyperparameter initialisation procedure): 

1. Provided the time-series data is of sufficient length, its variance is roughly 

equal to (a + b), since the noise hyperparameter is [ ]jib εε ,E=  and the 

amplitude hyperparameter is [ ]
�

a
ji tt

YY
T

f,fE == , where { }�

ii 1=ε  denotes 

the noise data. Let ςy and ςn, respectively, be the variances of the measured 

data and the measurement noise. It follows that, since b = an, 

n

n

ba

b
v

y

n

+
=

+
≈=
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2. The value for ςy is easily estimated. Since different values of the 

hyperparameters, especially the lengthscale hyperparameter, correspond to 

models with different lengthscale, the value of ςn depends on the choice of 

time-series components that is interpreted to be noise. For example, the 

spectral density in Figure 7 clearly indicates that the corresponding time-

series data consists of several components with different lengthscales. 

Only the long lengthscale component with frequency less than χ1 might be 

of interest whereas all remaining components with higher frequency are 

interpreted as noise. In this case, ςn would be estimated as the cumulative 

sum of the spectrum between χ1 and χ2, the Nyquist rate. Hence, a
*
 and n

*
, 

the respective initial values for a and n, are obtained from 

( )
( )vvn

va y

−=

−=

1

1

*

* ς
 

3. Let Q(θ) = aP(d,n) in (5). The negative log-likelihood function becomes 

(27). The hyperparameter a can be eliminated from Λ(θ) by minimising 

the value of a as a function of d and n, as shown in (28) and (29). The 

revised log-likelihood function is thus reformulated to be dependent on 

only two hyperparameters, i.e. d and n. 

4. The initial value, d
*
, for the lengthscale hyperparameter, d, is obtained by 

solving the nonlinear equation (28). 

 

The hyperparameter values a
*
, d

*
 and n

*
, obtained by Procedure 3.1 are appropriate 

initial values for minimising the negative log-likelihood function, for either (5) or 

(29). The latter has the advantage of being dependent on two hyperparameters and so 
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converges faster (details are covered in §3.3). Two cases arise as a result from this 

procedure. In the first, all hyperparameters are adjusted during the optimisation to 

converge on a nearby local minimum corresponding to the prior model with the 

required lengthscale characteristic. In the second, the optimisation may fail to locate a 

suitable local minimum, when all the hyperparameters are adjusted. In the latter 

situation, d
*
 is required to be held constant during the optimisation. It may then be 

necessary to adjust manually the value of d
*
 and repeat the optimisation to obtain the 

prior model with the required lengthscale characteristic. 

 

 

3.5 Efficient, Fast Algorithms for Time-series Gaussian Processes 

 

In the previous few sections, Gaussian process computations are sped up by altering 

the training procedures, viz. Hessian implementation, hyperparameter reduction and 

hyperparameter initialisation. Subsequent discussions are focused on developing fast 

algorithms for time-series data. Note that, the fast algorithms introduced in this 

section are not approximation methods; unlike fast sparse approximation approaches 

reviewed by Quiñonero-Candela and Rasmussen (2005). 

 

Given that a data is time-series, using the squared-exponential covariance function 

(26), it can be shown (Sayed and Kailath, 1994; Sayed et al., 1994) that the 

corresponding covariance matrix is structured, i.e. a Toeplitz (or quasi-Toeplitz) 

matrix. Structured matrices are known to have low displacement rank and therefore 

can be exploited to speed up computations. 

 

The interest of this chapter is to acquire fast algorithms that are capable of dealing 

with large-scale time-series data; or specifically covariance matrices that are Toeplitz 

or block-Toeplitz type. As such, matrix manipulation is essential and the following 

algorithms are briefly evaluated. Firstly, some super fast algorithms (Wang and 

Krishna, 1989; Stewart, 2003) to solve block-Toeplitz systems in near O(�) operation 

exist. However, these approaches remain numerically unstable and therefore are not 

worthwhile using. The second method, introduced by Sayed and Kailath (1994), is the 

Kalman filtering algorithm, which is based on the discrete-time Riccati recursion to 
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handle time-invariant data. However, it requires a very special structure in the 

Toeplitz matrix (Sayed et al., 1994), which does not correspond to the required 

covariance function in this case, and hence is rather restrictive in nature. This 

approach is therefore also not viable. Finally, the third method is to utilise the Kalman 

filtering algorithm and adapting it to suit the required covariance function; that is, the 

modified generalised Schur algorithm. 

 

Two fast algorithms are discussed in this section; the modified Durbin-Levinson’s 

algorithm and the modified generalised Schur algorithm. The former, based on 

Durbin’s, Levinson’s and Trench’s algorithms, is developed by Leithead et al. (2005c) 

and provides the motivation to develop the latter algorithm. The modified Durbin-

Levinson’s algorithm has the potential to perform Gaussian regression on a very 

large-scale dataset, e.g. up to one million data points and beyond. However, this 

algorithm is applicable only to strictly Toeplitz matrices, or to be exact, covariance 

matrices constructed from time-series data with fixed sampling interval. This limits 

the use of the modified Durbin-Levinson’s algorithm to special cases of structured 

matrices. 

 

In many cases, time-series datasets may contain missing measurement data. As a 

result, the covariance matrix is no longer pure Toeplitz; instead it is a Toeplitz-like 

matrix, i.e. a Toeplitz-Block-Toeplitz matrix. Despite this, the matrix itself is still 

structured. It is known that the generalised Schur algorithm is capable of factoring 

general structured matrices (Sayed et al., 1994), hence this fact is readily used to 

extend the modified generalised Schur algorithm to handle Toeplitz-like matrices, or 

rather, matrices with low displacement rank. Typically, covariance matrix of time-

series data with missing gaps has low displacement rank, K. The performance of the 

modified generalised Schur algorithm is not as fast as the Durbin-Levinson’s 

algorithm, but it is an O(K�
2
) operation, where K is much smaller than �, e.g. the 

value of K is approximately less than 10, as compared to �. 
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3.5.1 Modified Durbin-Levinson’s Algorithm 

 

Developed to reduce O(�
3
) computational complexity and O(�

2
) memory storage 

requirement, the modified Durbin-Levinson’s algorithm (Leithead et al., 2005c) 

specifically exploits the Toeplitz structure of the covariance matrix (26) for a time-

series dataset. It can be shown that the derivative for the covariance matrix is also a 

symmetrical Toeplitz matrix, of the form 


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which can be represented by its first column vector, [ ]T

1210 −= �qqqqq L . 

Note that the inverse of Q is not necessarily a Toeplitz matrix. The matrix operations 

needed in Gaussian regression can be classified into three different O(�
3
) operations; 

specifically, the log-determinant of Q, computation of Y1−Q  and trace of (Q
-1

P), 

where P is also a Toeplitz matrix. According to Golub and Van Loan (1996), Trench’s 

algorithm inverts Q with 13�
2
/4 operations whereas Levinson’s algorithm can solve 

Q
-1

Y with 4�
2
 operations. However, explicitly solving Q

-1
 does not work due to 

extremely large memory requirement to store the matrix. A Durbin-Levinson 

framework was presented (Leithead et al., 2005c) to adapt the algorithms towards an 

efficient and economical computational scheme. The key to solving memory demand 

issue is by using the concept of vector-level storage. This framework is known to 

handle very large time-series datasets for Gaussian processes, e.g. one million data 

points. Experiments are carried out in §3.7 to illustrate that the modified Durbin-

Levinson’s algorithm is capable of handling very large datasets through O(�
2
) 

computational complexity and O(�) storage requirement. 

 

Due to its limitation in handling Toeplitz-like matrices, the modified Schur algorithm 

is developed. 
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3.5.2 Modified Generalised Schur Algorithm 

 

The modified Durbin-Levinson’s algorithm, developed by Zhang et al. (2005c), has 

its limitation. Primarily, it is incapable of handling more general structured matrices, 

such as Toeplitz-like matrices with low displacement ranks. 

 

As outlined in the previous section, the two main procedures involving O(�
3
) 

operations are the matrix inversion and the log-determinant of the covariance matrix, 

Q. Most of the matrix operations, including the calculation of the log-determinant of 

Q, can be solved using the generalised Schur algorithm, through the computation of 

the Schur’s complement of any � x � Hermitian (Toeplitz-like) matrix, Ρ. This was 

shown by Kailath (1999), Chandrasekaran and Sayed (1996, 1999a, 1999b), such that 

the generalised Schur algorithm can be extended for the application of Gaussian 

processes. 

 

The covariance matrix (26) for time-series data has a special displacement structure, 

that is, a matrix with a low displacement rank. In this section, the focus is mainly on 

the exploitation of Toeplitz, or rather semi-block-Toeplitz (Toeplitz-like) matrices 

using Schur algorithm to reduce computational burden. 

 

Consider a positive-definite Hermitian matrix ��×∈ ΧΡ , such that the triangular 

decomposition is denoted by 

*1ΛΛ∆Ρ −=  (31) 

 

where { }10 ,..., −= �dddiag∆  is a diagonal matrix and Λ*
 refers to the complex 

conjugate of Λ. The lower triangular matrix Λ is normalised in a way such that {di} 

appears on its main diagonal. This decomposition can be obtained through the Schur 

reduction algorithm, also known as the Gaussian elimination procedure, in a recursive 

manner to yield the so-called LDL-decomposition. Schur reduction is also known as 

the matrix factorisation procedure. Throughout the thesis, Ρ is assumed to be real. The 

complex case can be treated in a similar way. 
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The Schur reduction algorithm to factor Ρ is generally O(�
3
). However, when Ρ 

possesses a special displacement structure, the computation burden can inherently be 

significantly reduced by exploiting the low displacement rank of Ρ. The key 

procedure lies in the triangularisation of a matrix by a sequence of J-unitary 

operations of a prearray formed from the data at certain iteration; that is, the 

information needed to form the prearray for the next iteration can be read out from the 

entries of the triangularised prearray at the current iteration. Hence, no explicit 

equation, except a few simple ones, is required. 

 

The Schur algorithm focuses exclusively on strongly regular Hermitian Toeplitz-like 

matrices that satisfy 

*1* ΓΓϑΦΡΦΡ −=−  I== 2* , ϑϑϑ  (32) 

 

for some full rank generator matrix, Γ, and lower triangular matrix, Φ. The diagonal 

elements of Φ satisfy 

01 * ≠− ji ff  (33) 

 

where *

jf  is the complex conjugate of fj so that Ρ can be defined uniquely by ϑ, Γ and 

Φ. ϑ is known as the signature matrix, defined to be J-unitary, ( )
qp II −⊕ , where K = 

p + q is the total number of real eigen-values for any full rank Γ. Scalars p and q 

refers to the number of positive and negative eigen-values, respectively. Φ is chosen 

to be strictly lower-triangular shift matrix in this thesis. A condensed form of the 

generalised Schur algorithm (Kailath, 1999) is shown below. 

 

Algorithm 3.1 (Generalised Schur algorithm): Given a matrix, ��×∈ΧΡ , that 

satisfies (32) and (33) for some full rank K�×∈ΧΓ . Start with Γ0 = Γ and perform the 

following steps for i = 0,1,…,n-1: 

1. Let gi be the top row of Γi, and partition Φ as 

}}
}
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i

in

i

i

i

i
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


=

−

ΦΦ

Φ
Φ

0
~  

The object of interest here is Φi, which is obtained by ignoring the first i 

rows and columns of Φ and define fi to be the top left element of Φi. 
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Next, compute li by solving the linear system of equations
3
 where *

ig  is 

the complex conjugate transpose of gi: 

( ) **

iiiiiin glfI ϑΓΦ =−−  

Defining Φ to be strictly lower-triangular shift matrix, it follows that 

*

iii gl ϑΓ=  

Then, the first element of li is  

( ) *** 1 iiiiiii ggffggd ϑϑ =−=  

2. Obtain an explicit form of Γi+1 as shown 
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where Θi is any J-unitary matrix. Notice that Γi+1 has one row less that Γi. 

3. Finally, {li} defines the successive columns of Λ, and di, the successive 

diagonal elements of ∆, such that Ρ = Λ∆-1Λ*
. 

 

The generator matrix, Γ, being highly non-unique, can be obtained in various forms in 

which the Schur algorithm applies. Furthermore, it is possible to obtain different 

arbitrary J-unitary matrix, Θi, as long as the following condition applies 

ΘΘ==ΘΘ ϑϑϑ **  (34) 

 

Given the flexibility in choosing the generator matrix, ΓΘ can be used as any J-

unitary matrix to obtain the proper form of the algorithm. Γ is said to be in proper 

form if its first nonzero row has only a single nonzero entry, either in the first or last 

column of the top row of Γ. These issues have been addressed by Kailath (1999), 

Chandrasekaran and Sayed (1999a, 1999b). 

 

Generally, representing structured matrices by Γ and Φ in finite precision induces 

round-off errors. It is important that Γ should be in proper form so that reasonably 

good error bound is achieved. To do so, the following four enhancements 

(Chandrasekaran and Sayed, 1999a) are incorporated in the Schur algorithm. 

 

                                                 
3
 Φ is not only a triangularly matrix, it is generally sparse and often diagonal or bidiagonal, thus it 

makes the equation fairly easy to solve, particularly for our case Φ = Ζ or ΖΖΦ ⊕= . 
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1. Careful implementation of the hyperbolic rotation
4
. 

2. Careful implementation of the Blaschke-vector product
5
. 

3. Enforce positive-definiteness of successive Schur complements. 

4. Control of potential growth of successive generator matrices. 

 

Chandrasekaran and Sayed (1999a) concluded that for most positive-definite 

structured matrices, the modified Schur algorithm is backward stable, when enhanced 

with the hyperbolic rotation and householder (or any related) transformation. 

 

The determination of the displacement-generating matrices {Γ, Φ, ϑ}, also known as 

the rank-revealing decomposition, is discussed here. Note that, the procedure to obtain 

these matrices takes into account the context of Gaussian regression. Nevertheless, it 

is also applicable to some non Gaussian regression contexts. The displacement-

generating matrices require the use of augmentation matrices, Ρ, for the generalised 

Schur algorithm. The matrix Ρ in (32) can be assumed to be real, symmetric and 

positive-definite. The displacement matrix, ∆Ρ, is defined as TΦΡΦΡΡ −=∆  and 

ΦT
 is the matrix transpose of Φ. Since Ρ is positive-definite, it is crucial that the 

successive Schur complements are also theoretically positive-definite. If the 

displacement rank of ∆Ρ is K, then ϑ is simply defined to be a J-unitary matrix, 

( )2/2/ KK II −⊕=ϑ   

 

such that the numbers of positive and negative eigenvalues are the same. The matrix, 

( )...
321

⊕⊕⊕= ��� ΖΖΖΦ , is designated to be a strictly lower-triangular shift 

matrix, depending on the number of inner Toeplitz-blocks inside Ρ. For example, if Ρ 

consists of two by two block-Toeplitz matrices as shown below, such that Τ is a 

Toeplitz matrix, then ( )
21 �� ΖΖΦ ⊕= .  

122211 ,,,

T

��

ab

��

bb

��

aa

bbab

abaa ××× ∈∈∈







= ΡΡΡ ΤΤΤ

ΤΤ

ΤΤ
Ρ   

 

Matrix Ζ� is defined here to be a square lower-triangular shift matrix with ones on the 

first subdiagonal and zeros elsewhere (i.e. a lower-triangular Jordan block with 

                                                 
4
 Hyperbolic rotation is implemented to rotate the top row of Γi+1 to proper form. 

5
 Blaschke-vector product has been explained in the past literature (Chandrasekaran and Sayed, 1999a). 
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eigenvalue equal to zero). The generator matrix, Γ, can be obtained by the following 

procedure. 

 

Procedure 3.2 (Obtaining the generator matrix): 

1. Let ��×∈ ΡΡ  be a symmetrical and Hermitian matrix, with low 

displacement rank, K << �, such that the reduced-row echelon form 

(RREF) is 

[ ] 







−








+≡








=∆

00

0

0
0

0
~

~~ TT ΑΒ
Β

Β

ΒΑ
Ρ  

where [ ]TT ~~
ΒΑΒ =  and 22

~ KK ×
∈= ΡΑΑ  is symmetric. Any symmetric 

Hermitian block-Toeplitz matrix can be transformed into a matrix with the 

above RREF by permuting its rows and columns. Let ΦE = ED be the 

eigen-value decomposition of 










−
=Φ

0T ΑΑΒΒ

Α I
 

where D is a diagonal matrix. The non-zero eigenvalues of ∆Ρ are real and 

positive, and are identical to the eigenvalues of Φ. In addition, the 

eigenvectors for the non-zero eigenvalues of ∆Ρ are real and equal to the 

columns of [ ] K�YIX ×∈Ψ=+ ΡT
0Β  where [ ] KKEYX ×∈= Ρ

TTT . 

The proof is explained in Proof 3.1. 

2. Some eigenvalues of Γ can be very similar. For numerical reasons, the 

computed eigenvalues and eigenvectors may consist of complex conjugate 

pairs, i.e. D and E are complex matrices. Although the imaginary part of 

these computed eigenvalues are extremely small, the imaginary parts of 

the eigen vectors can be large. Hence, to ensure D and E are real, the 

following corrections are made 

( )
( ) ( )EEE

DD

imagreal

real

+→

→
 

3. Each column of Ψ is an eigenvector of ∆Ρ with eigenvalue belonging to 

the diagonal elements of D. However, since all the eigenvalues are not 

distinct, the columns of Ψ are not automatically orthonormal as required. 
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To enforce orthogonality, the columns of Ψ are updated recursively for k = 

2,…,K such that,  

( )
∑

−

= ΨΨ
ΨΨΨ

−Ψ→Ψ
1

1
T

Tk

i ii

kii
kk  

where Ψi is the i
th

 column of Ψ. To obtain orthonormality, the columns are 

then rescaled such that, k∀ , 

kk

k
k

ΨΨ

Ψ
→Ψ

T
 

4. With K�×∈Ψ Ρ  obtained from above, every column of Ψ is an eigenvector 

of ∆Ρ and is orthonormal with every other columns. The respective 

diagonal elements of D are therefore the corresponding eigenvalues. Thus, 

the following is obtained, TΨΨ≅∆ DΡ  (Orthogonality is shown in 

Lemma 3.1). D has the decomposition 

( )ΞΞ THHD Ω=  

where H is the unitary permutation matrix separating the positive and 

negative eigenvalues, λi, from each other. Ξ is a diagonal matrix with its 

diagonal elements comprised of the square-root of the absolute values of 

the eigenvalues, λi; that is, 

{ }Kdiag λλ ,...,1=Ξ  

The required decomposition of ∆Ρ is obtained with 

HΞΓ

ϑ

Ψ=

Ω=
 

that is, TΓϑΓΡ ≅∆ , where HΞΓ Ω∆  is the generator matrix for ∆Ρ. 

 

Proof 3.1 (Eigenvalues and eigenvectors of Φ ≡ eigenvalues and related-eigenvectors 

of ∆Ρ): Let ��×∈ ΡΡ  be a Toeplitz-like symmetrical and Hermitian matrix with low 

displacement rank such that 

TΦΡΦΡΡ −=∆  

where ( )...
321

⊕⊕⊕= ��� ΖΖΖΦ  is a strictly lower-triangular shift matrix and Ζ� is 

a square lower-triangular shift matrix with ones on the first subdigonal and zeros 

elsewhere. To prove that the eigenvalues of ∆Ρ are the eigenvalues of Φ, and the 

eigenvectors of ∆Ρ are related to the eigenvectors of Φ, let 
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[ ] 
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
+≡
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
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0
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~~ TT ΑΒ
Β

Β

ΒΑ
Ρ  

where [ ]TT ~~
ΒΑΒ =  and 22

~ KK ×
∈= ΡΑΑ  is symmetric. Also, let the eigenvector 

be y
I

xE 







+=

0
Β  and eigenvalue be λ. Thus, 

[ ]
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I
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By expanding the right-hand side, 
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By comparing both sides, 









=

















−
=








Φ⇒





=−

=+

y

x

y

xI

y

x

y

xyx
λ

λ
λ

0TT ΑΑΒΒ

Α

ΑΑΒΒ

ΒΒΒΑ
 

 

As ΑΑΒΒ −T  is full rank and non-singular, this further implies that the inverse of 

ΑΑΒΒ −T  exists. Thus, by taking the eigenvalue decomposition, the eigenvalues 

and eigenvectors of Φ is simply the corresponding eigenvectors and eigenvalues of 

∆Ρ. 

 

Lemma 3.1 (Orthogonality and the SVD). A set of vectors { }
pxx ,...,1  in mΡ  is 

orthogonal if 0T =ji xx  whenever ji ≠  and orthonormal if ijji xx δ=T . Orthogonal 

vectors are maximally independent as they point in different directions. The vectors 

kvv ,...,1  form an orthonormal basis for a subspace mS Ρ⊆  if they are orthonormal 

and span S. It is possible to form an orthogonal matrix mmQ ×∈ Ρ  by extending such a 

basis to a full orthonormal basis { }mvv ,...,1  for mΡ  (Golub and Van Loan, 1996). 
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The development of orthogonal matrices can be useful in singular value 

decomposition. If A is a real m-by-m matrix, then there exist orthogonal matrices 

[ ] mm

muuU ×∈= Ρ,...,1  and [ ] mm

mvvV ×∈= Ρ,...,1  

such that 

{ } mm

mdiagAVU ×∈= Ρσσ ,...,1

T  

where 0...21 ≥≥≥≥ mσσσ . 

 

The σi are the singular values of A and the vectors ui and vi are the i
th

 left singular 

vector and i
th

 right singular vector respectively. It is easy to verify that 

mi
vuA

uAv

iii

iii
:1

T
=





=

=

σ
σ

 

 

Thus, the SVD expansion for matrix A (Golub and Van Loan, 1996) is obtained by 

∑
=

=
r

i

iii vuA
1

Tσ  

 

If A is symmetrical, u = v, thus, the eigenvectors are the singular vectors of u and v, 

while the eigenvalues are the singular values of A. 

 

 

3.6 Application of Schur Algorithm in Gaussian Processes 

 

Following the previous subsection, it is of interest to exploit the generalised Schur 

algorithm to speed up the computations in Gaussian processes. Several O(�
3
) 

computations, such as log-determinant and inversion of covariance matrices, are 

bottlenecks in the training procedure. The modified Schur algorithm, as described in 

§3.5.2, is used to obtain fast factorisation for the variables in both log-likelihood 

function and its derivatives, with the chosen covariance function, (26). For notation 

simplicity, the first and second order derivatives of Q(θ) with respect to d, dQ ∂∂  

and 22 dQ ∂∂ , are denoted by Φ1 and Φ2, respectively. The hyperparameters in (26) 

are defined using exponentials, as discussed in §3.2.1, during the training process. 
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Note that from this section onwards, � refers to the size of Q, the covariance matrix 

(26), and �  denotes the size of Ρ (and Γ). 

 

 

3.6.1 Fast Factorisation using Vector-level Storage Procedure 

 

The utility of the generalised Schur algorithm provides a direct factorisation of the 

log-determinant of Q and Q
-1

Y during the evaluation of the negative log-likelihood 

function. The terms, tr(Q
-1

), tr(Q
-1

Φ1) and Φ1Q
-1

Y are necessary to complete the 

derivative function for the optimisation procedure. Vector Y is defined here to be the 

scalar outcomes of every explanatory variable z. Hessian information, whilst optional, 

can also be included in the optimisation procedure. The second order derivative of the 

negative log-likelihood function requires further direct factorisation for 11 −− QQ , 

1

1

1

1 ΦΦ −− QQ ,  ( )2

1Φ−Qtr  and 1

1

1 −− Φ QQ . 

 

Although the generalised Schur algorithm provides a direct factorisation of a positive-

definite matrix Ρ in the form of Λ∆-1ΛT
, in actual fact no matrices, other than the 

generator matrix Γ, is explicitly stored in the process. Leithead et al. (2005c) 

introduced vector-level storage algorithm while handling large-scale data (Leithead et 

al., 2005d) using Durbin-Levinson’s algorithm in Gaussian process, to avoid any 

O(�
2
) storage requirement. In this proposed Schur algorithm, the largest matrix to be 

stored is the generator matrix, K�×∈ΡΓ , but since K << � , it is sufficiently small to 

be classified as vector-level storage. 

 

 

3.6.2 Matrix Structure and Schur complements 

 

Factorisation of the Schur complement is instrumental towards the reconstruction of 

matrices with low displacement rank. It is perhaps easier to first introduce some 

notation. Recalling from §3.5.2 for the real case of direct factorisation (31), 

T1ΛΛ∆Ρ −= , it follows that there is a representation for its inverse such that 

( ) T11T1 ΩΩ∆∆ΛΛΡ −−−− ==   
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where Ω is an upper triangular matrix, defined as ∆ΛΩ T−∆ . To extend towards a 

general case of Schur factorisation, it is perhaps important to investigate the Schur 

factorisation and its complements in detail. 

 

Suppose that Ρ is an extended augmentation matrix
6
, partitioned as shown below 

}}
}
} ��

�

T

T

T

T

���

−







=

−

22

12

21

11Ρ   

 

where Tij, { } { }2,1, ∈∀ ji  are Hermitian Toeplitz-like matrices, it follows that the Schur 

complements of the leading � x � block of Ρ is 12

1

112122 TTTT −− . This can be shown 

using the Schur reduction algorithm (Kailath, 1999). The size of T11 need not 

necessarily be the same as that of T22. By applying the generalised Schur algorithm, 

not only can (the generators of) T11 be determined, but both T11 and 12

1

112122 TTTT −− , 

the Schur complement of Ρ, can be simultaneously factorised. Note that, only the 

symmetrical case for real Ρ is considered, though it can be extended to cases for non-

Hermitian complex matrices. 

 

To further clarify the procedure, � recursive iterations of the generalised Schur 

algorithm is first applied to a generator of the matrix Ρ, to provide the first � columns 

and first � diagonal entries of the triangular factorisation of Ρ, to be denoted by and Λ 

and ∆, respectively. The matrices, Λ and ∆, are partitioned as shown 

} }
}
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�
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���
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
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
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−

)
M

M 0
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�

DD
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���

−
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
=

−

)
M

M 0
~∆   

 

where L  and L
)

 are lower triangular matrices. If T21 = T12 = I, L
~

 would be an upper 

triangular matrix. In situations with extended matrices, the augmentation matrix may 

contain more semi-Toeplitz blocks within each partitioned block. Hence, L
~

 may have 

to be split into 

[ ]TTT~
ςΥ=L   

                                                 
6
 Augmentation matrix, or simply known as extended matrix, may contain several semi-block-Toeplitz 

matrices, with low displacement rank. 
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such that Υ and ς are full matrices. It follows from Kailath’s (1999) explanation of the 

Schur reduction algorithm that Ρ may be interpreted as follows 

[ ] 







+








=








−

−

LDL
LLD

L

L

TT

TT
))

1

TT1

2221

1211
~

0

00~
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such that, following the Schur reduction algorithm, the Schur complement of Ρ admits 

12

1

112122

1~
TTTTLDL T −− −==∇

))
Ρ . Equating terms on both sides of the equation, it 

concludes that 

T1

11 LDLT −=  and T1

12

1

1121

~~
LDLTTT −− =   

 

Hence, the first � recursive steps of the algorithm not only provide the triangular 

factorisation of T11, but also the triangular factorisation of 12

1

1121 TTT − . Unfortunately, 

this mathematical concept does not apply to a general matrix, Φ, e.g. where 

{ }10 ,..., −= �ffdiagΦ  is a diagonal matrix. 

 

For simplicity, matrices Υ and ς are used in the following section, but never explicitly 

stored; instead only every subsequent column vectors of Υ and ς, viz. τ and ω 

(illustrated in the next few sections), are computed and temporarily stored in each 

iterative step. In this way, vector-level storage is implemented to resolve any 

preliminary O(�
2
) memory storage issue. 

 

 

3.6.3 Useful Augmentation (Extended) Matrices in Gaussian regression 

 

This section investigates the choice of augmentation matrices in more specific details, 

particularly in relation to Gaussian regression. Augmentation matrix, Ρ, is used to 

obtain a fast factorisation for the Schur algorithm. The corresponding generator 

matrix, Γ, is then computed and stored. The choice of the lower-triangular shift 

matrix, Φ, is dependent on the choice of augmentation matrix, Ρ, such that its choice 

satisfy (32) to within a reasonable degree of precision. 
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During the optimisation procedure in Gaussian regression, only the log-likelihood 

function and its derivative information are required to ensure successful convergence. 

The modified generalised Schur algorithm can be exploited to compute the following 

terms, which are typically O(�
3
)-operations, if calculated explicitly. 

• Q
-1

Y 

• tr(Q
-1

) 

• log |Q| 

• Φ1Q
-1

Y 

• tr(Q
-1

Φ1) 

 

Factoring (Q
-1

) and (Φ1Q
-1

) 

 

The following extended matrix Ρ can be used to obtain both (Φ1Q
-1

Y) and (Q
-1

Y), by 

computing the direct factorisation of Q
-1

Φ1 and Q
-1

, 










Φ

ΦΦΦ
=∇⇒
















Φ

Φ−

=
−−

−−

1

1

1

1

11

1

11

1

1

00

00
QQ

QQ

I

IQ

ΡΡ  (35) 

 

where Q is a matrix with low displacement rank, as defined by the function in (26). 

The displacement rank of Ρ can be easily calculated by working out the RREF of the 

displacement matrix, ∆Ρ. For example, if both Q and Φ1 are strictly Toeplitz matrices, 

such that Ρ is quasi-Toeplitz, then the displacement rank of Ρ is 4. 1

Ρ∇  is denoted to 

be the Schur complement of the first (1,1) block of Ρ, with corresponding LDL-

decomposition given by 

[ ]T1

1

1

1

1

11

1

11 ςΥ
ς

Υ
Ρ

−
−−

−−









≡









Φ

ΦΦΦ
=∇ D

QQ

QQ
  

 

such that ς is an upper-triangular matrix, with ones along its diagonal, and D  a 

diagonal matrix. A direct factorisation for Q
-1

 and Q
-1

Φ1 is simultaneously obtained 

after � iterations of the generalised Schur algorithm. It follows that the required trace 

operations is computable in O(�
2
) procedure, 
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( )
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where uij and vij represents the i
th

 columns and j
th

 rows of Υ and ς, respectively, and di, 

the i
th

 element on the diagonal of D . The trace operation is further explained in the 

algorithm below. 

 

Algorithm 3.2 (Trace operations using Schur algorithms): The trace operations 

involving the generalised Schur algorithm are described in detail here. Given the 

generalised Schur algorithm as described in Algorithm 3.1, the matrices Υ and ς are 

obtained column by column. Start with 0=ρ  and 0=ψ . The following steps are 

performed for i = 0,1,…, �-1: 

 

1. Obtain li and di from the generalised Schur algorithm (Algorithm 4.1). 

Then, define iu  and iv  as shown: 









=

i

i

i
v

u
l  

2. Compute the following: 

i

ii

d

vu T

+= ρρ  and 
i

ii

d

vv T

+=ψψ  

 

The final values of ρ and ψ are the corresponding values for the trace operations of 

( )1

1Φ−Qtr  and ( )1−Qtr , respectively. 

 

Factoring log-determinant of Q 

 

Similarly, the log-determinant of Q can be computed by 

∑
=

=
�

i

idQ
1

loglog   
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where ||.|| is an absolute operator to ensure di is positive. Vectors Q
-1

Y and Φ1Q
-1

Y are 

obtainable in O(�
2
) fashion by 

∑∑

∑∑

= =

= =

=

=

�

i

i

j i

jijik

k

�

ki

i

j i

jijik
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d

yvu

d

yvv

1 1

1

ω

τ

  

 

where τk and ωk are the k
th

 entries of the respective vectors, Q
-1

Y and Φ1Q
-1

Y, and yj is 

the j
th

 entry of the vector Y. The operations to obtain these vectors are explained in 

the algorithm below. Upon obtaining the required two traces, two vectors and the log-

determinant of Q, the log-likelihood function and its derivative information can be 

computed in O(�
2
) fashion, with a few more arithmetic and vector-vector products 

that are O(�)-operations. 

 

Algorithm 3.3 (Obtaining vectors using Schur algorithms): The procedure to obtain 

the vectors τk and ωk, involving the generalised Schur algorithm is described here. 

From the generalised Schur algorithm as described in Algorithm 3.1, the matrices Υ 

and ς are again obtained column by column. Let Y be the vector consisting of the 

target values. Starting with vectors φ = 0 and ς = 0, where 1, ×∈ �Ρςϕ , the following 

steps are carried out for i = 0,1,…, �-1: 

 

1. Obtain li and di from the generalised Schur algorithm (Algorithm 3.1). 

Then, define iu  and iv  as shown: 









=

i

i

i
v

u
l  

2. Compute the following: 

( )
i

ii

d

vv Y••
+= ϕϕ  and 

( )
i

ii

d

vu Y••
+= ςς  

where • denotes the Hadamard product or entrywise product. 

 

The final values of φ and ς are the corresponding values for the operations of (Q
-1

Y) 

and (Φ1Q
-1

Y), respectively. 
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3.6.4 Hessian Information in Optimisation Routine 

 

Although (35) is sufficient for the optimisation routine, the inclusion of Hessian could 

provide a richer and more detailed analysis of additional information for training. 

Without user-supplied Hessian, the optimisation approximates Hessian by finite-

differencing. Zhang and Leithead (2005) introduced the use of Hessian information in 

optimisation routine for Gaussian processes to provide more accurate and allow faster 

convergence towards a local minimum. 

 

Subsequent to the results obtained in §3.6.3, Hessian manipulation requires a few 

additional terms with slightly different augmentation matrices, to have a complete 

description of the second order derivative information; mainly, 

• Φ2Q
-1

Y 

• tr(Q
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Φ2) 
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) 

• Q
-1

Q
-1

Y 

• Φ1Q
-1

Φ1Q
-1

Y 

• tr(Φ1Q
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) 

• tr(Q
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Factoring (Q
-1

Φ2) 

 

The terms Φ2Q
-1

Y and tr(Q
-1

Φ2) are obtained using the previous augmentation matrix 

(35), by replacing the term Φ1 with Φ2. The procedure is, hence, trivial. 

 

Remark 3.1: Before defining more augmentation matrices for Hessian factorisation, 

denote Λ2� and ∆2� by removing the first � rows and first � columns of Λ and ∆, 

respectively. The matrices Λ2� and ∆2� are partitioned as follow 
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where �L2  and �L2

)
 are lower triangular matrices.  

