NON-LINEAR DYNAMICS
IDENTIFICATION USING
GAUSSIAN PROCESS PRIOR
MODELS WITHIN A BAYESIAN
CONTEXT

By

Keith Neo Kian Seng

PhD Thesis

Submitted to
National University of Ireland, Maynooth (NUIM)
Department of Electronic Engineering

V|
s

NUI MAYNOOTH
Dilscall na hEiraann Ma Nuad

Hamilton Institute
National University of Ireland, Maynooth
Maynooth, Co. Kildare
Ireland

2008

Research Supervisor: Professor W. E. Leithead

Preface

This dissertation 1s prepared at the Hamilton Institute, National
University of Ireland, Maynooth (NUIM) of Ireland, in partial fulfilment
and conformity with the requirements for the degree of Doctor of
Philosophy (Ph.D.) in Electronic Engineering.

The dissertation describes the work carried out between October 2003
and February 2007, under the supervision of Professor Bill Leithead.
With the exception of Section 3.2.1 and Section 3.5.1, which has been
done in collaboration with Yunong Zhang and where explicit reference is
made to the work of others, this dissertation is the result of my own work.
It has not, nor has any similar dissertation, been submitted for a degree or
any qualification at this or any other university. This length of this
dissertation does not exceed sixty thousand in words.

December 2007

Keith Neo Kian Seng

Abstract

Gaussian process prior models are known to be a powerful non-parametric tool for
stochastic data modelling. It employs the methodology of Bayesian inference in using
evidence or data to modify or refer some prior belief. Within the Bayesian context,
inference can be used for several purposes, such as data analysis, filtering, data
mining, signal processing, pattern recognition and statistics. In spite of the growing
popularity of stochastic data modelling in several areas, such as machine learning and
mathematical physics, it remains generally unexplored within the realm of nonlinear
dynamic systems, where parametric methods are much more mature and more widely
accepted.

This thesis seeks to explore diverse aspects of mathematical modelling of nonlinear
dynamic systems using Gaussian process prior models, a simple yet powerful
stochastic approach to modelling. The focus of the research is on the application of
non-parametric stochastic models to identify nonlinear dynamic systems for
engineering applications, especially where data is inevitably corrupted with
measurement noise. The development of appropriate Gaussian process prior models,
including various choices of classes of covariance functions, is also described in
detail.

Despite its good predictive nature, Gaussian regression is often limited by several
O(N*) operations and O(N?) memory requirements during optimisation and prediction.
Several fast and memory efficient methods, including modification of the log-
likelihood function and hyperparameter initialisation procedure to speed up
computations, are explored. In addition, fast algorithms based on the generalised
Schur algorithm are developed to allow Gaussian process to handle large-scale time-
series datasets.

Models based on multiple independent Gaussian processes are explored in the thesis.
These can be split into two main sections, with common explanatory variable and
with different explanatory variables. The two approaches are based on different
philosophies and theoretical developments. The benefit of having these models is to
allow independent components with unique characteristics to be identified and
extracted from the data.

The above work is applied to a real physical wind turbine data, consisting of 24,000
points of the wind speed, rotor speed and the blade pitch angle measurement data. A
case study is presented to demonstrate the utility of Gaussian regression and
encourage further application to the identification of nonlinear dynamic systems.

Finally, a novel method using a compound covariance matrix to exploit both the time-
series and state-space aspects of the data is developed. This is referred to as the state-
space time-series Gaussian process. The purpose of this approach is to enable
Gaussian regression to be applied on nonlinear dynamic state-space datasets with
large number of data points, within an engineering context.

il

Acknowledgements

Many people have contributed in one way or another to the thesis. The one that makes
a difference has to be Professor Bill Leithead, my supervisor. His constant support,
patience and encouragement are always there. In addition, I sincerely appreciate
Professor Douglas Leith, for accepting me to do my research at Hamilton Institute.
There are several people whom I wish to mention. Stuart put me up at his house for
the first couple of days since my arrival in Glasgow. While in Scotland, it gives me
the opportunity to meet Mary, Sergio and Ilias, whom I have become very good

friends with.

I met Tianji and Dr. Emanuele Ragnoli when I came over to Ireland. In addition, there
is also Parisa, who happens to be my only office “room-mate”, and has to put up with
me at times. I have to give special thanks to Rosemary and Kate for the wonderful

support over the past few years.

In terms of work, I am deeply grateful to Dr. Yunong Zhang for his help, rendering
constructive suggestions, comments and feedback. There is also Dr. Roderick

Murray-Smith who will not hesitate to share his innovative ideas anytime.

I am deeply grateful to my parents for their support and encouragement during my
time abroad. Furthermore, I wish to express my deepest, sincere appreciation to my

wife, Daphne, for having walked through with me.

I feel that I have matured a lot more in terms of personality, mentality, calmness and
awareness during the past few years. I have changed my understandings and views
towards certain things. At the end of the day, I feel that I have benefited a lot and am
glad that I have chosen to walk this path.

il

Table of Contents

Preface i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Tables viii
List of Figures ix
1 Introduction

1
1.1 Background 1
1.2 Outline 3

5

1.3 Achievements

2 Gaussian Process Models

2.1 Brief Introduction

2.3 Gaussian Random Functions

6
6
2.2 Random Variables — Joint, Marginal and Conditional Probability 7
8
2.4 Regression Using Gaussian Process 9

9

2.4.1 Gaussian Process Model

2.4.2 Bayesian Regression 13
2.4.3 Posterior Joint Probability Distribution 14
2.5 Model Selection 17
2.5.1 Likelihood Maximisation 18
2.5.2 Monte Carlo Method 21
2.6 Covariance Functions 23
2.6.1 Stationary Covariance Functions 23
2.6.1.1 Squared Exponential Covariance Function 26
2.6.2 Non-stationary Covariance Functions 28
3 Fast Algorithm Implementation for Gaussian Regression 30
3.1 Computation Issues 30
3.2 Effective Hessian Matrix Exploitation 31
3.2.1 Simplification of Hessian Matrices 32

v

3.2.2 Experimental Result 34

33 Efficient Optimisation by Hyperparameter Reduction 35
3.3.1 Experimental Result 37
3.4 Hyperparameter Initialisation 39
3.5 Efficient, Fast Algorithms for Time-series Gaussian Processes 42
3.5.1 Modified Durbin-Levinson’s Algorithm 44
3.5.2 Modified Generalised Schur Algorithm 45
3.6 Application of Schur Algorithm in Gaussian Processes 52
3.6.1 Fast Factorisation using Vector-level Storage Procedure 53
3.6.2 Matrix Structure and Schur complements 53

3.6.3 Useful Augmentation (Extended) Matrices in Gaussian regression 55

3.6.4 Hessian Information in Optimisation Routine 59
3.6.5 Predictions and Standard Deviations 62
3.6.6 Convergence Factors in Augmentation Matrices 64
3.7 Numerical Experiments 69
3.7.1 Test One (Function Test, Data without Gap) 70
3.7.2 Test Two (Function Test, Data with one Gap) 72
3.7.3 Test Three (GP Test, Data without Gap) 74
3.7.4 Test Four (GP Test, Data with one Gap) 75
3.7.5 Test Five (Durbin-Levinson versus Schur Algorithm) 76
3.7.6 Experimentation Summary 79
3.8 Application of Schur Algorithm on Contest Data 80
3.9 Conclusions 82
Multiple Gaussian Processes 84
4.1 Introduction 84
4.2 Gaussian Regression with Two Stochastic Processes 85
4.3 Multiple Gaussian Processes Models with Different Explanatory
Variables 92
4.3.1 Cause of Excessively Wide Confidence Intervals 92
4.3.2 Freedom of Choice in Two Gaussian Process Model 101

4.3.3 Improved Two GP Model with Different Explanatory Variables 106

4.4 Multiple Gaussian Processes Model with Same Explanatory Variable
112

4.4.1 Improved Two GP Model with Same Explanatory Variables 114
4.4.2 Application of Two Gaussian Processes Model 125

4.4.3 Training Procedures 133

4.4.4 Extension to General Case Prediction 135
4.5 Case Study 139
4.6 Discussion 143

Case Study: Identification of Wind Turbine Dynamics Using

Gaussian Processes 145
5.1 Introduction 145
5.2 Efficient Algorithms Implementation for Time-Series Data 147
5.3 Identification of Wind Turbine Dynamics 147
5.3.1 About the Data 148
5.3.2 Cleaning Up Raw Data (Phase 1) 152
5.3.3 Nonlinear Dynamics Identification (Phase 2) 162
5.3.4 Quadratic Function Relationship with Wind Speed 173
5.3.5 Verification of Model by Numerical Integration 184
54 Conclusion 189

State-Space Time-Series Gaussian Process Prior Models 190

6.1 Introduction 190
6.2 Dual Nature Data Models 192
6.2.1 Models with Common Measurement Noise 192
6.2.2 Models for Common Measurements 197
6.3 Selection of Hyperparameters 201
6.4 SSTS Models 206
6.5 Application of Fast Algorithm 213
6.6 Application of Dynamic Lengthscale 219
6.6.1 Training SSTS Model 219
6.6.2 Dynamic Lengthscale Algorithm 220
6.6.3 Graphical Representation of Dynamic Lengthscale 222
6.7 SSTS Gaussian Regression on Dataset 230
6.7.1 Modification in State-space Time-series 231
6.7.2 2D Case 237
6.8 Stochastic Derivatives of SSTS 239
6.8.1 Derivative Observations of Combined Gaussian Process 240
6.9 Application to State-space Time-series Model 241
6.10 Conclusion 245

Vi

7 Conclusion 246
Appendices 251
Bibliography 285

vii

List of Tables

TABLE I Performance comparison between optimisations user-supplied Hessian and Hessian

APPVOXIIUALION ...ttt et e e et e st ettt e e et e ettt e s st e e eat e e s et e e sbeessb e ettt e s abeetaeensbeeneeesnneannnes 34
TABLE II Performance comparison between optimisations using standard and revised log-likelihood
JUPLCEION ...ttt ettt e st e ae e eae e s e s st e e at e se e b e et e enbeetaeenteeaeeeaeenreenne e 38
TABLE III Performance comparison between optimisations using standard and revised log-likelihood
function on dataset with explanatory variable that is two-dimensional....................ccccccoeeveienciienninnn. 39
TABLE IV Performance (timing) between modified Durbin-Levinson’s algorithm and modified
generalised SChur QIGOFITRAMI..............ccoooiiiiiiieeeee ettt 77
TABLE V Hyperparameter values for Example 6.1ccoccouoiiiiiiiiniiiiiie e 209
TABLE VI Hyperparameter values for EXample 6.1..............c.ccocooioiioiiiiiiiiiiie e 209
Table VII Hyperparameter values for Example 6.1cc.ccoocoioiiiiiiiieiiiiiee e 210
TABLE VIII Mean hyperparameter values from standard Gaussian regressioncc.ocoeveeenn. 235
TABLE IX Mean hyperparameter values from SSTS Gaussian regresSion.................ccovevveeeeceeennenn. 236

viii

List of Figures

Figure 1 History of Bayesian Inference 2
Figure 2 Four samples are drawn from the prior distribution. The dashed lines indicate the two times
standard deviations. 11
Figure 3 Mean prediction (in bold) with two times standard deviations (black). Four samples (grey)
from the posterior are shown as dashed lines. 12
Figure 4 Conditional probability distribution. 16
Figure 5 Data points and prediction with two times standard deviations of the fit from using a set of
hyperparameter values. 20
Figure 6 Data points and prediction with two times standard deviations of the fit from using a different
set of hyperparameter values. 20
Figure 7 Power spectrum of a simple data. 40
Figure 8 Error from the trace operation of ("' ®,07 ®,). 67
Figure 9 Error from the computation of vector (&,0” @,0™'Y). 67
Figure 10 Error from the trace operation of (O ®,0™). 68
Figure 11 Error estimation of the Schur decomposition of P— ®P®" = I'9I". 68
Figure 12 Computation time on function test for data without gap. 71
Figure 13 Computation time on function test for data with gap. 73
Figure 14 Timing (per iteration) of GP training on data without gap. 75
Figure 15 Timing (per iteration) of GP training on data with a missing gap. 76
Figure 16 Time-series data with several missing gaps. 81
Figure 17 Power spectra of the data showing the presence of multiple components. 81
Figure 18 Noisy data (grey), prediction (black) and confidence intervals. 82
Figure 19 Data, prediction and confidence intervals. 88
Figure 20 Data, total prediction and confidence intervals on time-series scale. 90
Figure 21 Prediction and confidence intervals for @. 91
Figure 22 Prediction and confidence intervals for I 91
Figure 23 Total prediction for h(u,. ,V;) and its confidence intervals. 95
Figure 24 Prediction and confidence intervals of extracted @ component with I, having linear
covariance function. 96
Figure 25 Prediction and confidence intervals of extracted I component with I, having linear
covariance function. 97
Figure 26 Prediction for h(W, V) and its confidence intervals. 99
Figure 27 Prediction and confidence intervals of extracted @ component with I, using quadratic
covariance function. 100
Figure 28 Prediction and confidence intervals of extracted I component with I, using quadratic
covariance function. 101
Figure 29 Prediction and confidence intervals of @ after normalisation. 109
Figure 30 Prediction and confidence intervals of I after normalisation. 109
Figure 31 Prediction and confidence intervals of extracted @ component with I, using squared
exponential covariance function. 110
Figure 32 Prediction and confidence intervals of extracted I component with I', using squared
exponential covariance function. 111
Figure 33 Two lengthscale data (xx), prediction (--), error and confidence interval (==). 113
Figure 34 Prediction and confidence intervals of the posterior joint probability distribution. 114
Figure 35 Predictions and confidence intervals of F(z) and G(z) after transformation. 122
Figure 36 Relationship between eigenvalues and variation or lengthscale of eigenvectors. 123
Figure 37 Plots of eigenvalues against indexed points. The posterior for the long lengthscale, F, is
denoted by f; and the posterior for the short lengthscale, G, is denoted by f>. 124
Figure 38 Plots of two sinusoidal functions and sum of the two functions with noise. 126
Figure 39 Plot of optimised revised negative log-likelihood function against lengthscale
hyperparameter. 127
Figure 40 3D plot of revised log-likelihood function against lengthscale and noise variance
hyperparameters. 128
Figure 41 Variable density data, prediction and confidence interval. 131
Figure 42 Prediction and confidence interval with long and short lengthscale components. 131

X

Figure 43 Prediction and confidence interval with long lengthscale and periodical components. 132

Figure 44 Data and long lengthscale prediction with confidence intervals. 139
Figure 45 Power spectrums of the data and predictions of three independent components. 140
Figure 46 Medium lengthscale component with confidence intervals. 141
Figure 47 Short lengthscale component with confidence intervals. 142
Figure 48 Error estimate with confidence intervals. 142
Figure 49 A simple model of the wind turbine dynamics. 149
Figure 50 Wind speed spectrum. 150
Figure 51 Spatial filter implemented for wind speed. 151
Figure 52 Rotor speed spectrum. 151
Figure 53 Pitch angle spectrum. 152
Figure 54 Noisy data of the rotor speed measurement. 154
Figure 55 Rotor speed prediction with confidence intervals and noisy data (grey). 155
Figure 56 Prediction and confidence intervals of the “3p” component. 155
Figure 57 Total error estimate and generator speed prediction with confidence intervals. 156
Figure 58 Prediction of the rotor acceleration with confidence intervals. 157
Figure 59 Raw wind speed data. 159
Figure 60 Extracted long lengthscale component of the wind speed data. 159
Figure 61 Spatially filtered wind speed data. 160
Figure 62 Noisy measurement blade pitch angle data. 161
Figure 63 Extracted long lengthscale component of the blade pitch angle data. 161
Figure 64 Prediction and confidence intervals of aerodynamic component using squared exponential
covariance function. 165
Figure 65 Prediction and confidence intervals of drive-train component using squared exponential
covariance function. 165
Figure 66 Confirmation of the separation of the aerodynamic torque. The Gaussian process is
modelled using squared exponential covariance functions. 166
Figure 67 Prediction and confidence intervals of the aerodynamics component with I, using a linear
covariance function. 167
Figure 68 Prediction and confidence intervals of the drive-train dynamic with I, using a linear
covariance function. 168
Figure 69 Confirmation of the separation of the aerodynamic torque when I, uses a linear covariance
function 169
Figure 70 Prediction and confidence intervals of the aerodynamic component with I, using a
quadratic covariance function. 170
Figure 71 Prediction and confidence intervals of the drive-train aerodynamic component with I, using
a quadratic covariance function. 171
Figure 72 Confirmation of separation of aerodynamic torque when I, uses a quadratic covariance
Sfunction. 172
Figure 73 3D plot of scaled aerodynamic torque as a function of blade pitch angle and scaled wind
speed. 175

Figure 74 Prediction and confidence interval for @(f) with F(v’) using a squared exponential
covariance function. 177

Figure 75 Prediction and confidence interval for F(v'), modelled using a squared exponential
covariance function. 178

Figure 76 Prediction and confidence interval for @(p) with F(v’) using a linear covariance function.