 

Factoring (Q
-1

Q
-1

) 

The following augmentation matrix is used to obtain a direct factorisation for Q
-1

Q
-1

, 

1121

0
00

0

0
−−=∇⇒








=∇⇒
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










= QQ

I

IQQ

I

IQ

QI

ΡΡΡ ))
)

  

 

where 1

Ρ
)∇  and 2

Ρ
)∇  are successive Schur complements of the (1,1) and (2,2) blocks of 

Ρ, after � and 2� iterations, respectively. Once again, the displacement rank of Ρ
)

 is 

4 when Q is Toeplitz. Although this augmentation matrix provides a very fast direct 

factorisation for Q
-1

Q
-1

, due to numerical issues, inverting QQ by Schur algorithm 

after first � iterations frequently causes highly inaccurate results. This is because the 

condition number of QQ is very large. It is vital to keep that condition number close 

to the condition number of Q, instead of QQ, if the generalised Schur algorithm is to 

be used. Hence, an alternative solution is to modify Ρ
)

 to 

( ) 1112

1

1

0
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0

0
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−

+=∇⇒
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µ
µ

µ

ΡΡΡ ))
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 (36) 

 

where µ is a constant factor to be defined in §3.6.6. Despite the modification to the 

augmentation matrix, the displacement rank remains at 4. It follows that the 

corresponding (2,2) block of the Schur complement is the sum of Q
-1

 and µQ
-1

Q
-1

. 

Since the tr(Q
-1

) and Q
-1

Y are computable with the augmentation matrix (35) in 

§3.6.3, only the factorisation of tr(Q
-1

Q
-1

) and Q
-1

Q
-1

Y is of interest here. The latter 

are acquired directly via simple arithmetic O(�) computations. The Schur 

complement can also be written in the form 

T

2

1

22

2 ~~
��� LDL −≅∇

Ρ
)   

 

where vij is the i
th

 column and j
th

 row of ��

�L ×∈ Ρ2

~
, an upper triangular matrix, and 

�D2  a diagonal matrix, constructed from �+1 to 2� iterations of the Schur algorithm. 

It follows that 
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where kτ)  is the k
th

 entry of the vector, Q
-1

Q
-1

Y. Also, note that �L2

)
 was never 

explicitly stored. The algorithm for the operation of ( )11 −− QQtr  is achieved with the 

same algorithm as before; that is, Algorithm 3.2, and the algorithm for obtaining 

Y11 −− QQ  is achieved with the same algorithm with Algorithm 3.3. 

 

Factoring (Q
-1

Φ1Q
-1

) and (Q
-1

Φ1Q
-1

Φ1) 

 

Similar methodology can be used to derive the augmentation matrix Ρ
(

 to obtain fast 

factorisation for (Q
-1

Φ1Q
-1

Φ1) and (Q
-1

Φ1Q
-1

), with 
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(37) 

 

where η is some constant factor to be determined in §3.6.6, and 2

Ρ
(∇  is the Schur 

complement after 2� iterations, or to be precise, of the (2,2) block of Ρ
(

. If Q and Φ1 

are Toeplitz matrices, the displacement rank of Ρ
(

 is 6. Subsequently, its LDL-

decomposition is given by 
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where ��

�

×∈ Ρ2Υ  is a full matrix, ��

�

×∈ Ρ2ς , an upper triangular matrix and 

��

�D ×∈ Ρ2 , a diagonal matrix. These are obtained from the �+1 to 2� iterations of 

the Schur algorithm. The required traces are computed as follow, 
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where uij and vij are i
th

 columns and j
th

 rows of Υ2� and ς2�, respectively. Again, the 

algorithm for these trace operations is the same as given in Algorithm 3.2. Clearly, 

∑∑
= =

−=
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i

i

j i

jijik

k
d

yvu

1 1

1

η
τ(   

 

computes the vector Φ1Q
-1

Φ1Q
-1

Y, where kτ(  is the k
th

 entry of (Φ1Q
-1

Φ1Q
-1

Y). Again, 

the algorithm for this operation is the same as given in Algorithm 3.3. 

 

 

3.6.5 Predictions and Standard Deviations 

 

Given the Gaussian process prior models, the interest is to obtain the predictive mean 

and variance for any finite set of values of the explanatory variable.  

 

Factoring terms belonging to the posterior joint probability distribution 

 

From the posterior joint probability distribution given in Chapter 2.4.3, it follows that 

the augmentation matrix Ρ̂ , used to compute the direct factorisations for the 

predictions and standard deviations, is  
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 (38) 

 

where 1

Ρ̂
∇  is the Schur complement of the (1,1) block of Ρ̂ , after � iterations. If Q 

and Λ21 are Toeplitz matrices, the displacement rank of Ρ̂  is 6, and not 4. This is 
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because of the presence of vector Y in the augmentation matrix. Unlike (35), (36) and 

(37), �×∈ 1Ρς  is a row vector and �h×∈ ΡΥ  is a full matrix, such that h is the 

number of new outcomes to be predicted. It follows that the prediction for ŷ  and the 

corresponding standard deviation ŝ  are obtained as shown below 

∑
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i i

iik
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d
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i i
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d

u
as

1

2

ˆ   

 

where kŷ  and kŝ  are k
th

 entries of the respective vectors, ŷ  and ŝ , and a is the 

adapted hyperparameter of the covariance function (26). The algorithm to compute 

the prediction and standard deviation is illustrated below. 

 

Algorithm 3.4 (Obtaining prediction and standard deviation using Schur algorithms): 

The operations to obtain the vectors ŷ  and ŝ , involving the generalised Schur 

algorithm, are explained here. From the generalised Schur algorithm described in 

Algorithm 3.1, the matrices Υ and ς are obtained column by column. Starting with 

vectors ŷ  = 0 and t  = 0, where 1,ˆ ×∈ �Ρty , the following steps are performed for i = 

0,1,…, �-1: 

 

1. Obtain li and di from the generalised Schur algorithm (Algorithm 3.1). 

Then, define iu  and iv  as shown: 









=

i

i

i
v

u
l  

2. Compute the following: 

i

ii

d

vu •
+= yy ˆˆ  and 

i

ii

d

uu •
+= tt  

where • denotes the Hadamard product or entrywise product. 

 

The final values of ŷ  and ts −= aˆ  are the corresponding values for the prediction 

and standard deviation of the posterior joint probability distribution. 

 

The derivative observation of the Gaussian regression can also be computed using the 

same augmentation matrix (38). The prior covariance function is assumed to have 
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been chosen to be (26). Let the covariance matrix for the expectation between the 

derivative observation and the measurements be 21Λ& . By substituting Λ21 in (38) with 

21Λ& , the derivative predictions (and its confidence intervals) can be acquired by fast 

factorisation using the generalised Schur algorithm. It follows that the derivative 

predictions for 'ŷ  and standard deviation, '
ŝ , are 

∑
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where 'ˆ
ky  and 

'
ˆ

ks  are the k
th

 entries of the respective vectors, 'ŷ  and '
ŝ , and d

~
 is the 

lengthscale hyperparameter, d, value as defined in (26). 

 

This augmentation matrix works on the condition that the values of the explanatory 

variable of the posterior are sampled at fixed interval; that is, the resulting covariance 

matrix is also Toeplitz-like. 

 

From §3.6.3 to §3.6.5, much of the concepts are based on Q being a Toeplitz matrix. 

It is apparent that the augmentation matrices can be extended for Q to be a block-

Toeplitz-block matrix; for example, in the case where the time-series data contain 

missing gaps. Consequently, every increment in the displacement rank of Q results in 

an increment in the displacement rank of Ρ. 

 

 

3.6.6 Convergence Factors in Augmentation Matrices 

 

This section describes how the values of µ and η in (36) and (37) respectively are 

chosen. A good choice for these values is needed to ensure that computational errors 

are reasonably small. On the other hand, a poor choice of the values is likely to have 

significant impact on the accuracy of the generalised Schur algorithm. 

 

Obtaining µ 

 

There is some relationship between the constant, µ, and the condition number of the 

Schur complement of (36). µ is used to ensure that the condition number does not 
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become too large at every iterative step of the generalised Schur algorithm. Given the 

first � iterations of the algorithm, the Schur complement of the (1,1) block is 

( ) QIQQ
1−+ µ . However, 

( ) QQIQQ ≤+ −1µ   +∈∀ Ρµ   

 

where ||.|| refers to the condition number. It is important to keep ( ) QIQQ
1−+ µ  as 

small as possible, but the value of µ cannot be too small such that its contribution to 

( ) 1−+ IQ µ  becomes negligible. Focusing on ( ) QIQ
1−+ µ , 
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where ( )Ql  denotes the eigenvalues of Q. It follows that a reasonable choice for µ is 

( )[ ]Qlmin≈µ . Since Q = Λ + bI, where Λ is a covariance matrix. The smallest 

eigenvalue of Λ can be extremely small and is insignificant compared to b, except 

when the lengthscales are large compared to the range of explanatory variable 

presented. Therefore, it is apparent that the best value of µ should be b.  

 

In the case where Λ is a sparse or a diagonal matrix, b will no longer be a good choice 

for µ. However, this is trivial, because the smallest eigenvalue of Λ (assuming Λ is 

now a diagonal matrix) is simply the smallest element of the diagonal of Λ. More 

detail cases are discussed in Appendix C. 

 

Obtaining η 

 

In the case of η, it is no longer a condition number problem. Instead, it is an issue of 

ensuring the (1,1) block of the Schur complement of the augmentation matrix (37) to 

remain positive-definite. It follows that the “optimal” value for η is 1. The following 

shows the theoretical verification. 
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Proof 3.2 (Choice of η = 1): Given the covariance function with explanatory variable 

that is one-dimensional is of the form in (26), let ( ) ( )
ijjinji baCC δ+= z,zz,z  and a = 

1, such that C and Cn are normalised. The covariance function Cn is 
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Rearranging, 
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Using this property, let Q be the matrix for the covariance function C and P  be the 

matrix for the covariance function Cn, the following equation can be reformulated to 
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 (39) 

 

To ensure that the left-hand side of (39) is positive-definite, the right-hand side of the 

equation also has to be positive-definite. Thus, the constant η is bounded between 0 

and 2 to guarantee positive-definiteness for the matrix on the left-hand side of the 

equation.  

 

Examples to support the above statement are illustrated in Figure 8 to Figure 11. The 

experiments clearly substantiate that the suggested choice for η is 1. It is evident from 

Figure 8 to Figure 10 that the error estimates are much lower for η between 0 and 2, 

than values outside this range. The poor accuracy is a result of the Schur complements 

not being positive-definite. Figure 11 confirms that the errors are accumulated during 

the computations of the generalised Schur algorithm. 
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Figure 8 Error from the trace operation of (Q
-1

Φ1Q
-1

Φ1). 

 

 

Figure 9 Error from the computation of vector (Φ1Q
-1

Φ1Q
-1

Y). 
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Figure 10 Error from the trace operation of (Q
-1

Φ1Q
-1

). 

 

 

Figure 11 Error estimation of the Schur decomposition of Ρ – ΦΡΦT
 ≡ ΓϑΓT

. 

-1 -0.5 0 0.5 1 1.5 2 2.5 3

10
-11.8

10
-11.7

10
-11.6

10
-11.5

10
-11.4

Accuracy on R-FRF=GJG

mu

E
rr
o
r

 

-1 -0.5 0 0.5 1 1.5 2 2.5 3
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Accuracy on trace invT*dQ*invT

mu

E
rr
o
r

 



Fast Algorithm Implementation for Gaussian Regression 

_____________________________________________________________________ 

69 

 

From the theoretical explanations and numerous experiments, it follows that a good 

choice of µ can be chosen to be equivalent to the noise variance, b, to ensure relatively 

optimal and accurate results. Similarly, for η, it has been shown that any value 

between 0 and 2 is suitable, as long as the matrix ( )γη ∂∂+ QQ  is confined to be 

positive-definite. An appropriate choice for η is naturally 1, since it conveniently lies 

in the middle of the boundary, and also for the reason of simplifying calculations. 

 

 

3.7 Cumerical Experiments 

 

The effectiveness of the generalised Schur algorithms is analysed in the following five 

sub-sections. To exploit its capabilities and provide a standard benchmark, the 

generalised Schur algorithm is programmed in both MATLAB and C languages, i.e. 

scripts are written in MATLAB and C codes
7
. Standard MATLAB operations, 

without the use of any fast algorithm, are also made available to provide additional 

comparison. The experiments are conducted on time-series datasets. 

 

Firstly, individual Schur functions, written in both coding languages, are compared 

with explicit standard MATLAB operations, in terms of accuracy and performance. 

The effects of hyperbolic rotation
8
 on the Schur algorithms are also evaluated on both 

coding languages. Secondly, a similar test is conducted with the same criteria, except 

on time-series data with one missing gap. Next, the focus is on the Gaussian process 

optimisation routine, to compare the timing performance and the accuracy of the 

convergence to the correct local minima between the C codes, MATLAB codes and 

standard MATLAB functions using time-series datasets. Subsequently, the same test 

is conducted on time-series datasets with one missing gap. The final optimisation test 

compares the performance of the generalised Schur algorithm and modified Durbin-

Levinson’s algorithm, developed by Leithead and Zhang’s (2005c) as discussed in 

§3.5.1. This final test considers only strictly time-series (pure Toeplitz) data. 

                                                 
7
 The C codes are essential because MATLAB are not efficient in performing loops operations, e.g. for 

loops and while loops. C codes are known to be both memory and computationally efficient, especially 

for fast algorithms. 
8
 Generalised Schur algorithm is performed with and without hyperbolic rotation. 
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To avoid numerical inaccuracies in the algorithm, the value of the hyperparameter n 

for the correlation function between yi and yj 

[ ] ( )

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




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

 −−= ijjiji n
d

ayy δ2
zz

2
exp,E   

 

is constrained for n > 1 x 10
-5

 throughout the experiments. Due to machines having 

finite precision, the constraint is imposed primarily to ensure that the errors from the 

eigenvalue decomposition of Procedure 3.2, whilst obtaining the generating matrix, 

are minimal. This is to further avoid results of the generalised Schur algorithm 

computation from being affected by these errors. 

 

The experiments are carried out on an Intel® Pentium® IV 2.8GHz machine with 

512MB memory running Linux Operating System. The MEX-C codes are compiled 

using GCC 3.5.1, optimised to the architecture of the machine. The installed 

MATLAB version is R14. 

 

 

3.7.1 Test One (Function Test, Data without Gap) 

 

A run of 100 Gaussian process-generated samples per data size, �, 

{ }1000,...,200,100=∀�  is carried out to evaluate the performance of the modified 

generalised Schur algorithm using augmentation matrix (35) with the standard 

MATLAB functions. The functions involved in the calculations are tr(Q
-1

), tr(Q
-1

Φ1), 

log|Q|, Q
-1

Y, Y
T
Q

-1
Y, Y

T
Q

-1
Q

-1
Y, Φ1Q

-1
Y and Y

T
Q

-1
Φ1Q

-1
Y. Note that, instead of 

applying a direct determinant operation, MATLAB’s computation of the log-

determinant of Q is calculated using the Cholesky decomposition as shown below. 

( ){ }∑= ΛdiagQ log2log   

 

such that Q = ΛTΛ. Hyperparameter values and noise data are randomly chosen for 

every sample to ensure reasonably unbiased test results. The range of the values of the 

explanatory variable is between 0 and 100. To avoid numerical breakdown of the 

algorithm, randomly-generated lengthscale hyperparameters are also constrained, i.e. 

d > 1 x 10
-5

. 
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Figure 12 Computation time on function test for data without gap. 
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The O(�
3
) flops from Figure 12 are clearly visible when using standard MATLAB 

operations to calculate the required values for the Gaussian process. Generally, the 

Schur algorithm that has been programmed in MATLAB is slow for small dataset, but 

its advantage supersedes from � = 500 onwards. Both C codes (with and without 

hyperbolic rotation) produce remarkable speedup over the standard MATLAB 

operation from the start. Schur algorithm with hyperbolic rotation programmed in 

MATLAB language shows slower improvement, but apparently remains O(�
2
). 

 

The mean relative accuracies of the generalised Schur algorithm, tabulated in TABLE 

C – I in Appendix C, are compared to that using standard MATLAB functions. Except 

for the one-off case of tr(Q
-1

Φ1Q
-1

Φ1) in which the hyperbolic rotation in MEX-C 

code have resulted in lower accuracy; otherwise the accuracy improvements from the 

introduction of hyperbolic rotation, compared to non-hyperbolic rotation algorithm in 

handling time-series data, are insignificant. In conclusion, introducing hyperbolic 

rotation in time-series data does not yield more accurate results than those without 

hyperbolic rotation, as can be seen from TABLE C – I. 

 

 

3.7.2 Test Two (Function Test, Data with one Gap) 

 

Test One is repeated in Test Two, keeping all conditions unchanged, except 

performed on data with one missing gap. The performance of the various Schur 

algorithm codes is illustrated in Figure 13. Both C codes have shown to perform 

impressively fast, despite the doubling of the displacement rank of the covariance 

matrix in Test One. Whilst the generalised Schur algorithm written in MATLAB 

shows little improvement, its poor performance can be attributed to its weakness in 

handling multiple loop operations that exist in the Schur algorithm. 

 

The relative accuracies of the generalised Schur algorithm programmed in both 

MATLAB and C codes (both including with and without hyperbolic rotations) are 

compared to those using standard MATLAB functions. The results are tabulated in 

TABLE C – II in the Appendix. 
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Figure 13 Computation time on function test for data with gap. 
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The benefit of implementing hyperbolic rotation in the generalised Schur algorithm is 

more apparent for the case of time-series data with a single gap. The relative errors of 

those implemented with hyperbolic rotations are lower than those without, with the 

only exception of tr(Q
-1

Φ1Q
-1

Φ1), which was observed to have much better accuracy 

from the use of hyperbolic rotation as compared to other functions. 

 

 

3.7.3 Test Three (GP Test, Data without Gap) 

 

The modified Schur algorithm is then applied in practice to the training procedure of 

the Gaussian process prior models. Tests are conducted for data sizes 

{ }1000,...,200,100=�  with each data size having 20 samples. Figure 14 illustrates the 

timing per iteration for each of the five approaches. The average number of iterations 

that the optimisation takes to converge is collated in TABLE C – III of Appendix C. 

 

All the ten optimisations, for every sample test, converge to the same local minima; 

hence, the hyperparameter values are similar. The unevenness of the graph in Figure 

14 is perfectly normal, since the average number of iterations for every data size, �, 

required for convergence differs from one another. Despite the lack of smoothness, 

the benefits of the Schur algorithm are apparent. It is noted that the standard 

MATLAB operation takes the longest time to converge than any of the other four 

methods. 
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Figure 14 Timing (per iteration) of GP training on data without gap. 
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MEX-C codes are observed to have performed up to expectations. This is due to C 

codes being more efficient in handling algorithms with multiple “loop”-operations, 

despite the increment of the displacement rank. The number of iterations required for 

convergence is listed in TABLE C – IV of Appendix C. 

 

 

Figure 15 Timing (per iteration) of GP training on data with a missing gap. 
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that are strictly Toeplitz, i.e. time-series data with fixed sampling interval. A sine 

function, dependent on explanatory variable, [ ]10,0z ∈ , is chosen to be the test data. 

The outcome is ( ) iiiy ζ+= zsin , where ζ is additive Gaussian white noise of variance 

0.1. Gaussian regression using standard gradient-based optimisation routine is 

performed on ten different data sizes, { }000,100,...,000,20,000,10=� . Note that, due 

to extremely large dataset size, optimisation using standard MATLAB functions is not 

possible. These two fast algorithms are programmed in MEX-C language. The rates of 

convergence using these fast algorithms are tabulated in TABLE IV. 

 

TABLE IV Performance (timing) between modified Durbin-Levinson’s algorithm and 

modified generalised Schur algorithm 

Data size Timing per iteration (hour) 

� S DL Speedup (S/DL) 

10,000 0.0182 0.0021 8.6 

20,000 0.0807 0.0097 8.4 

30,000 0.1829 0.0243 7.5 

40,000 0.3208 0.0526 6.1 

50,000 0.5021 0.0949 5.3 

60,000 0.7427 0.1519 4.9 

70,000 0.9720 0.2164 4.5 

80,000 1.2793 0.2898 4.4 

90,000 1.7092 0.4014 4.3 

100,000 1.8577 0.4597 4.0 

S refers to generalised Schur algorithm with no hyperbolic rotation. DL refers to 

Durbin-Levinson’s algorithm. Both algorithms are compiled using Mex-C codes. The 

table illustrates the timings for time-series Gaussian regression using two different 

fast algorithms. The timings (per iteration) shown are calculated based on successful 

convergence of the Gaussian process optimisation routine. 

 

Both algorithms results in the optimisation converging to similar local minima during 

the training process. It was noticed that the modified Durbin-Levinson’s algorithm 

produces a 25-fold improvement over the Schur algorithm, when the data size 

increases from � = 4,000 to � = 10,000. The main reason is that no generator matrix 

is required for the former; only vector-level storage algorithm and the reflection 

coefficient is used, thus having better computational and storage efficiency. When the 

experiment continues for � ≥ 10,000, the speedup advantage of Durbin-Levinson’s 

algorithm gradually drops to approximately 4-fold speedup, as shown in TABLE IV. 
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The reason why the Durbin-Levinson’s algorithm outperforms the generalised Schur 

algorithm by a large margin at the beginning is mainly because of its vector storage 

feature; only the reflection coefficient and vector are stored. Although the latter also 

uses the idea of vector storage, it is more demanding in the storage requirements, i.e. 

the generator matrix Γ and intermediate vectors of the Schur algorithms. There are 

two possible reasons with regards to the decline in the ratio of the speedup factors as 

data size increases from 4,000 to 10,000. Firstly, the modified Durbin-Levinson’s 

algorithm has reached the system’s available memory resources, resulting in more 

read-write operations on the hard disk. Access to data stored on the hard disk is 

slower compared to data stored on the system’s memory, hence impedes the speed 

performances of the fast algorithms. Secondly, the function calls in the modified 

Durbin-Levinson’s algorithm increase to a large extent such that it becomes a 

bottleneck within the algorithm. In the case of the generalised Schur algorithm, the 

number of function calls does not increase as much. 

 

Despite the impressive speed benefit of the modified Durbin-Levinson’s algorithm, it 

also has its drawbacks. The algorithm can only handle cases with matrices that are 

strictly Toeplitz. For instance, it cannot be applied to time-series data with missing 

gaps. This limitation hinders the identification of real dynamic systems, from which 

data obtained at fixed sampling intervals could potentially have missing information. 

The generalised Schur algorithm, on the other hand, has the capability to handle such 

situation, i.e. Toeplitz-like matrices. Secondly, the Durbin-Levinson’s algorithm 

limits training procedure to using only user-supplied Gradient information, whereas 

the Schur algorithm allows both user-supplied Hessian and Gradient optimisation. 

Finally, the computation of the standard deviations of data points (except training data 

itself) is impossible with the modified Durbin-Levinson’s algorithm. Explicit 

computation of the posterior remains O(�
3
) with O(�

2
) memory requirement. 

Nonetheless, the generalised Schur algorithm allows computation of the predictive 

means and variances with O(k�
2
) operations. 
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3.7.6 Experimentation Summary 

 

The relative errors of the outputs from the Schur algorithm in Test One and Test Two, 

as compared to that from using standard MATLAB function, are approximately 

between 10
-8

 and 10
-13

. By keeping (32) to a high level of accuracy, it follows that the 

errors resulting from the Schur algorithm are minimal. In cases with very low 

displacement rank, e.g. displacement rank of 2, there is little differences between the 

errors obtained from the algorithms with hyperbolic rotation and those without, as 

long as subsequent Schur complement of each iteration is positive-definite. Clearly, it 

is much faster not to include the hyperbolic rotation. As displacement rank increases, 

the benefit of hyperbolic rotation becomes apparent. 

 

All the optimisations in Test Three and Test Four have converged to the correct 

optimum points, thus resulting in similar hyperparameter values for every sample 

data. Similarly, the generalised Schur algorithm works sufficiently well, even without 

the implementation of the hyperbolic rotation. Since only data with one gap has been 

tested, the use of hyperbolic rotation is justifiable only if higher displacement rank of 

the augmentation matrix is encountered. 

 

The modified Durbin-Levinson’s algorithm has proven in the final test to be superior, 

in terms of speed performance, than the generalised Schur algorithm. However, the 

latter is capable of handling time-series data with missing gaps, using Hessian 

information in the optimisation routine and computing the standard deviation (of any 

data point). 

 

Theoretically, both algorithms are capable of handling large-scale data size of up to 

one million data points and beyond, only to be constrained by the memory capacity of 

the machine. As memory chips are relatively inexpensive in today’s market; therefore 

the algorithms are more restricted by processor time. Generally, the modified Durbin-

Levinson’s algorithm is highly recommended for strictly time-series data, whereas the 

Schur algorithm is more suitable for time-series data with missing gaps. An 

application using the generalised Schur algorithm is presented in §3.8. 
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3.8 Application of Schur Algorithm on Contest Data 

 

The effectiveness of the modified generalised Schur algorithm is demonstrated by 

application of Gaussian regression on a dataset of 5,000 points sampled at 1Hz 

(CATS Benchmark, 2004). The data contains four gaps, specifically at the following 

locations, (981s – 1000s), (1981s – 2000s), (2981s – 3000s), (3981s – 4000s) and 

(4981s – 5000s). Before applying Gaussian regression, the number of separable 

components in the data is investigated to determine whether a single Gaussian process 

model with compound covariance function or a multiple Gaussian process model 

(Leithead et al., 2005b) is required. However, it is not of interest to identify the 

individual components in the data, which is discussed in §4.4. The intent here is to 

integrate the generalised Schur algorithm in Gaussian regression to perform analysis 

on the data. The time-series data is shown in Figure 16 with the spectral density 

function shown in Figure 17. The data has a component with lengthscale longer than 

the gap at frequencies less than 0.045Hz. Any other component is treated as noise. 

Gaussian regression, using the correlation function (26), is employed to identify the 

low frequency component. 
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Figure 16 Time-series data with several missing gaps. 

 

 

Figure 17 Power spectra of the data showing the presence of multiple components. 

 

10
-3

10
-2

10
-1

0

10

20

30

40

50

60

70

80

Frequency (Hz)

P
o
w
e
r/
fr
e
q
u
e
n
c
y
 (
d
B
/H
z
)

Power Spectral Density Estimate via Welch

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-600

-400

-200

0

200

400

600

800

Seconds
 



Fast Algorithm Implementation for Gaussian Regression 

_____________________________________________________________________ 

 82 

The values of the hyperparameters for a, d and b are 2.422 x 10
4
, 0.00379 and 154.52, 

respectively. The optimisation procedure took approximately 27 minutes and 7 

iterations to converge. A typical section from 950s and 1250s, including one of the 

missing gaps, is shown in Figure 18. The prediction with two times standard 

deviations (black lines) demonstrates the filtering of noise from the original data. The 

fit of the data is predicted over the gap as shown in the figure, with the confidence 

intervals being much wider over the missing data region. 

 

 

Figure 18 Noisy data (grey), prediction (black) and confidence intervals. 
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particularly useful in, but not limited to, handling large-scale time-series data, with 

missing gaps. 

 

Besides modified as a fast algorithm, the generalised Schur algorithm can also be used 

to estimate the increments from a large dataset; that is, to identify a nonlinear 

dynamic system in incremental form. The identification process introduces correlation 

of the noise present at different values of the time parameter, but this is lessened by 

the measured time parameter following the selection of only a subset. This 

methodology is described in Chapter 6, where a novel idea to integrate state-space and 

time-series domains together within a single stochastic model is developed. 
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Chapter 4 

Multiple Gaussian Processes 

 

 

4.1 Introduction 

 

In this chapter, the nonlinear relationship underlying the measured data set is 

interpreted to consist of two or more additive components. The components may have 

the same explanatory variable or different explanatory variables. A Gaussian 

regression methodology to extract the components, with the class of functions for 

each represented by a distinct Gaussian process, is presented. Gaussian regression 

based on these compound multiple Gaussian process models is distinct from Gaussian 

regression based on a single Gaussian process with a compound covariance function 

(Mardia and Marshall, 1984) and has not previously been investigated. Their utility is 

illustrated with respect to a data set with the explanatory variable having variable 

density and with respect to a 5,000-point time-series data set with missing gaps 

(CATS Benchmark, 2004). 
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4.2 Gaussian Regression with Two Stochastic Processes 

 

Consider the situation when the nonlinear relationship underlying measured data has 

the form, ( ) ( ) ( )wzwz gf,h += . The two components have different characteristics 

and can have the same explanatory variable, i.e. wz = , or different explanatory 

variables, i.e. wz ≠ . The task is to extract either or both of f(z) and g(w).  

 

Let the set of measurements be �

iiii 1)},(,y{ =wz , where 

( ) ( ) iiiiiii ngfn),(hy ++=+= wzwz  and ni is additive measurement noise.  Possible 

models for the classes of functions, f(z) and g(w), are the Gaussian processes, fz and 

gw, respectively. It follows that ( )
wzwz gfh , +=  is itself a Gaussian process and a 

possible model for the class of functions, ( )wz,h . With the mean functions of fz and 

gw zero, the mean function of wz ,h  is zero and its covariance function is the sum of 

the covariance functions of fz and gw. The joint prior probability distribution for 

T]ff[
1 �zzF L= , T]gg[

1 �wwG L=  and TTT ]][[ GFGFH II=+=  has 

mean zero and covariance matrix 
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where ][E T

FF FF=Λ , ][E T

GG GG=Λ , ][E T

HH HH=Λ , ][E TT

GFFG FG=Λ=Λ , 

][E TT
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Conditioning on the data in the usual manner, the joint posterior probability 

distribution has mean vector and covariance matrix 
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respectively, where [ ]T

1

T yy �L=Y  and B+Λ= HHQ   with 

[ ] [ ][ ]�� nnnn LL 1

T

1E=B , the measurement noise covariance matrix. 

 

When the correct values, G, are known, then Gaussian regression could then be 

applied to the data, GY − , with the underlying nonlinear relationship modelled by fz 

alone. The prediction for F, given Y and G, is [ ]GYF −Λ= −1

FFF
ˆ Q , where 

B+Λ= FFFQ . Similarly, when the correct values, F, are known, the prediction for G, 

given Y and F, is [ ]FYG −Λ= −1

GGG
ˆ Q , where B+Λ= GGGQ . Hence, for consistency, 

assuming that the predictions for F and G are reasonably accurate, 
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When the two Gaussian processes, fz and gw, are independent, then the cross-

correlation between them is zero; that is, ΛFG = ΛGF = 0. The predictions for F and G 

then become 
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with Q = ΛFF + ΛGG + B. In addition, since Y
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Hence, the necessary self-consistency condition, (43), for a prediction to be 

reasonably accurate is met when fz and gw are independent. 

 

The above discussion suggests the following Gaussian regression approach to the 

extraction of the two components. The prior model for the class of possible function 

pairs, ( ) ( )( )wz g,f , is modelled by the pair ( )wz g,f , where fz and gw are independent 
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zero mean Gaussian processes with covariance functions ( )zz ′,fC  and ( )ww ′,gC , 

respectively. The pair, ( )wz g,f , thus has zero joint mean function and joint covariance 

function 
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When conditioned in the usual manner on the data Y, the posterior model is the 

Gaussian process pair, ( )wz g~,f
~

, with respectively, joint mean function and joint 

covariance function 
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where [ ]zzzz ′′ =Λ ffE , [ ]wwww ′′ =Λ ggE , [ ]FfET

FF zzz =Λ=Λ  and 

[ ]GgET

GG www =Λ=Λ . The associated prior model for the combined nonlinear 

relationship, ( )wz,h , is the Gaussian process, wzzw gfh , += . Its mean is zero and its 

compound covariance function is 

( )( )[ ] ( ) ( )wwzzzwzw ′+′=′′ ,,,, gfh CCC  

When conditioned on the data, Y, the posterior model for h(z,w) has mean function 

and covariance function 

( ) Yzw zwzw

1
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−

′′ ΛΛ−Λ=′′
,H

1

H,,,h )),(),,((
~

QC  

where ( )( ) [ ]zwzwzwzw ′′′′ =Λ ,,,, hhE  and ( ) [ ]Hzwzw ,H, hE=Λ . Note that 

GGFFHH Λ+Λ=Λ , BB +Λ+Λ=+Λ= GGFFHHQ  

and  

( )( ) wwzzzwzw ′′′′ Λ+Λ=Λ ,, , ( ) GFH, wzzw Λ+Λ=Λ  

 



Multiple Gaussian Processes 

_____________________________________________________________________ 

 88 

The above approach to extracting components is applied below to an example in 

which the nonlinear relationship has two components with different explanatory 

variables. 

 

 

Figure 19 Data, prediction and confidence intervals. 

 

Example 4.1: The two components are ( ) ( ) uuu 1.05.0tanh2 ++=Φ  and 

( ) ( )vv 5.1sin5.1 −=Γ  with scalar explanatory variables, u and v, respectively. The 

domains of the explanatory variables are [ ]33 ≤≤− u  and [ ]33 ≤≤− v . The data set 

consists of 600 measurements, ( ){ } 600

1
,,

=
=

�

iiii vuy , with additive Gaussian white noise of 

variance 0.01; that is, ( ) ( ) iiii nvuy ++= ΓΦ  with ni the additive noise.  The 

explanatory variable pairs, ( ){ } 600

1
,

=
=

�

iii vu , lie on a reasonably smooth trajectory in the 

( )ii vu ,  plane. The noisy data, denoted by crosses, is shown in Figure 19. 

 

The prior model for the components are the zero mean independent Gaussian 

processes, Φu and Γv, with the exponential squared covariance functions, (48), 

( ) ( )2)(exp, uudauuC ′−−=′ ΦΦΦ  and ( ) ( )2)(exp, vvdavvC ′−−=′ ΓΓΓ  (48) 
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The equivalent single Gaussian process prior model, vuvu ΓΦΗ +=, , is mean zero 

with compound covariance function ( ) ( )( )vvCuuC ′+′ ,, ΓΦ . The correlation between 

two noise values, ni and nj, is bδij, where δij is the kronecker-delta and between two 

measurements, yi and yj, is 

[ ] ( ) ( )
ijjijiji bvvCuuCyy δ++= ,,,E ΓΦ  (49) 

 

Applying Gaussian regression based on the single Gaussian process, vu ,Η , the values 

for the hyperparameters are determined by maximising the likelihood of the data, 

[ ]T

1 ,, �yy L=Y , given the correlation, (49), between the data points. The 

hyperparameters values so obtained, are aΦ=1.512, dΦ=0.0782, aΓ=8.058, dΓ=0.311 

and b=0.0093. The prediction for ( ) ( ) ( )vuvu ΓΦΗ +=,  over the domain, [ ]33 ≤≤− u  

and [ ]33 ≤≤− v ,  and the associated confidence intervals are shown in Figure 19. In 

addition, for i=1,…,�, the value, yi, together with the prediction for ( )ii vu ,h  and the 

confidence interval is plotted against the index, i, in Figure 20. Because the ( )ii vu ,  lie 

on a smooth trajectory, the plotted curve in Figure 20 is also smooth. 
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Figure 20 Data, total prediction and confidence intervals on time-series scale. 

 

The two components Φ(u) and Γ(v) are extracted using (47) as discussed above. The 

prediction and confidence interval for Φ(u) and Γ(v), are depicted in Figure 21 and 

Figure 22, respectively. 
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Figure 21 Prediction and confidence intervals for Φ. 