179
Figure 77 Prediction and confidence interval for F(v’), modelled using a linear covariance function.

180
Figure 78 Prediction and confidence interval for @(p) with F(V') using a quadratic covariance
function. 181
Figure 79 Prediction and confidence interval for F(v'), modelled using a quadratic covariance
function. 182
Figure 80 Standard deviations of @(p) . 183
Figure 81 Standard deviations ofr(v'). 183

Figure 82 Predictions of the posterior joint probability distributions for H (a)R A v) and

[@ (. 8)-T()] 185

Figure 83 Plot of the blade pitch angle values against wind speed values. 186
Figure 84 Plot of against OH (v)/@v and OI' (V)/@V wind speed. 187
Figure 85 Approximations of I(v) using numerical integration and prediction of I(v) using Gaussian
process prior models. 187
Figure 86 Confirmation of the separation of aerodynamic torque. 189
Figure 87 Projection of the data points along the surface. 204
Figure 88 Time-series plots of original noise-free data and noisy measurement. 208
Figure 89 Plan view of data plot. 209
Figure 90 Comparison of various prediction errors. 211
Figure 91 Comparison of various confidence intervals. 212
Figure 92 Data representing dynamically-varying lengthscale characteristics. This particularly toy
example does not posses a fixed lengthscale. 223
Figure 93 Plots comparing state-space and time-series kernels at slow-varying region. 225
Figure 94 Plots of state-space and time-series kernels at fast-varying region. 226
Figure 95 Values of the explanatory variable generated sequentially from a Gaussian process. 227
Figure 96 Original and noisy data on a time-series scale. 228
Figure 97 Original and noisy data illustrated on a state-space domain. 228
Figure 98 Prediction errors with confidence intervals of SSTS regressions. 230

Figure 99 Standard Gaussian process prior models on 5 different datasets. The left column indicates
the result obtained using the entire dataset, whereas the right column uses partially reduced datasets.
233
Figure 100 State-space time-series Gaussian process application on various SSTS datasets. The left
column indicates prediction made on the time-series domain using information from the state-space
component, whereas the right column illustrates prediction made on the state-space domain using the
time-series information. 234
Figure 101 Standard Gaussian process prior models on 5 different datasets. The left column indicates
the result obtained using the entire dataset, whereas the right column uses partially reduced datasets.
The explanatory variable of the dataset is two-dimensional. 238
Figure 102 State-space time-series Gaussian process application on various SSTS datasets. The left
column indicates prediction made on the time-series domain using information from the state-space
component, whereas the right column illustrates prediction made on the state-space domain using the

time-series information. The explanatory variable of the dataset is two-dimensional. 239
Figure 103 Original space mapping and noisy measurement data. 242
Figure 104 Prediction errors from standard Gaussian process model. 243
Figure 105 Prediction errors from the state-space time-series model. 243
Figure 106 Two times the standard deviation from standard Gaussian process. 244
Figure 107 Two times the standard deviation from the state-space time-series model. 244

xi

Introduction

Chapter 1

Introduction

1

“Anyone who has never made a mistake has never tried anything new.’

- Albert Einstein (1879 — 1955)

1.1 Background

Data modelling is encountered in several fields of research. When presented with an
unknown set of data obtained from a system, it is of interest to analyse the
measurements (or observations) and identify the system, which can be nonlinear in
many cases. For example, it might be the future shares fluctuation in the stock market
that investors are trying to predict, the dynamics of a wind turbine machine that
engineers are interested in simulating, spam filtering using the Bayesian learning
methodology, or the action-reaction relationship between genes which biologists and
scientists are attempting to identify. With several unknown underlying factors that
remain unclear to investigators, deterministic modelling is usually not preferred.
Alternatively, stochastic modelling which provides a probabilistic description of the
model given the data is a better alternative for modelling stochastic data. The model
can be improved by the incorporation of prior knowledge about the data (system). It
(the model) is represented by the prior beliefs about the system and the information

about the system as provided by the data. This model can then be used to make

Introduction

inferences using the rules of probability theory, within a Bayesian context. Gaussian
process prior model is, therefore, one of the keys to successful implementation of
Bayesian methods in nonlinear dynamic systems. The purpose of using Gaussian
processes is not limited to just a mathematical breakthrough, but is also applicable to

solving real world problems.

It is perhaps of interest to go back in time a little further. The starting point was
Bernoulli’s work (Bernoulli, 1713) on Binomial distributions and the relationship of
uncertainty to probability. Half a century later, Bayes followed up on Bernoulli’s
work and developed a mathematical structure (Bayes, 1763) that was previously
lacking. With that structure, inferences can be made using models belonging to a
distribution. However, this was only applicable to Binomial distribution at that time.
It was not until another 50 years later that Laplace extended Bayes’ theorem to
include all possible distributions (Laplace, 1812). Unfortunately, mathematicians at
that time were not keen on probabilistic modelling, which was often opposed by

objective frequentist views.
Bernoulli (1713) = Binomial Distribution

Bayes (1763) = Mathematical Structure

\ Prior beliefin

Laplace (1812) = Probability

Box and Tiao MacKay (1992) Rasmussen (1996) Gibbs (1999)
(1973) Evidence Maximisation DELVE

Figure 1 History of Bayesian Inference

Since then, Bayesian inference was largely ignored. It was only in recent decades that
interest began to grow, particularly in the area of stochastic modelling (Lu and
Adachi, 1989; Berman, 1990; Archambeau et al., 2007). Based on the work by

Laplace, several works were developed in the late 1990s. Figure 1 presents a visual

Introduction

timeline of the development of Bayesian inference. Beginning in the late 1990s, the
interest in Gaussian processes has grown rapidly, with the aim of using them as
models for regression (Williams and Rasmussen, 1996) and classification (Williams
and Barber, 1998). Despite its growing popularity, dynamic modelling using Gaussian
processes is still considered to be at its infancy (Murray-Smith et al., 1999; Kocijan et
al., 2003). One of the many reasons is because there are several underlying constraints
restricting the use of probabilistic modelling in dynamic systems. Data from nonlinear
dynamic systems have particular features unlike many others. Hence, deterministic
parametric modelling is preferred more within the engineering communities. This
thesis aims to explore the area of identification of nonlinear dynamic systems, and

handling large-scale measurement dataset using Gaussian process prior models.

1.2 OQOutline

The underlying motivation for the work reported in this thesis is the development of
practical Gaussian regression based approaches to the identification of nonlinear
dynamic systems from noisy measurements. Essentially, the question addressed is
“What Gaussian process prior model should be used when applying Gaussian
regression to identifying nonlinear dynamic systems?”. In addition, related

improvements to the Gaussian regression algorithms are developed.

In Chapter 2, the Gaussian process methodology is discussed, starting with the
introduction of Gaussian random functions and joint probability distributions. The
prior model is defined in detail, including the various classes of covariance functions

that are used to parameterise the prior model.

Although Gaussian regression is an effective tool, fast algorithms are required to
overcome the expensive computational demands and requirements. The use of
Hessian information in the optimisation routine to improve convergence, modification
of the log-likelihood function to reduce the number of hyperparameters to be trained

and development of fast algorithms, which are capable of handling large-scale

Introduction

datasets of size up to one million data points and beyond, are all relevant. These

improvements to the algorithms are investigated in Chapter 3.

When the nonlinear relationship underlying measured data consists of two or more
independent components, it may be required to extract one or both of the components.
A Gaussian regression approach to so doing based on multiple Gaussian process
models is proposed. Two cases are considered. In the first case, the independent
components have different explanatory variables. In the second case, the independent

components have same explanatory variable. These are discussed in Chapter 4.

Chapters 3 and 4 present improvements to the Gaussian regression algorithms. A case
study illustrating the concepts and methods developed is presented in Chapter 5. The
data are noisy site measurements for a commercial wind turbine machine, consisting
of rotor speed, blade pitch angle and the nacelle anemometer measurement of wind

speed.

In Chapter 6, the Gaussian process prior model, to be used when applying Gaussian
regression to identify nonlinear dynamic systems, is investigated. In this context, the
data set is typically obtained as a time-series but the underlying nonlinear relationship
is dependent on some explanatory variable other than time. A prior model based on a
pair of independent Gaussian processes that caters for this dual nature of the data is
proposed. The dual nature model of Chapter 6 enables the time-series aspect of the
data to be exploited by pre-filtering, particularly, when combined with the multiple
Gaussian process prior models of Chapter 4. In combination with the fast and efficient

algorithms of Chapter 3, it enables greatly increased data sets to be used.

In Chapter 7, the application of the methods and algorithms developed in the
preceding chapters to nonlinear dynamic system identification is discussed and

conclusions are drawn.

Introduction

1.3 Achievements

This thesis describes the work carried out between October 2003 and February 2007,
under the supervision of Professor Bill Leithead. With the exception of Section 3.2.1
and Section 3.5.1 that were done in collaboration with Yunong Zhang and where
explicit references are made to include the work of others, this thesis is the result of
my own work. Some published works include “Gaussian regression based on models
with two stochastic processes”, presented to IFAC 2005, “Wind turbine rotor
acceleration: identification using Gaussian regression”, published in ICINCO 2005
and “Multi-frequency scale Gaussian regression for noisy time-series data”, which

was submitted to UKACC 2006.

The major achievements of this thesis are the following: fast and efficient algorithms
are developed for a class of Gaussian process prior models; a novel multiple Gaussian
process prior model is developed for extracting and identifying components with
different characteristics; a dual nature Gaussian process prior model for use when
applying Gaussian regression to nonlinear dynamic system identification is

developed.

Gaussian Process Models

Chapter 2

Gaussian Process Models

2.1 Brief Introduction

In this chapter, Gaussian process modelling within a Bayesian context is introduced.
Gaussian process models have some similarities to certain classes of Artificial Neural
Networks (ANNs). The Radial Basis Function (RBF), a specific class of ANNS,
becomes a Gaussian process when the number of nodes in the feature-vector or
weighting tends to infinity. This places Gaussian process modelling very firmly
within the scope of machine learning, though it is more commonly encountered in the
field of statistical research. Early work concerned with Gaussian process models
includes O’Hagan (1978 and 1994), but it did not spark general interest. However,
from the late 1990s, following publications by Mackay (1998) and Williams (1999),
interest quickly grew in the application of Gaussian process models to data analysis

(Gibbs and Mackay, 2000; Sambu et al., 2000; Yoshioka and Ishii, 2001).

Gaussian Process Models

2.2 Random Variables — Joint, Marginal and Conditional

Probability

Gaussian process models and their applications have started to change many
perspectives and challenge many traditional concepts. Before any further discussion
on Gaussian process models, it is appropriate to review marginal probabilities,

conditional probabilities and joint probability distributions.

Consider X=(x1,...,xN), a finite set of continuous random stochastic variables,
X, €P” 1<i< N, and assume that they are described by a joint probability
distribution p(X). Let XA and Xg be two subsets of X such that X, "X, =¢ and

X, UX; =X. It follows that the marginal probability of X, is

p(XA): J‘p(XA’XB)dXB

The discrete case of the marginal probability of X, is obtained by replacing the
integral with a sum. If the set X, contains more than one variable, then the marginal
probability itself is a joint probability. The joint distribution for X is equal to the
product of the marginals provided that X, and Xp are independent. However, it is

always assumed in this thesis that the variables are not necessarily independent.

The conditional probability distribution of X, given Xp is defined as

plx, 1%,) = 2%

p(XB)

for p(Xg) > 0, where p(Xp) is known as the normalising probability. If X and Xp are
independent, then the marginal probability p(X4) and the conditional probability

p(XA | XB) are equal.

Given the conditional probabilities p(X A |XB) and p(XB |XA), it follows from

Bayes’ theorem that

(X, 1X,)= p(X,)p(X; 1X,)

p(XB)

Gaussian Process Models

It is easy to use the above theorem and formulations to perform further conditioning

on other variables.

2.3 Gaussian Random Functions

The Gaussian function is one of the simplest of all possible random functions. Its
random nature is fully characterised by its mean function and covariance function
(Pugachev, 1967; Papoulis, 1991). Depending on the explanatory variable of the
Gaussian random functions, it is usually known as a Gaussian stochastic process if the
argument is time domain; or a Gaussian random field if it represents a state belonging

to some space.

Consider the following stochastic field, f{z), Vzc< P”, with mean function,

m(z)=E[f (Z)] as z varies, and covariance function,

C(z,2') = cov[f(z).£(z')] = E[f (z)f (z')] - m(z)m(z') as z and 2’ vary.

The stochastic Gaussian process f(z) can be denoted by

/(2)~T(m(z). C(z.2'))

A Gaussian process can also be thought of as a generalisation of multivariate
Gaussian random variables to infinite sets. When a stochastic process is Gaussian, all
the joint probability distributions are multivariate normal. Therefore, for any given set
of explanatory variables, Zy = {zi,...,z,}, the corresponding random variables Fy =

{f(zy),...,f(z,)} have a n-dimensional normal distribution

p(f(zl),...,f(zn)| Z,,Z,) ~N (m,Z)

where m is a n x 1 vector of the mean values and X is a n X n covariance matrix
between all points of the input explanatory variable,
C(Zl’zl) C(Zl’zn)
> = : :
C(z Zl) C(Z z)

n’ n>%n

Gaussian Process Models

Le. 2, = C(z,.,zj).

2.4 Regression Using Gaussian Processes

Regression is one of the most common data modelling problems and several methods
exist to handle it. The Bayesian approach to regression is discussed with the emphasis
on the application to Gaussian process modelling. The Gaussian process prior model

and posterior model are introduced.

2.4.1 Gaussian Process Model

What is a Gaussian process prior model? A Gaussian function is a stochastic process,
whereas a Gaussian process model is a mathematical model for a nonlinear
relationship, f(z), which depends on some explanatory variable, z. In a random
function model, any particular nonlinear relationship is one realisation of the random
function, or more precisely, the model for all possible nonlinear relationships is
simply the class of realisations for the random function. This model places a
probability distribution over the set of all possible relationships; to be precise, for any
finite set of values for the explanatory variable, [zi,...,zy], the joint probability
distribution for [f(z;),...,f(zy)] is specified. The random function is chosen to be
Gaussian, thus defining the Gaussian process model for the nonlinear relationship. It
is completely specified by its mean function, m(z), and its covariance function,

C(z,2'), see §2.3.

It is important to note that a Gaussian process model is a non-parametric model. In
standard models, the function is explicitly parameterised. An example of a parametric

model is the class of linear functions, y=az+b with the values of a and b

belonging to some set. In Gaussian process prior models, a probability distribution is
placed on the space of all possible functions. In the former, only a restricted class of
functions dependent on the parameterisation is possible, whereas all functions are

possible in the latter, but not with equal probabilities.

Gaussian Process Models

In Gaussian regression, a Gaussian process model with a particular choice of the
Gaussian field or process is selected; this is the Gaussian process prior model. (The
selection process may involve a specification of a class of mean functions and
covariance functions, parameterised by some set of hyperparameters with the values
of the hyperparameters being subsequently set. This selection is informed by any prior
knowledge relevant to the nature of the nonlinear relationship, i.e. general features,
such as periodicity, and specific features, such as appropriate lengthscales, etc.). The
Gaussian process prior model is then conditioned on data to obtain the posterior
model. The posterior model remains a Gaussian field or a Gaussian process. The
model of all possible nonlinear relationships conditioned on the data is the class of
realisations for the Gaussian process posterior model. It places a modified probability
distribution over the set of all possible relationships, to be precise, the joint

!

probability distributions for [f (zl),...,f (Z’N)], for any finite set of values for the
explanatory variable [z;,...,z’N,], for any N'. The mean of the posterior model as a

function is interpreted to be the best fit to the data. The confidence interval as a
function of z, defined to be twice the standard deviation, is used to express the

uncertainty of the fit to the data.

Gaussian process models are widely used today in regression and classification
problems, ranging from data analysis to applications in system identification. A
simple example is presented below to illustrate how Gaussian process prior models

can be used in a regression problem with a one-dimensional explanatory variable.

Example 2.1 (Simple Regression in One-Dimension). Consider a simple regression
problem for a one-dimensional explanatory variable, denoted by z. In Figure 2, four
sample functions are drawn at random from the prior distribution over functions
specified by a particular Gaussian process. It is observed that the functions are rather
smooth in nature reflecting the choice of prior to represent prior belief about the
nature of the underlying relationship. Note that, it is assumed that the prior mean, at
any particular value of z is zero. The means at any fixed z over the functions depicted
in Figure 2 are not particularly close to zero. However, the values of the mean of f(z)

for any fixed z tend to zero as more sample functions are included. The two times

10

Gaussian Process Models

standard deviations at any value of z of the sample functions are also illustrated in the
figure by dashed lines. As the prior variance of the Gaussian process does not depend

on z, the standard deviation does not change as z varies.