 

Figure 22 Prediction and confidence intervals for Γ. 
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Comparing the confidence intervals in Figure 21 and Figure 22 to the confidence 

interval in Figure 20, the former are clearly very much broader than the latter. Indeed, 

the confidence intervals for the two components are excessive and the predictions for 

the two components are too uncertain to be of any real value. This difficulty is not 

specific to Example 4.1 or to the different explanatory variable case but is generic, see 

§4.3 and §4.4. The method, based on a multiple Gaussian process prior model for 

extracting the components, investigated in this sub-section, is not effective. An 

improved approach is necessary. 

 

 

4.3 Multiple Gaussian Processes Models with Different 

Explanatory Variables 

 

In this sub-section, the case with the underlying nonlinear relationship having two 

components with different explanatory variables, i.e. )(g)(f|),(h , vuzw vzuw +===  

with vu ≠ , is considered. The requirement remains to extract either or both of f(u) 

and g(v). 

 

 

4.3.1 Cause of Excessively Wide Confidence Intervals 

 

The method for extracting the two components, suggested in §4.2, fails when applied 

in Example 4.1. The problem is the very broad confidence intervals and so excessive 

uncertainty in the separate predictions for the two components. These very broad 

confidence intervals arise because an arbitrary constant can be added to f(u) and 

subtracted from g(v) without changing h(u,v). The measured values are unchanged as 

is the likelihood of the data. The confidence intervals for f(u) and g(v) include a large 

factor to account for the uncertainty introduced by this arbitrary constant. This issue is 

not peculiar to Example 4.1 but is generic pertaining whenever there is freedom to 

add a constant to f(u), whilst subtracting it from g(v). To improve the method, 

suggested in §4.2, requires the freedom to add/subtract a constant to be removed. 
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One approach to removing the uncertainty due to the arbitrary constant would be by at 

least one of the Gaussian processes, fu and gv, being a non-stationary Gaussian 

process that would exclude the addition or subtraction of an arbitrary constant. The 

effectiveness in this case of the method, suggested in §4.2, is illustrated by Example 

4.2. 

 

Example 4.2: The two components are Φ(u) and Γ(v) with explanatory variables, 

( )21,uu=u  and scalar v. The dataset consists of 1,599 measurements, 

1599

1)},(,{ =
=

�

iiii vy u , with additive Gaussian white noise; that is, iiii nv ++= )()(y ΓΦ u  

with ni the additive noise.  

 

The prior model for the class of possible functions for Φ(u) is the zero mean Gaussian 

process, Φu, with the squared exponential covariance function, (50),  

( ) [ ]






 ′−−=′ ∑

=

2

1

2
)()(

2

1
exp,

k

kkk
daC uuuu ΦΦΦ , u = {u1,u2} (50) 

 

where (u)k is the k
th

 element of u. Two prior models for the class of possible functions 

for Γ(v) are considered, namely, the zero mean Gaussian process, Γv, corresponding to 

linear functions and to quadratic functions passing through the origin, see Appendix 

D. Both of these Gaussian processes are non-stationary and cannot accommodate the 

addition or subtraction of an arbitrary constant. The Gaussian processes, Φu and Γv, 

are independent. 

 

 

Using Linear Covariance Function 

 

The covariance function for the Gaussian process, Γv, is 

( )
jiji vvwvvC ΓΓ =,  (51) 

 

It models the linear functions such that Γ(0) = 0. The equivalent Gaussian process 

prior model, vv ΓΦΗ +=
uu, , is zero mean with compound covariance function 

( )),(),( vvCC ′+′ ΓΦ uu . The correlation between two measurements, yi and yj, is 
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[ ] [ ] ijji

k

kjkiji bvvwda
k

δ++








−−= ∑
=

ΓΦΦ

2

1

2
)()(

2

1
expy,yE uu  (52) 

 

Applying Gaussian regression based on the single Gaussian process, vu ,Η , the values 

for the hyperparameters are determined by maximising the likelihood of the data, 

[ ]T

1 y,,y �L=Y , given the correlation, (52), between the data points. The 

hyperparameter values, so obtained, are 7357.14=Φa , 410308.2
1

−×=Φd , 

510084.2
2

−×=Φd , 018.0=Γw  and 098.0=b . For i=1,…,�, the prediction for 

),(h ii vu  and the confidence interval is plotted in Figure 23. 
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Figure 23 Total prediction for ),(h ii vu  and its confidence intervals. 
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The two components, Φ(u) and Γ(v), are extracted in the usual manner using (47). 

The prediction and confidence interval for Φ(u) and Γ(v) are depicted in Figure 24 

and Figure 25, respectively. 

 

Figure 24 Prediction and confidence intervals of extracted Φ component with Γv having 

linear covariance function. 
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Figure 25 Prediction and confidence intervals of extracted Γ component with Γv having linear 

covariance function. 

 

Comparing the confidence intervals in Figure 24 and Figure 25 to the confidence 

intervals in Figure 23, the former are no wider than the latter, in marked contrast to 

Example 4.1. 

 

 

Using Quadratic Covariance Function 

 

The covariance function for the Gaussian process, Γv, is given by (53). 

( ) ( ) ( )22
, jiji vvwvvC ΓΓ =  (53) 

 

It models quadratic functions without a linear term such that Γ(0) = 0. The correlation 

between two measurements, yi and yj, is 

[ ] [ ] ijji

k

kjkiji bvvwda
k

δ++








−−= ∑
=

22
2

1

2
)()()()(

2

1
expy,yE ΓΦΦ uu  (54) 
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Applying Gaussian regression based on the single Gaussian process, vvu ΓΦΗ +=
u, , 

the values for the hyperparameters are determined by maximising the likelihood of the 

data, [ ]T

1 y,,y �L=Y , given the correlation, (54), between the data points. The 

hyperparameter values, so obtained, are 51.2=Φa , 3103.1
1

−×=Φd , 

51005.5
2

−×=Φd , 510515.1 −×=Γw  and 0979.0=b . For i=1,…,�, the prediction for 

( )ii v,h u  and the confidence interval is plotted in Figure 26. 

 

The two components, Φ(u) and Γ(v), are extracted in the usual manner using (47). 

The prediction and confidence intervals for Φ(u) and Γ(v) are depicted in Figure 27 

and Figure 28, respectively.  

 

Comparing the confidence intervals in Figure 27 and Figure 28 to the confidence 

intervals in Figure 26, the former are narrower than the latter, in contrast to Example 

4.1. 
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Figure 26 Prediction for ),(h vu  and its confidence intervals. 
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Figure 27 Prediction and confidence intervals of extracted Φ component with Γv using 

quadratic covariance function. 
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Figure 28 Prediction and confidence intervals of extracted Γ component with Γv using 

quadratic covariance function. 

 

With both non-stationary Gaussian processes, Γv, considered in Example 4.2, the 

method based on two Gaussian process prior model for extracting the components, 

proposed in §4.2, is effective, providing useful predictions for the two components. 

Having identified the cause of the excessively wide confidence intervals observed in 

Example 4.1 and the remedy, specifically, to remove the freedom to add or subtract an 

arbitrary constant to the two components, the method for extracting components, 

discussed in §4.2, must be modified to remove that freedom in the general case. 

 

 

4.3.2 Freedom of Choice in Two Gaussian Process Model 

 

In §4.2, a Gaussian regression approach to extracting the two components, f(z) and 

g(w), from a nonlinear relationship, h(z,w)=f(z)+g(w), underlying measured data, 

�

iiii 1)},(,y{ =wz , is suggested. The approach is based on modelling the class of 

function pairs, (f(z),g(w)), by the independent Gaussian process pair, (fz,gw). 
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process model, hz,w=fz+gw, for the class of functions, h(z,w), and there remains a 

substantial freedom of choice, see §4.3.1. A particular manifestation of this freedom 

of choice is explored in this Sub-section, specifically, the freedom to transform the 

Gaussian process pair, (fz,gw). 

 

Given the specific set of values of the explanatory variables, �

iii 1},{ =wz , 

corresponding to the measurement data set, the transformed prior model is defined by 

the Gaussian process pair, )g,f( wz
′′ , such that 
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and 
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
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
=




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
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with 















−

+=
T

T
IΤ  and [ ] [ ]TTTTTTT

11 ��
TTTTT wwzz LL ==   

 

where T]ff[
1 �zzF L= , T]ff[

1 �zzF ′′=′ L , T]gg[
1 �wwG L=  and 

T]gg[
1 �wwG ′′=′ L . Note that (56) does not necessitate the equality of Tz and Tw at 

other values of the explanatory variables. The transformed pair, )g,f( wz
′′ , has zero 

joint mean function and joint covariance function 

[ ]

[ ]
















−














































−

=









Λ′Λ′

Λ′Λ′
=








′′








′

′
=








′′′′

′′′′

′′

′′

′′
′′

TT

gggg

fgff

10

01

gf
g

f

E
10

01

gf
g

f
E

),(),(

),(),(

wz

wz

w

z

w

z

wwzw

wzzz

wz

w

z

GF

G

F

wwwz

wzzz

TT
T

T

CC

CC

TT

 (57) 



Multiple Gaussian Processes 

_____________________________________________________________________ 

103 

[ ] [ ]TT

GG

FFTT

G

F

G

F

TT

GGGFGG

FGFFFF

GF

GF

0

0

0

0

0

0

0

0

10

01

10

01

wz

w

z

wz

w

z

w

z

w

z

ww

zz

wz

wz

wz

wwwwwz

zzwzzz

w

z

′′′′

′

′

′

′

′′
′′

′′

′′

′′









Λ

Λ








−

+







Λ

Λ
+









Λ

Λ








−

+







Λ

Λ
=

















−

















ΛΛΛΛ

ΛΛΛΛ

ΛΛΛΛ

ΛΛΛΛ









−

=

TT
T

T
TT

T

T

TT
T

T

 

 

where [ ]zzzz ′′ ′′=Λ′ ffE , [ ]wzwzzw ′′′ ′′=Λ′=Λ′ gfE  and [ ]wwww ′′ ′′=Λ′ ggE . 

 

It follows that the prior probability distribution for [ ]TTT GF ′′ has zero mean and 

covariance matrix 

T
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 (58) 

 

The prior model for hw,z, the prior joint probability distribution for H and Y and the 

likelihood of the data all remain unchanged since 

�iTT
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Hence, the measured data set is equally well explained by all the transformed models, 

defined by (55) and (56); that is, with all possible choices of Τ. 

 

Conditioning on the data in the usual manner, the posterior model becomes the 

Gaussian process pair, )g~,f
~

( wz
′′ , with, respectively, joint mean function and joint 

covariance function 
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ĝ

f̂

ˆ

ˆ

ĝ
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where T]f
~
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[
~

1 �zzF L=  and T]g~g~[
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1 �wwG L= . 

 

It follows that the posterior probability distribution for [ ]TTT GF ′′  has, respectively, 

mean vector and covariance matrix 
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Similarly to the prior, the posterior model for hz,w and the posterior joint probability 

distribution for H and Y remain unchanged from those for the untransformed 

Gaussian process pair model. 

 

To distinguish and so choose between the possible models, information, additional to 

the measurement data, Y, is required. The nature of that additional information and 

the selected choice is driven by the application context. 

 

Remark 4.1: Comparing (55) and (59), the Gaussian process pairs, )g,f( wz
′′  and 

)g,f( wz , and the Gaussian process pairs, )g~,f
~

( wz
′′  and )g~,f

~
( wz , are related by the 

same transformation. The prior and posterior probability distributions for [ ]TTT GF ′′  

are related to the prior and posterior probability distributions for [ ]TTT GF  by the 

same transformation, Τ. Therefore, the choice of transformation, that is, the choice of 
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Gaussian process pair model, can equally well be made with respect to either prior or 

posterior models. 

 

 

4.3.3 Improved Two GP Model with Different Explanatory Variables 

 

Reverting to the case when two components with different explanatory variables, f(u) 

and g(v) with vu ≠ , underlie the measured data �

iiii 1)},(,y{ =vu , the transformation 

of the Gaussian process pair (fu,gv), discussed in the sub-section 4.3.2, is exploited to 

remove the freedom to add/subtract an arbitrary constant to the components. 

 

Given the specific set of values of the explanatory variables, �

iii 1},{ =vu , 

corresponding to the measurement data set, the transformation (55) is chosen such 

that 

��TT Ρ∈=−== TTT ]111[with)2/(][ LΧΧΧzw  (62) 

 

Hence, following §4.3.2 but with z=u and w=v, the prior model becomes the 

transformed Gaussian process pair 
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and, on conditioning on the data, the posterior model becomes the transformed 

Gaussian process pair 
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Hence, 
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GF ′=′ TT ΧΧ  and GF
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Remark 4.2: The prior model no longer belongs to the class of all Gaussian process 

pairs but to ΣM, the class of all Gaussian process pairs )g,f( vu , subject to the 

condition, GF
TT ΧΧ = , where T]ff[

1 �uuF L= , T]gg[
1 �vvG L=  and 

�Ρ∈= T]11[ LΧ . The posterior model belongs to the same set of Gaussian 

process pairs. The condition, GF
TT ΧΧ = , precludes the addition or subtraction of an 

arbitrary constant to the individual components. 

 

It follows from above that a suitable modified procedure for extracting the two 

components when they have different explanatory variables is the following. 

 

1. Choose the hyperparameters on the basis of the single Gaussian process 

model, hz,w, by maximising the likelihood of the data, Y.  

2. Determine the predictions and confidence intervals by the standard approach 

of Section 4.1 with a pair of independent Gaussian processes. 

3. Modify the predictions and confidence intervals using the transformation, 

)2/(][ TT �TT ΧΧ−== vu  with �Ρ∈= T]11[ LΧ . 
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and the joint covariance is 
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Example 4.3: Step 3 of the above procedure is applied to Example 4.1. The resulting 

prediction and confidence intervals for Φ(u) are depicted in Figure 29 and for Γ(v) in 

Figure 30. Due to the removal of the arbitrary additive constant, the confidence 

intervals in Figure 29 and Figure 30 are much narrower than those of Figure 21 and 

Figure 22.  In fact, they are narrower than the confidence intervals in Figure 20, since 

in the latter, the intervals encompass the combined uncertainty in Φ(u) and Γ(v). The 

predictions remain unchanged other than a uniform vertical adjustment corresponding 

to fixing the arbitrary constant due to meeting the condition GF
TT ΧΧ = . 
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Figure 29 Prediction and confidence intervals of Φ after normalisation. 

 

 

Figure 30 Prediction and confidence intervals of Γ after normalisation. 
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Example 4.4: Returning to Example 4.2, the prior model for the component, Γ(v), is 

chosen to be the stationary Gaussian process, Γv, with exponential squared covariance 

function 

( )






 ′−−=′ 2)vv(

2

1
expv,v ΓΓΓ daC  (63) 

 

Applying steps 1, 2 and 3 of the above procedure, the hyperparameter values are 

66.2=Φa , 02.1=Γa , 3101.1
1

−×=Φd , 5105.4
2

−×=Φd ,  3109.9 −×=Γd  and 

0978.0=b . The predictions and confidence intervals for Φ(u) and Γ(v) are depicted 

in Figure 31 and Figure 32, respectively. 

 

 

Figure 31 Prediction and confidence intervals of extracted Φ component with Γv using 

squared exponential covariance function. 
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Figure 32 Prediction and confidence intervals of extracted Γ component with Γv using 

squared exponential covariance function. 

 

Comparing Figure 31 to Figure 24 and Figure 27, and Figure 32 to and Figure 25 and 

Figure 28, the confidence intervals are commensurate with those obtained with the 

non-stationary Gaussian process models considered in Example 4.2. The freedom to 

add or subtract an arbitrary constant to the components is removed by Step 3 and, 

hence, the confidence intervals are not overly wide. 

 

When the nonlinear relationship underlying measured data has two additive 

components with different explanatory variables, Steps 1, 2 and 3 provide an 

improved procedure for extracting the two components. The confidence intervals are 

no longer excessive and the predictions for the two components are no longer too 

uncertain to be of any real value. Any arbitrary additive constant is removed by 

condition, GF
TT ΧΧ = , see Remark 4.2. 
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4.4 Multiple Gaussian Processes Model with Same Explanatory 

Variable 

 

In this sub-section, the case with the underlying nonlinear relationship having two 

components with the same variable, i.e. ( ) ( ) ( ) ( )zzzwz zw gfh|,h +=== , is considered. 

The requirement remains to extract either or both of f(z) and g(z). The difficulty with 

excessively wide confidence intervals persists. 

 

Example 4.5: The underlying nonlinear relationship has two components each 

dependent on the scalar explanatory variable, z, i.e. h(z) = f(z) + g(z). The Gaussian 

process models, fz and gz, for the classes of all possible components both have an 

exponential squared covariance function of the form ( )






 −− 2

2
exp ji zz

d
a . The 

hyperparameters for fz are af = 1.8 and df = 2.5, and the hyperparameters for gz are ag 

= 0.95 and dg = 120. The measurement noise is assumed to be Gaussian white noise 

with variance, b = 0.04. A data set, 800

1},y{ =iii z , is obtained for the above two 

component nonlinear relationship where ( ) ( ) iiii zz ngfy ++= , ( ){ }800

1
f =iiz  and ( ){ }800

1
g =iiz  

are realisations for the stochastic processes, fz and gz, respectively, sampled at 100Hz 

and  800

1}n{ =ii  are the additive noise values. The correlation between two measurements 

is 

[ ] ijiiiiji bzz
d

azz
d

a δ+







−−+







 −−= 2g

g

2f
f )(

2
exp)(

2
expy,yE  

where ijδ  is the Kronecker delta. 

 

Using the known hyperparameter values, the procedure in §4.2 based on two 

independent Gaussian processes is applied to the data set. The data values and 

prediction for h(z) together with the prediction error and confidence intervals are 

shown in Figure 33. 

 

The predictions for the two components, f(z) and g(z), together with their confidence 

intervals are shown in Figure 34. Comparing the confidence intervals in Figure 34 to 

the confidence intervals in Figure 33, the former are clearly very much broader than 
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the latter. As in Example 4.1, the confidence intervals for the two components are 

excessive and the predictions too uncertain to be of any real value.  This difficulty is 

not specific to Example 4.5 but is generic to the case with the components having the 

same explanatory variable. 

 

 

Figure 33 Two lengthscale data (xx), prediction (--), error and confidence interval (==). 
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Figure 34 Prediction and confidence intervals of the posterior joint probability distribution. 
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confidence intervals for the individual components, when the explanatory variables 

are the same. An appropriate method is described below. 

 

As discussed in §4.3.2 but with w=z, the Gaussian process pair model for the class of 

function pairs (f(z),g(z)), is not uniquely determined by the data only the single 

Gaussian process model for the class of functions, h(z). There remains a substantial 

freedom of choice. A particular manifestation of this freedom of choice is explored in 

§4.3.2, specifically, the freedom to transform the independent Gaussian process pair, 

)g,f( zz , defining the prior model or equivalently to transform the Gaussian process 

pair, )g~,f
~

( zz , defining the posterior model. Similarly to §4.3, the transformation is 

exploited to remove the uncertainty of attribution between the two components. 

 

The context within which the two Gaussian processes model is being applied, must 

inform the choice of the transformation. From the applications, from which 

motivation for the development of the two Gaussian processes model arises, the 

context has the following attributes. 

a. The component, f(z), is the major component; that is, the part of the data 

explained by it must be as large as possible. 

b. The components, f(z) and g(z), represent separate unrelated aspects of the 

underlying nonlinear relationship. 

 

Given the specific set of values of the explanatory variables, �

ii 1}{ =z , corresponding to 

the measurement data set, the transformation (64) is chosen such that 

]0[ 1

FFf

−Λ= QT
z

 (64) 

 

where B+Λ= FFFQ , ]f[E T
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T

Ff Fz
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§4.3.2 but with w=z, the prior model becomes the transformed Gaussian process pair 
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and, on conditioning on the data, the posterior model becomes the transformed 

Gaussian process pair 



Multiple Gaussian Processes 

_____________________________________________________________________ 

 116 













Λ−

Λ+
=








Λ








−

+







=









′

′
−

−

−

G

G

G

F

z
z

z
z

z
z

z

z

z
~

g~

~
f
~

~

~

]0[
1

1

g~
f
~

g~
f
~

1

FFf

1

FFf1

FFf
Q

Q
Q  

Furthermore, 










Λ−

Λ+
=








=








′

′
−

−

G

GF

G

F

G

F

)( 1

FFF

1

FFF

QI

Q
Τ  and 









Λ−

Λ+
=








=









′

′
−

−

G

GF

G

F

G

F
~

)(

~~

~

~

~

~

1

FFF

1

FFF

QI

Q
Τ  (65) 

 

with 








Λ−

Λ
=

−

−

1

FFF

1

FFF

0 QI

QI
Τ . 

  

The joint mean and covariance function for the posterior Gaussian process pair model, 

)g~,f
~

( zz
′′ , is provided by Theorem 4.1. 

 

Theorem 4.1: (a) With the transformation chosen to be ]0[ 1

FFf

−Λ= QT
z

, the joint 

mean and joint covariance function for the posterior Gaussian process pair model, 
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′′ , have the following equivalent forms. 
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(b) The posterior model pair of Gaussian process is 
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Proof 4.1: (a) Several identities are required, namely, 
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(i) It follows immediately from §4.3.2 with the transformation defined by 

]0[ 1

FFf

−Λ= QT
z

. 

(ii) The joint mean follows immediately from (a). The joint covariance is 
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(iii) The joint mean is 
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and the joint covariance  is  
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(b) The cross-covariance function between zf
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It follows immediately from (a) (iii) that zzz ′′−=′ fh
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Furthermore, the prediction and covariance matrix for TTT ],[ GF ′′  are 
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(69) 

 

respectively. Alternative expressions for this prediction and covariance matrix are 


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since 

YBYBYBYY
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Remark 4.3: By Theorem 4.1 (a) (ii), the Gaussian processes, zf
~

′  and zg~′ , are 

independent. In this manner, context attribute (b) is met. 

 

Since the Gaussian processes, zf
~

′ and zg~′ , are independent, the sum of the variances for 

zf
~

′  and zg~′  equals the variance of zh
~

 and so the confidence intervals on the 

predictions are minimal. Adding an arbitrary term to f(z) whilst subtracting it from 

g(z) is equivalent to changing Gaussian processes, zf  and zg , and the Gaussian 

processes, zf
~

′  and zg~′ , in such a way that they are no longer independent. Hence, 

choosing the transformation to make zf
~

′  and zg~′  independent removes the ambiguity 

of attribution between the two components as required. 

 

From Theorem 4.1 (a) (iii), the following interpretation of the transformation is 

possible. The term, Ĝ1

FFF

−Λ Q , can be interpreted as an estimate of the contribution to 

Ĝ  explainable by the Gaussian process, zf . A similar interpretation of G
~1

FFF

−Λ Q  can 

be made. Hence in (65) and (69), the transformation can be interpreted as removing 

from G
~

 and Ĝ  the part that can be explained in terms of the Gaussian process, zf , 

and adding it to F
~

 and F̂ , respectively. Furthermore from Theorem 4.1 (a) (ii), the 

posterior Gaussian process model for the class of possible f(z), namely zz ff
~

′=′
)

 , is the 

prior model conditioned on Y as if the data set is simply a realisation of zf  plus the 

noise only. The posterior Gaussian process model for the class of possible g(z) is 

zzz f
~

h
~

g~ ′−=′ , the difference between the Gaussian process model for the class of 

possible h(z) and the Gaussian process model for the class of possible f(z). In this 

manner, the part of the data explained by fz is made as large as possible and context 

attribute (a) is met. 
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The transformation, ]0[ 1

FFf

−Λ= QT
z

, as required removes the ambiguity of 

attribution between the two components in a manner consistent with the context 

attributes. 

 

The fact that the transformation applies equally to the posterior as to the prior, see 

Remark 4.1, is exploited here to enable the posterior model to meet the context 

attributes. It follows that a suitable modified procedure for extracting the two 

components when they have the same explanatory variables is the following. 

 

1. Determine the predictions and confidence intervals by the standard approach 

of §4.1 with a pair of independent Gaussian processes. 

2. Modify the predictions and confidence intervals using the transformation, 

]0[ 1

FF

−Λ= QT zz . 

 

The selection of the hyperparameter values is discussed in §4.4.4. 

 

Example 4.6: Step 2 of the above procedure is applied to Example 4.5. The resulting 

predictions and confidence intervals for f(z) and g(z) are depicted in Figure 35. Due to 

the removal of the arbitrary term, the confidence intervals in Figure 35 are much 

narrower than those of Figure 34. Because of the independence of the posterior 

Gaussian process pair, they are narrower than the confidence intervals in Figure 33. 
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Figure 35 Predictions and confidence intervals of F(z) and G(z) after transformation. 

 

Confirmation that the transformation acts to remove any contribution to the 

prediction, Ĝ , explainable in terms of fz and adds it to the prediction, F̂ , is provided 

by Example 4.6. Since the explanatory variable is scalar, f(z) can be considered the 

long lengthscale component and g(z) the short lengthscale component. Consider the 

decomposition of H and Ĥ with respect to the eigenvectors of the covariance matrix 

for H. Since YH 1

HH
ˆ −Λ= Q  with covariance matrix, B1

HH

−Λ Q , and B is diagonal, 

YH .ˆ. 1 T

ii

T

i vbv λ−=  where iv  is the i
th

 eigenvector of the covariance matrix with 

eigenvalue, iλ , and bI=B ; that is, the factors with respect to a basis consisting of 

the eigenvectors of the covariance matrix are scaled by the ratio of the eigenvalue to 

the noise. The eigenvectors that extract long lengthscale factors are smooth with few 

zero-crossings thereby averaging out the short lengthscale and more oscillatory 

factors, whilst the eigenvectors that extract short lengthscale factors are highly 

oscillatory with many zero-crossings thereby averaging out the long lengthscale and 

smoother factors. Since the eigenvectors are normalised, a measure of smoothness, i.e. 

the number of oscillations, and so the lengthscale extracted by an eigenvector, vi, is 

0 1 2 3 4 5 6 7 8
-4

-3

-2

-1

0

1

2

3

Seconds

F
u
n
c
ti
o
n
 v
a
lu
e
s

Long and short length-scale predictions with confidence intervals

 

 

Long lengthscale

Short lengthscale

 



Multiple Gaussian Processes 

_____________________________________________________________________ 

123 

the variation, i.e. ∑
=

−−
�

j

ii jvjv
2

|)1()(| , where vi(j) is the j
th

 element of vi. Given that 

the prediction extracts the component from Y with a particular lengthscale, it might be 

expected that the longer lengthscale eigenvectors have bigger eigenvalues. A plot with 

vertical axis the magnitude of the eigenvalue and horizontal axis the variation is 

shown in Figure 36 for the covariance matrices of Ĥ . There is an essentially 

monotonic relationship between the magnitude of the eigenvalues and their variation 

with the larger eigenvalues having the longer lengthscale. Hence, ordering the 

eigenvectors for the covariance matrices of Ĥ  by the magnitude of the eigenvalues, 

orders them by lengthscale. 

 

 

Figure 36 Relationship between eigenvalues and variation or lengthscale of eigenvectors. 
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Figure 37 Plots of eigenvalues against indexed points. The posterior for the long lengthscale, 

F, is denoted by f1 and the posterior for the short lengthscale, G, is denoted by f2. 

 

The eigenvalues for the covariance matrix of Ĥ  are ordered by magnitude and are 

plotted in Figure 36, denoted by o. It can be seen that eigenvalues with a broad range 

of lengthscales dominate. The eigenvalues for the covariance matrices of F̂ , Ĝ , F′ˆ  

and G′ˆ  are ordered by lengthscale; to be precise, they are ordered according to their 

correlation with the ordered eigenvectors for the covariance matrix of Ĥ . 

 

In Figure 37, the magnitudes of the eigenvalues are plotted with those for F̂  denoted 

by ×, those for Ĝ  denoted by ●, those for F′ˆ  denoted by the solid line and those for 

G′ˆ  denoted by the dashed line. It can be seen that, in the case of Ĝ , the dominant 

eigenvalues are similar to those of Ĥ  but, in the case of F̂ , relatively few long 

lengthscale eigenvalues dominate. Furthermore, in the case of F′ˆ , the dominant 

eigenvalues are similar to those of F̂  but, in the case of G′ˆ , the magnitude of the 

eigenvalues for the longer lengthscales, i.e. those that dominate F̂  and F′ˆ , are much 
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these longer lengthscales and added them to F̂  thereby meeting the context attribute 

(a). 

 

 

4.4.2 Application of Two Gaussian Processes Model 

 

In this section, the application of the two Gaussian processes model to extract 

information is explored. For clarity, the explanatory variable is always scalar. 

  

In Example 4.5 and Example 4.6, the covariance functions for both Gaussian 

processes is the standard squared exponential function (17) but with different 

lengthscale hyperparameters. By construction of these examples, a priori, it is known 

that the nonlinear relationship underlying the measured data consists of two 

components and all hyperparameters are known. In a specific application, the context 

may indicate that two components are present and, when they are of different 

lengthscale as in Example 4.6 and Example 4.8, provide information regarding the 

lengthscales. When the context does not, the presence of two components may be 

determined from the data as discussed below using the revised log-likelihood function 

(29). 

 

The revised log-likelihood function (29) is introduced in Chapter 3.3 to speed up the 

training procedures. However, not only does the revised log-likelihood function allow 

faster optimisation, it can also provide additional information when the surface 

mapping is portrayed as a three-dimensional plot. In particular, the log-likelihood 

function may be multi-model with several maxima each indicating the presence of a 

component with different lengthscale. 

 

Example 4.7: Let the nonlinear relationship be ( ) ( ) ( )zz.z 01cos35.051sinf += . 800 

data points are measured at 80Hz with additive Gaussian white noise of variance 0.04. 

The noisy data, together with the two components, is shown in Figure 38. Using a 

standard single Gaussian Process model with the squared exponential covariance 

function (17), the revised negative log-likelihood is shown in Figure 39. It is clear from 

the two minima that there are two lengthscales present, one associated with each of 
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the sine functions in the nonlinear relationship. Having eliminated the amplitude 

hyperparameter, the revised negative log likelihood is a function of only the 

lengthscale hyperparameter, d, and the noise hyperparameter, b. The value of the 

revised negative log-likelihood function minimised with respect to the noise 

hyperparameter, b, is plotted against the lengthscale hyperparameter, d, in Figure 40. 

This two-dimensional plot shows more clearly the presence of the two minima. The 

hyperparameters are chosen to minimise the revised log likelihood function. With 

appropriately chosen initial values, the minimisation routine is caused to separately 

converge on each of the minima. The hyperparameters obtained, corresponding to the 

long lengthscale minima, are d = 0.552, a = 1.296 and n = 0.077 and, corresponding 

to the short lengthscale minima, are d = 20.386, a = 0.525 and n = 0.070.  Hence, the 

two components in the data have lengthscale hyperparameter values 0.552 and 20.39, 

respectively. 

 

 

Figure 38 Plots of two sinusoidal functions and sum of the two functions with noise. 
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Figure 39 Plot of optimised revised negative log-likelihood function against lengthscale 

hyperparameter. 
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Figure 40 3D plot of revised log-likelihood function against lengthscale and noise variance 

hyperparameters. 

 

This approach to determine the number of possible lengthscale solution is extremely 
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( ) ( )[ ] ijjiii b
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aC δπλ +
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
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

 −−= zzsin
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expz,z 2  (71) 

 

has four hyperparameters and visualising the function mapping in high dimensional 

space is difficult, or perhaps impossible. 

 

Covariance function is one of the main ingredients in modelling a Gaussian process. 

Data containing more than one component can be characterised by a compound 

covariance function. Noise present in the data is assumed to be Gaussian and the 

components are assumed to be independent. Note that, no attempt is being made here 

to propagate a Gaussian distribution (or any other distribution) through a nonlinear 

function. 
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Suppose that measurements are not of a single function but the sum of several 

functions with different characteristics; that is, the measured values are 

( ) ( ) iiii zz nf...fy K1 +++= . A possible probabilistic description of 

( ) ( ) ( )zzz K1 f...fh ++=  is by means of the sum of K independent Gaussian processes, 

K1 f,...,f zz . Let the covariance functions for these stochastic processes be 

( ) ( )
jiji zzCzzC ,,...,, K

f

1

f  respectively, then ( )K1 f...fh zzz ++=  is a stochastic process 

with covariance function ( ) ( )
jiji zzCzzCC ,..., K

f

1

fh ++= , since K1 f,...,f zz  are 

independent. 

 

Following Chapter 2.4, the prior joint probability distribution for [ ]T

K1 h,...,h zzH =  

and Y is Gaussian with mean zero and covariance matrix 

[ ] 







Λ

ΛΛ
=

















HHH

HHHHTTE
Q

YH
Y

H
  

 

with ΛHH = E[HH
T
] and QH = B + ΛHH. Applying partitioned matrix lemma, the 

posterior joint probability distribution for H, conditioned on the data Y, remains 

Gaussian with mean M  and covariance matrix Λ , where 

Y1

HHHM −Λ= Q  (72) 

 

HH

1

HHHHH ΛΛ−Λ=Λ −Q  (73) 

 

The prediction for H is the mean M  with confidence interval of two times the 

standard deviation ( ( )Λ± diag2 ). The concept is best illustrated with an example. 

 

Example 4.8 (Simple Two GPs Example). Consider a GP-generated function using 

the commonly used prior covariance function (74) for a Gaussian process with scalar 

explanatory variable, z. It ensures that the measurements associated with nearby 

values of the explanatory variable should have higher covariance than widely 

separated values; a is related to the overall mean amplitude and d is inversely related 

to the lengthscale. 

( )






 −− 2

2
exp ji zz

d
a  (74) 
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Assuming that the measurements contain two components of different characteristics, 

f(z) and g(z), let the covariance function for fz be (74) with a = 1.8 and d = 2.5, and 

the covariance function for gz be (74) with a = 0.95 and d = 120. That is, fz has a long 

lengthscale and gz has a short lengthscale. Also, let the measurement noise be 

Gaussian white noise with variance 0.04, i.e. Bij = bδij, where δij is the Kronecker 

delta. Gaussian regression is applied to a set of 800 measurements, 

( ) ( ) iiii zz ngfy ++= , sampled at 100Hz, with f(zi) and g(zi) the sample values for the 

stochastic processes fz and gz, respectively. The data values, with the prediction error 

and confidence intervals obtained using (72) and (73), respectively, are shown in 

Figure 33. 

 

Remark 4.4: In Example 4.5, the probabilistic description for h(z) is by means of a 

single Gaussian process, hz, with compound covariance function, ( )
gfh CCC += . An 

alternative would be by means of a Gaussian process, zh
~

, with the covariance 

function, h

~
C , of the form (74). A suitable value of the lengthscale hyperparameter d is 

the same as that for the short lengthscale in Example 4.5, i.e. zh
~

 has the same short 

lengthscale as gz in Example 4.5, but a suitable value of the amplitude hyperparameter 

a is larger, i.e. the value maximising the likelihood of the data. This simpler 

probabilistic description is almost as effective as the probabilistic description with the 

covariance function Ch, since the prediction and confidence interval at any point 

depend primarily on nearby values rather than remoter values. 
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Figure 41 Variable density data, prediction and confidence interval. 

 

 

Figure 42 Prediction and confidence interval with long and short lengthscale components. 
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Figure 43 Prediction and confidence interval with long lengthscale and periodical 

components. 

 

The benefits for prediction using a compound covariance function, such as Ch, 

become apparent when the density of the data varies. Consider the data in Figure 41. 
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nature of the short lengthscale component can be exploited to further improve the 

prediction over the gaps. A suitable prior covariance function for a periodic Gaussian 

process with scalar explanatory variable is given by (75). 

( )[ ]






 −− ji zz

d
a πλ2sin

2
exp  (75) 

 

Finally, consider the situation when the covariance function is chosen to be the sum of 

(74) and (75), the former being the long lengthscale component and the latter for the 

periodic short-term component in the data. The prediction and confidence interval are 

shown in Figure 43. Over the gaps, the prediction is much improved and the 

confidence interval much narrower. 

 

The idea here is extendable to measurements having more than two functions, each 

with a different characteristic, with components represented by a suitable class of 

covariance functions. Note that, the use of compound covariance function in Gaussian 

process prior models has been investigated by several researchers (Rasmussen, 1996; 

Gibbs, 1997; Williams, 1999). 

 

 

4.4.3 Training Procedures 

 

The implementation of multiple Gaussian process models is dependent on a proper set 

of training procedures. Two possible pre-emptive approaches may be required before 

conducting the optimisation stage. 

 

 

Hyperparameter Initialisation 

 

This section has been covered in Chapter 3.4. 
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Training Procedure for Multiple Gaussian Processes with Same Explanatory 

Variable 

 

In the case of independent multiple stochastic processes as outlined in §4.4.4, it is 

rather interesting to note that the solutions are neither unique nor trivial. Thus, a set of 

proper training procedures is necessary. It is possible to obtain different solutions 

given the same data with different training methods. As the solution is not unique in 

every case, there is a need to explore and provide a standard and improved solution to 

solve the problem of multiple stochastic processes in a proper and systematic manner. 

 

Given that the data consists of several stochastic processes, it is important to first 

decide the correct order of training the Gaussian process model. The order of the 

training procedure is vital to the result of the solution (recall that the solution is not 

unique). For simplicity, a model of two stochastic processes is used as an illustration. 

Assume that this model is available; it is important to first decide whether to train the 

long lengthscale first or the short lengthscale first, alternatively whether the 

component with periodic feature should be trained first or the non-periodic one first. 

A proper training procedure should be done in the fashion as laid out in Remark 4.5. 

 

Remark 4.5 (Training procedure for multiple lengthscale Gaussian processes). 

Assume that the data contains more than one component, each with a distinct 

characteristic, the following steps are undertaken to ensure that each component 

corresponds to a suitable set of hyperparameter values that are adapted from training. 

 

1. Train the data with a simple covariance function
9
, consisting of a 

single term. The set of hyperparameters, which correspond to the 

component which could not fit into other components, is adapted to 

maximise the log-likelihood function. For instance, the long 

lengthscale component, that is not going to fit into the short lengthscale 

component, should be trained first. 

2. Use the adapted hyperparameter values to perform Gaussian regression 

on the data. Compute the residue. 

                                                 
9
 A simple covariance function mentioned here is not a compound covariance function. 
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3. Train the residue to obtain hyperparameters that corresponds to next 

component, which is not going to fit into subsequent remaining 

components. 

4. Repeat step 2 and 3 until the number of trainings corresponding to the 

number of stochastic processes is achieved. 

  

The procedure outlined above is based on training the data using a single covariance 

function. In summary, components of the multiple Gaussian processes model that are 

not going to fit into successive components should be trained first. The residue is then 

computed after each subsequent optimisation. The purpose of this procedure is to 

obtain all the hyperparameter values of the multiple Gaussian processes model. 

 

A unified training procedure, with the covariance function being the sum of two or 

more covariance functions, is useless, such that the resulting hyperparameters do not 

correspond to their respective components. This is due to the inability of the 

optimisation routine to interpret the distribution of the contributions from each 

stochastic process. The predictions are prone to high uncertainties as the Gaussian 

process lacks the ability to distribute a proper involvement played by each component 

of the covariance functions. 

 

The set of hyperparameters, corresponding to different components of the Gaussian 

process models, is achieved with a proper training procedure. These adapted 

hyperparameters are then used to compute the prediction and the standard deviations 

of the posterior joint probability distribution. 

 

 

4.4.4 Extension to General Case Prediction 

 

Theorem 4.1 in §4.4 is extendable to predictions of any data points of the explanatory 

variable. Consider F and G to be the respective long and short lengthscale 

components with scalar predictions ẑf̂  and ẑĝ , at any possible values of the 

explanatory variable, z, and vector predictions zf̂  and zĝ  at values of the explanatory 

variable of the given training data. It follows that the posterior joint probability 
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distribution of F and G conditioned on the data Y remains Gaussian with mean M  

and covariance matrix Λ , as given by (76) and (77), respectively. 
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ĝ

f̂

ĝ
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where 
zzzz gf Λ+Λ+= BQ . 

 

Proof 4.2: To obtain the posterior joint probability distribution, on the condition that 

the posterior remains independent, appropriate modifications to M  and Λ  are made 

by applying the following transformation, 

MMM 0 T=→ ; T

0 TTΛ=Λ→Λ   

 

where  
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Similarly, the estimate of part of the data in G, which is explainable by F, should be 

transferred from the prediction for G to the prediction for F. To ensure that the cross-

correlation of the posterior joint probability distribution between F and G is zero, B
*
 

is simply B. The posterior joint probability distribution is a combination of 

independent Gaussian processes, with mean vector and covariance matrix to be (78) 

and (79), respectively. 
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Remark 4.6: The third row of M  in (76), and the third row and column of Λ  in (77) 

are not required to compute the posterior joint probability distribution. It is shown 

merely for clarity and as a formality. 

 

For general case scenario, Theorem 4.1 can be extended further to explain K 

independent stochastic processes within a given model, for K > 1. 

 

Theorem 4.2 (extended version of Theorem 4.1): Given that the prior joint probability 

distribution for K independent stochastic processes, F1,…,FK and Y is Gaussian with 

mean zero and covariance matrix Λ, the posterior joint probability distribution for 
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1 FF L  conditioned on the dataset M, and subject to the condition that they 

remain independent, is Gaussian with mean 0M  and 0Λ . The mean is given by 
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extended to multiple stochastic processes below. 
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Proof 4.3 (extended version of Proof 4.1): Similarly, the prediction for the 

contribution from one component, may alternatively, be in part explainable by another 

suitable component, using a suitable choice of smoothing kernel. Hence it should be 

appropriate to modify by transferring suitable part of the components of the data to 

appropriate section of the posterior. For simplicity, denote ( ) 1

zzzẑ

−
Λ+Λ=Φ xxx B  and 

partition [ ]RTIT = , such that 
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From the covariance of the posterior joint probability distribution, the correlations 

between the K components are zero. Note that M  is defined to have one row less and 

Λ  has a row and a column omitted. That is, 
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zẑ

1

zẑ
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where ẑẑΛ  is the cross-correlation between the predicting values of the explanatory 

variable and itself, ( )T

zẑẑz Λ=Λ  is the correlation between the predicting values of the 

explanatory variable and those of the measurement data. zzΛ  is the correlation 

between the values of the explanatory variable of the measurement data. Note that, 

there is one component less in the definition of ẑzΛ  and zzΛ . The order in which the 

components are arranged is not of great importance; unlike the order of the training 

procedure, which is discussed in the following section. 

 

 



Multiple Gaussian Processes 

_____________________________________________________________________ 

139 

4.5 Case Study 

 

An application based on multiple Gaussian processes model with common 

explanatory variable is illustrated in this section. The requirement of this application 

is to identify missing data measured from a nonlinear dynamic system (CATS 

Benchmark, 2004) using the model. 

 

A 5000-point time-series data, sampled at 1Hz and consisting of five missing gaps, is 

chosen to be the test data. These gaps are located at the following locations, (981s – 

1000s), (1981s – 2000s), (2981s – 3000s), (3981s – 4000s) and (4981s – 5000s). The 

poor quality of the data can be seen in Figure 44 and the power spectral density of the 

measurement data is shown in Figure 45. The latter reveals that the data comprises of 

several components with various frequencies. 

 

 

Figure 44 Data and long lengthscale prediction with confidence intervals. 
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Figure 45 Power spectrums of the data and predictions of three independent components. 

 

Attempts to extract three components from the data have resulted the hyperparameter 

value of the noise variance, b, to be 35.913. Using the chosen covariance function 

(74), for fz, gz and hz, the corresponding hyperparameters are af and df, ag and dg, and 

ah and dh, respectively. The covariance for the measurements, yi, at time ti, is (80). 
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Appropriate training methods are applied to obtain the hyperparameters. Since the 

time-series data contains missing gaps, the generalised Schur algorithm (see Chapter 

3.5.2) is employed to handle this dataset. The prediction of the long lengthscale 

component with confidence intervals (black lines) is shown in Figure 44, with adapted 

hyperparameters af = 2.422 x 10
4
 and df = 0.0038. A typical section, from 2850s to 

3150s, of the medium lengthscale prediction with confidence intervals using ag = 

83.6391 and dg = 0.0473, is illustrated in Figure 46. The prediction and confidence 

intervals of the short lengthscale component, with ah = 55.962 and dh = 1.274, are 

plotted in Figure 47 from 2900s to 3100s. In addition, the total error estimate and 

confidence intervals (grey lines) are shown in Figure 48. Note that in the section from 
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4981s to 5000s, the confidence interval amplifies drastically since the data points are 

near the edge of the data region and no data is available at those values of the 

explanatory variable. 

 

 

Figure 46 Medium lengthscale component with confidence intervals. 
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Figure 47 Short lengthscale component with confidence intervals. 

 

 

Figure 48 Error estimate with confidence intervals. 
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Individual components of the data are successfully identified and extracted with the 

multiple stochastic processes model. The final frequency spectrums of the fits to the 

individual components are shown in Figure 45. 

 

 

4.6 Discussion 

 

Methods on extraction of components with different characteristics from the data 

using Gaussian processes based on models with two or more stochastic processes 

have been developed. The extracted components of the posterior joint probability 

distribution are completely independent from each other. 

 

When there is any degree of arbitrariness in the data, the normal Gaussian process 

model gives a totally unusable prediction due to the arbitrary component. The 

transformation is then used to select one model from all possible models to remove 

arbitrariness without affecting the likelihood of the data. For data with different 

explanatory variables, the choice is made by imposing a condition on an average of 

the components; this is equivalent to adding a constant to one component and 

subtracting the same constant from another component, in the case of two Gaussian 

processes model. The approach does not prejudice the Gaussian processes model and 

its ability to explain the data in anyway, hence it is perfectly fine to do so. For data 

with same explanatory variable, the choice is made by using additional information 

provided within the context of the data. For example, components should be treated as 

independent and that the short lengthscale component does not contribute to the long 

lengthscale component, in the case of two Gaussian processes model. 

 

From knowledge of the engineering context, it is clear that some situations are 

applicable with the multiple Gaussian processes model. For instance, the two 

Gaussian processes model gives usable predictions when normal Gaussian process 

models do not allow. This is solely due to the removal of arbitrariness. A conclusion 

is that Gaussian process modelling cannot be done in isolation without reference and 

exploitation of the context. In addition, there is no need to quantify improvement with 

numerous numerical experiments. The standard Gaussian process model works in 
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some situation when used to extract components, but when it does not work, it is 

perfectly clear that it does not. Hence, the multiple Gaussian processes model 

provides an alternative to resolve the issue. 

 

Identification of components using multiple Gaussian processes has been effectively 

applied on some applications, such as de-trending of data, data with missing gaps, and 

data with periodic, linear and quadratic features. With this model, the fit of the 

prediction is much better, as the error bars have shown to be narrower. The 

application of the multiple Gaussian processes model is applied on the wind turbine 

data, in the form of a case study in the following chapter. 
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Chapter 5 

Case Study: Identification of Wind 

Turbine Dynamics Using Gaussian 

Processes 

 

 

5.1 Introduction 

 

Gaussian process prior model is one of the many methods for inferring nonlinear 

dynamic systems from measured data to identify the underlying structure of the 

nonlinear system. Motivated by the interest in Gaussian process and its capability to 

perform data analysis on nonlinear dynamic functions, an application of system 

identification is performed on the wind turbine data to identify the dynamic structure 

of the machine. 

 

The chosen application is a set of measurements obtained from a wind turbine. These 

measurements are sampled at 40Hz, for a run of 600 seconds. The set of data includes 

measurement readings taken from the rotor speed, the wind speed calibration from the 

anemometer mounted on top of the body, located behind the blades, and the pitch 

angle values registered on the controller system. 
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Since explicit calculations of matrix operations of the Gaussian process prior models 

are limited to medium-scale dataset, fast algorithms developed in Chapter 3 are 

introduced to handle the large-scale 24,000 points wind turbine data. Given that the 

noisy measurement data are sampled at fixed intervals, the datasets are simply time-

series. As such, the structure of the covariance matrices exhibits some special 

properties, i.e. Toeplitz, thus having low displacement ranks. Fast algorithms, i.e. the 

modified Durbin-Levinson’s algorithm and the generalised Schur algorithm, are 

capable of handling such structured matrices with low displacement ranks. 

Furthermore, the wind turbine dataset contains dynamics that can be characterised in 

the frequency domain, with the model exhibiting a range of operating frequencies. 

Identification procedure to train the large-scale data by the use of hyperparameter 

initialisation is applied beforehand. 

 

It was suggested (Leithead et al., 2003a) that the measurement data contains at least 

two components, i.e. due to the aerodynamics and drive-train dynamic cross-

interference with the electro-mechanical components. Applying the concept of 

classifying each independent component in the data as a single stochastic process, 

thereby, subsuming multiple independent stochastic processes, the technique extracts 

the required lengthscale from the measurement data, ensuring that it remains 

independent with absolute zero cross-correlation with respect to other components 

within the data. 

 

Modelling these extracted components into state-space formulation requires an 

additional step of spatial filtering to be applied on the wind speed data. This is due to 

the point wind speed measurement being a poor representation of the wind-field. 

Hence, spatial filtering is required to account for the averaging over the rotor disc. 

(Note that the spatial filter introduces a small delay on the wind speed data. This is 

compensated by advancing the spatially filtered wind speed by an equivalent time 

increment of 0.24 seconds, in this case). A probabilistic description of a single 

stochastic process is used to predict the fit of the outcome, with relation to the 

components of the explanatory variable. In the case of the wind turbine data, the rotor 

acceleration, computed from the first order derivative of the rotor speed, is modelled 

as a function of the rotor speed, wind speed and blade pitch angle. With the intent to 

separate the wind speed component from the rotor speed and pitch angle for a possible 
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controller design, a single stochastic process is insufficient. Due to the uncorrelated 

relationship between the aerodynamics features for the wind speed and the drive train 

dynamics of the rotor speed and blade pitch angle, the state equation can be modelled 

to be the sum of two independent Gaussian processes. This is particularly useful in 

designing the controller for the wind turbine, such that only the function, which 

depends on the rotor speed and pitch angle, is required. 

 

Engineered by the Gaussian process prior model, the wind turbine dynamics can be 

analysed and identified in a probabilistic manner with the use of non-parametric 

modelling. 

 

 

5.2 Efficient Algorithms Implementation for Time-Series Data 

 

Two main issues are resolved with the implementation of fast algorithms, developed 

in §3.5, for Gaussian regression on the large-scale 24,000 wind turbine time-series 

dataset. Firstly, the O(�
2
) memory requirement to store the �� ×  covariance matrix 

is replaced by the introduction of vector-level storage algorithm. Secondly, O(�
3
)-

operations, viz. log-determinant and matrix inversion of the covariance matrix, are 

reduced to O(k�
2
)-operations with the implementation of fast algorithms. 

 

To further improve optimisation procedure, algorithm based on hyperparameter 

initialisation (see §3.4) is applied prior the training. This allows faster convergence 

since proper initial values for the hyperparameters that are specific to the case are 

systematically obtained. Hence, nonsensical solutions are suppressed. This additional 

approach is useful in some cases to prevent any possibility of under-fitting or over-

fitting of the data. 

 

 

5.3 Identification of Wind Turbine Dynamics 

 

Methods and algorithms, developed in the previous few chapters of this thesis, are 

applied on a physical application, viz. identification of the wind turbine dynamics. 
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Several identification procedures using Gaussian process prior models are carried out 

here. The identification procedure of the wind turbine dynamics are classified into 

two main parts: 

 

1. Phase 1 – Data cleaning 

2. Phase 2 – Relationship construction 

 

Briefly, the wind turbine datasets, consisting of time-series data of the wind speed, 

rotor speed and the blade pitch angle, are heavily corrupted with noise. Gaussian 

regressions are applied to these datasets to remove the noise in the first phase of the 

identification procedure. Models with multiple Gaussian processes with common 

explanatory variable are applied in this phase. 

 

In the second phase, the predictions obtained from the first phase of the procedure are 

constructed to form a dynamic relationship between the aerodynamic torque and the 

functions of wind speed, rotor speed and the blade pitch angle. The requirement here 

is to confirm the independent relationship between function of the rotor speed and the 

blade pitch angle, and the function of wind speed. This is a rather important 

verification because by separating the wind speed components from the rest of the 

data, it allows engineers to design a more efficient controller based on the knowledge 

that the other component depends only on the rotor speed and blade pitch angle, both 

of which can be controlled mechanically or electronically. On the other hand, the 

wind speed (or rather, wind field that passes through the rotor blades) can not be 

controlled. 

 

 

5.3.1 About the Data 

 

The raw wind turbine data consists of the wind speed, rotor speed and the blade pitch 

angle, specifically, site measurements obtained concurrently from a commercial 1MW 

wind turbine. The measurement data consists of a run of 600 seconds sampled at 40 

Hz and is corrupted by significant measurement noise. The dynamics of the wind 

turbine, when operated above rated wind speed, are assumed to conform to the simple 

model as illustrated in Figure 49. The generator torque of the 1MW wind turbine 
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considered here is kept constant by the controller. The dynamics of the converter are 

sufficiently fast so that no distinction is required to be made between the demand and 

achieved generator torque. The generator torque is regulated by means of the blade 

pitch angle. The controller maintains the generator speed within a small percentage of 

rated value. 

 

 

Figure 49 A simple model of the wind turbine dynamics. 
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Figure 50 Wind speed spectrum. 

 

The values of the wind speed are obtained from a mean adjusted nacelle anemometer 

measurement, with a mean value of 17.5m/s, apart from the turbulence intensity of 

12.5% observed. The power spectral density function for the wind speed is depicted in 

Figure 50. As the measurement of the point wind speed results in a poor 

representation of the wind field, it has to be spatially filtered to account for the 

averaging over the rotor disc, thus induces a small delay on the wind speed. This can 

be compensated by an equivalent time increment of 0.24 seconds to the filtered wind 

speed. The resulting effective wind speed may then be interpreted as the uniform wind 

speed over the rotor disc such that the power spectral density function of the 

aerodynamic torque induced by the effective wind speed and the power spectral 

density function of the aerodynamic torque induced by the non-uniform spatially 

varying wind field actually experienced by the rotor, are the same for frequencies less 

than 1Ω0, where Ω0 is the rated rotor speed. The spatial filter is shown in Figure 51. 
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Figure 51 Spatial filter implemented for wind speed. 

 

 

Figure 52 Rotor speed spectrum. 
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at low frequency; that is, the measured rotor speed and the actual rotor speed are the 

same at low frequency. The power spectral density function for the rotor speed is 

shown in Figure 52. Clearly, the data is heavily corrupted with background noise of 

approximately 3x10
-3

. Above a frequency of 4 rad/s, the only features observable 

above the background noise level are two spectral peaks. The first is due to rotational 

sampling of the wind field at 3Ω0 and the second is the first drive-train mode 

enhanced by its close proximity to 6Ω0. 

 

The power spectral density function for the blade pitch angle is shown in Figure 53. 

Evidently, only the spectral peak at 3Ω0 can be seen. 

 

 

Figure 53 Pitch angle spectrum. 
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Rotor speed data 

 

The identification procedure using models with multiple Gaussian processes in §4.4 is 

applied to the raw wind turbine measurement data. Consider the rotor speed 

measurement; the data has a long lengthscale component due to the variations in the 

aerodynamic torque, caused by changes in the wind speed and the pitch angle of the 

rotor blades, and a short lengthscale component due to the structural and mechanical 

dynamics of the machine. The two components, from 260s to 280s, can be clearly 

seen in Figure 54 as can the poor quality of the data. The requirement here is to 

estimate the long lengthscale component in the rotor speed and the short lengthscale 

component belonging to the drive-train dynamics of the variable speed wind turbine. 

In addition, it is of interest to identify the rotor acceleration using Gaussian process 

prior models, which is required to formulate the aerodynamic torque relationship with 

the wind speed, rotor speed and the pitch angle in the second phase of the 

identification procedure. Due to the contact between the tower blade and the 

aerodynamics of the wind present in the data, small oscillations belonging to the “3p” 

component, as seen in Figure 52, is induced by the interaction between the structural 

and electromechanical dynamics. Therefore, there are presently three components, 

requiring three independent stochastic processes, ft, gt and ht, corresponding to the 

long, medium and short lengthscale, respectively to be identified. A simple squared 

exponential covariance function, 

( ) 




 −− 2

2
exp ji tt

d
a   

 

is chosen to represent each of the three components present in the data, such that a 

and d are hyperparameters of the covariance function. The measurement noise is 

assumed to be Gaussian white noise with variance b. It follows that the covariance for 

the measurement yi at time ti is 
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where δij is a Kronecker delta which is one if and only if i = j and zero otherwise. The 

subscript “f”, “g” and “h” on the hyperparameters represent the long, medium and 

short components, respectively. 

 

 

Figure 54 Noisy data of the rotor speed measurement. 
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Figure 55 Rotor speed prediction with confidence intervals and noisy data (grey). 

 

 

Figure 56 Prediction and confidence intervals of the “3p” component. 
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Figure 57 Total error estimate and generator speed prediction with confidence intervals. 

 

Gaussian regression based on model with three stochastic processes is applied to the 

time-series rotor speed data. The hyperparameters, whilst adapted to maximise the 

log-likelihood function, are af = 170, df = 1, ag = 10, dg = 6, ah = 0.776, dh = 25 and b 

= 0.0026. A section, from 250s to 300s, of the prediction for the rotor speed, viz. the 

long lengthscale component, together with two times standard deviations is shown in 

Figure 55. The same section of the prediction for the medium lengthscale component 

consisting of the “3p” interaction, with confidence intervals is shown in Figure 56. A 

typical short section of the short lengthscale component, from 265s to 270s, 

illustrating the generator speed is depicted in Figure 57 (black lines). As it can be 

perceived, the rotor speed and the generator speed are successfully segregated from 

each other via the approach using model with multiple Gaussian processes. Finally, 

the residue (grey lines) and its confidence intervals (dashed lines) are also shown in 

shown in Figure 57. 
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Figure 58 Prediction of the rotor acceleration with confidence intervals. 
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identify independent components from the datasets. To follow up on Phase 2 in the 

next section, only the long lengthscale components of the rotor speed and rotor 

acceleration are of interest. Similarly, only the required components, i.e. the long 

lengthscale components, will be identified from the wind speed and blade pitch angle 

data. A model with two Gaussian processes is sufficient. 

 

Wind speed data 

 

Model with two independent Gaussian processes is applied on the raw wind speed 

data, as shown in Figure 59. The data has a mean wind speed value of approximately 

17.5m/s. With the same form of the squared exponential covariance function as the 

rotor speed for each component present in the data, the covariance for measurement yi 

at time ti is given by 

[ ] ( ) ( )
ijji

g

gji

f

fji btt
d

att
d

ayy δ+







−−+








−−= 22

2
exp

2
exp,E  

 

where hyperparameters with subscript “f” represent the component with long 

lengthscale and those with subscript “g” represent the short lengthscale component. 

The hyperparameters obtained whilst adapted to maximise the log-likelihood function 

are af = 1.025x10
3
, df = 0.27, ag = 0.35, dg = 108.8 and b = 0.0024. The extracted long 

lengthscale component of the wind speed data is shown in Figure 60. The short 

lengthscale component can be extracted in the same way as the generator speed. 

However, since only the wind speed is required, other components are not of interest. 
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Figure 59 Raw wind speed data. 

 

 

Figure 60 Extracted long lengthscale component of the wind speed data. 
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The wind speed data consists of the low frequency point measurement wind field 

taken from the nacelle anemometer reading. Even after applying Gaussian process, 

the significant turbulence intensity observed still results in a poor representation of the 

data obtained. Therefore, an additional step to spatially filter the data is essential. This 

will result in a small delay on the filtered wind speed, which can be compensated by 

incrementing the data by an equivalent time of 0.24 seconds. The eventual data, as 

shown in Figure 61, is known as the effective wind speed. 

 

 

Figure 61 Spatially filtered wind speed data. 
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Figure 62 Noisy measurement blade pitch angle data. 

 

 

Figure 63 Extracted long lengthscale component of the blade pitch angle data. 
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A section of the last 200 seconds of the noisy measurement data is shown in Figure 

62. Unlike the wind speed and rotor speed data, the short lengthscale component of 

the blade pitch angle is not obvious. This can be seen from the power spectrum 

density as shown in Figure 53. 

 

The values of the hyperparameters, adapted to maximise the log-likelihood function, 

are found to be af = 1.1x10
5
, df = 0.5, ag = 0.23, dg = 65.3 and b = 0.09. Notice that the 

prediction for the long lengthscale component, in Figure 63, is now missing those 

kinks and looks much smoother. 

 

With successful extraction of the required long lengthscale components of the rotor 

speed (including rotor acceleration), wind speed and blade pitch angle from the raw 

data, it allows the relationship between the aerodynamic torque and the associated 

drive-train dynamics to be formulated.  This is carried out in the second phase of the 

identification procedure. 

 

 

5.3.3 Conlinear Dynamics Identification (Phase 2) 

 

This section covers the identification of the aerodynamics and drive-train dynamics of 

the wind turbine machine using Gaussian process prior models. The dynamics is 

known (Leithead et al, 1999) to consist of a nonlinear component (aerodynamics) and 

a linear component (drive-train dynamics). It is also known (Leithead et al., 1999; 

Leithead et al., 2003a) that the aerodynamic torque is considered to be an algebraic 

function of wind speed, rotor speed and the blade pitch angle, i.e. 

( )v,,T RA βωΗ=   

 

where ωR is the rotor speed, β is the pitch angle and v is the wind speed variable. 

Furthermore, the aerodynamic torque is proportional to the rotor acceleration Rω&  as 

given by the equation below. 

R0A JTT ω&≈−   

 

where T0 is the generator torque set-point scaled by the gearbox ratio and J is the rotor 

inertia. This event is noticed at low frequency of the aerodynamic torque. However, it 
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is not the identification of the aerodynamic torque per se that is of interest, the 

requirement here is to extract and identify components belonging to the dataset, 

( ){ }RR ,,, ωβω &v  and prove that the torque is a sum of two independent functions. 

 

Due to the filtering (extraction of long lengthscale components) by Gaussian 

regression in Phase 1, the data values are now correlated over a time interval of about 

1 second. The second phase of the identification procedure requires the filtered data to 

be sampled further. Instead of using all the 24,000 data points from each extracted set, 

only a subset of 1,599 data points from each dataset are chosen at random. These 

sampled data points are obtained by considering every alternate 15 measurements. 

The purpose of doing so is to ensure that neighbouring data values are no longer 

correlated. The difference between the effective wind speed and the wind speed, 

uniform over the rotor disc, that reproduces the actual aerodynamic torque may be 

considered as further additive disturbance on the former. With the selection of new 

datasets, this additive disturbance becomes randomised. Any random additive 

disturbance on the wind speed can be treated as noise on the “measured” aerodynamic 

torque; thereby preserving the regression formulation. The intensity of the noise on 

the “measured” aerodynamic torque includes a contribution from this source. Hence, 

it is known (Leithead et al., 1999) that, during above rated operation, the 

aerodynamics can be separated into the sum of two functions, the first being a 

function of the wind speed and the second a function of the rotor speed and the blade 

pitch angle; that is, 

( ) ( ) ( )vv ΓΦ −= βωβω ,,,T̂ RRA  (81) 

 

It is also known that the function of the wind speed is almost linear (Leithead et al, 

1999) and might possibly be approximated by a quadratic function.  

 

To confirm the separation in equation (81) for the wind turbine, the aerodynamic 

torque is modelled as the sum of two independent Gaussian processes rather than a 

single Gaussian process. The first, Φz, is a Gaussian process with explanatory variable 

belonging to the rotor speed and the blade pitch angle, with the covariance function as 

given in (82). 
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( ) ( ) ( )[ ]
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The second, Γv, is a Gaussian process with wind speed as the explanatory variable and 

covariance function given by (83). 
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





 −−= 2

2

1
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Since the two Gaussian processes are independent, their sum is also a Gaussian 

process with the covariance function 
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The covariance at measurement yi, is 

( ) ( ) ijji bCyyC
ji

δ+= AA T̂,T̂, Η  (84) 

 

where δij is the Kronecker delta. The hyperparameters { }bddaa ,,,, ΓΦΓΦ  are then 

adapted to maximise the likelihood of the data. Gaussian regression using model, with 

two independent stochastic processes and independent stochastic variables, is applied 

to the reduced dataset. The optimised values of the hyperparameters are aΦ = 2.66, aΓ 

= 1.02, 3101.1R −×=ω
Φd , 5105.4 −×=β

Φd , 3109.9 −×=Γd  and b = 0.0978. The 

components of the aerodynamics torques, namely ( ) [ ]zE, ΦΦ =βωR  and 

( ) [ ]vv ΓΓ E= , are depicted in Figure 64 and Figure 65, respectively. 
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Figure 64 Prediction and confidence intervals of aerodynamic component using squared 

exponential covariance function. 

 

 

Figure 65 Prediction and confidence intervals of drive-train component using squared 

exponential covariance function. 
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Figure 66 Confirmation of the separation of the aerodynamic torque. The Gaussian process is 

modelled using squared exponential covariance functions. 

 

Due to the transformation applied to the posterior joint probability distribution, it 

ensures that equal likelihood can be attributed to either Φz or Γv. Thus, the confidence 

intervals for the two predictions are rather narrow. The values for ( )v,,T̂ RA βω  and 

( )v,,T RA βω  at the measured values of ( )v,,R βω  are compared. Figure 66 confirms 

the separation for the aerodynamic torque into two additive components, as it can be 

seen that the data points (‘x’) are lying close to the line of slope passing through the 

origin. 

 

From the prediction of the drive-train dynamic depicted in Figure 65, it seems that the 

component is almost linear. A possible representation of the drive-train component is 

by means of a linear covariance function. 
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Figure 67 Prediction and confidence intervals of the aerodynamics component with Γv using 

a linear covariance function. 
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Figure 68 Prediction and confidence intervals of the drive-train dynamic with Γv using a 

linear covariance function. 
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Figure 69 Confirmation of the separation of the aerodynamic torque when Γv uses a linear 

covariance function 

 

Modelling the aerodynamic torque as the sum of two independent Gaussian processes, 

the first being Φz characterised by the same covariance function as before. The second 

stochastic process is Γv, with wind speed as the explanatory variable and covariance 

function given by (85). 

( )
jiji vvwvvC ΓΓ =,  (85) 

 

The covariance function CΓ has a linear feature and is of a non-stationary type. The 

covariance for the measurements yi is (84), except with CΗ which is to be substituted 

by ΗC , i.e. 
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The set of hyperparameters to be trained is { }bwda ,,, ΓΦΦ . The predictions and two 

times standard deviations of the nonlinear component of the aerodynamic torque, 

( ) [ ]zE, ΦΦ =βωR , and the linear component of the drive-train dynamic, 
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( ) [ ]vv ΓΓ E= , are shown in Figure 67 and Figure 68, respectively. The adapted values 

of the hyperparameters are aΦ = 14.7357, 4103.2R −×=ω
Φd , 510084.2 −×=β

Φd , 

018.0=Γw  and b = 0.098. Again, the confidence intervals of the joint probability 

distribution of the posteriors are narrow within the operating region. The separation of 

the aerodynamic torque into two additive components is confirmed by Figure 69, 

illustrating the values of ( )v,,T̂ RA βω  and ( )v,,T RA βω  at the measured values of 

( )v,,R βω .  The agreement is quite good with all the data points (‘x’) lying close to the 

slope of the line passing through the origin. Comparing Figure 69 with Figure 66, 

there is no noticeable distinctive difference of which result is better. The comparison 

simply shows that the drive-train dynamic has some linear relationship with respect to 

the wind speed. 

 

 

Figure 70 Prediction and confidence intervals of the aerodynamic component with Γv using a 

quadratic covariance function. 
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Figure 71 Prediction and confidence intervals of the drive-train aerodynamic component with 

Γv using a quadratic covariance function. 
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Figure 72 Confirmation of separation of aerodynamic torque when Γv uses a quadratic 

covariance function. 

 

Besides linear analysis of the drive-train dynamic, it might perhaps be possible to 

model this component by means of a quadratic covariance function. A more detailed 
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modelled by a quadratic covariance function defined in (86). 
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The set of hyperparameter values obtained by maximising the log-likelihood function 

are 51.2=Φa , 3103.1R −×=ω
Φd , 51005.5 −×=β

Φd , 510515.1 −×=Γw  and 0979.0=b . 

Similar to previous two models, the predictions and confidence intervals for Φz and Γv 

are depicted in Figure 70 and Figure 71, respectively. The separation of the 

aerodynamic torque into two additive components is illustrated in Figure 72. Once 

again, the data points (‘x’) are located close the line that passes through the origin. 

 

 

5.3.4 Quadratic Function Relationship with Wind Speed 

 

The function of the aerodynamic torque dependent on the wind speed is likely to 

possess a quadratic relationship. Given that the aerodynamic torque can be separated 

into two additive functions as shown in (81), an attempt to model the function Γ(v) by 

a non-stationary quadratic covariance function is carried out. It is assumed that the 

aerodynamic torque has the following relationship, 

( ) ( )βλβω ,,,T 2

RA Χkvv =  (87) 

 

where k and Χ(λ,β) are constant terms and λ is the angular velocity in rad/s of the 

rotating wind turbine blades. This section focuses primarily on collapsing the domain 

from the one shown in (81) to 

( ) ( ) ( )vv ΓΦ −= ββ ,T
~

A  (88) 

 

by mathematically removing the rotor speed ωR. The purpose of doing so is to allow a 

visual presentation of a three-dimensional plot, with the aerodynamic torque 

dependent on only two explanatory variables, i.e. β and v. 

 

Given that the angular velocity remains constant above rated operation, it follows that 

v
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where R is the radius of the rotor blade. Based on the equality, 
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It is then appropriate to assume ( )v,,T RA βω  is related to ( )v′′′ ,,T RA βω  by different 

set of values of ( )v,,R βω . Reformulating (87) by keeping λ and β unchanged, the 

following relationship is obtained. 