Suppose that a data set, A = {(zl,f (z1)), (22,f (22))} consisting of two observations
(z,,f(z))=(~1.0,1.5) and (z,,f(z,))=(2.5,-1.0), is given. It is required to consider
only functions that pass through these two data points exactly. The grey lines shown
in Figure 3 are sample functions drawn from the posterior distribution over the
functions. Based on all possible realisations of the Gaussian process prior model, the
prediction of the mean values of the posterior distribution is portrayed in bold. The
confidence intervals indicating the uncertainty of this mean prediction is also shown.
Notice that the uncertainty reduces when it is close to the two data points, and
enlarges as it moves away from the observations. Likewise, if more data points are

included in the dataset, the uncertainty close to these data points is also reduced.

Samples functions and confidence intervals from prior distribution

f(z)

Figure 2 Four samples are drawn from the prior distribution. The dashed lines indicate the
two times standard deviations.

11

Gaussian Process Models

Samples and prediction with two times standard deviations

f(z)

Input. z

Figure 3 Mean prediction (in bold) with two times standard deviations (black). Four samples
(grey) from the posterior are shown as dashed lines.

Let the set of values of the explanatory variable be denoted by Z = {Z . }ZN and the set

=1
of function values corresponding to Z be denoted by F = {f (Z[)}Zl. For both the

Gaussian process prior model and posterior model, the joint probability distribution

for F is

1 1 -
1)~ exp) - (6=) 0" (=)] ~N (40)
where Q is the covariance matrix and x is the mean vector. In this thesis, the Gaussian
process prior model is generally zero-mean, assuming no prior information is
available to contradict this hypothesis. It follows that the probability distribution

becomes

p(F|Z)~N(0.%)

Non-zero mean prior processes have also been covered in the literature (Pugachev,

1967; O’Hagan, 1978; Cressie, 1993).

12

Gaussian Process Models

Why use Gaussian regression? In the literature, several regression techniques have
been developed, e.g. artificial neural network (ANN) and automatic relevance
determination (ARD). With a rich pool of techniques available, it almost seems that
this area of interest has matured. Gaussian regression was used in the early 1960s, but
was confined mainly to the statistics community. Their general-purpose capability
was neglected with only a narrow range of applications. It is only during the 1990s

that Gaussian regression started to arouse wider interest.

2.4.2 Bayesian Regression

In Bayesian regression, a nonlinear relationship, f(z), is assumed to underlie some

N
n=17

measured dataset, A ={(z,,,)}, where z, denotes the values of the explanatory

variable of dimension D (covariates) and y, denotes the scalar measured value
(target). Given this set of N observations, it is of interest to infer the nonlinear
relationship, f(z). Subsequently, predictions of the function value for new values of
the explanatory variable can be made. The measured values are assumed to be
corrupted by measurement noise. A variety of noise models has been investigated
(MacKay, 1997; Gibbs, 1997; Goldberg et al., 1998; Murray-Smith and Girard, 2001)
over the last decade or so. However, attention is focused here on additive Gaussian
white noise, which is statistically independent and identically distributed across the
observation data. The corresponding relationship of measurement data to noise is
denoted by

y, =f(z,)+s Vi=1..,N 2)

where f(z;) is the noise-free value at z; and the noise, ¢; ~ N(0,5). The set of values of

the explanatory variable is denoted by Z = {Z,- }fil and the set of corresponding target

values by the vector Y ={y,}

jil. The set of function values corresponding to the

explanatory variable Z is denoted by vector F = {f (zl.)}fil . Finally, the set of values

for the noise vector is described by e = {gi }511 . For notational simplicity, let

w, =f(z,)

LY =W e

13

Gaussian Process Models

Given a prior joint probability distribution, p(F), over the space of function values,
F, and a prior joint probability distribution, p(e), over the noise, the probability of the
data is given by

p(Y12)=[p(Y | Z,F,e)p(F)p(e)dFde (3)

Consider the vector Y'=[y,,..,yy,w,, | constructed from Y and wys, the

conditional probability distribution of wy;; can be written as

p(Y' | Z: ZN+1)

Py Az,)=
(Nl Nl) p(Y|Z)

This conditional distribution can be used to make predictions about wy;. Generally,

given the data-noise relationship in (2), p(Y|Z,F,e) is simply a product of delta

functions H5(51 =y —f (Zl.)). By assuming Gaussian noise and integrating over the

noise data, it follows that equation (3) becomes

Y 12.)= [l6) - exp| - 3l 16 e

V4

where f is the variance of the noise and Z is a normalising constant. In the specific
case where F is Gaussian, p(Y|Z) is itself Gaussian with mean defined as the sum of

the means of F and e and the variance defined as the sum of the variances of F and e.

2.4.3 Posterior Joint Probability Distribution

Given the prior distribution, the posterior distribution is derived by conditioning it on

data. Assume the general case of predicting wyy;, the value of the nonlinear

relationship at zy:; given the dataset A :{Z,Y} where Z:[zl...,z N]T and

Y:[yl..., yN]T, the conditional probability for wyy; is calculated using Bayes’

theorem

p(YN+1 | Z,z,.,)
p(Y|2)

p(WN+1 |A’ZN+1)=

14

Gaussian Process Models

where Y,,,, = [YT Wi]T .

It follows from the zero-mean Gaussian prior assumption that

-1
1] K k;m Wy
p(WNH’Y | ZN+1)OC exXp __[WN+1 Y 1:
2 kya Oy Y

where x is E[wyy1, wa+1], the ijth element of the covariance matrix Qy is E[y;, ;], and
the i™ element of vector kn+1 18 E[y;, wys1]. Both x and ky¢; depends on the posterior
explanatory variable. It might be easier to explain the relationship of the covariance
matrix as shown in (4). A larger covariance matrix, Qy:, is constructed from a

smaller matrix, Qy, vector ky+ and scalar «.

N +1 Oy 4)

Generally, the data that is used for training should be different from the data that is to

be used for prediction, i.e. z,,, ¢ Z, < A. However, this distinction is frequently

ignored because of insufficient data.

Applying the partitioned matrix lemma, it follows that

1 AN R
p(WN+1 A,z) oc exp[_E(WNH - W)//i’zl (WN+1 - W)}

with the mean,

1;1\/' = k]TH-lQ;/lY

interpreted to be a fit for the data and
ﬂ’z =K- k]T/+1Q;/lkN+l

interpreted to be the variance for the posterior. It is interesting to note that both the

mean and the variance contain Q,' and not Q,,. W is interpreted to be the best fit to

15

Gaussian Process Models

the data at zy:;. The standard deviation for the mean is simply the square-root of 4.,
i.e. \/A. . Generally, a 95% confidence interval is used on the best fit of the data; that

is, two times the value of the standard deviation.

N' predictions, W' = [wl' yeees Wi]T , can be made simultaneously at different values of

the explanatory variable, {Z;}f\il It follows that, for the posterior joint probability

distribution, the mean vector is

W'=AL0,'Y

and the covariance matrix is

A=A, ~NWOVA,,
where A, is E[W'W'"] and A, is E[yw'"] .

The posterior process model requires the definition of the mean function and the
covariance function. The mean function is defined by w as z varies. From the
prediction for w and w' at z and z’, the covariance function for the posterior process
model is defined using the joint probability distribution for w and w', namely by

E[ww']-E[w]E[w'], as zand z' vary.

L

f(zy) 4

Sl T f, f(z1)

Figure 4 Conditional probability distribution.

16

Gaussian Process Models

An illustration of the conditional probability is provided by the simple example
depicted in Figure 4. The figure shows the Gaussian joint probability density of two

function values, f(z;) and f(z;). Given a particular value of f (Zl)= f,, the Gaussian
conditional distribution of p(f(z,)|f(z,)=f,) can be determined and calculated to

find the most probable prediction of f(z,) given f (z1) = f, as shown in Figure 4.

2.5 Model Selection

How to choose the covariance function? Various classes of covariance functions exist
(Abramowitz and Stegun, 1965; Stein, 1999). Some are general-purpose, whereas
others are more case specific. Basically, covariance functions can be classified into
two types; that is, stationary (Yaglom, 1987) and non-stationary (Neal, 1996)
covariance functions. Different classes of covariance functions are discussed in §2.6.
Covariance functions, characterised by a set of free parameters, are the fundamental
building blocks of Gaussian processes. Generally, these free parameters are known as
hyperparameters'. Based on the prior knowledge about the nonlinear relationship, a
particular class of covariance functions that is best suited for the application is first
chosen, i.e. choosing a specific form of the mean function and covariance function
parameterised by some set of hyperparameters, ®. These hyperparameters
characterise the class of Gaussian process from which the Gaussian process prior
model is to be chosen (Rasmussen and Williams, 2006). Hence, a proper choice of the

class of covariance functions is essential to the development of Gaussian regression.

The values of the hyperparameters, ®, of the Gaussian process prior model need to be
specified. Two methods are commonly used. In the first approach, specific values are
chosen for ® by maximising the likelihood function. In the second method, a
Bayesian approach is used to place a prior over the values of hyperparameters. The
former method is known as Likelihood maximisation (MacKay, 1992) and the latter is
the Monte Carlo approach (Williams and Rasmussen, 1996; Neal, 1997), and both are

equally legitimate techniques to define the model.

! Hyperparameters are normally referred to parameters of the covariance function to emphasise their
characteristics belonging to a non-parametric model.

17

Gaussian Process Models

2.5.1 Likelihood Maximisation

Once a specific class of covariance functions is chosen, the values for the
hyperparameters must be selected. Likelihood maximisation allows hyperparameters

®, to be chosen for the model,

p(WN+1 | Z g, A :Cf=®P)

In Likelihood maximisation, the most probable hyperparameter values are computed.
This can be done through the use of a standard gradient-based optimisation algorithm,
such as the conjugate gradient method and the trust-region method. Gradient-based
optimisation requires user-supplied gradient information, or more specifically, first

order derivative information of the likelihood function.

To obtain a model given the data, the hyperparameters are adapted to maximise the
log-likelihood function, or equivalently, minimise the negative log-likelihood

function,

A©)= %log|Q| +%YTQ‘1Y (5)

where |.| refers to the determinant operator of a matrix. It follows that its derivative
with respect to hyperparameter 6; is

oA@©) 1 [00| 1.1 .00
20, _2W{Q aa,} 2V 8 Y ©

where #7(.) is the trace operator of a matrix.

During the optimisation procedure, two potential problems arise as a result of training
the hyperparameters. Firstly, because of the multi-modal log-likelihood function,
finding the most probable (and sensible) values of the hyperparameters is highly
dependent on the chosen initial values. The log-likelihood function is generally multi-
modal with respect to ® and these modes correspond to different values of the

hyperparameters resulting in different priors (see Example 2.2). This is partly due to

18

Gaussian Process Models

the optimisation algorithm being used with different initial values for the
hyperparameters. Proper choice of initial values for the hyperparameters ensures that
optimisation converges faster to a maximum point. This is discussed in more detail in
Chapter 3.4. Secondly, it is important to note that every evaluation of the negative
log-likelihood function and its gradient information requires the evaluation of Q.
Exact inversion of a matrix has an expensive computational cost of O(N°) operations.
This results in an extremely time-consuming process when training large-scale
datasets. Moreover, exact matrix inversion computation has an O(N?) memory
requirement and standard MATLAB optimisation routines normally fail, due to lack

of memory space, at around N = 3,000.

Example 2.2 (Optimisation with Log-Likelihood Function). Suppose a dataset
A :{Z[,yi}f:1 has five measurement points, i.e. {-1,4}, {-2.5,1.5}, {0.5,0.5}, {3,2}
and {4,2.1}, as shown in Figure 5 and Figure 6. Given this prior information, a

specific class of covariance functions is selected for the Gaussian process prior

models, such that

C; (zi,zj): aexp[—%(zi —zj)z}

The correlation between measurement points, y; and y;, is

C(yiayj): Cf(zi’zj)+b5ij

where a, b and d are hyperparameters. Hyperparameters in the covariance function are
adapted to minimise the function (5). Two different sets of initial values for the
optimisation are selected. With one set of initial values, the optimisation converges to
a minimum point with hyperparameter values of @ = 1.6, d = 0.3 and b = 1.4x10™.
The resulting prediction with confidence intervals is shown in Figure 5. With the
second set of initial values, the optimisation also converges to a minimum point with
adapted hyperparameter values a = 1.9, d = 0.002 and b = 0.53. Its prediction is
illustrated in Figure 6. The latter indicates that the fit is a long lengthscale, whereas
the former is a short lengthscale. Clearly, both are maxima of the likelihood function.
Thus, it is obvious that the log-likelihood function is a multi-modal nonlinear

function.

19

Gaussian Process Models

Prediction with confidence intervals and data points

2.5

- 1 1 1 1 1 1 1 1 1 1

Input. x

Figure 5 Data points and prediction with two times standard deviations of the fit from using a
set of hyperparameter values.

Prediction with confidence intervals and data points

2.5
/_//./ °
2r - — .
1.5F ® |
1k i
([J
//_//_/_/ T
05 - .
— °
0 | | | I | | | | I
-5 -4 -3 -2 -1 0 1 2 3 4 5

Input, x

Figure 6 Data points and prediction with two times standard deviations of the fit from using a
different set of hyperparameter values.

20

Gaussian Process Models

2.5.2 Monte Carlo Method

Hyperparameters are not necessarily assigned specific values but have prior
distributions imposed on them. To select the model with hyperparameters having prior
distributions, an approach known as the Monte Carlo Markov chain is used. In
Gaussian process, the Monte Carlo approach uses the idea of sampling to approximate
the posterior joint probability distribution. This approach has a completely different

philosophy from Likelihood maximisation.

Ideally, it is plausible to integrate over all the undetermined hyperparameters; that is,

p(WN+l | Z A 9Cf): IP(WN+1 | Zy,,A 9Cf’®)p(® |A,C)dG) (7)

where Cy is defined as the covariance function for the model. Unfortunately,
computing this integration is analytically difficult, particularly for an arbitrary
covariance function Cy, an alternative method is required if Gaussian processes are to

be computed in a less complicated way.

In the Bayesian context, the posterior probability distribution over the weights is

likelihood x prior

posterior = - —
marginal likelihood

It follows that the posterior joint probability distribution of ® can be written as

p(Y|Z.C;.0)p(6)

P(®|A7Cf): p(Y|Z,Cf) 3

The probability, p(Y | Z,C,, ®), is the probability of the target values given the set of
values of the explanatory variable, Z, and the covariance function, Cs. The term p(®)
denotes the prior distribution of the hyperparameters that define the mean function
and covariance function. The normalising constant p(Y |Z, Cf) is also known as the
marginal likelihood and is independent of ®. Thus, it can be safely ignored here as the
intent here is to compute the most probable hyperparameters. The normalising

constant is given by

21

Gaussian Process Models

p(Y1Z,C)=[p(Y|Z,C,0)p(©)d® ©)

The posterior in (8) integrates the information about the likelihood and the prior

together and encapsulates the knowledge of the hyperparameters.

By approximating the integral in (7), the equation can be re-written as

T

ZP(WNH |2y, A ’Cf7®z)

t=1

p(WN+1 |ZN+1,A,Cf)E

N =

where ©, are samples drawn from the posterior distribution over O, p(®|A,Cf).

Since each term in the summation of the above equation is a Gaussian, the Monte
Carlo approximation is a mixture of Gaussians. It is worthwhile noting that accuracy
increases as more samples are drawn from the posterior over ®. However, if the
sample is not taken from a particular region of hyperparameter space that has a high
associated probability to the posterior, then the accuracy of Monte Carlo
approximation will be poor. Much research on Monte Carlo methods for Gaussian
process regression, such as Hybrid Monte Carlo algorithm (Duane et al., 1987), has

been undertaken.

If it is assumed that the posterior joint probability distribution over ® has a sharp peak

around the region near ©p relative to p(w,,, |z,,,,A,C,,®,), then the approximation
of p(wNH z,.,,A,C:,® P) gives similar result to the Likelihood Maximisation

approach.

A comparison of these two methods has been undertaken by Gibbs (1997) and
Rasmussen (1996). In general, there is no conclusive answer as to which method is
superior. The Likelihood maximisation method of obtaining the values for the
hyperparameters is generally good as predictions made using these values are often
found to be very close to those using the true posterior joint probability distribution
(MacKay, 1993). The Monte Carlo approach has been found to perform better for
smaller datasets when matrix storage is not an issue. Computation using this approach
results in better solutions for a fixed amount of computational time. On the other

hand, Likelihood maximisation is preferred for computations involving large datasets.

22

Gaussian Process Models

It was found (Rasmussen, 1996) that the optimisation method produces more accurate

results and faster computations in large datasets.

2.6 Covariance Functions

In studying Gaussian processes, it is necessary to understand the role of the
covariance function, a crucial and elementary component. A covariance function
specifies the covariance between pairs of random variables. In a stochastic process,
the covariance function determines the correlation between the function values and
provides a distinct indication of how they are connected to each other. For instance, in
supervised learning, a basic assumption is that data points that are close to each other
are likely to have similar target values, and therefore have higher correlation
compared to data points that are far apart. Similarly, in Gaussian process, the
covariance function defines the closeness or similarity of function values in the
Euclidean space of inputs. A variety of covariance functions has been investigated by

several researchers (Gibbs, 1997; Mackay, 1998; Rasmussen, 1996).