( ) ( )βλβω ,,,
T

R2

A Χ∝v
v

  

 

Substituting (89) into the equation above, keeping β unchanged and introduce a 

different value of AT′  at ω0 and v0, 
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Hence, the ratio of the aerodynamic torques is equivalent to the ratio of the square of 

the corresponding rotor speeds. From earlier discussions, the aerodynamic torque is 

directly related to the rotor acceleration. Let v0 = 17.063m/s be the mean wind speed 

and ω0 = 25.9rad/s be the rated rotor speed. Thus, the following dataset 

( ){ }vR ,,,R βωω&  is altered to be independent of the change in wind speed values, i.e. 
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where ε represents the noise in the dataset. With the formulation of this new 

relationship, it is apparent that the outcomes can be plotted on a three-dimensional 

surface as a function of β and v′ . Furthermore, the individual functions of Φ(β) 

dependent on β, and Γ(v) dependent on v can also be exploited and plotted on one-

dimensional plots. 

 

 

Figure 73 3D plot of scaled aerodynamic torque as a function of blade pitch angle and scaled 

wind speed. 

 

Firstly, consider the data to be of the form ( ) ( )nnn vβvf ′=′ ,, Ηβ , instead of sum of two 

functions. Applying standard Gaussian regression with a single stochastic process 

using the squared exponential covariance function on the dataset, ( ){ }�

nnnn vy
1

,, =
′β , the 

predictions and confidence intervals are as shown Figure 73. Applying a simple 

modification to the aerodynamic relationships with wind speed, rotor speed and blade 

pitch angle allows the domain to collapse from three dimensions into two dimensions. 

This improves visibility as to how the outcome is likely to vary with respect to 

changes in the values of the explanatory variable, i.e. β and v′ . 
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However, it is not the scaled aerodynamic torque that is of interest. Instead, the goal is 

to extract and identify individual functions with different explanatory variables. 

Hence, a model with two Gaussian processes is implemented in the regression 

formulation, i.e. ( ) ( ) ( )vvf ′−=′ ΓΦ ββ , . Three possible models are formulated; that 

is, the function ( )v′Γ  with respect to scaled wind speed is modelled by the squared 

exponential, linear and quadratic covariance functions. The use of the squared 

exponential covariance function allows ( )v′Γ  to be adapted with a nonlinear 

characteristic. In addition, the function of wind speed has shown to exhibit a linear 

trend and therefore modelling it with a linear covariance function is appropriate. 

Finally, the theoretical investigation discussed earlier in this section may suggest that 

( )v′Γ  has a quadratic feature. Thus, a quadratic covariance function is also included in 

the exploration. The nonlinear aerodynamic component of Φ(β) is modelled using the 

squared exponential covariance function. 

 

 

Squared Exponential Covariance Function 

 

The squared exponential covariance function is commonly used in Gaussian 

regression to model nonlinear functions, which includes the class of all possible linear 

functions. The predictions and confidence intervals for Φ(β) and ( )v′Γ  based on 

Gaussian regression using model with two stochastic processes are depicted in Figure 

74 and Figure 75, respectively. Notice how the drive-train dynamic in the latter figure 

vary with respect to wind speed. Near the centre of the range of the explanatory 

variable, between 16=′v m/s to 20=′v m/s, the trend is almost linear. Hence, there is 

a belief in which ( )v′Γ  might be a linear component. 
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Figure 74 Prediction and confidence interval for Φ(β) with ( )v′Γ  using a squared 

exponential covariance function. 
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Figure 75 Prediction and confidence interval for ( )v′Γ , modelled using a squared 

exponential covariance function. 

 

 

Linear Covariance Function 

 

With the component ( )v′Γ  modelled by a linear covariance function, the predictions 

with confidence intervals for Φ(β) and ( )v′Γ  are shown in Figure 76 and Figure 77, 

respectively. The aerodynamic component for Φ(β) in Figure 76 is very similar to that 

in Figure 74. However, the drive-train dynamic, which is modelled by a linear 

covariance function, shows a firm straight line passing through zero at the mean wind 

speed value. The standard deviation is zero at the mean wind speed value and 

increases linearly towards both ends. 
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Figure 76 Prediction and confidence interval for Φ(β) with ( )v′Γ  using a linear covariance 

function. 
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Figure 77 Prediction and confidence interval for ( )v′Γ , modelled using a linear covariance 

function. 

 

 

Quadratic Covariance Function 

 

From the theoretical explanation, it is known that the aerodynamic torque is a function 

of the square of the wind speed at above rated operation of the wind turbine. Hence, it 

is of interest to investigate ( )v′Γ  by representing the component with a quadratic 

covariance function. The predictions and two times standard deviations of Φ(β) and 

( )v′Γ  are illustrated in Figure 78 and Figure 79, respectively. There is no apparent 

difference in the aerodynamic component, since it has been modelled by the same 

covariance function for all three cases. The component of the drive-train dynamic, 

however, illustrates a rather gentle quadratic feature with respect to wind speed. The 

standard deviation of the predictions for ( )v′Γ  also indicates a quadratic 

characteristic. It has a value of zero at the mean wind speed and increases away from 

that mean wind speed value. 
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Figure 78 Prediction and confidence interval for Φ(β) with ( )v′Γ  using a quadratic 

covariance function. 
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Figure 79 Prediction and confidence interval for ( )v′Γ , modelled using a quadratic 

covariance function. 

 

There is very little to compare between the three cases as the error estimates between 

them are almost insignificant. However, their confidence intervals might provide 

more details about the right choice of the model. The standard deviations (1σ) of the 

prediction for Φ(β) and ( )v′Γ  are depicted in Figure 80 and Figure 81, respectively. 

There is little distinction to make in the former figure, whereas the latter figure shows 

are more defined illustration. However, it is not justifiable to focus mainly on Figure 

81 since the choices of covariance functions are not the same for ( )v′Γ . Arguably, the 

only way to decide is by looking at the standard deviation for Φ(β). Hence, the 

conclusion that can be drawn is that any of the three covariance functions, i.e. squared 

exponential, linear and quadratic covariance functions, can be used to model the 

drive-train dynamics which is a function of wind speed. 
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Figure 80 Standard deviations of Φ(β) . 

 

 

Figure 81 Standard deviations of ( )v′Γ . 
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5.3.5 Verification of Model by Cumerical Integration 

 

The experimental assumption that the aerodynamic torque comprises of two additive 

components is further investigated in this section. Previous analyses have shown good 

agreement between the values of ( ) ( )vv ,,,,T RRA βωβω Η=  and the values of 

( ) ( ) ( )vv ΓΦ −= βωβω ,,,T̂ RRA , however it may not be suffice. This section 

investigates the separation by the use of numerical integration of the derivative 

component. If the assumption is true, the result should be close to the posterior joint 

probability distribution of the fit. To avoid further confusion, squared exponential 

covariance functions are used in the Gaussian process prior models wherever 

necessary. This allows the class of linear functions to be included in the stochastic 

modelling. The following steps are performed: 

 

1. Obtain a Gaussian process fit of ( )v,,R βωΗ  using a single Gaussian 

process, and a fit of ( ) ( )[ ]vΓΦ −βω ,R  using the model with two 

Gaussian processes. The two fits are compared. 

2.  Obtain a set of operating points for { }ii v,β , such that { } [ ]20,14∈iv . 

The values for {βi} are calculated given the values of {vi}. 

3. Use Gaussian process to compute the values for the derivative of 

( ) vv ∂∂Γ , for all values of {vi}. 

4. Given the values of ( ) vv ∂∂Γ , integrate numerically to obtain Γ(v) for 

all values of {vi}. 

5. Verify the fit of ( ) ( ) ( )vv ΓΗΦ +≡ ,,, RR βωβω , where Φ and Η are 

computed using Gaussian processes. 

 

Step 1 

The predictions of the posterior joint probability distributions for ( )v,,R βωΗ  and 

( ) ( )[ ]vΓΦ −βω ,R  are depicted in Figure 82 on time-series scale, since it is impossible 

to visualise a data with three-dimensional explanatory variable. The former is denoted 

by a black line, and the latter is shown using grey dots. Notice that the predictions are 

rather close to each other. The agreement of the separation looks reasonably good. 
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Figure 82 Predictions of the posterior joint probability distributions for ( )v,,R βωΗ  and 

( ) ( )[ ]vΓΦ −βω ,R . 

 

Step 2 

The values for the wind speed, { } { }20,95.19,...,05.14,14=iv , is obtained. Since 

numerical integration is involved at a later stage, a reasonable amount of data points is 

required. Next, ω0 = 17.063m/s is defined to be the mean wind speed. Let the 

aerodynamic torque be written as 

( )

( )
J

T
,,

,,JJT

0
0

000

=⇒

==

v

v

βω

βωω

Η

Η&

  

 

where J is the rotor inertia and 0ω&  is the rotor acceleration. At the mean wind speed 

operation, 0
J

T0 ∆ . Thus, ( ) 0,,0 =vβωΗ  for corresponding values of { }ii v,β . The 

values of {βi} are solved using any nonlinear solver for the zero-crossing of 

( )v,,0 βωΗ . The values of the blade pitch angle β are plotted against the wind speed 

values v in Figure 83. 
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Figure 83 Plot of the blade pitch angle values against wind speed values. 

 

Step 3 

The information obtained in Step 2 is now used to determine the values for ( )βω ,RΦ  

and ( )vΓ . Assume that ( ) ( ) ( )vv ΓΦΗ −= βωβω ,,, RR  is true. Since for ω0, v is related 

to β, 

( ) ( )
v

v

v

v

∂
∂

=
∂

∂
∴

ΓΗ ,,0 βω
  

 

Gaussian process prior model is used to evaluate the values of ( ) vv ∂∂Η  for all 

values of {vi} from Step 2. In addition, ( ) vv ∂∂Γ  is also calculated for comparison. 

The plot of the predictions for the partial derivatives with confidence intervals against 

wind speed is shown in Figure 84. 
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Figure 84 Plot of against ( ) vv ∂∂Η  and  ( ) vv ∂∂Γ  wind speed. 

 

 

Figure 85 Approximations of Γ(v) using numerical integration and prediction of Γ(v) using 

Gaussian process prior models. 
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Step 4 

Given the partial derivatives, ( ) vv ∂∂Η  and ( ) vv ∂∂Γ , obtained in Step 3, the data 

values are numerically integrated to compute the approximation of the values for Γ(v). 

i.e. ( ) ∫ ∂
∂

≅ dv
v

v
Η

Γ  and ( ) ∫ ∂
∂

≅ dv
v

v
Γ

Γ   

 

Any numerical integration tool, i.e. Simpson’s rule, can be used. The Trapezoid rule is 

chosen for this case. The results are shown in Figure 85. The approximation of Γ(v) 

from ( ) vv ∂∂Η  is illustrated by dashed lines, whereas the approximation from 

( ) vv ∂∂Γ  is depicted by crosses. The initial values of Γ(v) obtained from model using 

two Gaussian processes are also shown (dots) in the figure. Apparently, the numerical 

integration works very well in integrating ( ) vv ∂∂Γ  as the values are very close 

together. The result from integrating ( ) vv ∂∂Η  is reasonably good, with very little 

deviation. 

 

Step 5 

The fits of ( ) ( ) ( )vv ΓΗΦ +≡ ,,, RR βωβω  is verified by using the approximated result 

from Step 4. The data values of Φ(ωR,β) is compared with the data values from 

( ) ( )vv ΓΗ +,,R βω  and the comparison is shown in Figure 86. As it can be seen, the 

agreement is quite good. 

 

From the result obtained, it is almost certain that the aerodynamic torque of the wind 

turbine machine is a function of two independent additive components; each 

dependent on a different set of explanatory variables. Thus it is safe to conclude that 

the aerodynamic torque, ( ) ( )vv ,,,,T RRA βωβω Η= , consists of separable functions, 

i.e. ( ) ( ) ( )vv ΓΦ −= βωβω ,,,T̂ RRA . 
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Figure 86 Confirmation of the separation of aerodynamic torque. 

 

 

5.4 Conclusion 

 

The aerodynamic and drive-train dynamic, in particular the first drive-train mode, are 

successfully identified for a 1MW variable speed wind turbine from the measured 

data wholly using Gaussian process prior models within a Bayesian context. The data, 

consisting of the nacelle anemometer measurement of wind speed, rotor speed and 

blade pitch angle, is measured whilst the wind turbine is operating normally in above 

rated wind conditions. The separation of the aerodynamic torque into two additive 

components, the first being a function of rotor speed and blade pitch angle and the 

second a function of the wind speed only, is confirmed using various methods. The 

confirmation enables a direct assessment to be made as to whether the control system 

on the wind turbine has achieved its design performance. 
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Chapter 6 

State-Space Time-Series Gaussian 

Process Prior Models 

 

 

6.1 Introduction 

 

In an engineering context, measurements, intended to inform on a nonlinear 

relationship, are frequently made sequentially. The data then has two possible 

interpretations, specifically, as a set of measurements dependent on the same variables 

as the nonlinear relationship or as a time-series.  The particular context, that motivates 

consideration of these dual nature measurement sets, is the identification of nonlinear 

dynamic systems. 

 

In discrete-time, the input-output model for a nonlinear dynamic system has the form 

)r,,r,r,x,,x,x(,)g(x 111 kiiikiiiiii −+−−+ == LLww  (90) 

 

for some k > 0, where ri is the input to the system at time step, i, and ix  is the output. 

Here, both the input and the output are restricted to being scalars. Typically, when 

identifying such a system, the response to a known input is measured at a fixed-
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interval time sequence, �iti ,,1, L= ; that is, the system (90) is to be identified from 

the input-out pairs, �

iii 1}r,y{ = , where the measured output, 

iii nxy +=  (91) 

 

with �ii ,,1,n L= , consists of additive noise. The known input is assumed to be 

noise free. The requirement is to determine the nonlinear function, g(w), in (90). 

 

Interpreting the measurements to be dependent on w, the data set is �

iii 1},y{ =w . 

Although it constitutes a slight abuse of notation, this interpretation here is referred to 

as the state-space interpretation of the data. It has previously been exploited to apply 

Gaussian regression to the task of determining g(w) in (90) (Rasmussen, 1996; 

MacKay, 1998; Williams, 1999; Leith, et al., 2000). A standard Gaussian process 

model, i.e. one based on a single Gaussian process, gw, with explanatory variable w, is 

employed. The prior is conditioned on the data set, �

iii 1},y{ =w , to obtain the posterior, 

the mean of which is interpreted as usual to be the best fit for g(w). 

 

Interpreting the measurements to be dependent on t, the data set is �

iii t 1},y{ = . This 

interpretation here is referred to as the time-series interpretation of the data. In linear 

system identification, it has been exploited for a number of reasons through pre-

filtering the data (see Chapter 14 in Jung, 1999). However, the time-series 

interpretation has not been exploited, other than in an ad hoc manner, when applying 

Gaussian regression to nonlinear dynamic system identification. The purpose of this 

chapter is to construct Gaussian process models, here referred to as SSTS models, 

which have both a state-space aspect and a time-series aspect, and to investigate 

Gaussian regression based on them. Clearly, the state-space interpretation has the 

greater explanatory power. Indeed, the utility of the time-series interpretation is 

strongly dependent on the choice of the input, i.e. on experimental design, and in 

some cases may not provide any added value to the state-space interpretation alone. 

Nevertheless, the SSTS model should treat both interpretations of the data even-

handedly. Furthermore, the explanatory capability of the SSTS model-based Gaussian 

regression should not be markedly less than the explanatory capability of standard 



State-Space Time-Series Gaussian Process Prior Models 

_____________________________________________________________________ 

 192 

Gaussian regression. These considerations must inform the construction of the SSTS 

models. 

 

Dual nature Gaussian process models are developed in §6.2. The dual nature models 

support the interpretation of data in terms of two general explanatory variables, w or 

z, and are more general than the SSTS models in which w is defined in conformity 

with (90) and z is restricted to being a scalar with the data measured for a fixed-

interval sequence of values. The selection of hyperparameter values for the dual 

nature models is discussed in §6.3 and the SSTS models are investigated in §6.4. An 

application based on the SSTS models is illustrated in §6.5, with the introduction of 

dynamic lengthscale algorithm in §6.6. In Sections 6.2, 6.3 and 6.4, it is assumed that, 

in the data sets, the values of the explanatory variables have no additive noise. 

However, only values of yi are available in practice, not values of xi, and altering (90) 

to 

)r,,r,r,y,,y,y(,)g(x 111 kiiikiiiiii −+−−+ == LLww  (92) 

 

invalidates this assumption. In §6.7, the SSTS model is altered to cater for this 

unavailability of values of xi. Finally, in §6.8 some conclusions are drawn.  

 

 

6.2 Dual Cature Data Models 

 

In this section, dual nature Gaussian process models are developed. The dual nature 

models support the interpretation of data in terms of two general explanatory 

variables, w or z, and are more general than the SSTS models in which w is defined in 

conformity with (90) and z is restricted to being a scalar with the data measured for a 

fixed-interval sequence of values. 

 

 

6.2.1 Models with Common Measurement Coise 

 

A model, based on two independent Gaussian processes, for two sets of measurements 

with common measurement noise, Model 1, is defined below. 
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Model 1: Let wf  and zg  be two independent Gaussian Processes with explanatory 

variables w and z, respectively. Suppose � measurements, �

ii
i

1f |},y{ =w , for wf  and 

�� ≤  measurements, �

ii
i

1g |},y{ =z , for zg  are available with additive Gaussian 

measurement noise; that is, i
ii

n+= wfyf  and i
ii

n+= zgyg , where in  and in  are 

Gaussian noise. Furthermore, suppose that the noise on the two sets of measurements 

is common; that is, �i ≤∀ , �i ≤∃k  such that jiji kk ≠⇒≠  and 
i

i nn k= . Let 

��×∈ ΡΡ  be such that its ij-th element is 1, when ij k= , and 0, when ij k≠ , then 

FG NN Ρ= , where T

1F ],,[N �nn L=  and T

1G ],,[N
�

nn L= . Note, I=TΡΡ . It 

follows that TT

GG ]NN[E ΡΡ B=  and BΡ=]NN[E T

FG , where  ]NN[E T

FF=B . Let wf  

and zg  be zero mean and ]FF[E T

F =Λ , where T

1
]f,,f[F

�
ww L= , and 

]GG[E T

G =Λ , where T

1
]g,,g[G

�
z zL= . 

 

Since wf  and zg  are independent, the prior covariance matrix for the combined sets 

of measurements, TT

G

T

F ]YY[ , where  T

f
1

fF ]y,,y[Y
�

L=  and T

g
1

gG ]y,,y[Y
�

L= , 

is 










+Λ

+Λ
=

T

G

T

F

FG ΡΡΡ

Ρ

BB

BB
Q  (93) 

 

Conditioning on the combined data set, the posterior probability distribution for the 

predicted values, corresponding to TT

G

T

F ]YY[ , remains Gaussian. Using Theorem 

6.1 (a), the mean vector is 

[ ]G

1

G

T

F

1

F

1

G

F

G

F1

FGFG

G

F YYX
Y

Y

Y

Y

Ŷ

Ŷ −−−− Λ+Λ







−








=








=








Ρ

Ρ

I
QΛΛΛΛ   

  

and, using Theorem 6.1 (b), the covariance matrix is 

[ ]T1

FG

1

FGFGFGFG Xˆ Ρ
Ρ

I
I −−









=−= ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ Q  (94) 

 

where 







Λ

Λ
=

G

F

FG
0

0
ΛΛΛΛ  and ][X 1

G

T1

F

1 ΡΡ −−− Λ+Λ+= B . 
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Equivalently, the posterior probability distribution for the corresponding estimation 

errors or noise has mean vector and covariance matrix, respectively, 
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Hence, the posterior noise remains common. The structure of the covariance matrix, 

(93), ensures that FŶ  and GŶ  are strongly related in the above manner. 

 

The covariance matrices, FΛ , GΛ  and B, depend on some set of hyperparameters. 

The negative log likelihood of the data with covariance matrix, (93), is 
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When the values of these hyperparameters are obtained by maximising the likelihood 

or equivalently minimising the negative log likelihood of the data, (95) should be 

used. Although the noise on the two sets of measurements is common, FY  and GY , 

together, provide more information than FY  alone, since the values of G do not 

depend on F. 

 

Theorem 6.1: For �� ≤ , where ��×∈ΡB , ��×∈Λ ΡF , ��×∈Λ ΡG , �� ×∈ΡΡ , 

�Ρ∈FY  and �Ρ∈GY , it follows that 
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The proofs for Theorem 6.1 are shown below. 
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It follows immediately from (a) and (b) in Theorem 6.1 that 
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Hence, (c) and (d) follows immediately. (e) is established as follows 
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In addition, (f) is established as follows 
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6.2.2 Models for Common Measurements 

 

In §6.2.1, Model 1 for two sets of measurements with common measurement noise is 

discussed. Model 2 is defined similarly except that the measurements are also 

common, specifically 

YY Ρ== GF Y,Y   

 

Whilst the covariance matrix for the posterior probability distribution with Model 2 

remains unchanged from (92), the mean vector with Model 2 becomes 
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By Theorem 6.1 (c), the posterior mean for GY  is 

[ ] YB
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GGGFG ][Y
~

,Y
~

B
~

ŶŶ −−
+ΛΛ=+ΛΛ== ΡΡ  (97) 

 

and, by Theorem 6.1 (d), the covariance matrix for GY  is 

G

1

GGGG

1T

G ]B
~

[Xˆ Λ+ΛΛ−Λ==Λ −− ΡΡ  (98) 

 

where T11

F

1

G ][B
~

ΡΡ −−− Λ+= B . From (97) and (98), a natural interpretation of 

regression based on Model 2 is possible. Firstly, Y is filtered by applying regression, 

based on a prior model with covariance matrices for the stochastic process and noise, 

FΛ  and B, respectively, to the data, Y, to obtain Y
~

 and B
~

. Secondly, regression, 

based on a prior model with covariance matrices for the stochastic process and noise, 

GΛ  and B
~

, respectively, is applied to the data, Y
~

, to obtain GΛ̂ . 

 

Since FY  and GY  are not independent but FG YY Ρ= , (95) is no longer the likelihood 

of the measurements with Model 2. To obtain the values of the hyperparameters with 

Model 2, the union of the hyperparameter sets for wf , zg  and the noise, the likelihood 

of the data subjected to the constraint, FG YY Ρ= , rather than (95) should be 

maximised. It is determined by constructing Model 3 for the measurements. Model 3 

is based on a single Gaussian process with explanatory variable, w, and the same set 

of hyperparameters as Model 2, such that, when conditioned on the measurements, Y, 
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the posterior mean vector is YB 11X −−  and the covariance matrix is 1X− . In terms of 

modelling the measured data, Model 3 is, by construction, completely equivalent to 

Model 2. The values for the hyperparameters, obtained by maximising the likelihood 

of the measurements for Model 3, are equally applicable to Model 2. 

 

Model 3: Let wh  be a Gaussian process with explanatory variable, w; that is, it has the 

same explanatory variable as wf  in Model 2. Suppose � measurements, �

ii
i

1h |},y{ =w , 

for wh  are available with the same additive Gaussian measurement noise as in 

�

i
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1f |}{y = ; that is, i
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n+= whyh . Let wh  be zero mean and ]HH[E T
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�i ≤∀ . This is always the case, provided ji zz =  whenever 
ji

kk ww = . Further 

suppose that Y=HY , where T

h
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hH ]y,,y[Y
�
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Consider Model 3 with 
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The prior covariance matrix for the measurement set, HY , is ][ H B+Λ . Conditioning 

on the data, the posterior probability distribution for the predicted values 

corresponding to HY  has mean vector and covariance matrix, respectively, 
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As required, 
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Hence, the negative log likelihood of the measurements is 
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When the values of the hyperparameters for Model 2 are obtained by minimising the 

negative log likelihood of the measurements, (99) should be used. By Theorem 6.1 (e) 

and (f), 
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Hence, the negative log likelihood function, (99), differs from the negative log 

likelihood function, (95), by the term 

{ }||ln T

FG ΡΡ Λ+Λ−   

 

In Model 2, the two sets of measurements are common with common noise. 

Furthermore, suppose that the two Gaussian processes are the same with the same 

explanatory variable and the same hyperparameter sets; that is, the hyperparameters 

are the union of the hyperparameter sets for wf  and the noise. In this special case, for 

consistency, the model for the measured data, based on two Gaussian processes, 

should be the same as Model 3, the standard model for the measured data based on a 

single Gaussian process, with the same explanatory variable and the same 

hyperparameter set as Model 2. 

 

Suppose the Gaussian processes, wf  and zg , in Model 2 and their explanatory 

variables are the same, i.e. wwzz f|g == , the measurements for both are the same, 

namely �

iii 1|},y{ =w , and )P(FG Θ=Λ=Λ α , where α is the magnitude hyperparameter 

and the set, Θ, the remaining hyperparameters on which FΛ  depends. The noise also 

remains common. The prior covariance matrix, (93), for Model 2 becomes 
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 (100) 

 

(The hyperparameter dependence of the noise covariance matrix, B, is not shown 

explicitly in (100). However, doing so would make no material difference to the 
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discussion below.) From (99), the negative log likelihood function of the measured 

data is 

{ } [ ] YBYB
-1T )P()2/()P()2/(ln || +Θ++Θ αα  (101) 

 

and, from (94) and (96), the mean vector and covariance matrix of the posterior 

probability distribution for FY  are, respectively, 
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Alternatively, suppose the measurements are modelled by Model 3 with 
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The prior covariance matrix for Model 3, with (103), is ])
~

(P
~~[Q

~
B+Θ= α  and the 

negative log likelihood function of the measured data is 
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and the mean vector and covariance matrix of the posterior probability distribution for 
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Let Mα~  and MΘ
~

 be the values of the hyperparameters that minimise (104), then 

MM αα ~2=  and MM Θ=Θ
~

 minimise (101) and hence, the mean vectors and 

covariance matrices, (102) and (105) are the same, that is, the posterior probability 

distributions are the same. The two models are consistent as required. 

 

In Model 2, the predictions, FŶ  and GŶ , are the same at common points of the 

explanatory variables; that is, from (97), FG ŶŶ Ρ= .  However, Model 2 provides an 

interpretation of the data and predictions in terms of the two explanatory variables, w 

and z. Furthermore, both the predictions and the training depend only on the single 

data set, Y, and, provided the training is appropriate, Model 2 is consistent with 

respect to standard Gaussian regression based on a single Gaussian process. Hence, 

Model 2 has all the attributes required for the dual nature model. Note that, it is based 

on two Gaussian processes rather than one. The selection of the hyperparameters for 
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the dual nature model is discussed in §6.3. An appropriate procedure is proposed that 

ensures preservation of the dual nature of the model and consistency with respect to 

standard Gaussian regression for a broad range of circumstances. 

 

 

6.3 Selection of Hyperparameters 

 

Consider the situation when I=Ρ  and the covariance matrix for the measured values 

for the dual nature model is [ ]B+Λ+Λ −−− 11

G

1

F ][ , where FFF Pa=Λ  and GGG Pa=Λ . 

Suppose that the noise hyperparameters are known and that the hyperparameters for 

GΛ  have been chosen to maximise the likelihood of the measured data using the 

covariance matrix, ][ G B+Λ . Furthermore, suppose that the nonlinear relationship 

underlying the measured data is better explained in terms of the explanatory variable, 

w, than z. For almost all sets of data, the likelihood obtained using ][ G B+Λ  would be 

higher than the likelihood obtained using [ ]B+Λ+Λ −−− 11

G

1

F ][  for any other choice of 

hyperparameters for GΛ  and any choice for FΛ ; that is, the covariance matrix 

][ G B+Λ  would provide the best explanation for the measured data. Consequently, 

under these circumstances, selecting the hyperparameters for the dual nature model, 

by maximising the likelihood of the measured data using the covariance matrix 

[ ]B+Λ+Λ −−− 11

G

1

F ][ , would diminish the role of FΛ  making GF / aa  very large. When 

I≠Ρ  but the size of the data set, ΡY, is not overly reduced in comparison to Y, the 

covariance matrix ][ G B+Λ  may remain the best explanation for the measured data 

and GF / aa  may remain large on selecting the hyperparameters for the dual nature 

model by maximising the likelihood function. 

 

When ∞→Fa , the prediction [ ] YB
11

G

T

FŶ
−−Λ+→ ΡΡI , since 

[ ] [ ] YBYB
11

G

T1

F

111

G

T1

F

11

G

T1

FF ][][][Ŷ
−−−−−−−−−− Λ+Λ+=+Λ+ΛΛ+Λ= ΡΡΡΡΡΡ I  

Partition the data set, Y, into two orthogonal components, 1Y  and 2Y , such that 

21 YY +=Y , where 

YBBYBB ΡΡΡΡΡΡΡΡ 1TT

2

1TT

1 )(Y;])([Y −− =−= I  
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Since 

[ ]
YBBBYBB

YB

ΡΡΡΡΡΡΡΡΡΡ

ΡΡ
1T

GG

1TT1TT

11

G

T

][)(])([ −−−

−−

+ΛΛ+−=

Λ+

I

I
 

It follows that 

2

1T

GG

1TT

2F11F Y][)(Ŷ;YŶ ΡΡΡΡΡΡ −− +ΛΛ== BBB  

Similarly, when ∞→Fa , the prediction YB ΡΡΡΡ 1T

GGFG ][ŶŶ −+ΛΛ→= . 

Because YΡΡ =2Y , it follows from the definition of 2Y  that 

2

1TT Y:)( aYBB ΡΡΡΡ −  and YΡΡ a2Y:  

Similarly, 

2F2

1T

GG

1TT ŶY][:)( aΡΡΡΡΡΡ −− +ΛΛ BBB  

and 

2

1T

GG2F Y][Ŷ: ΡΡΡΡ −+ΛΛ Ba  

Furthermore, since YΡΡ =2Y ,  2FG ŶŶ Ρ= . Hence, the prediction of  2FŶ  from 2Y  

and the prediction of GŶ  from ΡY are equivalent; to be precise, the sets of possible 

prediction pairs, )Ŷ,Y( 2F2  and )Ŷ,Y( G2Ρ , are isomorphic. The orthogonal 

prediction, i.e. the prediction of 1FŶ  from 1Y , simply leaves 1Y  unchanged. In other 

words, when ∞→Fa , only the correlation with respect to w is exploited and not the 

correlation with respect to z. No added utility is derived from the dual nature model in 

comparison to standard Gaussian regression based on wg  alone. 

 

The hyperparameter values need to be chosen such that the dual nature of the model is 

preserved to enable both aspects to be exploited. However, from the preceding 

discussion, it is clear that a more considered approach to choosing the 

hyperparameters, than simply maximising the likelihood of the measured data using 

the covariance matrix [ ]B+Λ+Λ −−− 11

G

1

F ][ , is required. In addition, the context within 

which the dual nature model is being applied, must inform the approach to be used. 

From the applications, from which motivation for the development of the dual nature 

model arises, see §6.1, the context has the following attributes. 
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a. The nonlinear relationship underlying the measured data is better 

explained in terms of the explanatory variable, w, than z. 

b. The benchmark for comparison of the utility of the dual nature model is 

Gaussian regression based on wg  alone. 

c. Typically, though not always, the noise is white Gaussian, i.e. its 

covariance, B, is bI. 

 

Within the above context, consider the following procedure for selecting the 

hyperparameters in the dual nature model of §6.2.2, Model 2. 

 

1. The hyperparameters for GΛ  and B are obtained by maximising the 

likelihood of the subset of data, ΡY, using the covariance matrix, 

][ T

G ΡΡ B+Λ . 

2. The hyperparameters for FΛ  and any hyperparameters for F not obtained in 

step 1 are obtained by maximising the likelihood of the data, Y, using the 

covariance matrix, ][ F B+Λ . 

3. An amplitude hyperparameter a, to rescale 
Fa  and Ga  is obtained by 

maximising, with respect to a, the likelihood of the data, Y, with the 

covariance matrix, [ ]B+Λ+Λ −− -11

G

T1

F ][ ΡΡa . 

 

The rationale for the step 1 determination of the hyperparameters for GΛ  is provided 

by context attributes (a) and (b). The rationale for the step 1 determination of the 

noise hyperparameters and their subsequent use in step 2, is provided by the need for 

a common noise model and context attribute (c). Almost always all the noise 

hyperparameters are obtained in step 1, e.g. when B = bI. The values for the 

amplitude hyperparameters, Ga  and Fa , determined in steps 1 and 2, are not 

necessarily appropriate for the dual nature model, see the discussion in §6.2.2 

concerning the case with FG Λ=Λ . A rescaling hyperparameter, a, such that 

FF aaa →  and GG aaa → , is determined in step 3 to account for the interplay 

between the correlations with respect to w and z. To examine whether steps 1, 2 and 3 
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provide sensible hyperparameter values for the dual nature model over a wide range 

of circumstances, three disparate situations are considered below. 

 

Situation 1: Consider the case in §6.2.2 when the Gaussian processes, wf  and zg  and 

their explanatory variables are the same and Ρ = I, i.e. wwzz f|g ==   and FG Λ=Λ . 

Applying step 1, the hyperparameter values for GΛ  and B are those that would 

pertain for the comparative benchmark, namely, Gaussian regression based on wg  

alone. Applying step 2, the hyperparameter values for FΛ  are identical to those of 

GΛ . Similarly to the discussion in §6.2.2 of the amplitude hyperparameter values, 

applying step 3, the value of a is 2. Hence, in line with context attribute (b), the dual 

nature model exactly matches the comparative benchmark. 

 

 

Figure 87 Projection of the data points along the surface. 

 

Situation 2: Consider the situation that the correlations with respect to explanatory 

variable, w, between members of the data subset, �

iikjj
j

1,f |},y{ ==w , i.e. the subset 

common to both explanatory variables, are essentially zero. The situation is illustrated 

by Figure 87 for the case with both w and z scalar. The members of the common data 

subset are indicated by × and the remaining data with only explanatory variable, w, 

are indicated by ●. The data points, ×, correlate with respect to the explanatory 

variable, z, as indicated by the connecting line. The data points that correlate with 

respect to the explanatory variable, w, to each member of the common data subset 

form disjoint subsets. These correlations are indicated by the short connecting line 

sections. The interplay between the correlations with respect to w and z is, thus, weak. 
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A natural way to exploit both aspects of the correlation in this situation would be the 

following. Firstly, apply Gaussian regression with respect to the explanatory variable, 

w, to the measured data. The prediction is 

YB 1

FF ][Y
~ −+ΛΛ=  (106) 

 

where the hyperparameters for FΛ  and B are obtained by maximising the likelihood 

of the data, Y, using the covariance matrix ][ F B+Λ . The correlation between the 

additive noise components on Y
~

Ρ , the subset of predictions corresponding to the 

common data subset, remains essentially zero; for example, when the noise 

covariance matrix for the measured data is bI=B , the noise covariance for Y
~

Ρ  is 

Ib
~

)][(B
~ T

F

1

FFFG ≈Λ+ΛΛ−Λ= − ΡΡ B . However, its magnitude is reduced. 

Secondly, apply Gaussian regression with respect to the explanatory variable, z, to 

Y
~

Ρ . The prediction is 

[ ] Y
~

B
~

Ŷ
1

GGGG Ρ
−

+ΛΛ=  (107) 

 

where the hyperparameters for GΛ  are obtained by maximising the likelihood of the 

data, Y
~

Ρ , using the covariance matrix ]B
~

[ GG +Λ . With the same hyperparameters, 

the predictions, (106) and (107), and the predictions, (97), for the dual nature model 

would be the same. Given context items (a) and (c), the hyperparameters values for 

ΛF, ΛG and B, obtained as above, would not differ greatly from those obtained by 

steps 1 and 2. Also, due to the interplay between the correlations with respect to w 

and z being minimal here, the value for hyperparameter, a, obtained by step 3, would 

mostly be approximately 1, particularly, when the dimension of ΡBΡT
 is much less 

than the dimension of B. Hence, sensible values for the hyperparameters are obtained 

by steps 1, 2 and 3. Furthermore, in line with context attribute (b), the GŶ  prediction 

in (97) is almost certainly better than the comparative benchmark, since the 

magnitude of the additive noise on Y
~

 is smaller than on Y. 

 

Situation 3: Consider the situation similar to Situation 2 except that the correlations 

with respect to explanatory variable, w, between different members of the measured 

data set are essentially zero. Gaussian regression could be applied as above to obtain 
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the predictions, (106) and (107). When choosing the hyperparameters for ΛF and B by 

maximising the likelihood using the covariance matrix, ][ F B+Λ , the measured data, 

Y, could be interpreted to consist primarily of noise or, alternatively, almost noise 

free. In the former interpretation, the outcome would be low lengthscale 

hyperparameter values for ΛF and high magnitude for the noise whilst, in the latter, 

the outcome would be high lengthscale hyperparameter values for ΛF and low 

magnitude for the noise. Neither outcome is appropriate. Instead, only the correlations 

with respect to explanatory variable, z, should be exploited and that with respect to 

explanatory variable, w, ignored. The prediction for GY  becomes 

[ ] YB ΡΡΡ
1T

GGGŶ
−

+ΛΛ=  (108) 

 

where the hyperparameters for ΛG and B are obtained by maximising the likelihood of 

the data, ΡY, using the covariance matrix, ][ T

G ΡΡ B+Λ . Given context items (a) 

and (c), the hyperparameters values for ΛG and B thereby obtained and those obtained 

by step 1 would be the same. The amplitude hyperparameter value for ΛF, obtained by 

step 2, would mostly be sufficiently high that YYB ≈+ΛΛ= −1

FF ][Y
~

 and 

BBB ≈+ΛΛ= −1

FF ][B
~

. Also, the value for hyperparameter, a, obtained by step 3, 

would be approximately 1 and the GŶ  prediction in (97) is similar to (108). Hence, 

sensible values for the hyperparameters are obtained by steps 1, 2 and 3. Furthermore, 

in line with context attribute (b), the GŶ  prediction in (97) is almost certainly similar 

to the comparative benchmark. 

 

 

6.4 SSTS Models 

 

An SSTS Model is a refinement of the dual nature model in §6.2.2. The explanatory 

variable, w, for the Gaussian process, wf , is scalar and the values of the explanatory 

variable, at which the measurements are made, are a constant interval sequence; that 

is, �

i

�

ii i 11 |}{|}{ == ∆=w . The ij-th elements of the selection matrix, Ρ, are 1, 

when )1)1(( +−= mij , for 1≥m , and 0 elsewhere; that is, with respect to explanatory 
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variable, w, every m-th data point is used. The hyperparameter values are obtained by 

steps 1, 2 and 3 in §6.3. 

 

Context attributes (a), (b) and (c), in §6.3, pertain to the applications that motivate the 

development of the SSTS model defined above, see §6.1. Hence, the rather pragmatic 

adoption of  steps 1, 2 and 3 provides sensible hyperparameter values for a broad 

range of circumstances unlike those values arising from simply maximising the 

likelihood of the measured data using the covariance matrix, [ ]B+Λ+Λ −−− 11

G

1

F ][  as 

discussed in §6.3. Since the ratio, zaa /w , is set by Steps 1 and 2, the dual nature of 

the model is preserved; that is, the SSTS model treats both interpretations of the data 

even-handedly. The time-series aspect of the model enables pre-filtering of the data in 

the time domain, which is to be incorporated into Gaussian regression when applied to 

nonlinear dynamic system identification. Of course, the choice of Gaussian processes 

for the time-series aspect of the SSTS model is determined by the type of pre-filtering 

required. In most cases, the pre-filtering corresponds to the extraction of a component 

of the data in which case the multiple Gaussian process models developed in Chapter 

4 should be used. 
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Figure 88 Time-series plots of original noise-free data and noisy measurement. 

 

Example 6.1: The data set consists of 800 measurements at interval, ∆= 0.01, of the 

scalar explanatory variable w, with additive white Gaussian noise of variance 0.04. 

The noisy measurements and the noise-free data values are plotted against w in Figure 

88. Explanatory variable 2

21 ),( Ρ∈= zzz  and its values for the data set are depicted 

in Figure 89. The noise-free data set is defined by the nonlinear function, 

( ) ( )21 8.0costanh zz . The covariance functions for wf  and zg  are, respectively, 








 −−== 2w
wwwf )ww(

2
exp]f,f[E)w,w( ji

ji
ji

d
aC   

and  








 −−−== )()(
2

1
exp]g,g[E),( T

g jiji
ji

ji DaC zzzzzz zzzz   

 

where },diag{
21

zzz ddD = . The covariance matrix for the noise is B = bI. 
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Figure 89 Plan view of data plot. 

 

Before obtaining the hyperparameter values by steps 1, 2 and 3, the ineffectiveness, as 

discussed in §6.3, of obtaining amplitude hyperparameter values by maximising the 

likelihood of the measured data, Y, using the covariance matrix, [ ]B+Λ+Λ −−− 11

G

1

F ][ , is 

illustrated below. 

 

TABLE V Hyperparameter values for Example 6.1 

m 
wa  wd  za  

1
zd  

2
zd  b ll  

1 (ord=0) 0.1209 22.84    0.0100 1859.72 

1 (ord=0)   0.4034 0.3227 0.2829 0.0101 1748.04 

 

TABLE VI Hyperparameter values for Example 6.1 

m 
wa  wd  za  

1
zd  

2
zd  b ll  

1 (ord=0) 5.646×10
5 22.84 0.4369 0.3227 0.2829 0.0100 1746.74 

5 (ord=4) 1.170×10
5
 22.84 0.4099 0.3073    0.3621 0.0101 1746.35 

10 (ord=9) 69.57 22.84 0.4949 0.2692    0.3585 0.0101 1748.79 

15 (ord=14) 1.710 22.84 0.4844 0.3068    0.3577 0.0101 1744.78 

20 (ord=19) 1.144 22.84 0.4516 0.2117    0.3088 0.0100 1754.06 
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Table VII Hyperparameter values for Example 6.1 

m 
wa  wd  za  

1
zd  

2
zd  b ll  

1 (ord=0) 3.337 22.84 10.64 0.3227 0.2829 0.0103 1763.64 

5 (ord=4) 3.236 22.84 8.921 0.3073 0.3621 0.0103 1762.12 

10 (ord=9) 1.117 22.84 4.575 0.2692    0.3585 0.0102 1752.17 

15 (ord=14) 0.6514 22.84 1.647 0.3068   0.3577 0.0101 1749.72 

20 (ord=19) 0.3490 22.84 2.192 0.2177 0.3088 0.0100 1755.40 

 

Interpreting the data solely in terms of explanatory variable, w, the hyperparameters, 

(aw, dw, b), are obtained by maximising the likelihood of the measured data, Y, using 

the covariance matrix, ][ G B+Λ . The hyperparameter values are listed in TABLE V 

(the first row) together with the corresponding minimum value of the negative log-

likelihood function, ll . The resulting single Gaussian process model is the time-

series model. Interpreting the data solely in terms of explanatory variable, z, the 

hyperparameters, ),,,(
21

bdda zzz , are obtained by maximising the likelihood of the 

measured data, Y, using the covariance matrix, ][ F B+Λ . The hyperparameter values 

are again listed in TABLE V (the second row) together with the corresponding 

minimum value of ll . The resulting single Gaussian process model is the state-space 

model. In agreement with the nonlinear relationship, being by definition better 

explained in terms of the explanatory variable, z, rather than, w, the negative log-

likelihood in the second row of TABLE V is smaller. 

 

For m = 1, 5, 10, 15 and 20, the lengthscale hyperparameter values, ),,(
21w zz ddd , are 

obtained by Steps 1 and 2 but the remaining hyperparameters, ),,( w baa z , are 

obtained by maximising the likelihood of the measured data, Y, using the covariance 

matrix, [ ]B+Λ+Λ −−− 11

G

1

F ][ . The hyperparameter values are listed in TABLE VI 

together with ll , the negative log-likelihood function. For the reasons discussed 

previously, zaa /w  is very large for m = 1, since the covariance matrix, ][ G B+Λ , is 

the better explanation for the data, and remains large until m is large. 

 

For m = 1, 5, 10, 15 and 20, the hyperparameter values, ),,,,,(
21ww bddada zzz , 

obtained by Steps 1, 2 and 3 are listed in Table VII together with ll . By comparing 

the values of  ll  in Table VII to the value in the second row of TABLE V, it can be 
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seen that the SSTS models, for all m, explain the data almost as well as the state-space 

model. 

 

 

Figure 90 Comparison of various prediction errors. 

 

The prediction errors for the time-series model, the full state-space model with m = 1, 

the reduced state-space model with m = 10 and the SSTS model with m = 10 are 

shown in Figure 90 and the corresponding confidence intervals in Figure 91. As 

would be expected the errors for the full state space model with m = 1 are 

considerably smaller than for the time-series model and the confidence interval for the 

former is considerably narrower than the latter. The errors for the reduced state-space 

model with m = 10 are very large and its confidence interval is very broad in 

comparison to both the time-series model and the full state-space model with m = 1.  

However, the errors for the SSTS model with m = 10 and its confidence interval are 

very similar to those of the full state space model with m = 10. Although, the number 

of data points contributing directly to the state-space interpretation has been 

drastically reduced to 80, each point is correlated to those nearby through the time-

series interpretation. Hence, the information from the points omitted from the state-

space interpretation is still available. 
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Figure 91 Comparison of various confidence intervals. 

 

The covariance matrices for the time-series aspect of the SSTS model, being Toeplitz-

like, are highly structured and so amenable to fast algorithms. When applying 

Gaussian regression to nonlinear dynamic system identification, data obtained away 

from equilibrium operating points are very likely to be transitory in nature. Hence, to 

obtain enough information, the data set often consists of a number of separate 

segments. Suitable fast algorithms based on Schur decomposition are investigated in 

Chapter 3. Unfortunately, no equivalent fast algorithms exist for the state-space aspect 

of the SSTS model. 

 

The feasible size, f� , of the data set for a state-space model is considerably smaller, 

typically an order of magnitude smaller, than the feasible size, f� , for a time-series 

model, since fast algorithms based on Schur decomposition exist; that is ff �� << . 

However, when using an SSTS model, the size of the reduced data set for the state-

space aspect might be f�  but the size of the full data set for the time-series aspect 
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might be f� . Gaussian regression using such an SSTS model can be more accurate 

than Gaussian regression using a reduced state-space model based on the f�  state-

space data points; see Example 6.1 in which 80=f�  and 800=f� , such that the 

accuracy is almost identical to Gaussian regression using the full state-space model 

with 800 data points. The extent, to which expanding the data set in this manner, to 

improve the accuracy of the model depends on the nature of the data set, see 

Situations 2 and 3 in §6.3, and so on experimental design. When applying Gaussian 

regression to nonlinear dynamic system identification, in addition to pre-filtering, the 

SSTS models can thus be used to increase the size of the data sets and improve the 

accuracy of the models. 

 

The SSTS model, particularly when combined with the multiple Gaussian process 

models of Chapter 4 and the fast algorithms of Chapter 3, is proposed as the 

appropriate model when applying Gaussian regression to nonlinear dynamic system 

identification. It treats both the state-space and time-series information even-handedly 

to enable pre-filtering of the data and enables larger data sets to be used to increase 

the resolution of the models. 

 

 

6.5 Application of Fast Algorithm 

 

This section explains the vital steps to integrate fast algorithms into the SSTS model. 

Matrix operations that can be exploited using fast algorithms (Leithead and Zhang, 

2005) are highlighted below. 

1. b1−Τ , where ��×∈ΡΤ  is a Toeplitz matrix and 1×∈ �b Ρ  is a vector. 

2. Τ , where |.| is the determinant operator on the Toeplitz matrix, Τ. 

3. T1ΡΡΤ − , where a direct factorisation for 1−Τ  is obtained through the 

use of the generalised Schur algorithm. 

4. T11 ΡΤΡΤ −− , where a direct factorisation for can 11 −− ΤΤ be obtained. 

5. T11 ΡΠΤΡΤ −− , to obtain a direct factorisation for 11 −− ΠΤΤ  where Π 

is a Toeplitz matrix. 
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Following the matrix inversion lemma and matrix symmetry property, the inverse of 

covariance function (93) can be written as 

}}
}
} 122

T

21

21

111

FG

1

1

~

n

�
Q

n�






Φ

Φ




Φ

Φ
== −−

M

M
Q , where 

 

 

( ) 11T12T121

11

−−−−− −+=Φ ffgff QQbQQbQ ΡΡΡΡ  

( ) 1T12T1

12

−−− −−=Φ ΡΡΡ fgf QbQbQ  

( ) T

12

11T12

21 Φ=−−=Φ −−−
ffg QQbQb ΡΡΡ  

( ) 1T12

22

−−−=Φ ΡΡ fg QbQ  

 

such that ( )IbQ f ε++Λ= 1F  and ( )[ ] T

G 1 ΡΡ IbQg ε++Λ= , where B = bI and ε is a 

small scalar term introduced to stabilise the matrix inversion operation. To avoid 

O(�
2
) storage-level demand, large intermediate matrices are never explicitly stored, 

except for 11

22

nn ×∈Φ Ρ , which is obtained using the generalised Schur algorithm. 

 

Remark 6.1: The matrix ( ) 11
1T12

22

nn

fg QbQ
×−− ∈−=Φ ΡΡΡ  is of small size, thus the 

inverse of ( )T12 ΡΡ −− fg QbQ  is done explicitly using any mathematical tool such as 

MATLAB. To obtain Φ22, the matrix ( ) 11T1 nn

fQ
×− ∈ΡΡΡ  is first computed using the 

generalised Schur algorithm. It is possible to obtain a direct factorisation for 1−
fQ , as 

mentioned in Chapter 3.5.2, therefore only a slight modification to the output of the 

result from the Schur algorithm is required as Ρ is a projection matrix. 

 

The calculation of the log-likelihood function requires the formulation of these two 

essential terms, i.e. the log determinant of Q
~

 and W
~~ 1−Q , where ( )[ ]TTT~

YYW Ρ= . 

Using the following matrix property, 

T12loglog
~

log ΡΡ −−+= fgf QbQQQ   
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The term, T12 ΡΡ −− fg QbQ , is easily computed since it is of small size. The term, 

fQ , requires the use of fast algorithms (See Chapter 3 for the procedure to obtain the 

log-determinant of a Toeplitz-like covariance matrix). Therefore, both are easily 

obtained and hence, Q
~

log . 

 

Next, let [ ] W
~~ 1TTT −= QYX . It follows that we have 

[ ] ( ) 












−Φ=−−= −−−−

876*

1

22

11T12
YYYY fffg QbQbQbQY ΡΡΡΡΡΡ  

[ ] ( )
48476876 *

T1

*

111T12T11 YQbQQbQbQbQQX ffffgff ΡΡΡΡΡΡ −−−−−−− −=−−−= YYYY  

 

The vectors, X and Y, are efficiently determined using fast algorithms (terms marked 

with ‘
*
’ requires the use of fast algorithms) and some matrix-vector operations (linear-

algebra). The computation of Y
1−

fQ  is straightforward using either modified Durbin-

Levinson’s algorithm or the modified generalised Schur algorithm. The computation 

of YQ f

T1Ρ−  requires Y to be obtained first. A projection matrix Ρ is then applied to Y 

before computing the inverse matrix operation using fast algorithm. These two 

vectors, X and Y, are stored for later calculations. It follows that the negative log-

likelihood function can be written as 

[ ]{ }TTTT12 ~
loglog

2

1
YXQbQQL fgf W+−+= − ΡΡ   

 

Gradient information is often included in optimisation routines to speed up training 

procedures. As hyperparameters are constrained to be positive scalars, they can be 

modified to take exponential powers, e.g. a = e
α
, b = e

β
 and ied i

γ= , Ki ,...,1=∀ . The 

hyperparameters for the SSTS covariance function are { }kstst ,,,,, γγβααθ = , 

Kk ,...,1=∀  such that subscripts t and s refer to the time-series and state-space 

components, respectively. (Refer to Chapter 2.6.1.1 for the definition of these 

hyperparameters). The gradient is the first order derivative of the log-likelihood 

function with respect to the hyperparameters. The derivatives of the covariance matrix 

are simplified as shown 
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Clearly, the first order derivative of the log-likelihood function can be separated into 

two terms, i.e. ( ) 








∂
∂

= −

i

i

Q
Qtr

θ
θ

~
~ 1D  and ( ) WW

~~
~

~~ 11T −−










∂
∂

=℘ Q
Q

Q
i

i θ
θ . For notation 

simplicity, let 
t

t

Q
P

γ∂
∂

=
~

 and ( )T

,

T

,

,

~
~

ΡΡΡΡ Q
Q

P
ksks

ks γγ ∂
∂

=
∂
∂

= , Kk ,...,1=∀ . 

Simplifying the terms for ( )iθ℘ , we have 

( ) XXt F

TΛ=℘ α  

( ) YYs G

TΛ=℘ α  

( ) ( ){ }XYYYXXb ΡTTT 2++=℘ β  

( ) XPX tt

T=℘ γ  

( ) YPY ksks ,

T

, =℘ γ  

  

The terms for ( )iθD  are obtained in a slightly more complicated way. 

( ) { }
{ } ( )( ){ }

( ) ( )( ){ }
{ } ( ){ } ( ) ( ){ }22

T112

22

T12

F

1

1T12T112

1T12T12

F

1

F11

Φ+−Φ+Λ=

−+−

−+Λ=

ΛΦ=

−−−−

−−−−

−−−−

ΡΡΡΡ

ΡΡΡΡ

ΡΡΡΡ

ffff

fgff

fgff

t

QQtrbbQtrbQtr

QbQQQtrbb

QbQQtrbQtr

tr

ε

ε

αD

 

( ) { }G22ΛΦ= trsαD  
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( ) { } { }( )
( ) ( ){ }[ ] ( )( ){ }

( )( ){ }
( ) { }[ ] ( ){ } ( ){ }22

T12

22

T113

22

1

1T12T12

1T12T1131T121

22

T

211211

2

2

Φ−Φ+Φ+=

−−

−+−+=

Φ+Φ+Φ+Φ=

−−−−

−−−

−−−−−−−

ΡΡΡΡ

ΡΡΡΡ

ΡΡΡΡΡΡ

ΡΡ

ffff

fgf

fgfffgf

QtrbQQtrbtrQtrb

QbQQtrb

QbQQQtrbQbQtrQtrb

trtrbβD

( ) { }
{ } ( )( ){ }
{ } ( ){ }22

T1121

1T12T1121

11

Φ+=

−+=

Φ=

−−−

−−−−−

ΡΡ

ΡΡΡΡ

ftftf

fgftftf

tt

QPQtrbPQtr

QbQQPQtrbPQtr

PtrγD

 

( ) { }ksks Ptr ,22, Φ=γD  

 

Using the generalised Schur algorithm, direct factorisations for 1−
fQ , 11 −−

ff QQ  and 

11 −−
ftf QPQ  are obtained for the computations of ( )T1ΡΡ −

fQ , ( )T11 ΡΡ −−
ff QQ  and 

( )T11 ΡΡ −−
ftf QPQ , respectively (Refer to Chapter 3.6.3 for the choice of augmentation 

matrices and algorithms for these computations). Three augmentation matrices are 

required for the use of the generalised Schur algorithm. 








−

0I

IQ f
, 

( )








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




 ++

00
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01

I

IQ

QIbQ

f

ff ε
, 


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











 +

00

0

0

I

IQ

QPQ

f

ftf

  

 

The Schur complements formulated from these matrices are 1−
fQ , 

( ) 111 1 −−− ++ fff QQbQ ε  and 111 −−− + ftff QPQQ , respectively. Since Ρ is a projection matrix, 

the essential terms for ( )iθ℘  and ( )iθD  are now of computable sizes. The first order 

derivative with respect to hyperparameter, θi, is given by 

( ) ( )ii

i

L
θθ

θ
℘−=

∂
∂

2

1

2

1
D   

 

In Gaussian processes, the posterior joint probability distributions are defined by the 

mean function and covariance function. Given that the posterior is WW 1T

21

~ −Λ= Q , it 

can be simplified as shown 
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where the i
th

 elements of vectors tΛ  and Λz, respectively are [ ]tiy fE  and [ ]ziy gE . 

These operations require only matrix-vector manipulations; hence no fast algorithm is 

necessary. However, the generalised Schur algorithm is employed for the computation 

of the posterior covariances of the SSTS model, 









Λ

Λ








Λ

Λ
−








Λ

Λ
=

ΛΛ−Λ=Λ

−

−

z

t

z

t

z

t Q

Q

0

0~

0

0

0

0

~

1

T

ˆ

ˆ

21

1T

2111

  

 

where 
t̂

Λ  is [ ]ttffE  and ẑΛ  is [ ]zzggE . Although the posteriors are obtainable in 

either time-series domain or state-space domain, it is paramount to compute both of 

them. The next objective is to calculate the standard deviation, ( )Λ= diagσ . Let 

[ ]tttt ffE=Ω , [ ]zzzz ggE=Ω , [ ]tyt fE Y=Ω  and ( )[ ]zyz gE YΡ=Ω , it follows that the 

corresponding outcomes are 

( ) ( )[ ]2

1

11

T

ytytttt diagdiag ΩΦΩ−Ω=σ  

( ) ( )[ ]2

1

22

T

yzyzzzz diagdiag ΩΦΩ−Ω=σ  

 

where [ ]TTT

zt σσσ = . The intermediate matrix operations of σz are of small 

dimension and therefore, can be computed explicitly without the need of fast 

algorithms.  

 

Since the covariance function is of the form (15), σt and σz can be simplified, 

{ } [ ]{ } wffE aeadiagdiag t

ttttt ====Ω α
  

{ } [ ]{ } zaeadiagdiag s

szzzz ====Ω α
ggE  

[ ] [ ]{ } { }
{ } ( ) ( ){ }ytffytytfyt

ytyttt

QQdiagbQdiag

diagdiag

ΩΦΩ+ΩΩ=

ΩΦΩ=Φ
−−− 1

22

T1T21T

11

T

11

T fEfE

ΡΡ

yy
 

 

The matrix, ( )ytfQ Ω−1Ρ , is first computed using the generalised Schur algorithm, with 

the use of the following augmentation matrix, 
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which provides a fast factorisation for the computations of ( )ytfytQ ΩΩ −1T  and 

( )ytfQ Ω−1Ρ . σt is then obtained with a few additional arithmetic steps. 

 

 

6.6 Application of Dynamic Lengthscale 

 

Proper training procedures have often been overlooked. In the case of likelihood 

maximisation, hyperparameters are adapted to maximise the likelihood function. 

However, it may not necessarily be an appropriate approach in some situations, such 

as the SSTS model. In the context of the SSTS Gaussian process model, great 

importance is placed upon proper training to ensure that optimisation is optimal, 

practical and efficient. 

 

Consider that the hyperparameters of the prior model are adapted to maximise the log-

likelihood function. These hyperparameters are denoted at and dt for the time-series 

component, as and Ds for the state-space component, where { }s

p

ss

s ddddiagD ,...,, 21= , 

and b as the noise variance. Assume that data containing m-dimensional input 

explanatory variable, mΡ∈z , with measurement output containing noise, { }�

iii y
1

, =z , is 

sampled at fixed interval. The time-series explanatory variable, Ρ∈t , can effectively 

be any time-series sequence { }�

iii yt
1

, = . Furthermore, in the SSTS model, the time-

series component comprises of the full data and the state-space component holds only 

partial data. 

 

 

6.6.1 Training SSTS Model 

 

To achieve a balance between accuracy and efficiency of the training procedure, yet 

maintaining the posterior joint probability distribution of the combined SSTS 
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Gaussian process prior model, the following method is introduced to train the 

hyperparameters. 

 

Algorithm 6.1 (Modified training algorithm): 

1. Train the hyperparameters { }sss bDa ,,  for the reduced state-space 

component using the squared exponential covariance function (17) in a 

single Gaussian process. 

2. Also, train the time-series hyperparameters { }ttt bda ,,  using the squared 

exponential covariance function, but with time parameter as explanatory 

variable. 

3. Apply Algorithm 6.2 to obtain dts, the dynamic lengthscale 

hyperparameter. 

4. Fix the hyperparameters { }ts,, dDa ss  and train the remaining 

hyperparameters of the compound covariance function. Values of the 

hyperparameters, { }tt ba , , obtained from Step 2 are used as initial values 

for the optimisation routine. 

 

In doing so, the loss of generality is minimal since the state-space hyperparameters 

are fixed, which ensures the surface curvature of the nonlinear space mapping is 

maintained. On the contrary, it is illogical to fix the time-series hyperparameters, 

since the time-series measurements do not have a unique space mapping feature (the 

lengthscale characteristics may vary greatly, unlike the state-space map). 

 

 

6.6.2 Dynamic Lengthscale Algorithm 

 

An algorithm, capable of discriminating between fast-varying and slow-varying 

regions, is introduced here. 

 

Algorithm 6.2 (Dynamic lengthscale algorithm): The algorithm describes the steps to 

obtain appropriate lengthscale hyperparameter for the time-series component in the 

SSTS Gaussian process prior model. 
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1. Train the time-series data set, { }�

iii yt
1

, = , using a single Gaussian 

process with the incorporation of the modified Durbin-Levinson’s 

algorithm (Leithead et al., 2005c), to obtain the lengthscale 

hyperparameter, dts. 

2. Next, consider a modified time-series data, corresponding to the 

reduced state-space dataset, i.e., { }K

kkk yt
1

, = . 

3. Obtain the K datasets as follow: 

a. Use dts to calculate the amount of data required for any 

contribution to the data point at k, i.e. ( ) ( ){ }yyt kk ∆±∆± ,τ , 

where yyk ∆±  are the output measurements corresponding to 

the  input explanatory variable at τ∆±kt . Assume that squared 

exponential covariance function (17) is used throughout the 

employment of SSTS Gaussian process, let 

( ) χ≥






 −− 2ts

2
exp ji tt

d
, where χ is a fraction of the normalised 

probability distribution contributed to the data point at k. 

b. Reformulating the inequality, we have ( ) tsln2 dχτ −≤∆ , 

such that the number of neighbouring data points required is the 

maximum integer value of m∆∆τ , where ∆m is the time-

series sampling interval. 

c. Hence, { } { }[ ]yyyytt kkkk ∆+∆−∆+∆− ,,, ττ  is the new dataset 

at k. 

4. Obtain a list of dynamic lengthscale hyperparameters from training 

these K sub-datasets, i.e., { }K

kkk dddd ,...,, 21=
)

. 

5. The maximum value of d
)

 is chosen. If this value is less than dts, then 

the latter is used; otherwise the former is used to invoke the SSTS 

Gaussian process prior model. 

 

This algorithm may also be seen as segmenting of the time-series dataset. The key to 

this algorithm lies in the imposition of the criterion of χ. 
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Remark 6.2: If { }kk yt ,  is located at the edge of the full time-series dataset, then these 

remaining fewer data points, { } { }[ ]yyyytt kkkk ∆+∆−∆+∆− ,,, ττ , will be used. 

 

Remark 6.3: A typical choice of χ is about 0.1%. Too large value will induce under 

estimation of the noise intensity; too small will result in over smoothing of the data, 

with vital information filtered away. 

 

The dynamic lengthscale algorithm is rather swift and efficient since fast algorithm is 

employed to handle time-series Gaussian processes. With this method, only two 

hyperparameters are adapted to maximise the log-likelihood function. 

 

 

6.6.3 Graphical Representation of Dynamic Lengthscale 

 

To substantiate Algorithm 6.2, a simple mechanism is introduced to justify the 

technique of choosing the maximum hyperparameter value from the list of dynamic 

lengthscales. Two data points, each with distinct level of smoothness, are selected 

from the time-series dataset for comparison; one from a fast-varying region, and the 

other from a slow-varying region. The kernels for these two particular data points are 

evaluated in their respective time-series and state-space domains, i.e. 1T

21

−Λ Q  where 

[ ] BYY += TEQ  and [ ]T

21 fE Yz=Λ  with B = bδij as the noise covariance matrix, 

and fz being the selected data point. 
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Figure 92 Data representing dynamically-varying lengthscale characteristics. This 

particularly toy example does not posses a fixed lengthscale. 

 

An example is chosen to illustrate this mechanism. A 600-point data is arbitrarily-

generated to illustrate its composition of multiple lengthscales. As shown in Figure 

92, the data has a point in the fast-varying region and another in the slow-varying 

region, at i = 504 and i = 350, respectively. Two datasets, i.e. { }�

iii y
1

, =z  and { }�

iii yt
1

, = , 

are available and trained using covariance function (17). The adapted lengthscale 

hyperparameter for the time-series dataset is dts = 8.2321. Using the dynamic 

lengthscale algorithm (Algorithm 6.2), the lengthscale hyperparameter obtained for 

the time-series dataset is ddyn = 13.5665. The smoothing kernels are then computed at 

these two locations. 

 

Figure 93 shows the slow-varying region whereas Figure 94 illustrates the fast-

varying region. For a larger lengthscale hyperparameter value, the width of the kernel 

is narrower; heavier probabilistic weightings are given to neighbouring points than 

those further apart. Both plots in Figure 93 show that the widths of the time-series 

kernels are narrower than that of the state-space kernels at region, i = 350. It means 

the time-series fits, as characterised by the adapted lengthscale hyperparameters, are 
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sufficiently smooth to reproduce the data at the slow-varying region. However, in the 

case of fast-varying region at i = 504, Figure 94a shows that the width of the time-

series kernel being wider than that of the state-space kernel, indicating that the 

smoothing effect is filtering away vital information, i.e. too much averaging is done. 

With the implementation of Algorithm 6.2, Figure 94b demonstrates that the widths of 

both kernels are almost identical. It follows that the averaging is done moderately 

with appropriate lengthscale hyperparameter values for the time-series component, 

ensuring the combined SSTS stochastic process does not trim away important details, 

i.e. under-fit the data. 
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Figure 93 Plots comparing state-space and time-series kernels at slow-varying region. 
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a) Standard approach. The width of the state-space kernel at t = 350 is sufficiently wide 

enough to cover that of the width of the time-series kernel (see arrows). 
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b) Dynamic lengthscale algorithm approach. A larger time-series lengthscale value results 

in a narrower width at t = 350, and therefore narrower than that of the state-space kernel. 
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Figure 94 Plots of state-space and time-series kernels at fast-varying region. 
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a) Standard approach. The width of the time-series kernel is now wider than that of the 

state-space kernel, resulting in sharp corners being trimmed off (see arrows). 
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b) Dynamic lengthscale algorithm approach. With shorter lengthscale for the time-series 

component, the width of its kernel is now similar to that of the state-space kernel. 
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Example 5.1 (Dynamic lengthscale illustration). A simple example is shown here to 

illustrate the improvement from using the dynamic lengthscale algorithm. A nonlinear 

function, ( ) ( ) ( )zzzf 5.1cos2tanh= , with � = 1,600 measurements is chosen to be the 

test data. The data points for the explanatory variable, Ρ∈z , depicted in Figure 95 

are generated from a Gaussian process, sampled at 160Hz. The feature of the data 

points for z is smooth such that it simulates a certain input to a dynamic system. The 

outcome for the explanatory variable is also smooth and is shown in Figure 96. Figure 

97 illustrates the relationship between the outcome f and the explanatory variable z. 

Additive Gaussian white noise n, of variance 0.01, is introduced to the outcome. The 

noisy measurements, Ρ∈y , are shown in Figure 96 and Figure 97. 

 

 

Figure 95 Values of the explanatory variable generated sequentially from a Gaussian process. 
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Figure 96 Original and noisy data on a time-series scale. 

 

 

Figure 97 Original and noisy data illustrated on a state-space domain. 
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Since the purpose of this example is to demonstrate that the dynamic lengthscale 

algorithm is more effective in predictions when using SSTS Gaussian regression, the 

focus is peculiar to the time-series domain of the outcome. As seen in Figure 96, the 

dataset { }�

iii yt
1

, = , Ρ∈t  has the characteristics of dynamically-varying lengthscales. 

Some regions, i.e., between 3.1s and 3.5s, have fast-changing data points, whereas 

other regions, i.e. between 8.6s and 9.6s, have relatively slow-changing features. 

Therefore, the time-series component of the SSTS model does not have a distinctive 

lengthscale. 

 

SSTS Gaussian regressions are applied on the dataset using two different approaches. 

First Approach 

The time-series lengthscale hyperparameter, dts = 19.8, is obtained from 

training the time-series dataset { }�

iii yt
1

, =  using standard Gaussian regression.  

Second Approach 

The time-series lengthscale hyperparameter, ddyn = 32.9, is obtained from the 

dynamic lengthscale algorithm (see Algorithm 6.2). 

 

These two time-series lengthscale hyperparameters are fixed values in the compound 

covariance function during the optimisation routine. The hyperparameters of the state-

space component of the compound covariance function are obtained from standard 

Gaussian regression on the reduced dataset { }m

iii yz
1

, = , where z  and y  are data points 

permuted from z and y by taking into account of every 10
th

 data point, respectively. 

They are as = 0.397 and ds = 2.5 for both cases, and are fixed during the optimisation 

routine. Only hyperparameters at and b are trained to maximise the log-likelihood 

function. The adapted values are at = 0.24 and b = 0.0093 in the first approach, and at 

= 0.13 and b = 0.0093 in the second approach. 
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Figure 98 Prediction errors with confidence intervals of SSTS regressions. 

 

The prediction errors and confidence intervals of the posteriors are illustrated in 

Figure 98. The results from the first and second approaches are indicated by straight 

and dashed lines, respectively. The confidence intervals are quite similar in both 

cases. The prediction errors, however, are rather different. The prediction errors from 

using the first approach are smaller than that of the second approach. Thus, SSTS 

Gaussian regression using dynamic lengthscale algorithm is capable of providing 

more accurate predictions. 

 

 

6.7 SSTS Gaussian Regression on Dataset with Coise on 

Explanatory Variable 

 

This section extends the analysis to application of SSTS Gaussian regression on 

datasets with input noise. 
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6.7.1 Modification in State-space Time-series Model 

 

Following Gaussian regression on nonlinear dynamic systems, this section brings 

forth the next level by investigating the application of SSTS Gaussian process prior 

models. This combined model is used to exploit the presence of time-series 

characteristics where standard Gaussian regression is explicitly impossible when 

encountering large-scale state-space datasets. In the presence of noise on the input 

measurement, the compound covariance matrix for the SSTS Gaussian process is no 

longer of the form (93), but a modified one with an additional noise hyperparameter e 

in the state-space component to represent that input measurement noise, as shown 

here. 