2.6.1 Stationary Covariance Functions

This section explores some covariance functions that are commonly used in the
machine learning community. Attention is focused on a few classes of covariance
functions relevant to the application of interest here. Covariance functions can be
classified into stationary and non-stationary ones. Primarily, a stationary covariance
function is one that is function of z—2z’', that is invariant to translations in the input
space. The covariance function of a stationary process can also be represented by the

Fourier transform of a positive measure.
Theorem 2.1 (Bochner’s theorem). A complex-valued function & on P* is the

covariance function of a weakly stationary mean square continuous complex-valued

random process on P* if and only if it can be represented as

23

Gaussian Process Models

k(r)= jez’”s'rdy(s)

PD

where u is a positive finite measure (Rasmussen and Williams (2006)).

.) . .
One such example is the squared exponential~ covariance function

cov(f(zi),f(zj))= C; (zi,zj)= exp(—%‘zi _er] (10)

For this particular covariance function, the covariance approaches unity when the
inputs are very close to each other, and decreases as distance in the input space
increases. Note that the covariance of the outputs is written as a function of the input.
This squared exponential covariance function is also positive definite, and a

covariance function is said to be positive definite if

J‘Cf (Ziazj k(zi)f(zj)d:u(zi)dy(zj) >0

It is also interesting to establish if a covariance function is mean square continuous
and differentiable. There are applications which require infinite differentiability in the
stochastic process, which is discussed in later chapters. Firstly, to describe mean
continuous and differentiability of a stochastic process, let z;, z5,... be a sequence of

data points and z be a fixed point in P*, such that ‘zk —z*‘—>0 as k—oo.

*

Consequently, a stochastic process f(z) is mean continuous in z if

E[‘f(zk)—f(z*lz} > 0. If this is true for all e A< P*, then f(z) is known to be

continuous in mean square over 4 (Adler, 1981). The mean square derivative of the

stochastic field, f(z) in the i direction is defined as

of(z) :1 f(z + le,)—f(z)

azi A—0 /1 (1 1)

where the limit exists in mean square and e; denotes the unit basis vector in the i
direction, is well-defined in the limit as 4 — 0, such that the complete description
exists for all the necessary probability distributions. The expectation of the mean

square derivative of the stochastic field, f(z), in the i"™ direction as z varies, is

? The squared exponential covariance function is sometimes known as the Radial Basis Function or
Gaussian.

24

Gaussian Process Models

interpreted to be the derivative of the fit to f(z). Provided that the mean function and
covariance function are sufficiently differentiable, it is well known (O’Hagan, 1978)
that the derivative stochastic process is itself Gaussian and that

E[af(z)} _le).) ()= Elr(e)] (12)

0z, 0z,

1

where z; denotes the i element of z; that is, the expected value of the derivative
stochastic process is just the derivative of the expected value of the stochastic process.

Furthermore,

E{M,M}:WV?Q(M%% Ci(z,.2,)=E[f, (2).f,(2) (13)

0Oz, Oz ;

where V!C,(z,,z,) denotes the partial derivative of C{(z,,z,) with respect to the i"
element of its first argument, etc. The above procedure can be repeated to construct
second derivative processes. It follows that the covariance of the mean square
derivative (11) is given by 8°C; (zu,zv)/ 0z,0z,; . The procedure can be extended to
higher order derivatives. Note that, for a squared exponential covariance function, its
second order partial derivative exists for all zc P*. In addition, the squared

exponential covariance function has infinite order of partial derivatives.

The squared exponential covariance function (10) has a basic form dependent only on
the explanatory variable. Parameters can be introduced to span different class of

squared exponential covariance functions, such as in (14) and (15).

cov(f(zi),f(zj)): exp(—%‘zi _erj (14)

cov(f(z,.),f(zj)):aexp(—%‘zi _zj‘zj (15)

In (14), the parameter, d, defines the characteristic lengthscale of the correlation
between pairs of input data points. This covariance function has mean square
derivative of all orders and thus is infinitely differentiable. It is also a clear indication
that the derivatives are smooth. Although it has been argued that such strong

smoothness in the characteristics of the covariance function (Stein, 1999) is

25

Gaussian Process Models

unrealistic in real life scenario, it is still probably the most widely used kernel in the
machine learning community. The parameter, a, in (15) relates to the amplitude of the

measured variable.

Another type of stationary covariance function is the Matérn class of covariance

J Q(MJ 16)

[

functions, given by

COV(f(Zl-),f(Zj))= 9V (@‘zl -z,

r(v) [

where v and / are positive parameters, and @, is a modified Bessel function
(Abramowitz and Stegun, 1965). Named after the work of Matérn, the process for the
Matérn class covariance function is k-times mean square differentiable, if and only if

v>k.

Another interesting class of covariance function is the y-exponential covariance

function given by

4
cov(f(zl.),f(zj)):exp [MJ VO<y<2

This covariance function is similar to the Matérn class covariance function, except it
is not mean square differentiable if y is not equal to 2. Several other covariance
functions also exist in the literature, such as piece-wise polynomial covariance
function and the exponential covariance function of the Ornstein-Uhlenbeck process

(Rasmussen and Williams, 2006).

2.6.1.1 Squared Exponential Covariance Function

Throughout this thesis, unless otherwise specified, the correlation between measured

values of the following form is used

C(yi,yj):Cf(zi,zj)+b5y. :aexp{—%(zi —Zj)TD(Zl. —Zj)}-l-bé‘ij (17)

26

Gaussian Process Models

where a, b and D = diag{d,,...,d;} are a set of values of hyperparameters. The
hyperparameter, a, gives the overall vertical scale relative to the mean of the Gaussian
process in the output space. The hyperparameter, b, represents the noise model,
indicating the noise variance in the data. The term, d,, refers to the lengthscale in the
i"™ dimension of the explanatory variable, z. It characterises the distance over which
the amount of averaging of data is done. For example, a short lengthscale means there
is more contribution of nearby values of the input explanatory variable than values
that are far apart. On the other hand, a long lengthscale would expect averaging to be
done over a larger distance; values far apart still contribute to a reasonable amount to
the smoothing of the input values of the explanatory variable. For dataset with one-
dimensional explanatory variable, the correlation between measured values can be

simplified to

C(yi’yj):anP{_%(Zi _Zj)z}+b5y‘

where ze P .

Discussion 2.1 (Squared Exponential Covariance Functions of GP Derivative). In the
context of the squared exponential covariance functions; these functions are infinitely
differentiable. The covariance between a derivative observation and function
observation, and covariance between two derivative observations are shown in (18)
and (19) respectively, where z* refers to the &™ dimension of the explanatory variable

z. Let the underlying function be w = f(z) such that w; refers to the i™ entry of w and

w!" refers to the /™ entry of the derivative of w.

cov(w,.'”,w/.): —aam cov(wi,w/.) (18)
. . .
cov(wi’”,w;’)z—a i; . cov(wi,w/) (19)
. 7"z .

where cov(w,.’” W j) is the covariance between a derivative point and a function point,

and cov(w{” ,wf) is the covariance between corresponding input derivative points.

27

Gaussian Process Models

The following identities are necessary for the construction of the derivative Gaussian

process prior model.

cov(wl.,wj):aexp{—%(zi -z,)TD(zl. —z_l.)} (20)

C(wl.'” W,): —ad,, (Z;." -z)exp{—%(zl_ -z,)TD(ZZ. -z,)} (21)

and

Clwwy)=ad, 6, ~d, (e ~2) Ye! - z;)}exp{—%(z,- ~2,) Dle, -z,)} @2)

2.6.2 Non-stationary Covariance Functions

Most of the priors are stationary, although all posteriors are automatically non-
stationary. For completeness, a brief introduction of non-stationary covariance
functions is introduced in this section. Non-stationary covariance functions are
commonly used in neural network, e.g. mappings that describes a single hidden layer

neural network

where v; refers to the hidden-to-output weight and /(z;u) is the hidden unit transfer
function, which depends on the input-to-hidden weights u. A common feature vector
function is A(z;u) = tanh(z.u). This sigmoid kernel is viewed as a non-stationary
covariance function. Other variants of non-stationary covariance functions also exist,
e.g. the Wiener process. Further details can be traced to related research work in

Grimmett and Stirzaker (1992).

Other non-stationary covariance functions which are used in a later chapter are the
linear form covariance function and quadratic form covariance function, and are
briefly discussed here. The linear covariance function is defined in equation (23) and

the quadratic covariance function in equation (24).

28

Gaussian Process Models

covlf(z,) flz,)= w2zt (23)

cor{/(2,) 1(e,)= et et 24)

{w, }szl are defined to be the values of the hyperparameters and z; defined to be the
K™ element of the /™ value of the explanatory variable, z. Unlike stationary covariance
functions, nearby data points do not necessarily have strong correlation as shown in
equations (23) and (24). These two covariance functions are useful if there is a belief
that some linear or quadratic trend exists in the data. An application of using non-

stationary covariance functions such as these is discussed in Chapter 5.3.

29

Fast Algorithm Implementation for Gaussian Regression

Chapter 3

Fast Algorithm Implementation for
Gaussian Regression

3.1 Computation Issues

Gaussian process regression involves several matrix computations of O(N°)
operations, such as matrix inversion and the calculation of the log-determinant of a
N x N covariance matrix (Leithead et al, 2005¢). In addition, these covariance
matrices have an O(N?) storage requirement, for any explicit computations. These
limitations effectively restrict the number of training cases, N, to at most a few
thousand cases. Though it may be possible to use super computers to handle these
computations, this approach is undoubtedly effective but inefficient. To overcome the
computational limitation issues and cater for large-scale dataset application, numerous
authors have recently suggested a wealth of sparse approximations (Schwaighofer and
Tresp, 2003; Seeger et al., 2003; Smola and Bartlett, 2001). Quifionero-Candela and
Rasmussen (2005) have further provided a unified view of sparse Gaussian process
approximation, which includes a comparison of work published by various authors.
Common to all these approximation methods is that only a subset of the latent

variables is treated exactly, with the remaining variables given some approximate, but

30

Fast Algorithm Implementation for Gaussian Regression

computationally cheaper approach (Quifionero-Candela and Rasmussen, 2005).
However, it is of interest of this thesis to investigate and research upon exact
implementation of Gaussian process using all the latent variables, instead of a subset
of them; hence the approach of using sparse approximation methodologies is avoided.
In this chapter, fast and memory efficient algorithms are developed for the class of
full, exact implementation of Gaussian process models to handle large number of
training cases, e.g. one million data points. This work is in contrast to other authors,
whose works are focused either upon deterministic approach or method that does not

correspond exactly to a Gaussian process (Quifionero-Candela and Rasmussen, 2005).

3.2 Effective Hessian Matrix Exploitation

Discussions on maximum likelihood estimation (MLE) optimisation problems are
rarely available in the Gaussian regression literature, and are mostly centred on
steepest-descent and conjugate-gradient approaches. Although these gradient-based
optimisation algorithms are sufficient to guarantee convergence to stationary points,

they are not fast enough.

Hessian, or more precisely the second order derivative information, provides
additional information to check the nature of the converged solution, such as maxima
or minima stationary point, and provides the possibility of rejecting saddle points. It is
known that Hessian information provides a more efficient and effective optimisation
(Moller, 1993), especially for ravine-type problems. Most large-scale gradient-based
optimisation, such as the trust-region algorithm (MathWorks, 2003), is able to employ

Hessian information to speed up the training procedure.

This section reviews the work of Zhang and Leithead (2005), where the optimisation
performance, from explicit use of the Hessian matrix on a particular class of
covariance functions, can be improved hence allowing faster convergence. Its exact
implementation is then compared with approximation to the second order information
using finite-differencing. It follows from the negative log-likelihood function, (5), and

its derivative, (6), that its second order derivative is

31

Fast Algorithm Implementation for Gaussian Regression

azA(e)_l L 90 Q 1 00
00,00, 2 {Q 06,00, o Q }

1 T -1 82Q 8Q -1 8Q -1
——Y -2 Y
2 Q {865865 8t9iQ 00, Q

(25)

The Hessian derivation is shown in Appendix B.

3.2.1 Simplification of Hessian Matrices

Zhang and Leithead (2005) have shown that the explicit computation of the Hessian
matrix, as given by (25) is rather efficient, but further improvement is possible by
exploiting the chosen form of covariance function (17). Since the squared-exponential
covariance function is often encountered and used in this thesis, this simplification

method shall be discussed here as a formality.

As the hyperparameters, 6 = {a, b, D}, are constrained to be positive scalars, they can
be re-written to take exponential form, i.e., a =¢“, b= e “?) and D= e, where I =
diag{yi,....yc}. These revised exponential hyperparameters 0 = {a, BaVireees yk} are

adapted to minimise the negative log-likelihood function in an unconstrained
optimisation, between minus infinity and plus infinity. The covariance matrix is

modified to
O=A,+ exp(a +ﬂ)1

where the covariance matrix Ao is defined as

Aolez)= exlaowp| - o, 2, Dle, 2,

with D=e —dzag{ e’,...,e" k} The first and second order partial derivatives of Q

with respect to hyperparameter a are

2 2 2
6_Q=8Q2=Q 00 5Q e(a+ﬂ)];a_Q:a_Q, Vk=1,..K
oa O« 0 6,8 op oady, 0y,

The partial derivatives of Q with respect to f are

32

Fast Algorithm Implementation for Gaussian Regression

2 2
a_Q:a_QZ:e(aJrﬁ')I; 0 0 =0, Vk=1,..,K
op op 0poy,

and the partial derivatives of Q with respect to y are

9 _ Ly, e — 29} A,

i J

07, 2

o0 |, 1 () _, (Y i

e 29§ PN P _g\P Jf p=k
’0 an{ 26Xp(7”)(z’ “) ne
07,07, a_Q{_leXp(yp)(zgw_zgp))z} Jif p#k

0y 2 '

Due to symmetry of the Hessian matrix, 62Q/ (8}/k87/p) need only be computed for

Vk=1,.,K and k < p < K. It follows from (25) that the a-related Hessian terms

simplify to
A 1,

H,=—==-YQ0'Y
) Q

H =82—A=1YTQ’18—QQ’1Y Vk=1,...K

1(k+1) 6a6}/k) 67k > seees
O’A expla+p) e

I(k+2) = oadp = B (YTQ 1Q IY)

In addition, the f-related Hessian terms simplify to

0*A

H =
(K+2)(k+1) aﬂa}/k

_ exp(mﬂ_){zwg-l a—QQ_lQ_lY—tr(Q_l L 5 J},Vk =1...K
2 07, 0

Vi
_0’A _OA exp(2(a + B))

H(K+2)(K+2) = 6ﬂ2 op f {tr(Qlefl)_ ZYTQ*IQqQ*lY}

Finally, the y-related Hessian term is

o*A 1{Q_1 8%0

B 07,07, 2

2
—lYTQ—1 00 _,90 0" 90 oY |Vk=1,..,K
2 0y, 0y, Oy, 0y,

4 0 4 0
H ()0 -0 QQ1 QJ

07,07, Oy, 07,

33

Fast Algorithm Implementation for Gaussian Regression

Since Q' Y ,for k=1,..., K, is frequently required at each iteration in the Gaussian
Vi

regression implementation, these matrices are computed once and stored for

subsequent usage.

3.2.2 Experimental Result

A straightforward example is chosen for this experiment, since the focus of this
section is about understanding the theoretical foundations of the simplification
approach rather than investigating the necessary heuristics needed to turn the scheme

into actual practical algorithms.

TABLE I Performance comparison between optimisations user-supplied Hessian and
Hessian approximation

Result Iterations Timing (minutes)
Dataset size, N Approx. User Approx. User
200 64.2 64.3 0.13 0.05
400 58.4 58.4 0.53 0.19
600 85.9 85.5 2.11 0.86
800 123.8 123.9 5.60 2.07
1,000 88.0 86.6 7.47 2.75
1,200 139.9 145.7 18.45 7.41
1,400 97.3 98.8 18.34 7.10
1,600 107.6 107.7 29.73 12.02
1,800 150.6 150.2 53.53 20.64
2,000 149.7 147.2 78.92 31.99

Based on time-series datasets, unconstrained optimisation is performed to
compare explicit user-supplied Hessian to approximated Hessian results, where user
only supplies log-likelihood and gradient information. Experiment is carried on an
Intel® Pentium® IV 2.8GHz machine with 512MB RAM.

The chosen test function is f(z):sin(z)+ 0.6cos(52), where Ze[O,lO] 1S a one-
dimensional explanatory variable. Gaussian white noise, #;, of variance 0.01 is added

to the function, i.e. y(z,)= f(z,)+n,, for i=1,..,N . For each set of data size, N, 10

sample tests, each with different noise and starting values for the optimisation, are
conducted. The performance, in terms of timing and number of iterations, of both

user-supplied Hessian information and Hessian approximation by finite-differencing

34

Fast Algorithm Implementation for Gaussian Regression

is being investigated and compared, with the results tabulated in TABLE 1. The
average timing and number of iterations are calculated for every N. Clearly,
performance is better with user-supplied Hessian information, with an efficiency of

about 1.5 to 2.5 times faster being evident.