( )( ) 








++

+
=

T

T

ΡΡΡ

Ρ

IebQb

bbIQ
Q

s

t  (109) 

 

In the prior assumption, the noise data is assumed to be the same, so the outcome of 

the time-series measurements has the same noise variance b, where B = bI, as that in 

the state-space representation. With noise present on the explanatory variable, the 

noise variance of state-space component is no longer the same as that in the time-

series component. Hence, it has to be taken into account by compensating with a 

hyperparameter e. Since the explanatory variable of the time-series component does 

not contain noise, no additional hyperparameter is required in the time-series 

component of the compound covariance matrix (109). 

 

Different datasets, including standard Gaussian regression, are investigated in this 

section. 

1. M1 = ( ){ }�

iiii ynx
1

, =+ , state-space dataset with noise present at the 

explanatory variable. 

2. M2 = ( ){ }�

iiii nyx
1

~, =+ , state-space dataset with noise present at the 

outcome. 

3. M3 = ( ) ( ){ }�

iiiii nynx
1

~, =++ , state-space dataset with noise present on 

both input and output measurements. 
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4. M4 = ( ){ }�

iiii nyx
1

~,ˆ
=+ , state-space dataset with noise present on the 

output measurement and with noisy input measurement filtered by 

Gaussian regression. 

5. M5 = ( ){ }�

iiii nyt
1

~, =+ , time-series dataset. 

6. M6 = ( ) ( ){ }�

iiiiii nynxt
1

~,, =++ , with noises present at the explanatory 

variable and the outcome of the SSTS dataset. 

7. M7 = ( ){ }�

iiiii nyxt
1

~,ˆ, =+ , with noise present on the output measurement 

and noisy input measurement filtered by Gaussian regression. 

8. M8 = ( ){ }�

iiiii nyxt
1

~,, =+ , with only noise present on the output 

measurement of the SSTS dataset. 

 

M1 to M5 are datasets using standard Gaussian regression, whereas M6 to M8 are 

applied using SSTS Gaussian processes. The state-space components of the latter 

datasets are of reduced size; that is, every ten consecutive pairs of state-space 

measurements are considered from the full dataset. The time-series component uses 

the full time-series dataset. Standard Gaussian regressions applied on M1 to M5, using 

standard squared exponential covariance function (17), are investigated to ensure that 

the comparison is justifiable. The reduced datasets for M1 to M4 are analysed, i.e. 

321 M
~

,M
~

,M
~

 and 4M
~

. Dynamic lengthscale algorithm, as described in §6.6.2, is 

incorporated in the training procedure of the SSTS model. 

 

For the experiment in this section, the test data is a nonlinear dynamic function, 

( ) ( )iii xxy 5.1cos7.0tanh= , of size � = 600 with the explanatory variable, xi, 

arbitrarily generated such that it is smooth, for i=1,…,�. Gaussian white noise of 

variance 0.0025 is introduced to measurements where noise is perceived. 20 samples 

are generated for these 8 datasets ( 321 M
~

,M
~

,M
~

 and 4M
~

 are further obtained from M1, 

M2, M3 and M4, respectively), each with a different noise data. Note that, with the 

SSTS Gaussian process prior model, predictions can be made in time-series domain, 

state-space domain or both. The hyperparameters are optimised and adapted to 

maximise the log-likelihood function. The results are reflected in the histograms, 

illustrating the cumulative prediction errors for the 20 samples, including each and 
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every data point. The histogram of the prediction errors are shown in Figure 99 and 

Figure 100. 

 

 

Figure 99 Standard Gaussian process prior models on 5 different datasets. The left column 

indicates the result obtained using the entire dataset, whereas the right column uses partially 

reduced datasets. 
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Figure 100 State-space time-series Gaussian process application on various SSTS datasets. 

The left column indicates prediction made on the time-series domain using information from 

the state-space component, whereas the right column illustrates prediction made on the state-

space domain using the time-series information. 
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case where noisy input measurement has been filtered prior to Gaussian regression, 

the result is almost as good as though no noise is present at the input measurement, 

i.e. noise present only at the output measurement. Technically, Gaussian process is 

robust to the location of the noise, i.e. either in the input or output measurement, or 

even both. The absence of bias illustrates that Gaussian process is capable of 

predicting a good fit to the data. 

 

The hyperparameter values from the standard Gaussian regression are tabulated in 

TABLE VIII. Datasets M2 and M4 (as well as corresponding 2M
~

 and 4M
~

) have 

recorded almost identical values. This is likely due to “pre-filtering” of the noise in 

the explanatory variable of the dataset before applying Gaussian process; that is, the 

latter dataset resembles that of the former. Clearly, the values of the noise variance for 

the four datasets and the time-series dataset, M5, are identical. 

 

TABLE VIII Mean hyperparameter values from standard Gaussian regression 

 
Mean values of the hyperparameters  

Dataset a d V 

M1 0.0568 9.9991 0.0009 

1M
~

 0.3312 2.5243 0.0010 

M2 0.5373 1.1146 0.0025 

2M
~

 0.2732 2.1281 0.0025 

M3 0.1425 3.8240 0.0034 

3M
~

 0.2882 2.7862 0.0036 

M4 0.5634 1.0355 0.025 

4M
~

 0.2726 2.1560 0.0025 

M5 0.0415 7.8207 0.0025 

Standard Gaussian regression using the squared exponential covariance function is 

performed on the 20 samples of the 9 datasets. Datasets M1 to M4 and 1M
~

 to 4M
~

 are 

mainly state-space regression, where M5 is purely time-series Gaussian regression. 

 

The second set of histograms, shown in Figure 100, consists of five different cases 

applied on datasets M6, M7 and M8. Two of the datasets, M6 and M7, undergo SSTS 

Gaussian process using both classes of covariance functions, (93) and (109), whereas 

M8 is only applied using covariance function (93). The SSTS Gaussian process allows 

prediction to be made in both time-series and state-space domains. Noticeably, the 

state-space fits for all cases are slightly better than time-series fits. Improvement is 
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observed for dataset M6 with the introduction of an additional noise hyperparameter 

term in covariance function (109), but not for the case of dataset M7, where the noisy 

input measurement has been pre-filtered by Gaussian process. The latter shows little 

or no difference as its value for hyperparameter, e, is found to be close to zero, i.e., 

10
-9

. More detail of the hyperparameter values is tabularised in TABLE IX. 

 

TABLE IX Mean hyperparameter values from SSTS Gaussian regression 

 
Mean values of hyperparameters 

Dataset at as dt ds v e 

M6 0.0225 0.2882 29.1682 2.7862 0.0048 - 

M6
* 

0.0225 0.2882 29.1682 2.7862 0.0048 7.4x10
-4

 

M7 0.0430 0.2726 7.3669 2.1560 0.0024 - 

M7
*
 0.0430 0.2726 7.3669 2.1560 0.0024 3.8x10

-10
 

M8 0.0424 0.2732 7.4567 2.1281 0.0024 - 

Superscript (*) on the dataset denotes that this particular dataset uses the modified 

compound covariance function (109), otherwise the standard compound covariance 

function (93) is used. SSTS Gaussian regressions are performed on the three datasets. 

Hyperparameters obtained from the optimisation procedure are shown here. The 

experiment is repeated using the modified covariance matrix (109) for datasets M6 

and M7. 

 

The mean values of the hyperparameters from the 20 sample datasets are calculated in 

TABLE IX. Only datasets M6 and M7 include an additional hyperparameter term, e, 

for repeating the experiment using compound covariance function (109). Notice that 

the values of the hyperparameters of datasets M7 and M8 are very similar. Once again, 

this is because of the “pre-filtering” technique that is performed on the explanatory 

variable of the noisy dataset before applying SSTS Gaussian regression. Generally, 

the hyperparameter value of the noise variance of dataset M6 (and M6
*
) is higher than 

the rest since the dataset encompassed noises in both explanatory variable and the 

outcome. 

 

However, it is probably better to use the filtered input measurement data before 

applying SSTS Gaussian process prior model. With no necessity to introduce a new 

noise hyperparameter, the combined covariance function (93) is sufficiently justified 

to perform data analysis using SSTS Gaussian process. With comparison to M8, the 

result demonstrates that with pre-filtering, the fit is almost statistically identical to the 

dataset without having any input measurement noise. Pre-filtering the noise (assuming 
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noise is Gaussian) in the explanatory variable reduces the uncertainty of the data 

points for the explanatory variable. The Gaussian process still gives the joint 

probability distribution of the model given the data; therefore it is acceptable to first 

“filter” the explanatory variable data before applying the SSTS Gaussian regression. 

 

 

6.7.2 2D Case 

 

The case of state-space dataset with explanatory variable that is two-dimensional is 

further explored in this section with the nonlinear dynamic test data chosen to be 

( ) ( )iiii xrxy 5.1cos7.0tanh ++= , for i=1,…,�, where the data size is � = 1,000. 

Explanatory variables, { }�

iix
1=  and { }�

iir 1= , of the stochastic process are essentially 

smooth Gaussian process-generated functions; that is, functions obtained using the 

squared-exponential covariance function, (15), with specific hyperparameter values. 

These hyperparameters are a = 0.1 and d = 28.8 for x and a = 0.1 and d = 48 for r, on 

a randomly-generated (using a normal distribution, ( )1,0Ν ) time-series data within 

the range, [ ]10,0∈t . The variance of the noise data is 0.0025. 20 samples of the 8 

datasets (reduced state-space datasets are obtained from M1, M2, M3 and M4), as 

defined in §6.7.1, are obtained, each with different noise sample, and applied using 

standard Gaussian processes and combined SSTS Gaussian processes. In the case 

where data reduction is necessary, every ten consecutive data points are, thus 

considered. The results from the data analysis are plotted in Figure 101 and Figure 

102 in the form of histograms. Again, the conclusions are the same and are coherent 

with those from §6.7.1. 
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Figure 101 Standard Gaussian process prior models on 5 different datasets. The left column 

indicates the result obtained using the entire dataset, whereas the right column uses partially 

reduced datasets. The explanatory variable of the dataset is two-dimensional. 
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Figure 102 State-space time-series Gaussian process application on various SSTS datasets. 

The left column indicates prediction made on the time-series domain using information from 

the state-space component, whereas the right column illustrates prediction made on the state-

space domain using the time-series information. The explanatory variable of the dataset is 

two-dimensional. 

 

 

6.8 Stochastic Derivatives of SSTS 
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Gaussian process prior models. Derivative observations can be predicted in both time-
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6.8.1 Derivative Observations of Combined Gaussian Process 

 

Recently, Solak et al. (2003) demonstrates the capabilities of using Gaussian process 

prior models to achieve derivative observations directly from the empirical model. 

Besides function observations, derivative observations are also vital, particularly in 

identification of nonlinear dynamic systems from experimental data. The derivative 

stochastic processes are defined in Chapter 2.6.1 from equations (11), (12) and (13). 

 

Differentiation is a linear operator, so the derivative of a combined Gaussian process 

remains a Gaussian process. The use of derivative observations in Gaussian processes 

has been described by O’Hagan (1992) and Rasmussen (2003), with some engineering 

applications (Murray-Smith et al., 1999, Leith et al., 2002). In dynamic systems with 

large-scale datasets, the application of a derivative Gaussian process can be catalysed 

by the use of the combined SSTS model. Given that the model consists of two cross-

related components, i.e. the state-space domain and the time-series domain, the 

derivative operations can be performed on any of these domains. The identities (17), 

(18) and (19) are necessary to form the full covariance matrix (93). 

 

The means and covariances for the first order derivatives are formulated in (110) and 

(111), respectively, where Q
~

 is the combined SSTS covariance matrix (93). 

W1

ˆ

~−Λ′ Qzz  (110) 

 

zzzzzz Q ˆ

1

ˆˆˆ

~
Λ′Λ′−Λ ′′ −  (111) 

 

The terms zzˆˆΛ ′′  and zẑΛ′  are defined as 

( )

( )

















Λ
∂∂

∂

Λ
∂∂

∂

=Λ ′′

z

ji

t

ji

zz

zz

tt
2

2

ˆˆ

0

0

 and 
( )

( )















Λ
∂
∂

Λ
∂
∂

=Λ′

z

t

zz

z

t

0

0

ˆ   

 

where Λt and Λz are covariance matrices of the time-series and state-space 

components for the SSTS model, respectively. 
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Not all covariance functions are infinitely differentiable. For example, the Matérn 

class of covariance functions as given in (16) is k-times differentiable if and only if v 

> k. The squared exponential covariance function, on the other hand, is infinitely 

differentiable, which means the Gaussian process has mean square derivative of all 

orders, and therefore is very smooth. It follows that the combined SSTS covariance 

matrix is also infinitely differentiable. 

 

 

6.9 Application to State-space Time-series Model 

 

The combined SSTS Gaussian process prior model is applied to the following large-

scale example. An Intel® Pentium® IV 2.8GHz machine with 512MB RAM is used 

to carry out this experiment. 

 

Let ( ) ( )[ ] ( ) ( )212121 cossinsintanhf zzEzCBzzAz −−=z  be a smooth function, with 

A=0.1, B=3, C=0.8 and E=5, on the domain D containing the rectangular grid, 

{ }22,11 21 ≤≤−≤≤− zz . 6,000 training data points are obtained at a sampling rate of 

10Hz and mapped on the grid with noise intensity of variance 0.01, as shown in 

Figure 103. The test data is generated from the state-space function, nnn crayy +=+1 , 

where a = 0.998 and c = 0.0153. The input explanatory variable is [ ]nn ry=M  

defined as f(M|z1=y,z2=r). Following the training procedure outlined in §6.6.1, the 

SSTS prior model is applied to this example. The time-series component contains the 

full measurement data, whereas the state-space component uses a reduced dataset, 

with samples taken at every 10 measurement, viz. 600 pairs of measurement points 

are used in the state-space component of the combined model for the optimisation 

routine. The hyperparameters adapted from maximising the log-likelihood function 

are at=0.27, dt=1.15, as=0.73 ds,1=2.9, ds,2=5.5 and b=0.0096. This newly constructed 

method is compared to the standard Gaussian regression using only the state-space 

information, with prior covariance function (17). For standardisation purposes, the 

standard Gaussian process for the state-space analysis also uses the reduced 600 pairs 

of dataset. 
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Figure 103 Original space mapping and noisy measurement data. 

 

The total prediction errors based on these two stochastic processes are plotted in 

Figure 104 and Figure 105. In addition, the data points are also depicted in the figures 

by grey ‘x’ markings. Some regions were found to have poorer prediction as shown in 

Figure 104. Figure 105 illustrates that the prediction errors are smaller in most 

regions. The prediction errors from the standard Gaussian process applied on state-

space dataset are observed to be generally larger than those applied using the 

combined SSTS Gaussian process model. The respective two times the standard 

deviations are plotted in Figure 106 and Figure 107. Data points, marked by grey ‘x’, 

are also shown in these figures. Small uncertainties are accumulated towards regions 

with higher measurement data density. The confidence intervals of the combined 

model, illustrated in Figure 107, show a tighter fit of the data. In contrast, the general 

Gaussian process model shows a wider confidence interval, thereby indicating a 

higher uncertainty in the posterior joint probability distribution. 
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Figure 104 Prediction errors from standard Gaussian process model. 

 

 

Figure 105 Prediction errors from the state-space time-series model. 
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Figure 106 Two times the standard deviation from standard Gaussian process. 

 

 

Figure 107 Two times the standard deviation from the state-space time-series model. 
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6.10 Conclusion 

 

Two main issues are identified and addressed in this chapter. Firstly, following 

successful individual identification of time-series and state-space data by Gaussian 

regression, a method to combine both approaches into a single stochastic process is 

presented. Secondly, large-scale data, which is seemingly impossible for Gaussian 

process to be applicable, is now possible with the use of combined SSTS model. 

Without loss of generality, all the measurement data is used in the time-series domain, 

with the reduced dataset applied in the state-space component. 

 

The limitations of Gaussian processes, with several O(�
3
) operations and O(�

2
) 

memory storage requirement, are relieved with the establishment of the modified 

Durbin-Levinson’s algorithm and the generalised Schur algorithm within the 

Gaussian process for time-series data analysis application. This ensures that all O(�
3
) 

operations are now O(k�
2
), where k is very much smaller than �. §6.9 has 

successfully illustrated the identification of nonlinear dynamic dataset with the 

employment of the novel SSTS Gaussian process. 
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Chapter 7 

Conclusion 

“Only two things are infinite, the universe and human stupidity, and I’m 

not sure about the former.” 

- Albert Einstein (1879 – 1955) 

 

 

This thesis discusses a statistical framework for the identification of nonlinear 

dynamic systems (Jung, 1999) within a Bayesian context (Bayes, 1763; Box and Tiao, 

1973). From the many identification techniques available, ranging from sub-space 

identification to unsupervised learning of neural networks, Gaussian regression is 

chosen here for this purpose. Gaussian regression was first proposed several decades 

ago, but is mainly used by statisticians. It was only during the late 1990s that 

Gaussian regression began to be applied to engineering applications (Kocijan et al., 

2003; Leith et al., 2004). More often, it is considered to be an aspect of machine 

learning, subsuming other methods. It is now used in many different fields, including 

statistics, pattern recognition, signal processing, artificial intelligence, data mining 

and neural networks. Nonlinear dynamic systems are challenging to model, 

particularly if the form of the underlying nonlinear relationship is unknown. Attempts 

to model such systems using a non-parametric approach are preferred to avoid any 

bias that could arise from a parametric approach. 
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Chapter 2 provides a detailed explanation of the Gaussian regression. As a stochastic 

process, the Gaussian process is computationally simple since the model is completely 

defined by the mean function and the covariance function. The choice of covariance 

function is influenced by the prior information. For example, if the data is known to 

be periodic, a periodic covariance function can be used for the Gaussian process 

model. Alternatively, the commonly used squared exponential covariance function is 

frequently chosen. The mean function and covariance function depend on a set of 

hyperparameters, whose values during model selection are often obtained either by 

adapting them to maximise the log-likelihood function (Mardia and Marshall, 1984; 

Moller, 1993), or by the Monte Carlo methods (Barry and Pace, 1999; Duane et al., 

1987). There is little to choose between the two methods, although the former is 

preferred for large datasets (Gibbs, 1997). 

 

The identification of nonlinear dynamic systems using Gaussian regression must deal 

with several issues. Since Gaussian regression involves several O(�
3
) operations with 

O(�
2
) memory storage requirement, the computational effort is rather expensive. In 

Chapter 3, modifications to the training procedure for the hyperparameters to speed 

up the optimisation routines (Seeger et al., 2003; Wu et al., 2001; Yoshioka and Ishii, 

2001) are discussed. In addition, some fast and memory efficient algorithms are 

developed to enable large-scale datasets to be handled. The generalised Schur 

algorithm (Chandrasekaran and Sayed, 1996, 1999a, 1999b; Kailath, 1999) is 

implemented in a form that is suitable for Gaussian regression applied to datasets 

(including gaps) that depend on a scalar explanatory variable with fixed interval 

between the measurements. 

 

When the nonlinear relationship underlying data consists of two or more additive 

components with different characteristics, the extraction of these components by 

Gaussian regression may not be effective since the confidence intervals for the 

predictions can be excessively broad. The excessively broad confidence intervals are 

caused by the freedom to add an arbitrary function to one component while 

subtracting it from the other without changing the likelihood of the data. The key to 

minimising the confidence intervals is to remove this freedom. Gaussian regression 

methods to extract the individual components with minimum confidence intervals are 

developed in Chapter 4. Multiple independent Gaussian process models are used. Two 
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different cases are considered, the case, when the components have different 

explanatory variables, and the case, when the components have the same explanatory 

variable. 

 

The algorithms and methods developed in Chapter 3 and 4 are applied to a case study 

in Chapter 5. The data set consists of site measurements of rotor speed, blade pitch 

angle and wind speed for a 1MW commercial wind turbine (Leithead, 1992; Leithead 

et al., 2003a). The data is sampled at 40Hz for a run of 600 seconds, providing 24,000 

data points. The aim is to extract the wind turbine aerodynamics from the data which 

are heavily corrupted with measurement noise. Firstly, as the data are obtained as 

time-series, Gaussian regression with time as the explanatory variable is applied to 

filter the measurements of rotor speed, blade pitch angle and wind speed and to 

predict the rotor acceleration. In each case, the methods based on multiple stochastic 

processes developed in Chapter 4 are used to obtain narrow confidence intervals. The 

fast algorithms developed in Chapter 3 are necessary to handle the large size of the 

data sets. Secondly, Gaussian regression is applied to the predicted rotor acceleration 

with the explanatory variable the filtered rotor speed, blade pitch angle and wind 

speed to extract the wind turbine aerodynamics. As it is only one component of the 

underlying nonlinear relationship, the other being the wind turbine drive-train 

dynamics, the multiple Gaussian processes models developed in Chapter 4 are again 

used. 

 

In Chapter 6, the Gaussian process prior model, to be used when applying Gaussian 

regression to identify nonlinear dynamic systems, is investigated. In this context, the 

data set is typically obtained as a time-series but the underlying nonlinear relationship 

is dependent on some other explanatory variable. Gaussian regression based on a pair 

of independent Gaussian processes that caters for this dual nature of the data is 

proposed. One of the Gaussian processes accounts for the correlation in the data with 

respect to time, the other accounts for the correlation with respect to the explanatory 

variable underlying the nonlinear relationship. The correlation for the former is high 

only for those points that are nearby in the data sequence whilst the correlation for the 

latter is also high for those points widely separated in the data sequence but nearby in 

terms of the explanatory variable underlying the nonlinear relationship. This aspect of 

the dual nature Gaussian process model can be exploited to reduce the size of the data, 
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when considered to depend on the explanatory variable underlying the nonlinear 

relationship, without any significant loss of information: the confidence intervals for 

predictions based on the reduced data are very similar to those for the full data set. 

Consequently, the dual nature Gaussian process models of Chapter 6 in combination 

with the fast and efficient algorithms developed in Chapter 3 enable larger data sets to 

be used when applying Gaussian regression to identify nonlinear dynamic systems.  

Because of the transitory nature of the data when not restricted to being in a 

neighbourhood of an equilibrium operating point, to obtain sufficient data in a region 

in the space of the explanatory variable underlying the nonlinear relationship, the data 

might not consist of a continuous time-series but might contain gaps. However, the 

algorithms of Chapter 3 extend to data with gaps. Furthermore, the dual nature 

Gaussian process model of Chapter 6, since it explicitly includes the time-series 

aspect, enables pre-filtering of the data, particularly, when combined with the multiple 

Gaussian process prior models of Chapter 4. 

 

This thesis lays the foundation for future applications of Gaussian regression to the 

identification of nonlinear dynamic systems. Further work following on from that 

presented here includes the following. 

 

• Modify the dual nature Gaussian process models from Chapter 6 to 

include the multiple Gaussian process models from Chapter 4. These 

modifications only apply to the time-series aspects of the model. Pre-filtering 

of the data can then be undertaken using the multiple Gaussian process 

models. 

• Modify the training and prediction algorithms for the dual nature 

Gaussian process models from Chapter 6 through using the general 

approximation methods developed elsewhere (Leithead and Zhang, 2007; 

Zhang and Leithead, 2007; Quiñonero-Candela and Rasmussen, 2005) to 

develop faster and more efficient algorithms. This modification only applies to 

those aspects related to the explanatory variable underlying the nonlinear 

relationship. It would enable the size of larger data sets to be further increased. 

Apply Gaussian regression, using the dual nature Gaussian process models 

with the enhancements suggested above, to nonlinear dynamic systems 
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identification with realistic data sets and undertake a thorough evaluation of 

the methodology. 

• Develop “grey-box” approaches to nonlinear dynamic system 

identification using Gaussian regression, for example, gain-scheduled models 

(see Leithead et al., 1999). Since this entails the separation of the nonlinear 

component from the linear component, the multiple Gaussian process models 

of Chapter 4 are appropriate. 

 

Although there remains much to do, significant steps towards a practical methodology 

for identifying nonlinear dynamic systems based on Gaussian regression have been 

made in the work reported here. 
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Appendix A 

 

Some useful mathematical formulae are used in the development of the research work 

in this thesis. Several standard operations are repeatedly met when dealing with multi-

variate probability distributions which are tractable analytically. It is perhaps helpful 

by summarising some of these mathematical formulas for easy reference. 

 

 

A.1 Matrix Identities 

Given the matrices, A, B and C, the following mathematical expressions are defined. 

 

 

A.1.1 Determinants of Matrix Expressions 

Assume for the case where A and D are non-singular square matrices, and B and D 

are rectangular matrices of appropriate dimensions, then the following relation for the 

determinant holds; that is 

CBDADBCADA
DC

BA
11det −− −×=−×=

















 

Since the log-determinant is more widely used, it follows that 

CBDADBCADA
DC

BA
11 loglogloglogdetlog −− −+=−+=

















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Another special property of the determinant expression is that 

BCAD
D

A
CBDA

11 −− −×=−  

 

 

A.1.2 Inverse Block Matrix 

Let the invertible matrix be partitioned with A, B, C and D as shown below, such that 

A and D are square matrices, but not necessarily the same size. Then, B and C are 

rectangular matrices of appropriate dimensions. Conversely, the inverse of this 

partitioned matrix can be written as 

( ) ( )
( ) ( ) 












−+−−

−−−=







−−−−−−−−

−−−−−−

11111111

11111
1

BDCBDACDDCBDACD

BDCBDACBDA

DC

BA
 

or 

( ) ( )
( ) ( ) 












−−−

−−−+=







−−−−−

−−−−−−−−−

11111

11111111
1

BCADCABCAD

BCADBACABCADBAA

DC

BA
 

where A is a n1 x n1 matrix and B is a n2 x n2 matrix. 

 

 

A.1.3 Matrix Inversion Lemma 

Also known as the Woodbury, Sherman & Morrison formula (Press et al., 1992), the 

matrix inversion lemma states that 

( ) ( ) 1H11H1111H −−−−−−−
+−=+ ACBACDBAABDCA  

such that A and D are square matrices, assuming all the relevant inverses exists. They 

may not necessarily have the same dimension. C
H
 denotes the complex conjugate 

transpose of the matrix C, provided it is a complex matrix, otherwise it is just a 

transpose operator. 

 

 

A.1.4 Properties of Matrix Derivatives 

Given here are some properties of the derivatives of matrix, X. 

1. 111 −−− 







∂
∂

−=
∂
∂

X
X

XX
θθ
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2. 
















∂
∂

=
∂
∂ −

θθ
X

XX
1log tr  

3. T−=
∂
∂

XXX
θ

 

4. ( ) Itr =
∂
∂

X
θ

 

 

Applying chain rule to derivative operation, if f(x) is a scalar function of x, which 

itself is a scalar, then 

( ) ( ) ( )



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Appendix B 

 

Some important proofs and derivations that are related to Gaussian process prior 

models are given here. For example, the derivation of Hessian functions to improve 

optimisation procedure. 

 

 

Derivation of Hessian Matrix 

 

It follows from (6) that 
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Using the theorem on trace derivative and quadratic products (Golub and Van Loan, 

1996), the equation is simplified to 
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( ) ( )
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Applying inverse-derivative formulation, 
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Maximum Likelihood Estimation 

 

A relationship between linear regression and maximum likelihood estimation (MLE) 

exists and is shown with the explanation below. A first order system is assumed here. 

 

 

Linear Regression as MLE 

 

Consider the dataset ( ){ }�

nnnn rzy
1

,ˆ
=  such that the explanatory representations are 

nnn brazy += ; nnn yy ε+=ˆ  

 

such that noise is represented by ε. Let [ ]T

1
ˆ,...,ˆˆ

�yyY = , [ ]T

1,..., �zzZ = , 

[ ]T

1,..., �rrR =  and [ ]T

1,..., �E εε= . Hence, 

( )bRaZYE −−= ˆ  

 

and E is a Gaussian variable with covariance matrix dI. The likelihood of the data 

given θ = (a,d,b) is 

( ) ( ) ( ) ( ){ }dbRaZYbRaZYdL
�

2ˆˆexp2
T2 −−−−−= −π  
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It follows that the log-likelihood function is 

( ) ( ) ( ) ( ) dbRaZYbRaZYd�LLL −−−−+≈−= ˆˆlnln2
T

 

 

The first order derivative of LL with respect to d is 

( ) ( ) 2
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By equating the derivative to be zero, 
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Thus, with this choice for d, the likelihood of the data becomes 
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It follows immediately that the likelihood is maximised for the values of a and b that 

minimises ( ) ( )bRaZYbRaZY −−−− ˆˆ
T

. Consequently, the linear regression is 

equivalent to maximum likelihood estimation. The solution to the linear regression is 
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with [ ]T

1,..., �yyY = . The covariance matrix for (a,b) is dQ
-1

, where d is the variance 

of the noise. 

 

 

MLE with Input Coise Case 

 

Consider the dataset ( ){ }�

nnnn ryy
11 ,ˆˆ

=+  and suppose the explanatory representation 

nnn brayy +=+1 ; nnn yy ε+=ˆ  
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is sought. Let [ ]T121
ˆ,...,ˆˆ

++ = �yyY  and [ ]T

1,..., �E εε=  such that ( )bRYaYE −−= +
ˆˆ

1Τ , 
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The likelihood of the data given (a,d,b) is 
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Similar to previous case, d can be eliminated to yield the likelihood of the data 
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Hence, the equivalent technique to linear regression is to choose a and b that 

maximise the above likelihood function, L. However, note that analytic solution and 

derivation of the covariance matrix is no longer possible. 

 

It follows that the negative log-likelihood function is 
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with its derivative with respect to θ = {a,b} as 
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where ( )bRYaYE −−==Γ +
ˆˆ

1Τ , and tr(.) is the trace operator of a matrix. 

 

b can also be eliminated from the negative log-likelihood function to improve 

optimisation routine. By equating the derivative of LL with respective to b to be zero, 

( )
RPR

YaYPR
b

1T

1

1T ˆˆ

−
+

− −
=  

 

Substituting the result back into the negative log-likelihood function, 

( ) ( )
( )

( )
( ) 


















 −
−−







 −
−−+= −

+
−

+
−

−
+

−

+ R
RPR

YaYPR
YaYPR

RPR

YaYPR
YaY�PLL

1T

1

1T

1

1

T

1T

1

1T

1

ˆˆ
ˆˆ

ˆˆ
ˆˆlnln  

 

Thus, a simple first order formulation for maximum likelihood estimation can be 

simplified to be dependent on only one parameter, a. 
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Appendix C 

 

Some experimental results during the investigation of the generalised Schur algorithm 

that are incorporated into Gaussian regression are listed here. 

 

 

Experimental Results From the Investigation of Coefficient Factor, µ 

 

The best value for the convergence factor µ is close to that value of noise variance b. 

This is illustrated by some experiments. 

 

Three cases are presented. Firstly, sets of 100 data points are compared with different 

hyperparameter values. Secondly, sets of 100 data points with 4 missing gaps are 

compared with different hyperparameter values. Thirdly, sets of 500 data points are 

presented. The figures shown are in absolute errors, plotted on logarithmic scales. 

Note that the variable v is defined to be noise variance b in the following figures. 
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Case 1: � = 100, data without gap 
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Optimum mu is shifted to >> v

because the covariance matrix is

very sparse, i.e. diagonal covariance
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because the covariance matrix is

very sparse, i.e. diagonal covariance
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Three lengthscale hyperparameters d = {7.8, 5x10
-3

, 7x10
-5

} are illustrated on the 

respective first, second and third rows. The noise variance hyperparameter values, v = 
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0.1 is shown on the first set of figures, v = 8x10
-4

 is shown on the second set of 

figures, and v = 8x10
-7

 shown on the third set of figures. 

 

Clearly, a good choice of values of µ is the value of the noise variance, v, except for 

the case of the top row figures. The lowest absolute error does not correspond to the 

value of µ because that example has a very sparse covariance matrix. That value of µ 

corresponds to the lowest eigenvalue of the covariance matrix; that is, approximately 

1 in this case (since hyperparameter a = 1). 
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Case 2: � = 100, data with 4 missing gaps 
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Figure looks smoother from others

because of huge noise variance and

long length-scale characteristic using

higher rank decomposition.
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Optimum mu is shifted to >> v

because the covariance matrix is

very sparse, i.e. diagonal covariance
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Figure looks smoother from others

because of huge noise variance and

long length-scale characteristic using

higher rank decomposition.
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because the covariance matrix is

very sparse, i.e. diagonal covariance
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Figure looks smoother from others

because of huge noise variance and

long length-scale characteristic using

higher rank decomposition.

 
 

 

Case 2 illustrates the same scenario as in Case 1 but with dataset having 4 missing 

gaps. Three lengthscale hyperparameters d = {7.8, 5x10
-3

, 7x10
-5

} are illustrated on 
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the first, second and third rows, respectively. The noise variance hyperparameter 

values v = 0.1 is shown on the first set of figures, v = 8x10
-4

 is shown on the second 

set of figures and v = 8x10
-7

 on the third set of figures. The result is similar to Case 1; 

that is, the best choice for µ is the noise variance hyperparameter v, except for the top 

row figures, in which the covariance matrix is sparse. Note the third rows; the 

smoothness of the slopes is due to the presence of the huge noise variance and long 

lengthscale characteristics of the datasets. 
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Case 3: � = 500, data without gap 
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Case 3 investigates the case of larger dataset, i.e. data set with 500 data points. 

Focusing only on a particular lengthscale hyperparameter, d = 5x10
-3

, that has a dense 

covariance matrix, three different noise variance hyperparameters are compared. 

Apparently, the best choice for µ remains approximately to be that noise variance 

hyperparameter, v, of the dataset. 

 

 

Cumerical Experimental Results of Function and Optimisation Tests 

 

Below are supporting figures presented for Chapter 3.7. 

 

Table C – I and C – II show the mean relative accuracies of the generalised Schur 

algorithm for various functions. The former is applied on strictly time-series data, 

whereas the latter is applied on time-series data with one missing gap. In these two 

experiments, 100 Gaussian process-generated samples are used for each data size, �, 

{ }1000,...,200,100=∀� . 

 

TABLE C – I Relative errors of functions using Schur algorithm (data without gap) 

 Relative Accuracies 

Functions M M(R) C C(R) 

log|Q| 0.50 x10
-14

 0.27 x10
-14

 0.42 x10
-14 

0.43 x10
-14 

Q
-1

Y 0.53 x10
-12

 0.60 x10
-12

 0.35 x10
-12

 0.40 x10
-12

 

tr(Q
-1

) 0.73 x10
-13 

0.49 x10
-13 

0.36 x10
-13

 0.34 x10
-13

 

Y
T
Q

-1
Y 0.72 x10

-13
 0.46 x10

-13
 0.34 x10

-13
 0.32 x10

-13
 

Y
T
Q

-1
Q

-1
Y 0.14 x10

-12
 0.09 x10

-12
 0.07 x10

-12
 0.06 x10

-12
 

Φ1Q
-1

Y 0.22 x10
-9

 0.22 x10
-9

 0.44 x10
-11

 0.42 x10
-11

 

tr(Q
-1

Φ1) 0.11 x10
-12

 0.12 x10
-12

 0.06 x10
-12

 0.04 x10
-12

 

Y
T
Q

-1
Φ1Q

-1
Y 0.11 x10

-10
 0.11 x10

-10
 0.10 x10

-10
 0.08 x10

-10
 

tr(Q
-1

Q
-1

) 0.02 x10
-8

 0.10 x10
-8

 0.02 x10
-8

 0.01 x10
-8

 

Q
-1

Q
-1

Y 0.04 x10
-8

 0.12 x10
-8

 0.04 x10
-8

 0.06 x10
-8

 

tr(Φ1Q
-1

Φ1Q
-1

) 0.12 x10
-10

 0.02 x10
-10

 0.17 x10
-10

 0.12 x10
-13

 

Φ1Q
-1

Φ1Q
-1

Y 0.54 x10
-11

 0.45 x10
-11

 0.68 x10
-11

 0.47 x10
-11

 

tr(Q
-1

Φ1Q
-1

) 0.77 x10
-10

 0.50 x10
-10

 0.85 x10
-10

 0.42 x10
-10

 

M refers to Schur algorithm programmed in MATLAB script, (R) refers to 

hyperbolic rotation integrated into the Schur algorithm, C refers to Schur algorithm 

compiled in C code. 
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TABLE C – II Relative errors of functions using Schur algorithm (data with one 

missing gap) 

 Relative Accuracies 

Functions M M(R) C C(R) 

log|Q| 0.72 x10
-13

 0.06 x10
-13

 0.41 x10
-13 

0.15 x10
-13 

Q
-1

Y 0.14 x10
-10

 0.02 x10
-10

 0.17 x10
-10

 0.02 x10
-10

 

tr(Q
-1

) 0.58 x10
-12 

0.05 x10
-12 

0.77 x10
-12

 0.13 x10
-12

 

Y
T
Q

-1
Y 0.51 x10

-12
 0.05 x10

-12
 0.79 x10

-12
 0.14 x10

-12
 

Y
T
Q

-1
Q

-1
Y 0.10 x10

-11
 0.01 x10

-11
 0.16 x10

-11
 0.02 x10

-11
 

Φ1Q
-1

Y 0.36 x10
-10

 0.34 x10
-10

 0.39 x10
-10

 0.34 x10
-10

 

tr(Q
-1

Φ1) 0.60 x10
-11

 0.08 x10
-11

 0.62 x10
-11

 0.02 x10
-11

 

Y
T
Q

-1
Φ1Q

-1
Y 0.46 x10

-9
 0.05 x10

-9
 0.71 x10

-9
 0.03 x10

-9
 

tr(Q
-1

Q
-1

) 0.06 x10
-7

 0.01 x10
-7

 0.14 x10
-7

 0.30 x10
-9

 

Q
-1

Q
-1

Y 0.15 x10
-7

 0.03 x10
-7

 0.21 x10
-7

 0.02 x10
-7

 

tr(Φ1Q
-1

Φ1Q
-1

) 0.24 x10
-9

 0.61 x10
-12

 0.07 x10
-9

 0.78 x10
-12

 

Φ1Q
-1

Φ1Q
-1

Y 0.36 x10
-10

 0.16 x10
-10

 0.43 x10
-10

 0.16 x10
-10

 

tr(Q
-1

Φ1Q
-1

) 0.34 x10
-8

 0.02 x10
-8

 0.36 x10
-8

 0.03 x10
-8

 

M refers to Schur algorithm programmed in MATLAB script, (R) refers to 

hyperbolic rotation integrated into the Schur algorithm, C refers to Schur algorithm 

compiled in C code. 

 

The numbers of iterations that the Gaussian process optimisation take to converge for 

the GP Tests (optimisation test) are tabulated in Table C – III and C – IV. The former 

is being applied on time-series data and the latter on time-series data with one missing 

gap. In these two tests, 20 samples are used for each data size, �, 

{ }1000,...,200,100=∀� . 

 

TABLE C – III Iterations (average) on convergence (data without gap) 

Data size Gradient Hessian 

� C C
R
 M M

R
 S C C

R
 M M

R
 S 

100 5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

5.2
 

200 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 

300 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 

400 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 

500 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 

600 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

700 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 

800 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 

900 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 

1,000 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 

C refers to optimisation using Schur algorithm programmed in C code. C
R
 denotes 

the C code includes hyperbolic rotation. M refers to the optimisation programmed in 

MATLAB script. M
R
 denotes that MATLAB script includes hyperbolic rotation. S 

defines the optimisation routine performed using standard MATLAB commands. 
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TABLE C – IV Iterations (average) on convergence (data with one missing gap) 

Data size Gradient Hessian 

� C C
R
 M M

R
 S C C

R
 M M

R
 S 

100 5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

5.9
 

200 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

300 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

400 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 

500 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 

600 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

700 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 

800 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 

900 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 

1,000 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 

C refers to optimisation using Schur algorithm programmed in C code. C
R
 denotes 

the C code includes hyperbolic rotation. M refers to the optimisation programmed in 

MATLAB script. M
R
 denotes that MATLAB script includes hyperbolic rotation. S 

defines the optimisation routine performed using standard MATLAB commands. 
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Appendix D 

 

Linear Analysis 

 

Linear covariance functions have been investigated by several researchers 

(Rasmussen and Williams, 2006). Stochastic processes using linear covariance 

function for multiple Gaussian processes model is discussed in this section. It is 

known that the result from using the standard linear regression model is very similar 

to the least square regression method (Rasmussen and Williams, 2006). 

 

Proposition (Linear Regression Model Using Maximum Likelihood Estimation 

(MLE)). Given that the data is ( ) ε+≈ xfy , where ( ) wxx T=f , such that x is the 

input vector and w is the weighting vector. f is the function value whereas y is the 

observed target value. This is known as the standard linear regression model. It is 

assumed that Gaussian white noise is the difference between the observed target value 

and the true function value as given by the distribution, ( )2,0~ nσε Ν , such that the 

error is simply given by ( )xiii fy −=ε , �i ,...,1=∀ . The model together with the 

noise assumption gives rise to the likelihood of the data. The joint probability 

distribution of the prior is 

( )
( ) 








−−=

2
T

2
22 2

1
exp

2

1
,| wxwx yyp

n

n

n
σπσ
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By substituting 2

nd σ= , it follows that the log-likelihood function is written as 

( )

( ) ( ) ( )d
nn

EE
d

y
dd

n

log
2

2log
22

1

2

1
exp

2

1
log

T

2
T

2

−−−=


















 −−=

π

π
wxΛ

  

 

where ( )wxT−= yE . In the case of linear regression, ( ) ba += xxf , where a and b 

are coefficients of the standard linear model. Thus, the negative log-likelihood 

function simplified to the form 

( ) ( )

( ) ( ) ( )dnyy
d

dnEE
d

log
1

log
1

T

T

+−−−−=

+≈

baba xx

Λ
  

 

It follows that the first order derivative of the negative log-likelihood function is 

( )
d

n
EE

dd
+−=

∂
∂ T

2

1Λ
  

 

Setting the first order derivative to zero, ( )EE
n

d T1
=  and substituting it back to the 

log-likelihood function, 

( )( ) ( )

( ) ( )EEnnnn

EE
n

nEE
EE

n

T

TT

T

loglog

1
log

+−=






+=Λ
  

 

Removing redundant constant and coefficients that do not affect the result of 

maximising the log-likelihood function, a simple formulation for the negative log-

likelihood function (112) is available, with a and b the parameters to be optimised. 

( ) ( )baba −−−−≅ xx yy
TΛ  (112) 

 

Simplification of the Gradient Information 

Gradient information is included in the optimisation routine to minimise the negative 

log-likelihood function (112). The first order derivative information of the negative 

log-likelihood function with respect to the parameters is shown below. 
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1. ( )ba
a

−−−=
∂
∂

xx yT2
Λ

 

2. ( )∑
=

−−−=
∂
∂ �

i

iiy
1

2 ba
b

x
Λ

 

 

Though not necessary, the Hessian information is also provided here. 

1. xx
T

2

2

2=
∂
∂
a

Λ
 

2. �2
2

2

=
∂
∂
b

Λ
 

3. ∑
=

=
∂∂

∂ �

i

i

1

2

2 x
ba

Λ
 

 

The above information is sufficient for the optimisation procedure to be carried out on 

the standard linear regression model. This procedure is also widely known as the 

Maximum Likelihood Estimation (MLE). 

 

Linear Covariance Function 

To apply the non-stationary linear covariance function to the Gaussian process prior 

model, only the definition of that covariance function is required. The prior 

covariance function for the linear component is given in (113), where { } i

D

k

k

ix x≡=1
. 

( ) ∑
=

=
D

k

k

j

k

ikji xxwC
1

, xx  (113) 

 

The hyperparameter, wk, in the covariance function (113) is adapted to maximise the 

log-likelihood function of the Gaussian process. The result from the Gaussian process 

prior model is almost as good as performing the MLE procedure. This is demonstrated 

by the following example. 
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Figure D – 1 Data and predictions using standard linear regression and Gaussian process with 

linear covariance function. 

 

Example (Comparing Linear Least Square Regression and GP Using Linear 

Covariance Function). A simple linear function is given by baxf ii += , where a = 

50.275 and b = 13.507. Additive Gaussian white noise of variance 26.01 is introduced 

to the data of 400 measurements, in the range [ ]5.05.0 ≤≤− x . This is merely a 

simple polynomial function of first degree which can be solved using standard linear 

least square regression technique. The noisy data is shown in Figure D – 1. Standard 

linear least square regression and Gaussian regression are carried out and compared. 

The predictions are also shown in Figure D – 1. 

 

For the case of linear least square regression, the coefficients obtained are a = 50.8 

and b = 13.2. The prediction for the test data is shown by the dash line in the figure. 

In the case of Gaussian regression, the value of the hyperparameter adapted to 

maximise the likelihood function is 31058.2 ×=w . The prediction is shown in the 

figure by the dash-dot line. Despite the huge noise intensity, it can be seen that the 

results of both approaches are quite coherent. 
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The derivative observations can be computed directly from the Gaussian process prior 

model. From the linear covariance function given in (113), the covariance between the 

derivative observations and the measurement data, and the covariance between the 

derivative observations and itself are defined in the following equations, respectively. 

( ) ∑
=

=
D

k

k

ikji xwxC
1

, &x   

 

( ) ∑
=

=
D

k

kji wxxC
1

, &&   

 

These two equations provide the correlation necessary for the full probabilistic 

description of the derivative stochastic process. 

 

Example (cont.). It follows that the derivative observations are predicted using 

Gaussian process prior models. The fit to the derivative is just a constant since a linear 

covariance function is used in the Gaussian process. The constant value of the 

derivative is 50.16, which corresponds closely to the exact value of a = 50.275, 

defining the true gradient of the line. The variance of the posterior, as a result from 

the stochastic process, is also a constant value of 0.7791. Compared to the standard 

linear least square regression, Gaussian regression shows a slightly better prediction. 

 

 

Quadratic Functions 

 

The quadratic covariance function is another example belonging to the class of non-

stationary covariance functions. The joint probability distribution will not be 

discussed since the same analogy can be found in the previous section (on Linear 

Functions). The quadratic covariance function contains the product of the weighting 

coefficient and the explanatory variable. A prior covariance function for a quadratic 

component is written in the form (114), where { } i

D

k

k

ix x≡=1
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The hyperparameter wk of the covariance function (114) is adapted to maximise the 

log-likelihood function of the Gaussian process.  

 

Similar to the linear covariance function, the derivative observation for a quadratic 

form of the Gaussian process can be computed. The covariance between the 

prediction point and the measurement point, and the covariance between the 

prediction point and itself are given by the following equations, respectively. 
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The first and second order derivatives with respect to x
k
 are essential to the 

construction of the derivative observation for the stochastic process. 

 

Example (Gaussian Process Using Quadratic Covariance Function). Given a data of 

261 measurements from the underlying function, 1005.0 2 −= xf , in the range 

[ ]2134 −≤≤− x , a quadratic covariance function is chosen for the Gaussian 

regression. The data points are selected far away from x = 0 because it is of interest to 

examine the performance of the prediction at different set of data points other than the 

training data. The noisy data is shown in Figure D – 2 by grey crosses. The noise in 

the data is additive Gaussian white noise with a variance of 100. In this experiment, 

Gaussian regression using quadratic function is applied on the data. The prediction 

with confidence intervals is shown with straight lines. The original function is 

illustrated by the dashed line and it is observed that the prediction is reasonably good. 
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Figure D – 2 Data, prediction and confidence interval using Gaussian process with quadratic 

covariance function. 

 

The derivative observation of the posterior joint probability distribution is a linear 

function as shown in Figure D – 3. The confidence interval of the posterior is zero at 

the origin and increases linearly as it goes along the positive and negative axes away 

from the origin. 

 

The linear and quadratic covariance functions are widely known as dot product 

covariance functions (Rasmussen and Williams, 2006). The study of the squared 

exponential covariance function and the two examples from the class of non-

stationary covariance functions is particularly interesting. The former is adaptable to 

the prior mean regardless if the prior mean is non-zero. The latter covariance 

functions are more restrictive in their application, particularly having to adhere to the 

prior assumption that the mean has to be zero. 
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Figure D – 3 Derivative prediction and confidence interval using Gaussian process with 

quadratic covariance function. 
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Appendix E 

 

Throughout the thesis, hyperparameters are adapted, conditioned on the data to 

maximise the log-likelihood function in Gaussian process prior models. In some other 

cases, iterative-type issues are also encountered, such as finding the solution to locate 

the zero-crossing problem. 

 

 

MATLAB Optimisation Toolbox 

 

Most of the optimisation scripts written for the research are based on the tools 

provided in MATLAB Optimisation Toolbox (MathWorks, 2003). Particularly, large-

scale optimisation involving trust-region algorithms are used throughout the research. 

Some of the scripts allow users to explicitly supply Hessian information. Two of the 

optimisation functions are highlighted below. 

 

1. fmincon – constrained minimisation function of several variables. 

2. fminunc – unconstrained minimisation function of several variables. 

 

Without user-supplied Hessian information, these functions are able to approximate 

the second order derivative by finite-differencing. 
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Appendix F 

 

Several source codes are programmed throughout the development of Chapter 2 to 

Chapter 6. Due to the massive library of source codes being made, they are stored in a 

Compact Disc-Read Only Memory (CD-ROM) format (at the back of the thesis). The 

source codes are also made available at the following website: 

http://www.hamilton.ie/keith/research.htm. 

 

 

About The Source Codes 

 

The source codes are mainly written in either MATLAB or C (for the use of MEX-C) 

language. All source codes in any distribution are subjected to the following copyright 

license: 

 

© Copyright 2007. Hamilton Institute & University of Strathclyde, Keith �eo. 

All Rights Reserved. 
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Limitation and Liability 

 

I shall not be liable for infringements of third parties rights. In no events, unless 

required by applicable law, shall I be liable for any direct, indirect, incidental, special, 

exemplary, or consequential damages of any character including, without limitation, 

damages for loss of good will, work stoppage, computer failure or malfunction, or any 

and all other damages or losses, even if advised of the possibility of such damage. 

Also, I am under no obligation to maintain, correct, update, change, modify, or 

otherwise support these source codes. 

 

 

Disclaimer 

 

The source codes is provided “AS IS” without warranty of any kind. The functions 

that are contained in the source codes are not warranted to meet users’ requirement or 

that the operation will be uninterrupted or error-free. 
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Appendix G 

 

Some of the machine specifications are listed here. 

 

 

Machine A (Desktop System) 

 

The specifications are as follow. 

Type Description Remarks 

Brand DELL® Computer Corporation  

Model OptiPlex GX280  

Processor Intel® Pentium® IV  

Speed 2.8 Gigahertz (GHz)  

Memory 512 Mega Bytes (MB) DDR2 Ram Double data rate 

Cache L1 – 8kB, L2 – 512kB  

Operating Systems Microsoft® Windows XP Professional,  

SuSE Linux 9.3 Professional 

Dual boot system 

Front Side Bus 800 MHz  

Hard disk 80 GB (7,200 rpm
*
)  

Graphics Integrated Intel® i82915G chip 

onboard 

 

Optical Media CD-RW drive  

Other Features Hyper-threading, MMX, SSE, SSE2  

*
rpm denotes number of revolutions per minute. 
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Machine B (Laptop) 

 

The specification is as follow. 

Type Description Remarks 

Brand DELL® Computer Corporation  

Model Inspiron 5150  

Processor Mobile Intel® Pentium® IV  

Speed 3.06 Giga Hertz (GHz)  

Memory 512 Mega Bytes (MB) DDR2 Ram Double data rate 

Cache L1 – 8kB, L2 – 512kB  

Operating Systems Microsoft® Windows XP Professional,  

SuSE Linux 9.3 Professional 

Dual boot system 

Front Side Bus 533 MHz  

Hard disk 60 GB (5,400 rpm)  

Graphics Nvidia GeForce FX Go5200 Dedicated 64 MB 

Optical Media Combo DVD-CDRW drive  

Other Features Hyper-threading, MMX, SSE, SSE2  

 

 

 



Bibliography 

_____________________________________________________________________ 

285 

Bibliography 

Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. pp. 

84-85, Dover, New York. 

Alexandrov, N., Dennis Jr., J. E., Lewis, R. M. and Torczon, V. (1998). A trust region 

framework for managing the use of approximation models in optimization. In Journal 

on Structural Optimization, vol. 15, pp. 16-23. 

Adler, R. J. (1981). The Geometry of Random Fields. Wiley, Chichester. 

Archambeau, C., Conford, D., Opper, M. and Shawe-Taylor J. (2007). Gaussian 

process approximations of stochastic differential equations. In JMLR Workshop and 

Conference Proceedings 1, pp. 1-16. 

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American 

Mathematical Society, vol. 68, No. 3, pp. 337-404. 

Barry, R. P. and Pace, R. K. (1999). Monte Carlo estimate of the log determinant of 

large sparse matrices. In Linear Algebra and its Applications, vol. 289, pp. 41-54. 

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. 

Philos. Trans. Royal Society London, vol 53, pp. 370-418. 

Berman, Simeon M. (1990). A stochastic model for the distribution of HIV latency 

time based on T4 counts. In Biometrika, vol. 77, pp. 733-741.  

Bernoulli, J. (1713). Ars Conjectandi. Basel: Thurnisiorum. 



Bibliography 

_____________________________________________________________________ 

 286 

Box, G. E. P. and Tiao, G. C. (1973). Bayesian inference in statistical analysis. 

Addison-Wesley. 

Byrd, R. H., Schnabel, R. B. and Shultz, G. A. (1998). Approximate solution of the 

trust region problem by minimization over two-dimensional subspaces. In 

Mathematical Programming, vol. 40, pp. 247-263. 

CATS Benchmark (2004). Time Series Prediction Competition. In International Joint 

Conference on �eural �etworks, 

http://www.cis.hut.fi/~lendasse/competition/competition.html. 

Chandrasekaran S. and Sayed, A. H. (1996). Stabilizing the Generalized Schur 

Algorithm. In SIAM Journal Matrix on Analysis and Applications, vol. 17, No. 4, pp. 

950-983. 

Chandrasekaran S. and Sayed, A. H. (1999a). Stabilized Schur Algorithms. In Fast 

reliable algorithms for matrices with structure, Kailath, T. and Sayed, A. H. (Ed.), pp. 

57-83. 

Chandrasekaran S. and Sayed, A. H. (1999b). Fast Stable Solvers for Structured 

Linear Systems. In Fast reliable algorithms for matrices with structure, Kailath, T. 

and Sayed, A. H. (Ed.), pp. 85-102. 

Conn, A. R., Gould, N. I. M. and Toint, Ph. L. (2000). Trust region methods. In SIAM. 

Philadelphia. 

Cressie, N. A. C. (1993). Statistics for spatial data. Wiley, New York. 

Dennis, J. E. and Schnabel, R. B. (1983). Numerical methods for unconstrained 

optimization and nonlinear equations. In Prentice Hall. Englewood Cliffs, New 

Jersey. 

Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid Monte 

Carlo. Physics Letters B, vol. 195, pp. 216-222. 

Freedman, L. S., Fainberg, V., Kipnis, V., Midthune, D. and Carroll, R. J. (2004). A 

new method for dealing with measurement error in explanatory variables regression 

models. Biometrics, vol. 60 (1), pp. 172-181. 



Bibliography 

_____________________________________________________________________ 

287 

Gibbs, M. N. (1997). Bayesian Gaussian processes for regression and classification. 

Ph.D. thesis. Cambridge University, U.K. 

Gibbs, M. N. and Mackay, D. J. C. (1997). Efficient implementation of Gaussian 

process. In Technical report, Cavendish Laboratory. Cambridge University, U.K. 

Gibbs, M. N. and Mackay, D. J. C. (2000). Variational Gaussian process classifiers. In 

IEEE Transactions on �eural �etworks, vol. 11, pp.1458-1464. 

Girard, A. (2004). Approximate Methods for Propagation of Uncertainty with 

Gaussian Process Models. Ph.D. thesis. University of Glasgow, U. K. 

Girosi, F., Jones, M. and Poggio, T. (1995). Regularization theory and neural 

networks architectures. �eural Computations, vol. 7, No. 2, pp. 219-269. 

Goldberg, P. W., Williams, C. K. I. and Bishop, C. M. (1998). Regression with input-

dependent noise: a Gaussian process treatment. In Advances in �eural Information 

Processing Systems, Jordan, M. I., Kearns, M. J. and Solla S.A. (Ed.), vol. 10, pp. 

493-499, MIT Press, Cambridge. 

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. 3
rd

 edition. The John 

Hopkins University Press, Baltimore and London. 

Grimmett, G. R. and Stirzaker, D. R. (1992). Probability and random processes. 

Oxford University Press, 2
nd

 edition, Oxford, England. 

Jung, L. (1999). System Identification. Theory for the user. Prentice Hall, 2
nd

 edition, 

New Jersey. 

Kailath, T. (1999). Displacement structure and array algorithms. In Fast reliable 

algorithms for matrices with structure, Kailath, T. and Sayed, A. H. (Ed.), pp. 1-56. 

Kocijan, J., Girard, A., Banko, B. and Murray-Smith, R. (2003) Dynamic systems 

identification with Gaussian processes. In 4
th

 MATHMOD Vienna, 4
th

 IMACS 

Symposium on Mathematical Modelling, vol. 2, pp. 776-784. 



Bibliography 

_____________________________________________________________________ 

 288 

Kulhavý, R. and Ivanova, P. (1999). Quo Vadis, Bayesian Identification? In 

International Journal of Adaptive Control and Signal Processing, vol. 13, pp. 469-

485. 

Laplace, P. S. (1812). Théorie analytique des probabilités. Paris: V. Courcier. 

Leith, D. J., Leithead, W. E.  Solak, E. and Murray-Smith, R. (2002). Divide and 

conquer identification using Gaussian process priors. In Proceedings of the 41
st
 IEEE 

Conference on Decision and Control, vol. 11, pp. 624-629. 

Leith, D. J., Heidl, M. and Ringwood, J. V. (2004). Gaussian process prior models for 

electrical load forecasting. In Proceedings of the 8
th

 International Conference on 

Probabilistic Methods Applied to Power Systems, Iowa States University, pp. 112-

117. 

Leith, D. J., Murray-Smith, R., and Leithead, W. E. (2000). Nonlinear structure 

identification: A Gaussian process prior/velocity-based approach. Control 2000, 

Cambridge. 

Leithead, W. E. (1992). Effective wind speed models for simple wind turbine 

simulation. In Proceedings of the British Wind Energy Conference, pp. 321-326. 

Leithead, W. E., Hardan, F. and Leith, D. (2003a). Identification of aerodynamics and 

drive-train dynamics for a variable speed wind turbine. In Proceedings of European 

Wind Energy Conference. Madrid, Spain. 

Leithead, W. E., Leith, D. J., Hardan, F. and Markou, H. (1999). Global gain-

scheduling control for variable speed wind turbines. In Proceedings of the European 

Wind Energy Conference, pp. 853-856. 

Leithead, W. E., Neo, K. S. and Leith, D. J. (2005a). Gaussian regression based on 

models with two stochastic processes. In Proceedings of the 16
th

 IFAC World 

Congress. Prague, Czech Republic. 

Leithead, W. E., Solak, E. and Leith, D. (2003b). Direct identification of nonlinear 

structure using Gaussian process prior models. In Proceedings of European Control 

Conference. Cambridge, U.K. 



Bibliography 

_____________________________________________________________________ 

289 

Leithead, W. E. and Zhang, Y. (2007). O(�
2
)-operation approximation of covariance 

matrix inverse in Gaussian process regression based on quasi-Newton BFGS method. 

In Comms in Statistics – Simulation and Computation, in press. 

Leithead, W. E., Zhang, Y. and Leith, D. J. (2005b). Efficient Gaussian process based 

on BFGS updating and Logdet approximation. In Proceedings of the 16
th

 IFAC World 

Congress. Prague, Czech Republic. 

Leithead, W. E., Zhang, Y. and Leith, D. J. (2005c). Time-series Gaussian process 

regression based on Toeplitz computation of O(�
2
) operations and O(�)-level storage. 

In Proceedings of the 44
th

 IEEE Conference on Decision and Control, 2005 and 2005 

European Control Conference (CDC-ECC), pp. 3711-3716. Seville, Spain. 

Leithead, W. E., Zhang, Y. and Neo, K. S. (2005d). Wind turbine rotor acceleration: 

Identification using Gaussian regression. In Proceedings of the 2
nd

 International 

Conference on Informatics in Control, Automation and Robotics. Barcelona, Spain. 

Lu, J. and Adachi, T. (1989). A new global optimization algorithm using stochastic 

model and its application to electronic circuit design. In IEEE International 

Symposium on Circuits and Systems, vol. 3, pp. 2044-2047. Portland, USA. 

MacKay, D. J .C. (1992). Bayesian interpolation. �eural Computation, 4(3), pp. 415-

447. 

Mackay, D. J. C. (1993). Hyperparameters: Optimize, or integrate out? In Maximum 

Entropy and Bayesian Methods, Heidbreder, G. (Ed.), pp. 43-59, Kluwer Academic 

Publisher. Santa Barbara. 

Mackay, D. J. C. (1997). Probable networks and plausible predictions – A review of 

practical Bayesian methods for supervised neural networks. �etwork: Computation in 

�eural Systems, 6, pp. 469-505. 

Mackay, D. J. C. (1998). Introduction to Gaussian processes. In �eural �etworks and 

Machine Learning, F: Computer and Systems Sciences, Bishop, C. M. (Ed.), pp. 133-

165, Springer. Berlin, Heidelberg. 



Bibliography 

_____________________________________________________________________ 

 290 

Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation for models 

of residual covariance in spatial regression. In Biometrika, vol. 71, pp. 135-146. 

MathWorks, Inc. (2003). Optimization Toolbox User’s Guide, Version 2.3. 

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised 

learning. In �eural �etworks, vol. 6, pp. 525-533. 

Moré, J. J. and Sorensen, D. C. (1983). Computing a trust region step. In SIAM 

Journal of Scientific and Statistical Computing, vol. 4, pp. 553-572. 

Moré, J. J. and Thuente, D. J. (1994). Line search algorithms with guaranteed 

sufficient decrease. In ACM Transactions on Mathematical Software, vol. 20, pp. 286-

307. 

Murray-Smith, R. and Girard, A. (2001). Gaussian process priors with ARMA noise 

models. In Irish Signals and Systems Conference, pp. 147-153. Maynooth, Ireland. 

Murray-Smith, R., Johansen, T. A. and Shorten, R. (1999). On transient dynamics, 

off-equilibrium behaviour and identification in blended multiple model structures. In 

Proceedings of the 5
th

 European Control Conference. Karlsruhe, Germany. 

Murray-Smith, R., Sbarbaro, D., Rasmussen, C. E. and Girard, A. (2003). Adaptive, 

cautious, predictive control with Gaussian process priors. In Proceedings of the IFAC 

on System Identification. Rotterdam. 

Neal, R. M. (1997). Monte Carlo implementation of Gaussian process models for 

Bayesian regression and classification. Technical Report CRG-TR-97-2, Dept. of 

Computer Science, University of Toronto. 

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture �otes in 

Statistics, no. 118, New York, Springer. 

Neo, K. S, Leithead, W. E. and Zhang, Y. (2006). Multi-frequency scale Gaussian 

regression for noisy times-series data. In Proceedings of the 6
th

 bi-ennial UKACC 

Control Conference, International Control Conference 2006. Glasgow, U.K. 



Bibliography 

_____________________________________________________________________ 

291 

Nocedal, J. (1992). Theory of algorithms for unconstrained optimization. In Acta 

�umerica, pp. 199-242. Cambridge University Press, U.K. 

O’Hagan, A. (1978). On curve fitting and optimal design for regression. Journal of 

the Royal Statistical Society B, 40, pp. 1-42. 

O’Hagan, A. (1992). Some Bayesian numerical analysis. Bayesian Statistics 4, 

Bernado, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (Ed.), pp. 345-363. 

Oxford University Press, U.K. 

O’Hagan, A. (1994). Bayesian Inference. Kendall’s Advanced Theory of Statistics. 

Edward Arnold. 

Paciorek, C. J. (2003). �onstationary Gaussian processes for regression and spatial 

modelling. Ph.D. thesis. Department of Statistics, Carnegie Mellon University, 

Pittsburgh Pennsylvania. 

Papoulis, A. (1991). Probability, Random Variables and Stochastic Processes. 

McGraw-Hill. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). 

�umerical Recipes in C. Cambridge University Press, 2
nd

 edition. 

Pugachev, V. S. (1967). Theory of random functions and its application to control 

problems. Pergamon Press. 

Quiñonero-Candela J. and Rasmussen C. E. (2005). A unifying view of sparse 

approximate Gaussian process regression. In Journal of Machine Learning Research, 

vol. 6, Herbrich R. (Ed.), pp. 1939-1959. 

Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for 

non-linear regression. Ph.D. thesis, University of Toronto. 

Rasmussen, C. E. (2003). Gaussian processes to speed up hybrid Monte Carlo for 

expensive Bayesian integrals. Bayesian Statistics 7, Bernado, J. M., Bayarri, M. J., 

Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M. and West, M. (Ed.), pp. 

651-659. Oxford University Press, U.K. 



Bibliography 

_____________________________________________________________________ 

 292 

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for Machine 

Learning. MIT Press, Cambridge. 

Sambu S., Wallat, M., Graepel, T. and Obermayer K. (2000). Gaussian process 

regression: Active data selection and test point rejection. In Proceedings of the IEEE 

International Joint Conference on �eural �etworks, vol. 3, pp. 241-246. 

Sayed, A. H. and Kailath T. (1994). Extended Chandrasekhar Recursions. In IEEE 

Transactions on Automatic Control, vol. 39, No. 3, pp. 619-623. 

Sayed, A. H., Kailath, T. and Lev-Ari, H. (1994). Generalized Chandrasekhar 

Recursions from the Generalized Schur Algorithm. In IEEE Transactions on 

Automatic Control, vol. 39, No. 11, pp. 2265-2269. 

Schwaighofer A. and Tresp, V. (2003). Transductive and inductive methods for 

approximate Gaussian process regression. In Advances in �eural Information 

Processing Systems, vol. 15, Becker, S., Thrun, S. and Obermayer K. (Ed.), pp. 953-

960. Cambridge, Massachusetts, MIT Press. 

Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2003). Bayesian regression and 

classification using mixtures of multiple Gaussian processes. In International Journal 

of Adaptive Control and Signal Processing, vol. 1 17, pp. 149-161. 

Seeger, M. (2000). Skilling techniques for Bayesian analysis. In Technical Report, 

Institute for Adaptive and Neural Computation. University of Edinburgh, U.K. 

Seeger, M., Williams, C. K. I. and Lawrence, N. D. (2003). Fast forward selection to 

speed up sparse Gaussian process regression. In Proceedings of the �inth 

International Workshop on Artificial Intelligence and Statistics, Bishop, C. M. and 

Frey, B. J. (Ed.), Society for Artificial Intelligence and Statistics. 

Skilling, J. (1993). Bayesian numerical analysis. In Physics and Probability, Grandy 

Jr., W. T. and Milonni, P. W. (Ed.). Cambridge University Press, U.K. 

Smola, A. J. and Barlett, P. L. (2001). Sparse greedy Gaussian process regression. In 

Advances in �eural Information Processing Systems, vol. 13, Leen, T. K., Ditterich, 

T. G. and Tresp, V. (Ed.), pp. 619-625. Cambridge, Massachusetts, MIT Press. 



Bibliography 

_____________________________________________________________________ 

293 

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J. and Rasmussen, C. E. 

(2003). Derivative observations in Gaussian process models of dynamic systems. In 

Advances in �eural Information Processing Systems, vol. 15, pp. 1033-1040, MIT 

Press. 

Stein, M. L. (1999). Interpolation of spatial data. Springer-Verlag, New York. 

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale 

optimization. In SIAM Journal on �umerical Analysis, vol. 20, pp. 626-637. 

Stewart, M. (2003). A superfast Toeplitz solver with improved numerical stability. In 

SIAM Journal on Matrix Analysis and Applications, vol. 25, pp. 669-693. 

Vincente, L. N. (1996). A comparison between line searches and trust regions for 

nonlinear optimization. In Investigação Operacional, vol. 16, pp. 173-179. 

Wang, Y. and Krishna, H. (1989). On fast and super fast algorithms for solving block 

Toeplitz systems. In 23
rd

 Asilomar Conference on Signals, Systems and Computers, 

vol. 2, pp. 643-647. 

Williams, C. K. I. (1999). Prediction with Gaussian processes: From linear regression 

to linear prediction and beyond. In Learning in Graphical Models, Jordan, M. I. (Ed.), 

pp. 599-621. 

Williams, C. K. I. and Barber, D. (1998). Bayesian classification with Gaussian 

processes. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

20, pp. 1342-1351. 

Williams, C. K. I and Rasmussen, C. E. (1996). Gaussian processes for regression. In 

Advances in �eural Information Processing Systems 8, Touretzky, D. S., Mozer, M. 

C. and Hasselmo, M. E. (Ed.), MIT Press. 

Wu, Z. Phillips Jr., G. N., Tapia, R. and Zhang, Y. (2001). A fast Newton method for 

entropy maximization in statistical phase estimation. In Acta Crystallographica, vol. 

A57, pp. 681-685. 

Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random 

Functions, vol. 1, Basic Results, Springer Verlag. 



Bibliography 

_____________________________________________________________________ 

 294 

Yoshioka, T. and Ishii, S. (2001). Fast Gaussian process regression using 

representative data. In Proceedings of International Joint Conference on �eural 

�etworks, vol. 11, pp. 132-137. 

Zhang, Y. and Leithead, W. E. (2005). Exploiting Hessian matrix and trust-region 

algorithm in hyperparameter estimation of Gaussian process. In Applied Mathematics 

and Computation, 171, pp. 1264-1281. 

Zhang, Y. and Leithead, W. E. (2007). Approximate implementation of logarithm of 

matrix determinant in Gaussian processes. In Journal of Statistical Computation and 

Simulation, in press. 