3.3 Efficient Optimisation by Hyperparameter Reduction

Another efficient yet simple optimisation technique, through modifying the log-
likelihood function, is introduced in this section. This is a novel work that has not
been discussed previously. Covariance functions are generally dependent on some
parameter set, for instance in the case of explanatory variable that is one-dimensional,

the squared exponential covariance function is given by

cexp|-2e,-2,} |

with the parameter set being {a, d}. It follows that the covariance function defining

the noisy data is

C(Zi,zj):aexp{—%(zi—zj)z}eré'ij (26)

where b is the noise variance hyperparameter and J;; is the Kronecker delta function.
As mentioned earlier, the training procedure consists of O(N°) operations. This
section demonstrates how a simple modification to the log-likelihood function and

adapting the covariance function to it can speed up the optimisation routine.

Let b =an, the covariance function (26) is re-written to the form

Clo,2,)- {exp{_g(zi -1 Fls 5}

Next, denote C = aC,, where C, is a normalised covariance function. It follows that
the negative log-likelihood function, A, can be written in terms of P, the covariance

matrix for the covariance function C,,.

35

Fast Algorithm Implementation for Gaussian Regression

A0)= l1og|P(d,n)| +LYTP(d,n)*1Y +ﬁloga (27)
2 2a 2

where |.| is the determinant operator and N is the dataset size. The gradient with
respect to a hyperparameter, 6, is zero at the turning point. Thus, the partial derivative
of the log-likelihood function with respect to a is obtained and equated to zero, i.e.,
oA (0)

oa

=0. Hence,
q=——""" = (28)

Substituting the solution back into (27), and removing non-hyperparameter terms and

redundant factors, the revised log-likelihood function is formulated as

A(0)=log|P(d,n)+ Nlog]Y" P(d.n) Y| (29)
Subsequently, the derivative with respect to the hyperparameter, 6,, is
—aA(H):tr P P TN_I Y'P! P P'Y
00, 00, Y PY 00,
where #7(.) is the trace operator. The Hessian information is then derived as follow,
2N 2
OMO) _ | pri| OP_|_pe 0P Jpuf 0P
06,00, 06,00, 00, 00,
—Lz Yy P! L pry | yrpi| L pry
[y Py] 00, 00,
2
Y PY 00,00, 00, 00,

Discussion 3.1 (Solution for a Maximum Point): Note that (28) is a solution for a

maximum point. The proof is illustrated by substituting (27) and (28) into the

equation above.

36

Fast Algorithm Implementation for Gaussian Regression

oa’ Oa\ Oa

_O0JY'PY N
oa| 2a’ 2a

_ N Y'PY
2a’ a’

T p-1

12{N_2(Y P Y)}
2a a

=3 [N-2N]<0, VaeP*' vNeZ®
a

Hence, the solution is a maximum point. The optimisation of A is purely dependent

on d and n.

Unlike §3.2.2, Hessian implementation may not necessarily be as efficient when
applied on the revised log-likelihood function (29). This is due to additional
computations of matrix-matrix tensor products required for the revised log-likelihood
function. The performance of using hyperparameter reduction is investigated in the

next sub-section.

Discussion 3.2 (Dataset with scalar explanatory variable): Assume a dataset with
scalar explanatory variable, i.e. zeP, is available and that the lengthscale
hyperparameter, d, is fixed (scalar). From (29), the partial derivative with respect to n

1s reduced to

8X(n) = I’l{ﬂ"(Pl)_ YTZIY [YTPIPIY]} (30)

3.3.1 Experimental Result

The hyperparameter reduction method is an appealing approach for low-dimensional
datasets, e.g. datasets with explanatory variable that is one-dimensional. The
advantage is clearly evident since the optimisation routine trains only two
hyperparameters; instead of three. As the dimension increases, the number of

hyperparameters required to be adapted also increases. As a result, the effect of the

37

Fast Algorithm Implementation for Gaussian Regression

hyperparameter reduction becomes insignificant as the dimension of the explanatory

variable becomes large, i.e. two-dimensional and above.

To compare the performance of using the modified log-likelihood function from the
standard log-likelihood function, a simple experiment is carried out on ten samples of
the time-series data, with each sample having different data size, &, such that N =
{200, 400, ..., 2000}. Gaussian regression is applied on these ten samples, whereby
different noise data is introduced in each sample. In addition, the initial values for the
optimisation routine are chosen to be different for every sample. The timing and
number of iterations for convergence are tabulated in TABLE II. Note that, Hessian

information is supplied in both cases.

TABLE II illustrated that by using hyperparameter reduction approach, the number of
iterations required for convergence is greatly reduced; that is, at least ten times fewer
as many recurrences to train the hyperparameters as the standard approach.
Consequently, the convergence is much faster. It is apparent that by eliminating the
requirement to train an additional hyperparameter, it reduces the optimisation

complexity, therefore speeding up the process.

TABLE II Performance comparison between optimisations using standard and revised
log-likelihood function

Result Iterations Timing (minutes)
Dataset size, N 3-hyp 2-hyp 3-hyp 2-hyp
200 82.8 8.3 0.08 0.01
400 153.3 6.9 0.87 0.05
600 199.9 8.5 3.00 0.15
800 191.5 7.5 5.36 0.26
1,000 164.2 9.7 8.21 0.64
1,200 161.2 8.1 12.89 0.84
1,400 121.7 6.9 14.39 1.05
1,600 170.4 6.7 30.51 1.55
1,800 159.1 6.5 36.46 1.95
2,000 116.5 7.1 36.29 2.88

3-hyp refers to the standard optimisation techniques using the negative log-
likelihood function (5) and adapting three hyperparameters of the squared exponential
covariance function, whereas the 2-hyp refers to the use of revised log-likelihood
function (29), in which two hyperparameters are adapted to maximise the function.
Both cases are performed with user-supplied Hessian information. Experiment is
carried on an Intel® Pentium® IV 3.0GHz machine with 512MB RAM.

38

Fast Algorithm Implementation for Gaussian Regression

The hyperparameter reduction technique is particularly useful for one-dimensional
dataset. Dataset with explanatory variable that is more than one dimension may not
benefit much from this approach, such that its benefit reduces as the number of
training hyperparameters increases. The evidence is shown in TABLE III, where a
similar experiment is conducted on datasets with explanatory variable that is two-

dimensional.

TABLE III Performance comparison between optimisations using standard and
revised log-likelihood function on dataset with explanatory variable that is two-

dimensional.

Result Iterations Timing (hour)
Dataset size, N 4-hyp 3-hyp 4-hyp 3-hyp
484 15.7 18.3 0.005 0.010
787 22.2 15.0 0.022 0.036
1,156 28.0 23.0 0.075 0.122
1,600 42.8 23.5 0.293 0.300
2,116 40.1 21.5 1.077 0.689
2,704 38.9 25.5 3.550 3.740

3-hyp refers to the standard optimisation techniques using the negative log-
likelihood function (5) and adapting three hyperparameters of the squared exponential
covariance function, whereas the 2-hyp refers to the use of revised log-likelihood
function (29), in which two hyperparameters are adapted to maximise the function.
Both cases are performed with user-supplied Hessian information. Experiment is
carried on an Intel® Pentium® IV 3.0GHz machine with 512MB RAM.

Apparently, from the table, the hyperparameter reduction approach is perhaps more

suitable for datasets with explanatory variable that is one-dimensional.

3.4 Hyperparameter Initialisation

Hyperparameter initialisation is another novel idea that can be applied on Gaussian
regression to speed up optimisation routine. However, the condition is much more
restrictive, as it can only be applied to time-series datasets. As discussed in Chapter
2.5 on model selection, the minimisation of the negative log-likelihood function (5) is
not a simple convex problem; multiple local minima exist within the log-likelihood

space mapping. These local minima can be associated with different aspects of the

39

Fast Algorithm Implementation for Gaussian Regression

data. For example, a time-series data consisting of a long lengthscale component and

a short lengthscale component, one minimum may correspond to the former and the

other corresponds to the latter (see Chapter 4.2 for more detail). Depending on the

choice of initial values for the hyperparameters, the outcome of the optimisation could

be a model of either. To acquire faster optimisation of the training procedure and

proper values of the hyperparameters, it is essential that appropriate initial values are

chosen for the optimisation routine. A procedure for doing so is presented in this

section.

Power Spectral Density Estimate via Welch

+ 4
+
4

- =
- -
E—

4
|
|
|
|
|
|
54—
|
|
|
|
|
|
|
|
|
|
I
|
|
|
_ a1
|
|
|
|
|
|
1

4 - - = -

—+
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_LLL
|
|
|
|
|
|
I

- - — =
|
|
|
|
|
|
- - — —
|
|
|
|
|
|
- - - —

T

|

i

|

I

|

|

|

|
(- ---Jr-_-_-_-__-_I-_”_”_”_”_”"1--”"”"”"”-31-_-”-”---3J-----Z-+
\\\\\\\ e
\\\\\\\ e e i i T
\\\\\\ e e i i T
\\\\\\ e |

| | | |

T T T T

| | | |

1 1 1 1

| | | |

\\\\\\ e

| | | |

| | | |

I I | I
o o o o o o
« - = & S

(zH/gp) Aouanbauy/temod

Frequency (Hz)

Figure 7 Power spectrum of a simple data.

Suppose that the mean of the time-series data is zero (if not it can always be made to

{a,d,b} for the covariance

be zero). The initial values of the hyperparameters &

function (26) are determined by the following procedure, using data with the power
40

spectral density, as shown in Figure 7, as an illustration.

Fast Algorithm Implementation for Gaussian Regression

Procedure 3.1 (Hyperparameter initialisation procedure):

1.

Provided the time-series data is of sufficient length, its variance is roughly

equal to (a + b), since the noise hyperparameter is b = E[gi,g j] and the

N
, where {g, }1.:1 denotes

amplitude hyperparameter is a =E|f, ,f

Lot

LYy

the noise data. Let ¢, and ¢, respectively, be the variances of the measured
data and the measurement noise. It follows that, since b = an,

_ S b n

~

G, a+b l+n

v

The value for ¢, is easily estimated. Since different values of the
hyperparameters, especially the lengthscale hyperparameter, correspond to
models with different lengthscale, the value of g, depends on the choice of
time-series components that is interpreted to be noise. For example, the
spectral density in Figure 7 clearly indicates that the corresponding time-
series data consists of several components with different lengthscales.
Only the long lengthscale component with frequency less than y; might be
of interest whereas all remaining components with higher frequency are
interpreted as noise. In this case, ¢, would be estimated as the cumulative
sum of the spectrum between y; and y», the Nyquist rate. Hence, a and n’,

the respective initial values for a and », are obtained from

a’ = (l — v)q ’

n" =v/(1-v)
Let Q(0) = aP(d,n) in (5). The negative log-likelihood function becomes
(27). The hyperparameter a can be eliminated from A(#) by minimising
the value of a as a function of d and n, as shown in (28) and (29). The
revised log-likelihood function is thus reformulated to be dependent on
only two hyperparameters, i.e. d and n.
The initial value, d', for the lengthscale hyperparameter, d, is obtained by

solving the nonlinear equation (28).

The hyperparameter values @', d and n’, obtained by Procedure 3.1 are appropriate

initial values for minimising the negative log-likelihood function, for either (5) or

(29). The latter has the advantage of being dependent on two hyperparameters and so

41

Fast Algorithm Implementation for Gaussian Regression

converges faster (details are covered in §3.3). Two cases arise as a result from this
procedure. In the first, all hyperparameters are adjusted during the optimisation to
converge on a nearby local minimum corresponding to the prior model with the
required lengthscale characteristic. In the second, the optimisation may fail to locate a
suitable local minimum, when all the hyperparameters are adjusted. In the latter
situation, d is required to be held constant during the optimisation. It may then be
necessary to adjust manually the value of d and repeat the optimisation to obtain the

prior model with the required lengthscale characteristic.

3.5 Efficient, Fast Algorithms for Time-series Gaussian Processes

In the previous few sections, Gaussian process computations are sped up by altering
the training procedures, viz. Hessian implementation, hyperparameter reduction and
hyperparameter initialisation. Subsequent discussions are focused on developing fast
algorithms for time-series data. Note that, the fast algorithms introduced in this
section are not approximation methods; unlike fast sparse approximation approaches

reviewed by Quinonero-Candela and Rasmussen (2005).

Given that a data is time-series, using the squared-exponential covariance function
(26), it can be shown (Sayed and Kailath, 1994; Sayed et al., 1994) that the
corresponding covariance matrix is structured, i.e. a Toeplitz (or quasi-Toeplitz)
matrix. Structured matrices are known to have low displacement rank and therefore

can be exploited to speed up computations.

The interest of this chapter is to acquire fast algorithms that are capable of dealing
with large-scale time-series data; or specifically covariance matrices that are Toeplitz
or block-Toeplitz type. As such, matrix manipulation is essential and the following
algorithms are briefly evaluated. Firstly, some super fast algorithms (Wang and
Krishna, 1989; Stewart, 2003) to solve block-Toeplitz systems in near O(N) operation
exist. However, these approaches remain numerically unstable and therefore are not
worthwhile using. The second method, introduced by Sayed and Kailath (1994), is the

Kalman filtering algorithm, which is based on the discrete-time Riccati recursion to

42

Fast Algorithm Implementation for Gaussian Regression

handle time-invariant data. However, it requires a very special structure in the
Toeplitz matrix (Sayed et al., 1994), which does not correspond to the required
covariance function in this case, and hence is rather restrictive in nature. This
approach is therefore also not viable. Finally, the third method is to utilise the Kalman
filtering algorithm and adapting it to suit the required covariance function; that is, the

modified generalised Schur algorithm.

Two fast algorithms are discussed in this section; the modified Durbin-Levinson’s
algorithm and the modified generalised Schur algorithm. The former, based on
Durbin’s, Levinson’s and Trench’s algorithms, is developed by Leithead et al. (2005c¢)
and provides the motivation to develop the latter algorithm. The modified Durbin-
Levinson’s algorithm has the potential to perform Gaussian regression on a very
large-scale dataset, e.g. up to one million data points and beyond. However, this
algorithm is applicable only to strictly Toeplitz matrices, or to be exact, covariance
matrices constructed from time-series data with fixed sampling interval. This limits
the use of the modified Durbin-Levinson’s algorithm to special cases of structured

matrices.

In many cases, time-series datasets may contain missing measurement data. As a
result, the covariance matrix is no longer pure Toeplitz; instead it is a Toeplitz-like
matrix, i.e. a Toeplitz-Block-Toeplitz matrix. Despite this, the matrix itself is still
structured. It is known that the generalised Schur algorithm is capable of factoring
general structured matrices (Sayed et al.,, 1994), hence this fact is readily used to
extend the modified generalised Schur algorithm to handle Toeplitz-like matrices, or
rather, matrices with low displacement rank. Typically, covariance matrix of time-
series data with missing gaps has low displacement rank, K. The performance of the
modified generalised Schur algorithm is not as fast as the Durbin-Levinson’s
algorithm, but it is an O(KN?) operation, where K is much smaller than N, e.g. the

value of K is approximately less than 10, as compared to N.

43

Fast Algorithm Implementation for Gaussian Regression

3.5.1 Modified Durbin-Levinson’s Algorithm

Developed to reduce O(N°) computational complexity and O(N*) memory storage
requirement, the modified Durbin-Levinson’s algorithm (Leithead et al., 2005c)
specifically exploits the Toeplitz structure of the covariance matrix (26) for a time-
series dataset. It can be shown that the derivative for the covariance matrix is also a

symmetrical Toeplitz matrix, of the form

9 49 9 " Gya
4@ 4 4 :
o=\ @& 4 - 4
A g,
v " 9 91 Y
which can be represented by its first column vector, g = [qo 49, 9, - 9y,]T.

Note that the inverse of Q is not necessarily a Toeplitz matrix. The matrix operations

needed in Gaussian regression can be classified into three different O(N°) operations;
specifically, the log-determinant of Q, computation of Q'Y and trace of (O'P),

where P is also a Toeplitz matrix. According to Golub and Van Loan (1996), Trench’s
algorithm inverts O with 13N*/4 operations whereas Levinson’s algorithm can solve
O'Y with 4N operations. However, explicitly solving 0" does not work due to
extremely large memory requirement to store the matrix. A Durbin-Levinson
framework was presented (Leithead et al., 2005¢) to adapt the algorithms towards an
efficient and economical computational scheme. The key to solving memory demand
issue is by using the concept of vector-level storage. This framework is known to
handle very large time-series datasets for Gaussian processes, e.g. one million data
points. Experiments are carried out in §3.7 to illustrate that the modified Durbin-
Levinson’s algorithm is capable of handling very large datasets through O(N?)

computational complexity and O(N) storage requirement.

Due to its limitation in handling Toeplitz-like matrices, the modified Schur algorithm

is developed.

44

Fast Algorithm Implementation for Gaussian Regression

3.5.2 Modified Generalised Schur Algorithm

The modified Durbin-Levinson’s algorithm, developed by Zhang et al. (2005¢), has
its limitation. Primarily, it is incapable of handling more general structured matrices,

such as Toeplitz-like matrices with low displacement ranks.

As outlined in the previous section, the two main procedures involving O(N°)
operations are the matrix inversion and the log-determinant of the covariance matrix,
0. Most of the matrix operations, including the calculation of the log-determinant of
0, can be solved using the generalised Schur algorithm, through the computation of
the Schur’s complement of any N x N Hermitian (Toeplitz-like) matrix, P. This was
shown by Kailath (1999), Chandrasekaran and Sayed (1996, 1999a, 1999b), such that
the generalised Schur algorithm can be extended for the application of Gaussian

Processes.

The covariance matrix (26) for time-series data has a special displacement structure,
that is, a matrix with a low displacement rank. In this section, the focus is mainly on
the exploitation of Toeplitz, or rather semi-block-Toeplitz (Toeplitz-like) matrices

using Schur algorithm to reduce computational burden.

Consider a positive-definite Hermitian matrix P e X" such that the triangular
decomposition is denoted by

P =AATA (31)

where A =diagld,.....d, ,} is a diagonal matrix and A" refers to the complex

conjugate of A. The lower triangular matrix A is normalised in a way such that {d;}
appears on its main diagonal. This decomposition can be obtained through the Schur
reduction algorithm, also known as the Gaussian elimination procedure, in a recursive
manner to yield the so-called LDL-decomposition. Schur reduction is also known as
the matrix factorisation procedure. Throughout the thesis, P is assumed to be real. The

complex case can be treated in a similar way.

45

Fast Algorithm Implementation for Gaussian Regression

The Schur reduction algorithm to factor P is generally O(N°). However, when P
possesses a special displacement structure, the computation burden can inherently be
significantly reduced by exploiting the low displacement rank of P. The key
procedure lies in the triangularisation of a matrix by a sequence of J-unitary
operations of a prearray formed from the data at certain iteration; that is, the
information needed to form the prearray for the next iteration can be read out from the
entries of the triangularised prearray at the current iteration. Hence, no explicit

equation, except a few simple ones, is required.

The Schur algorithm focuses exclusively on strongly regular Hermitian Toeplitz-like

matrices that satisfy

P-®PO "=T9 T’ 9=9",9°=1 (32)

for some full rank generator matrix, I', and lower triangular matrix, ®. The diagonal

elements of @ satisfy

1-f.f] #0 (33)

where [1.* is the complex conjugate of f; so that P can be defined uniquely by 8, I" and
®. 9 is known as the signature matrix, defined to be J-unitary, (I , ®-1,), where K =

p + q is the total number of real eigen-values for any full rank I'. Scalars p and ¢
refers to the number of positive and negative eigen-values, respectively. @ is chosen
to be strictly lower-triangular shift matrix in this thesis. A condensed form of the

generalised Schur algorithm (Kailath, 1999) is shown below.

Algorithm 3.1 (Generalised Schur algorithm): Given a matrix, P e X" that
satisfies (32) and (33) for some full rank T € X*** . Start with I’y = I" and perform the
following steps for i = 0,1,...,n-1:

1. Let g; be the top row of I';, and partition @ as

SO
{cpio} Vi
O =\~
D0, | fn—i

The object of interest here is @;, which is obtained by ignoring the first i

rows and columns of @ and define f; to be the top left element of @,.

46

Fast Algorithm Implementation for Gaussian Regression

Next, compute /; by solving the linear system of equations® where g, is
the complex conjugate transpose of g;:
(1,,—ff®), =T 8g
Defining @ to be strictly lower-triangular shift matrix, it follows that
I =T9%g/
Then, the first element of /; is
d=g%e I-1f)-g%e

2. Obtain an explicit form of I';;; as shown

0 Sg.g
=<' +(D. -1 —=121 00,
|:1—\i+lj| { l+(i n—l)l—‘lgigg:‘} i

where 0; is any J-unitary matrix. Notice that [';;; has one row less that I';.
3. Finally, {/;} defines the successive columns of A, and d;, the successive

diagonal elements of A, such that P = AA"A",

The generator matrix, I', being highly non-unique, can be obtained in various forms in
which the Schur algorithm applies. Furthermore, it is possible to obtain different

arbitrary J-unitary matrix, ®;, as long as the following condition applies

PIO =9 =90 (34)

Given the flexibility in choosing the generator matrix, ['® can be used as any J-
unitary matrix to obtain the proper form of the algorithm. I" is said to be in proper
form if its first nonzero row has only a single nonzero entry, either in the first or last
column of the top row of I'. These issues have been addressed by Kailath (1999),
Chandrasekaran and Sayed (1999a, 1999b).

Generally, representing structured matrices by I' and @ in finite precision induces
round-off errors. It is important that I should be in proper form so that reasonably
good error bound is achieved. To do so, the following four enhancements

(Chandrasekaran and Sayed, 1999a) are incorporated in the Schur algorithm.

> @ is not only a triangularly matrix, it is generally sparse and often diagonal or bidiagonal, thus it
makes the equation fairly easy to solve, particularly forourcase ®=Zor ® =Z ®Z .

47

Fast Algorithm Implementation for Gaussian Regression

1. Careful implementation of the hyperbolic rotation®.
Careful implementation of the Blaschke-vector product’.

Enforce positive-definiteness of successive Schur complements.

ol

Control of potential growth of successive generator matrices.

Chandrasekaran and Sayed (1999a) concluded that for most positive-definite
structured matrices, the modified Schur algorithm is backward stable, when enhanced

with the hyperbolic rotation and householder (or any related) transformation.

The determination of the displacement-generating matrices {I", @, 9}, also known as
the rank-revealing decomposition, is discussed here. Note that, the procedure to obtain
these matrices takes into account the context of Gaussian regression. Nevertheless, it
is also applicable to some non Gaussian regression contexts. The displacement-
generating matrices require the use of augmentation matrices, P, for the generalised
Schur algorithm. The matrix P in (32) can be assumed to be real, symmetric and
positive-definite. The displacement matrix, AP, is defined as AP =P —®P® " and
@' is the matrix transpose of ®. Since P is positive-definite, it is crucial that the
successive Schur complements are also theoretically positive-definite. If the
displacement rank of AP is K, then 3 is simply defined to be a J-unitary matrix,

8 = ([K/Z @_IK/Z)

such that the numbers of positive and negative eigenvalues are the same. The matrix,

) :(Z N OZ, ©Z @...), is designated to be a strictly lower-triangular shift
matrix, depending on the number of inner Toeplitz-blocks inside P. For example, if P
consists of two by two block-Toeplitz matrices as shown below, such that T is a
Toeplitz matrix, then ® = (Z N OZ)
P = F_““_JE_T_“_E} ,T,eP"™ T, ep™ T ep™
T, 1T,

Matrix Zy is defined here to be a square lower-triangular shift matrix with ones on the

first subdiagonal and zeros elsewhere (i.e. a lower-triangular Jordan block with

* Hyperbolic rotation is implemented to rotate the top row of I';+; to proper form.
> Blaschke-vector product has been explained in the past literature (Chandrasekaran and Sayed, 1999a).

48

Fast Algorithm Implementation for Gaussian Regression

eigenvalue equal to zero). The generator matrix, I', can be obtained by the following

procedure.

Procedure 3.2 (Obtaining the generator matrix):

1.

Let P eP™ be a symmetrical and Hermitian matrix, with low
displacement rank, K << N, such that the reduced-row echelon form

(RREF) is

~ ~ -~ K/xK . . .
where B' = [A : BT] and A=A €P 2oz 1s symmetric. Any symmetric
Hermitian block-Toeplitz matrix can be transformed into a matrix with the
above RREF by permuting its rows and columns. Let ®F = ED be the

eigen-value decomposition of

where D is a diagonal matrix. The non-zero eigenvalues of AP are real and
positive, and are identical to the eigenvalues of ®. In addition, the

eigenvectors for the non-zero eigenvalues of AP are real and equal to the

columns of BX+[I|0]'Y =% eP ™ where [X"|¥'[=EecP®¥.
The proof is explained in Proof 3.1.
Some eigenvalues of I' can be very similar. For numerical reasons, the
computed eigenvalues and eigenvectors may consist of complex conjugate
pairs, i.e. D and E are complex matrices. Although the imaginary part of
these computed eigenvalues are extremely small, the imaginary parts of
the eigen vectors can be large. Hence, to ensure D and E are real, the
following corrections are made

D — real(D)

E— real(E)+ imag(E)
Each column of ¥ is an eigenvector of AP with eigenvalue belonging to
the diagonal elements of D. However, since all the eigenvalues are not

distinct, the columns of ¥ are not automatically orthonormal as required.

49

Fast Algorithm Implementation for Gaussian Regression

To enforce orthogonality, the columns of ¥ are updated recursively for k =
2,...,K such that,

k-1 T
\Pk - lI”k - =~ lPllgI:’rl\PlPk)

where ¥; is the i™ column of ¥. To obtain orthonormality, the columns are
then rescaled such that, V&,
\Pk

VPP,

With W € P "X obtained from above, every column of ¥ is an eigenvector

Y, -

of AP and is orthonormal with every other columns. The respective
diagonal elements of D are therefore the corresponding eigenvalues. Thus,
the following is obtained, AP =WDW¥' (Orthogonality is shown in
Lemma 3.1). D has the decomposition
D=2(HQH"E

where H is the unitary permutation matrix separating the positive and
negative eigenvalues, 4;, from each other. = is a diagonal matrix with its
diagonal elements comprised of the square-root of the absolute values of

the eigenvalues, 4;; that is,

g =diag{\/|71=---’\/m}

The required decomposition of AP is obtained with
9 =0Q
I'=YEH

thatis, AP =I'ST" ", where T AQEH is the generator matrix for AP,

Proof 3.1 (Eigenvalues and eigenvectors of @ = eigenvalues and related-eigenvectors

of AP): Let P € P ™" be a Toeplitz-like symmetrical and Hermitian matrix with low

displacement rank such that

AP =P —@®PD '

where @ = (Z Ny ®Zy ®Z, @) is a strictly lower-triangular shift matrix and Zy is

a square lower-triangular shift matrix with ones on the first subdigonal and zeros

elsewhere. To prove that the eigenvalues of AP are the eigenvalues of @, and the

eigenvectors of AP are related to the eigenvectors of @, let

50

Fast Algorithm Implementation for Gaussian Regression

e

T T ST ~ K/xK/ . . .
where B' =[A 1B | and A =A €P 7?72 is symmetric. Also, let the eigenvector

1
be £ =Bx+ [6} y and eigenvalue be A. Thus,

N T I

B A0 1
é—-:‘—Bl— E= [B | O]+ == === U By +| - y
B0 0 0,0 0
By expanding the right-hand side,

BAx+B+BTB +A AA A /1B+I
-———=|X - — |- | X—| - = X -
"1 o’ o o o
B'B AA I
= BAx+By+|-—--|x——-—- [x=A{Bx+| - |y
0 0 0
By comparing both sides,

BAx + By = ABx X A VT x X
N =@ - |=|-7 7 = - 1=4-
B B-AA =y y B B-AA |0y y

As B"B —AA is full rank and non-singular, this further implies that the inverse of

B'B - AA exists. Thus, by taking the eigenvalue decomposition, the eigenvalues
and eigenvectors of @ is simply the corresponding eigenvectors and eigenvalues of

AP.

Lemma 3.1 (Orthogonality and the SVD). A set of vectors {xl,...,x } in P" is

p

orthogonal if x;x, =0 whenever i # j and orthonormal if x;x, =&,. Orthogonal

vectors are maximally independent as they point in different directions. The vectors

V},...,v, form an orthonormal basis for a subspace S < P ™ if they are orthonormal
and span S. It is possible to form an orthogonal matrix Q € P "™ by extending such a

basis to a full orthonormal basis {v,...,v, } for P" (Golub and Van Loan, 1996).

51

Fast Algorithm Implementation for Gaussian Regression

The development of orthogonal matrices can be wuseful in singular value
decomposition. If 4 is a real m-by-m matrix, then there exist orthogonal matrices
U=u,.,u,]eP™ and ¥ =[v,,..,v, |e P™"
such that
U'AV = diag{o,,...,c, }e P ™"
where 0, 20, 2...20, 20.

m

The o; are the singular values of 4 and the vectors u; and v; are the i left singular

vector and i right singular vector respectively. It is easy to verify that

Av, =ou, | .
T i=l:m
Au, =0o,v,

Thus, the SVD expansion for matrix 4 (Golub and Van Loan, 1996) is obtained by

.

T

A= ZU;”;";
i=1

If 4 is symmetrical, u = v, thus, the eigenvectors are the singular vectors of « and v,

while the eigenvalues are the singular values of 4.

3.6 Application of Schur Algorithm in Gaussian Processes

Following the previous subsection, it is of interest to exploit the generalised Schur
algorithm to speed up the computations in Gaussian processes. Several O(N°)
computations, such as log-determinant and inversion of covariance matrices, are
bottlenecks in the training procedure. The modified Schur algorithm, as described in
§3.5.2, is used to obtain fast factorisation for the variables in both log-likelihood
function and its derivatives, with the chosen covariance function, (26). For notation

simplicity, the first and second order derivatives of Q(6) with respect to d, 6Q/dd

and 0°Q/dd* , are denoted by @, and ®,, respectively. The hyperparameters in (26)

are defined using exponentials, as discussed in §3.2.1, during the training process.

52

Fast Algorithm Implementation for Gaussian Regression

Note that from this section onwards, N refers to the size of O, the covariance matrix

(26), and N denotes the size of P (and I).

3.6.1 Fast Factorisation using Vector-level Storage Procedure

The utility of the generalised Schur algorithm provides a direct factorisation of the
log-determinant of Q and Q'Y during the evaluation of the negative log-likelihood
function. The terms, tr(Q™), #(0"'®,) and ®;0'Y are necessary to complete the
derivative function for the optimisation procedure. Vector Y is defined here to be the
scalar outcomes of every explanatory variable z. Hessian information, whilst optional,

can also be included in the optimisation procedure. The second order derivative of the

negative log-likelihood function requires further direct factorisation for Q~'Q~"',

0'®,0"'D,, (0" ®,)and 0'D,0".

Although the generalised Schur algorithm provides a direct factorisation of a positive-
definite matrix P in the form of AA'A", in actual fact no matrices, other than the
generator matrix I, is explicitly stored in the process. Leithead et al. (2005c)
introduced vector-level storage algorithm while handling large-scale data (Leithead et
al., 2005d) using Durbin-Levinson’s algorithm in Gaussian process, to avoid any
O(N?) storage requirement. In this proposed Schur algorithm, the largest matrix to be
stored is the generator matrix, I’ € P NxK , but since K << N, it is sufficiently small to

be classified as vector-level storage.

3.6.2 Matrix Structure and Schur complements

Factorisation of the Schur complement is instrumental towards the reconstruction of
matrices with low displacement rank. It is perhaps easier to first introduce some

notation. Recalling from §3.5.2 for the real case of direct factorisation (31),
P = AA'A", it follows that there is a representation for its inverse such that

Pl=(ATAA)=0A QT

53

Fast Algorithm Implementation for Gaussian Regression

where Q is an upper triangular matrix, defined as Q AA"'A . To extend towards a

general case of Schur factorisation, it is perhaps important to investigate the Schur

factorisation and its complements in detail.

Suppose that P is an extended augmentation matrix®, partitioned as shown below

N N-N
——=r——

b _ {El 'Ez} PN
T,T,| }N-N
where Tj, ‘v’{i, Jj }e {1,2} are Hermitian Toeplitz-like matrices, it follows that the Schur
complements of the leading N x N block of P is T,, — T, T;;'T;,. This can be shown
using the Schur reduction algorithm (Kailath, 1999). The size of 7;; need not
necessarily be the same as that of 7. By applying the generalised Schur algorithm,
not only can (the generators of) Ty; be determined, but both 7}, and T,, - T,,T;,'T},,
the Schur complement of P, can be simultaneously factorised. Note that, only the

symmetrical case for real P is considered, though it can be extended to cases for non-

Hermitian complex matrices.

To further clarify the procedure, N recursive iterations of the generalised Schur
algorithm is first applied to a generator of the matrix P, to provide the first N columns
and first N diagonal entries of the triangular factorisation of P, to be denoted by and A

and A, respectively. The matrices, A and A, are partitioned as shown

20 L AL L
o]y v Do)} v
|LiL] IN-N'" |DiD| }N-N

where L and L are lower triangular matrices. If 7o) = T, = [, L would be an upper

triangular matrix. In situations with extended matrices, the augmentation matrix may

contain more semi-Toeplitz blocks within each partitioned block. Hence, L may have

to be split into

Z=[YT gT]r

% Augmentation matrix, or simply known as extended matrix, may contain several semi-block-Toeplitz
matrices, with low displacement rank.

54

Fast Algorithm Implementation for Gaussian Regression

such that Y and ¢ are full matrices. It follows from Kailath’s (1999) explanation of the

Schur reduction algorithm that P may be interpreted as follows
T, T, L 0:LD L

such that, following the Schur reduction algorithm, the Schur complement of P admits
V, =LD'L" =T,,~T,T,;'T,,. Equating terms on both sides of the equation, it
concludes that

T,,=LD'L" and T,,T,'T,, =LD'L"

Hence, the first N recursive steps of the algorithm not only provide the triangular
factorisation of T7;, but also the triangular factorisation of T,,T;;'T;,. Unfortunately,
this mathematical concept does not apply to a general matrix, ®, e.g. where

® = diag{f,,.... f_,} is a diagonal matrix.

For simplicity, matrices Y and ¢ are used in the following section, but never explicitly
stored; instead only every subsequent column vectors of Y and ¢, viz. 7 and w
(illustrated in the next few sections), are computed and temporarily stored in each
iterative step. In this way, vector-level storage is implemented to resolve any

preliminary O(N?) memory storage issue.

3.6.3 Useful Augmentation (Extended) Matrices in Gaussian regression

This section investigates the choice of augmentation matrices in more specific details,
particularly in relation to Gaussian regression. Augmentation matrix, P, is used to
obtain a fast factorisation for the Schur algorithm. The corresponding generator
matrix, I', is then computed and stored. The choice of the lower-triangular shift
matrix, @, is dependent on the choice of augmentation matrix, P, such that its choice

satisfy (32) to within a reasonable degree of precision.

55

Fast Algorithm Implementation for Gaussian Regression

During the optimisation procedure in Gaussian regression, only the log-likelihood
function and its derivative information are required to ensure successful convergence.
The modified generalised Schur algorithm can be exploited to compute the following

terms, which are typically O(N°)-operations, if calculated explicitly.

. o'y

. tr(Q™)

. log [0

. ®,0'Y
° tr(Q'lCDl)

Factoring (0™ and (®,0™)

The following extended matrix P can be used to obtain both (®,0'Y) and (0''Y), by

computing the direct factorisation of 0"'®; and 0",

___Q__E_q_)l__[_ @ Q,ch @ Qfl
P =| @, i 0 O :>V}, :{ 1’1cD ! 171 } (35)
Pl o o', 0

where Q is a matrix with low displacement rank, as defined by the function in (26).
The displacement rank of P can be easily calculated by working out the RREF of the

displacement matrix, AP. For example, if both Q and @, are strictly Toeplitz matrices,

such that P is quasi-Toeplitz, then the displacement rank of P is 4. V}, is denoted to

be the Schur complement of the first (1,1) block of P, with corresponding LDL-
decomposition given by

v, {‘Dlgfq’l CDIQfHY}BI[Y "]
oo 0 S

such that ¢ is an upper-triangular matrix, with ones along its diagonal, and D a
diagonal matrix. A direct factorisation for 0" and O'®; is simultaneously obtained
after N iterations of the generalised Schur algorithm. It follows that the required trace

operations is computable in O(N?) procedure,

56

Fast Algorithm Implementation for Gaussian Regression

oo)35

=1 j=1 i
i

~

Vi
24

J=1

rlo™)=

M-

1

where u;; and v;; represents the i"™ columns and /™ rows of Y and ¢, respectively, and d;,

the /™ element on the diagonal of D . The trace operation is further explained in the

algorithm below.

Algorithm 3.2 (Trace operations using Schur algorithms): The trace operations
involving the generalised Schur algorithm are described in detail here. Given the
generalised Schur algorithm as described in Algorithm 3.1, the matrices Y and ¢ are
obtained column by column. Start with p=0 and w =0. The following steps are

performed for i =0,1,..., N-1:

1. Obtain /; and d; from the generalised Schur algorithm (A4lgorithm 4.1).

Then, define u; and v, as shown:

2. Compute the following:

LE L E
pEPTT,)

1 1

The final values of p and y are the corresponding values for the trace operations of

tr(Q‘IQI) and tr(Q‘l), respectively.

Factoring log-determinant of O

Similarly, the log-determinant of O can be computed by

N
loglQ = log|d|
i=1

57

Fast Algorithm Implementation for Gaussian Regression

where ||.|| is an absolute operator to ensure d; is positive. Vectors O"'Y and ®,0’'Y are

obtainable in O(N?) fashion by

N
- Vlkvijyj
=2,
i=k j=I %
N
o UiV,
o, =2

where 7 and wy are the k™ entries of the respective vectors, O''Y and ®,0°'Y, and Vi is
the /™ entry of the vector Y. The operations to obtain these vectors are explained in
the algorithm below. Upon obtaining the required two traces, two vectors and the log-
determinant of Q, the log-likelihood function and its derivative information can be
computed in O(N?) fashion, with a few more arithmetic and vector-vector products

that are O(N)-operations.

Algorithm 3.3 (Obtaining vectors using Schur algorithms): The procedure to obtain
the vectors 7; and wy, involving the generalised Schur algorithm is described here.
From the generalised Schur algorithm as described in Algorithm 3.1, the matrices Y
and ¢ are again obtained column by column. Let Y be the vector consisting of the
target values. Starting with vectors ¢ = 0 and ¢ = 0, where ¢,c € P ¥, the following

steps are carried out for i = 0,1,..., N-1:

1. Obtain /; and d; from the generalised Schur algorithm (A4lgorithm 3.1).

Then, define u, and v, as shown:

2. Compute the following:
¢=¢+w.$.Y)mdg=g+%.%.Y)

i i

where * denotes the Hadamard product or entrywise product.

The final values of ¢ and ¢ are the corresponding values for the operations of (0"'Y)

and (®,0"Y), respectively.

58

Fast Algorithm Implementation for Gaussian Regression

3.6.4 Hessian Information in Optimisation Routine

Although (35) is sufficient for the optimisation routine, the inclusion of Hessian could
provide a richer and more detailed analysis of additional information for training.
Without user-supplied Hessian, the optimisation approximates Hessian by finite-
differencing. Zhang and Leithead (2005) introduced the use of Hessian information in
optimisation routine for Gaussian processes to provide more accurate and allow faster

convergence towards a local minimum.

Subsequent to the results obtained in §3.6.3, Hessian manipulation requires a few
additional terms with slightly different augmentation matrices, to have a complete

description of the second order derivative information; mainly,

e D,0'Y

o QD))

o (00"

¢ 0'0'Y

e 0,0'0,0'Y

o (@000
o t(Q'® 0"

Factoring (Q"'®,)

The terms ®,0"'Y and tr(Q"'®,) are obtained using the previous augmentation matrix

(35), by replacing the term ®; with ®@,. The procedure is, hence, trivial.

Remark 3.1: Before defining more augmentation matrices for Hessian factorisation,
denote A,y and Ay by removing the first N rows and first N columns of A and A,

respectively. The matrices A,y and A,y are partitioned as follow

L SR

Ly 0 } N . D,y 0 } N
A e = o Ay =T =

LyiLy| JN=-N D,yiDyy | fN=N

59

Fast Algorithm Implementation for Gaussian Regression

where L,, and L,, are lower triangular matrices.

Factoring (0"'0™})

The following augmentation matrix is used to obtain a direct factorisation for 0"'Q",

110 0 ;
P=0l0 I|=V, {QIQ O}:v; 00"
017 0

where Vi; and Vf; are successive Schur complements of the (1,1) and (2,2) blocks of

P, after N and 2N iterations, respectively. Once again, the displacement rank of P is
4 when Q is Toeplitz. Although this augmentation matrix provides a very fast direct
factorisation for OO, due to numerical issues, inverting OQ by Schur algorithm
after first N iterations frequently causes highly inaccurate results. This is because the
condition number of QQ is very large. It is vital to keep that condition number close

to the condition number of Q, instead of QQ, if the generalised Schur algorithm is to

be used. Hence, an alternative solution is to modify P to

P - “Q“‘, 0 Il=vt :{Q(Q"'[:u[) 0 ([):|:v12; =0+ 00" (36)

where u is a constant factor to be defined in §3.6.6. Despite the modification to the
augmentation matrix, the displacement rank remains at 4. It follows that the
corresponding (2,2) block of the Schur complement is the sum of O and x0'0".
Since the #(Q") and O'Y are computable with the augmentation matrix (35) in
§3.6.3, only the factorisation of #(Q"'0™") and 0'Q'Y is of interest here. The latter
are acquired directly via simple arithmetic O(N) computations. The Schur

complement can also be written in the form

2 o7 T-ITT
Vli :LZND2NL2N

P NxN

where vj; is the i"™ column and /™ row of L, e , an upper triangular matrix, and

D, adiagonal matrix, constructed from N+1 to 2N iterations of the Schur algorithm.

It follows that

60

Fast Algorithm Implementation for Gaussian Regression

=1 j=I

et S

i=k j=1

o'0")- 1|55 lo)

where 7, is the K™ entry of the vector, 0"'0'Y. Also, note that L,, was never

explicitly stored. The algorithm for the operation of tr(Q‘lQ"l) is achieved with the
same algorithm as before; that is, Algorithm 3.2, and the algorithm for obtaining

07'07'Y is achieved with the same algorithm with Algorithm 3.3.

Factoring (Q"'®,0™") and (0"'®,0"'®))

Similar methodology can be used to derive the augmentation matrix P to obtain fast

factorisation for (Q'®,;0"'®,) and (0'®,0™), with

O o R R (R N
|-, -e, 00
o 1 I 0 0
_—0Q+®)'Q 1 0Q+1®)'e, -, [(37
jvlﬁ ch(Q"‘ﬂch)lQ_ch i (Q+77(D1) @ 0
I : 0 0

2 _
:Vﬁ

~9,07(Q-n®,)00, —n®,0"®,0" }
-nQ- lcD1Q @, Qil(Q'Hﬂ)l)Qil
where # is some constant factor to be determined in §3.6.6, and Vf; is the Schur

complement after 2N iterations, or to be precise, of the (2,2) block of P.If QO and @,

are Toeplitz matrices, the displacement rank of P is 6. Subsequently, its LDL-

decomposition is given by

~ ~ Y _
V =L, DZ/%/LEN:% 2N:|D211/|:Y§N ngN]

2N

61

Fast Algorithm Implementation for Gaussian Regression

P NxN P NxN

where Y,, € is a full matrix, g,, € , an upper triangular matrix and
D,, € P¥" a diagonal matrix. These are obtained from the N+1 to 2N iterations of

the Schur algorithm. The required traces are computed as follow,

rlo"@,07)- {ZZi—t (o)}

i=l j=1

1

tr(Q-chIQ-lq>l)=—%;z L

where u; and v;; are i™ columns and jth rows of Yoy and Gy, respectively. Again, the

algorithm for these trace operations is the same as given in Algorithm 3.2. Clearly,

computes the vector ®,0"'®,0'Y, where 7, 1s the Kt entry of (@,0"'®,0'Y). Again,

the algorithm for this operation is the same as given in Algorithm 3.3.

3.6.5 Predictions and Standard Deviations

Given the Gaussian process prior models, the interest is to obtain the predictive mean

and variance for any finite set of values of the explanatory variable.

Factoring terms belonging to the posterior joint probability distribution

From the posterior joint probability distribution given in Chapter 2.4.3, it follows that

the augmentation matrix P, used to compute the direct factorisations for the

predictions and standard deviations, is

SR P ALOT'A,, ALOTY Y-
P=IA,] 0 0=V, :{ ZTlQ% 2 21% = D’I[YT gT] (38)
YOA, YO S

where Vis is the Schur complement of the (1,1) block of P , after N iterations. If 0

and A,; are Toeplitz matrices, the displacement rank of P is 6, and not 4. This is

62

Fast Algorithm Implementation for Gaussian Regression

because of the presence of vector Y in the augmentation matrix. Unlike (35), (36) and
(37), ¢ eP™ is a row vector and Y € P”" is a full matrix, such that 4 is the
number of new outcomes to be predicted. It follows that the prediction for y and the

corresponding standard deviation § are obtained as shown below

N

N 2
N a A Uy
Ve = s Sp =44~

= d d,

i=1 i i=1

~ ~ th . . ~ ~ .
where p, and s, are k£ entries of the respective vectors, y and §, and a is the

adapted hyperparameter of the covariance function (26). The algorithm to compute

the prediction and standard deviation is illustrated below.

Algorithm 3.4 (Obtaining prediction and standard deviation using Schur algorithms):
The operations to obtain the vectors y and §, involving the generalised Schur
algorithm, are explained here. From the generalised Schur algorithm described in

Algorithm 3.1, the matrices Y and ¢ are obtained column by column. Starting with

vectors y =0 and t =0, where y,teP N4 the following steps are performed for i =

0,1,..., N-1:

1. Obtain /; and d; from the generalised Schur algorithm (4lgorithm 3.1).

Then, define u, and v, as shown:

2. Compute the following:
o7, i, o,

and t=t+

i i

y=y+

where ¢ denotes the Hadamard product or entrywise product.

The final values of ¥ and s =+ a—t are the corresponding values for the prediction

and standard deviation of the posterior joint probability distribution.

The derivative observation of the Gaussian regression can also be computed using the

same augmentation matrix (38). The prior covariance function is assumed to have

63

Fast Algorithm Implementation for Gaussian Regression

been chosen to be (26). Let the covariance matrix for the expectation between the

derivative observation and the measurements be A,,. By substituting A,; in (38) with

A,,, the derivative predictions (and its confidence intervals) can be acquired by fast
factorisation using the generalised Schur algorithm. It follows that the derivative

predictions for ¥ and standard deviation, § , are

where ;. and §, are the k™ entries of the respective vectors, § and §, and d is the

lengthscale hyperparameter, d, value as defined in (26).

This augmentation matrix works on the condition that the values of the explanatory
variable of the posterior are sampled at fixed interval; that is, the resulting covariance

matrix is also Toeplitz-like.

From §3.6.3 to §3.6.5, much of the concepts are based on Q being a Toeplitz matrix.
It is apparent that the augmentation matrices can be extended for QO to be a block-
Toeplitz-block matrix; for example, in the case where the time-series data contain
missing gaps. Consequently, every increment in the displacement rank of Q results in

an increment in the displacement rank of P.

3.6.6 Convergence Factors in Augmentation Matrices

This section describes how the values of x and # in (36) and (37) respectively are
chosen. A good choice for these values is needed to ensure that computational errors
are reasonably small. On the other hand, a poor choice of the values is likely to have

significant impact on the accuracy of the generalised Schur algorithm.

Obtaining u

There is some relationship between the constant, u, and the condition number of the

Schur complement of (36). u is used to ensure that the condition number does not

64

Fast Algorithm Implementation for Gaussian Regression

become too large at every iterative step of the generalised Schur algorithm. Given the

first N iterations of the algorithm, the Schur complement of the (1,1) block is

Q(Q + ul)_IQ . However,
oo+) g <|e] Vuep®

where ||.|| refers to the condition number. It is important to keep HQ(Q+ Y74)71 QH as

small as possible, but the value of x cannot be too small such that its contribution to

(Q + ul)71 becomes negligible. Focusing on H(Q + ul)71 0

9

@+ u)' o =0+ u)o”|

lrso)
I+ pux rnax[f(Q_1)]
1+ L X min[ﬁ(Q_l)J

_Lep/minfe(Q)] o
1+ u/max[((Q)] " min[¢(0)]

Q

where E(Q) denotes the eigenvalues of Q. It follows that a reasonable choice for u is
u~min[((Q)]. Since Q = A + bI, where A is a covariance matrix. The smallest
eigenvalue of A can be extremely small and is insignificant compared to b, except

when the lengthscales are large compared to the range of explanatory variable

presented. Therefore, it is apparent that the best value of x should be b.

In the case where A is a sparse or a diagonal matrix, » will no longer be a good choice
for u. However, this is trivial, because the smallest eigenvalue of A (assuming A is
now a diagonal matrix) is simply the smallest element of the diagonal of A. More

detail cases are discussed in Appendix C.

Obtaining 7

In the case of #, it is no longer a condition number problem. Instead, it is an issue of
ensuring the (1,1) block of the Schur complement of the augmentation matrix (37) to
remain positive-definite. It follows that the “optimal” value for # is 1. The following

shows the theoretical verification.

65

Fast Algorithm Implementation for Gaussian Regression

Proof 3.2 (Choice of n = 1): Given the covariance function with explanatory variable
that is one-dimensional is of the form in (26), let C(zl., Z_/.)= aC, (Zl., Z].)-i- b6, and a =

1, such that C and C, are normalised. The covariance function C, is

C, (zl. \Z;): exp{—%(zi -z,)2}

Let d = €, it follows that

ey lo Vol 46

02,07

e

=dC +2d
oy

Rearranging,

oc, 1 o°C, 1

n

oy 2d 0z,0z, 2"

Using this property, let O be the matrix for the covariance function C and P be the
matrix for the covariance function C,, the following equation can be reformulated to

Q+778—P E}_)+b1+776—P
oy oy

=
I/ +(1—2j13+b1
2d 02,0z, 2

(39)

To ensure that the left-hand side of (39) is positive-definite, the right-hand side of the
equation also has to be positive-definite. Thus, the constant # is bounded between 0
and 2 to guarantee positive-definiteness for the matrix on the left-hand side of the

equation.

Examples to support the above statement are illustrated in Figure 8 to Figure 11. The
experiments clearly substantiate that the suggested choice for # is 1. It is evident from
Figure 8 to Figure 10 that the error estimates are much lower for # between 0 and 2,
than values outside this range. The poor accuracy is a result of the Schur complements
not being positive-definite. Figure 11 confirms that the errors are accumulated during

the computations of the generalised Schur algorithm.

66

Fast Algorithm Implementation for Gaussian Regression

Error

Error

Accuracy on trace invl*dQ*inv™*dQ
10 ‘

107+ -

10"+ .

10- | | | | | | |
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 8 Error from the trace operation of (0"'®,0™'®)).

Accuracy on invT*invl*b
10

10 + -

10

107 F a

10 | | | | | | |
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 9 Error from the computation of vector (®,0"'®,0Y).

67

Fast Algorithm Implementation for Gaussian Regression

Error

10 \

Accuracy on trace invT*dQ*invT

10 +

10

107 F

Error

10 +

10- | | |

-1 -0.5 0 0.5

2.5

Figure 10 Error from the trace operation of (0"'®,0™).

Accuracy on R-FRF=GJG

Figure 11 Error estimation of the Schur decomposition of P — ®PO" =9I,

68

2.5

Fast Algorithm Implementation for Gaussian Regression

From the theoretical explanations and numerous experiments, it follows that a good
choice of u can be chosen to be equivalent to the noise variance, b, to ensure relatively
optimal and accurate results. Similarly, for #, it has been shown that any value

between 0 and 2 is suitable, as long as the matrix Q+f7(8Q/ 87/) is confined to be

positive-definite. An appropriate choice for # is naturally 1, since it conveniently lies

in the middle of the boundary, and also for the reason of simplifying calculations.

3.7 Numerical Experiments

The effectiveness of the generalised Schur algorithms is analysed in the following five
sub-sections. To exploit its capabilities and provide a standard benchmark, the
generalised Schur algorithm is programmed in both MATLAB and C languages, i.e.
scripts are written in MATLAB and C codes’. Standard MATLAB operations,
without the use of any fast algorithm, are also made available to provide additional

comparison. The experiments are conducted on time-series datasets.

Firstly, individual Schur functions, written in both coding languages, are compared
with explicit standard MATLAB operations, in terms of accuracy and performance.
The effects of hyperbolic rotation® on the Schur algorithms are also evaluated on both
coding languages. Secondly, a similar test is conducted with the same criteria, except
on time-series data with one missing gap. Next, the focus is on the Gaussian process
optimisation routine, to compare the timing performance and the accuracy of the
convergence to the correct local minima between the C codes, MATLAB codes and
standard MATLAB functions using time-series datasets. Subsequently, the same test
is conducted on time-series datasets with one missing gap. The final optimisation test
compares the performance of the generalised Schur algorithm and modified Durbin-
Levinson’s algorithm, developed by Leithead and Zhang’s (2005¢) as discussed in

§3.5.1. This final test considers only strictly time-series (pure Toeplitz) data.

" The C codes are essential because MATLAB are not efficient in performing loops operations, e.g. for
loops and while loops. C codes are known to be both memory and computationally efficient, especially
for fast algorithms.

¥ Generalised Schur algorithm is performed with and without hyperbolic rotation.

69

Fast Algorithm Implementation for Gaussian Regression

To avoid numerical inaccuracies in the algorithm, the value of the hyperparameter n

for the correlation function between y; and y;

E[yi,yj]:a{exp[_g(zi_zj)z}n(s,j}

is constrained for n > 1 x 10” throughout the experiments. Due to machines having
finite precision, the constraint is imposed primarily to ensure that the errors from the
eigenvalue decomposition of Procedure 3.2, whilst obtaining the generating matrix,
are minimal. This is to further avoid results of the generalised Schur algorithm

computation from being affected by these errors.

The experiments are carried out on an Intel® Pentium® IV 2.8GHz machine with
512MB memory running Linux Operating System. The MEX-C codes are compiled
using GCC 3.5.1, optimised to the architecture of the machine. The installed
MATLAB version is R14.

3.7.1 Test One (Function Test, Data without Gap)

A run of 100 Gaussian process-generated samples per data size, N,
VN = {100,200,...,1000} is carried out to evaluate the performance of the modified

generalised Schur algorithm using augmentation matrix (35) with the standard
MATLAB functions. The functions involved in the calculations are tr(Q'l), tr(Q'1®1),
logl0l, 'Y, Y'O''Y, Y'Q'0'Y, ®,0"'Y and Y'QO'®,0"'Y. Note that, instead of
applying a direct determinant operation, MATLAB’s computation of the log-

determinant of Q is calculated using the Cholesky decomposition as shown below.

log|Q| = ZZlog{diag(A)}

such that O = ATA. Hyperparameter values and noise data are randomly chosen for
every sample to ensure reasonably unbiased test results. The range of the values of the
explanatory variable is between 0 and 100. To avoid numerical breakdown of the

algorithm, randomly-generated lengthscale hyperparameters are also constrained, i.e.

d>1x107°.

70

Fast Algorithm Implementation for Gaussian Regression

— — Schur algorithm
—#— Schur algorithm with rotation
—— SchurC

10° — —— - Schur C with rotation
Standard Matlab

I
§ 10 7
@ v
102 J
Lo
F-—
10° .
10 10

N

a) Timing for tr(Q™), tr(Q'®,), log|Q),
oY, Y'0'Y,Y'0'0'Y, ®,0'Y and Y'Q'D,0Y.

— — Schur algorithm
—#— Schur algorithm with rotation
—— SchurC

10k | — —— - Schur C with rotation
Standard Matlab

Seconds
3

10 E
10° L 3
10 10
N
b) Timing for (Q"'Q™) and 0 QY.
10’

Seconds

— — Schur algorithm
107 B~ — —s7— Schur algorithm with rotation | 3
—— SchurC

— —— - Schur C with rotation
Standard Matlab

10° 10°
N

¢) Timing for t(Q"'®,0"'®,), ®,0"'®,0'Y and (0 D,0™).

Figure 12 Computation time on function test for data without gap.

71

Fast Algorithm Implementation for Gaussian Regression

The O(N?) flops from Figure 12 are clearly visible when using standard MATLAB
operations to calculate the required values for the Gaussian process. Generally, the
Schur algorithm that has been programmed in MATLAB is slow for small dataset, but
its advantage supersedes from N = 500 onwards. Both C codes (with and without
hyperbolic rotation) produce remarkable speedup over the standard MATLAB
operation from the start. Schur algorithm with hyperbolic rotation programmed in

MATLAB language shows slower improvement, but apparently remains O(N?).

The mean relative accuracies of the generalised Schur algorithm, tabulated in TABLE
C —Tin Appendix C, are compared to that using standard MATLAB functions. Except
for the one-off case of #(Q”'®,;0"'®,) in which the hyperbolic rotation in MEX-C
code have resulted in lower accuracy; otherwise the accuracy improvements from the
introduction of hyperbolic rotation, compared to non-hyperbolic rotation algorithm in
handling time-series data, are insignificant. In conclusion, introducing hyperbolic
rotation in time-series data does not yield more accurate results than those without

hyperbolic rotation, as can be seen from TABLE C — L.

3.7.2 Test Two (Function Test, Data with one Gap)

Test One is repeated in Test Two, keeping all conditions unchanged, except
performed on data with one missing gap. The performance of the various Schur
algorithm codes is illustrated in Figure 13. Both C codes have shown to perform
impressively fast, despite the doubling of the displacement rank of the covariance
matrix in Test One. Whilst the generalised Schur algorithm written in MATLAB
shows little improvement, its poor performance can be attributed to its weakness in

handling multiple loop operations that exist in the Schur algorithm.

The relative accuracies of the generalised Schur algorithm programmed in both
MATLAB and C codes (both including with and without hyperbolic rotations) are
compared to those using standard MATLAB functions. The results are tabulated in
TABLE C - II in the Appendix.

72

Fast Algorithm Implementation for Gaussian Regression

10
— — Schur algorithm
—#— Schur algorithm with rotation 4
—— SchurC
10°L | T Schur C with rotation
Standard Matlab
2 -
5 10" —]
5]
[} Y
10° |
o -
F- -
10°]
10 10
N

a) Timing for tr(Q™), tr(Q'®,), log|Q),
oY, Y'0'Y,Y'0'0'Y, ®,0'Y and Y'Q'D,0Y.

1}
°
c
o
o
J)
(7]
B — — Schur algorithm
10 —7— Schur algorithm with rotation |3
Schur C
— —— - Schur C with rotation
Standard Matlab
10°L ,
10 10
N
LI -1 -1 -1 -1
b) Timing for tr(Q" QO)and O QY.
10°
— — Schur algorithm
—#— Schur algorithm with rotation
10'L | — SchurC y
— —— - Schur C with rotation
Standard Matlab
12}
°
=4
o
o
[
(7]

10" 5 L L L L L L L L .
10 10

N

¢) Timing for tr(Q"'®,0"'®,), ®,0"'®,0"'Y and t(Q"'®,0™).

Figure 13 Computation time on function test for data with gap.

73

Fast Algorithm Implementation for Gaussian Regression

The benefit of implementing hyperbolic rotation in the generalised Schur algorithm is
more apparent for the case of time-series data with a single gap. The relative errors of
those implemented with hyperbolic rotations are lower than those without, with the
only exception of #+(Q0"'®,0'®,), which was observed to have much better accuracy

from the use of hyperbolic rotation as compared to other functions.

3.7.3 Test Three (GP Test, Data without Gap)

The modified Schur algorithm is then applied in practice to the training procedure of
the Gaussian process prior models. Tests are conducted for data sizes
N =1{100,200,...,1000} with each data size having 20 samples. Figure 14 illustrates the
timing per iteration for each of the five approaches. The average number of iterations

that the optimisation takes to converge is collated in TABLE C — III of Appendix C.

All the ten optimisations, for every sample test, converge to the same local minima;
hence, the hyperparameter values are similar. The unevenness of the graph in Figure
14 is perfectly normal, since the average number of iterations for every data size, N,
required for convergence differs from one another. Despite the lack of smoothness,
the benefits of the Schur algorithm are apparent. It is noted that the standard
MATLAB operation takes the longest time to converge than any of the other four

methods.

74

Fast Algorithm Implementation for Gaussian Regression

— — Schur algorithm

—#— Schur with rotation

Schur C

— — — - Schur C with rotation s
Standard Matlab

Seconds per iteration

10° 10°

a) Training (per iteration) of GP using derivative information only.

— — Schur algorithm
—7— Schur with rotation
Schur C

100 ¢ — — — - Schur C with rotation
Standard Matlab

Seconds per iteration

10° 10°

b) Training (per iteration) of GP using both derivative and Hessian information.

Figure 14 Timing (per iteration) of GP training on data without gap.

3.7.4 Test Four (GP Test, Data with one Gap)

Subsequently, Test Three is repeated on time-series data having one missing gap. The
performance of the modified Schur algorithm programmed in MATLAB language
demonstrates its poor efficiency of handling multiple “loop”-operations, e.g. “for-
loops”, as shown in Figure 15. Regardless of hyperbolic rotation implementation, the

Schur algorithm codes written in MATLAB fails to prove its worth. Alternatively,

75

Fast Algorithm Implementation for Gaussian Regression

MEX-C codes are observed to have performed up to expectations. This is due to C
codes being more efficient in handling algorithms with multiple “loop”-operations,
despite the increment of the displacement rank. The number of iterations required for

convergence is listed in TABLE C — IV of Appendix C.

— — Schur algorithm
—<— Schur with rotation
Schur C

10 — — — - Schur C with rotation
Standard Matlab

Seconds per iteration

10° 10°

—— — Schur algorithm
—7— Schur with rotation
Schur C

10" L — — — - Schur C with rotation
Standard Matlab

Seconds per iteration

10° 10°

b) Training (per iteration) of GP using both derivative and Hessian information.

Figure 15 Timing (per iteration) of GP training on data with a missing gap.

3.7.5 Test Five (Durbin-Levinson versus Schur Algorithm)

The final test compares the performance of the two fast algorithms, viz. the
generalised Schur algorithm and the modified Durbin-Levinson’s algorithm (Leithead

et al., 2005c). The latter algorithm is only capable of handling covariance matrices

76

Fast Algorithm Implementation for Gaussian Regression

that are strictly Toeplitz, i.e. time-series data with fixed sampling interval. A sine
function, dependent on explanatory variable, z e [0,10], is chosen to be the test data.
The outcome is y, =sin(z,)+¢,, where {'is additive Gaussian white noise of variance
0.1. Gaussian regression using standard gradient-based optimisation routine is
performed on ten different data sizes, N = {10,000,20,000,...,100,000}. Note that, due
to extremely large dataset size, optimisation using standard MATLAB functions is not

possible. These two fast algorithms are programmed in MEX-C language. The rates of

convergence using these fast algorithms are tabulated in TABLE IV.

TABLE IV Performance (timing) between modified Durbin-Levinson’s algorithm and
modified generalised Schur algorithm

Data size Timing per iteration (hour)

N S DL Speedup (S/DL)
10,000 0.0182 0.0021 8.6
20,000 0.0807 0.0097 8.4
30,000 0.1829 0.0243 7.5
40,000 0.3208 0.0526 6.1
50,000 0.5021 0.0949 53
60,000 0.7427 0.1519 4.9
70,000 0.9720 0.2164 4.5
80,000 1.2793 0.2898 4.4
90,000 1.7092 0.4014 4.3
100,000 1.8577 0.4597 4.0

S refers to generalised Schur algorithm with no hyperbolic rotation. DL refers to
Durbin-Levinson’s algorithm. Both algorithms are compiled using Mex-C codes. The
table illustrates the timings for time-series Gaussian regression using two different
fast algorithms. The timings (per iteration) shown are calculated based on successful
convergence of the Gaussian process optimisation routine.

Both algorithms results in the optimisation converging to similar local minima during
the training process. It was noticed that the modified Durbin-Levinson’s algorithm
produces a 25-fold improvement over the Schur algorithm, when the data size
increases from N = 4,000 to N = 10,000. The main reason is that no generator matrix
is required for the former; only vector-level storage algorithm and the reflection
coefficient is used, thus having better computational and storage efficiency. When the
experiment continues for N > 10,000, the speedup advantage of Durbin-Levinson’s

algorithm gradually drops to approximately 4-fold speedup, as shown in TABLE IV.

77

Fast Algorithm Implementation for Gaussian Regression

The reason why the Durbin-Levinson’s algorithm outperforms the generalised Schur
algorithm by a large margin at the beginning is mainly because of its vector storage
feature; only the reflection coefficient and vector are stored. Although the latter also
uses the idea of vector storage, it is more demanding in the storage requirements, i.e.
the generator matrix I" and intermediate vectors of the Schur algorithms. There are
two possible reasons with regards to the decline in the ratio of the speedup factors as
data size increases from 4,000 to 10,000. Firstly, the modified Durbin-Levinson’s
algorithm has reached the system’s available memory resources, resulting in more
read-write operations on the hard disk. Access to data stored on the hard disk is
slower compared to data stored on the system’s memory, hence impedes the speed
performances of the fast algorithms. Secondly, the function calls in the modified
Durbin-Levinson’s algorithm increase to a large extent such that it becomes a
bottleneck within the algorithm. In the case of the generalised Schur algorithm, the

number of function calls does not increase as much.

Despite the impressive speed benefit of the modified Durbin-Levinson’s algorithm, it
also has its drawbacks. The algorithm can only handle cases with matrices that are
strictly Toeplitz. For instance, it cannot be applied to time-series data with missing
gaps. This limitation hinders the identification of real dynamic systems, from which
data obtained at fixed sampling intervals could potentially have missing information.
The generalised Schur algorithm, on the other hand, has the capability to handle such
situation, i.e. Toeplitz-like matrices. Secondly, the Durbin-Levinson’s algorithm
limits training procedure to using only user-supplied Gradient information, whereas
the Schur algorithm allows both user-supplied Hessian and Gradient optimisation.
Finally, the computation of the standard deviations of data points (except training data
itself) is impossible with the modified Durbin-Levinson’s algorithm. Explicit
computation of the posterior remains O(N°) with O(N*) memory requirement.
Nonetheless, the generalised Schur algorithm allows computation of the predictive

means and variances with O(sz) operations.

78

Fast Algorithm Implementation for Gaussian Regression

3.7.6 Experimentation Summary

The relative errors of the outputs from the Schur algorithm in Test One and Test Two,
as compared to that from using standard MATLAB function, are approximately
between 10™ and 10"°. By keeping (32) to a high level of accuracy, it follows that the
errors resulting from the Schur algorithm are minimal. In cases with very low
displacement rank, e.g. displacement rank of 2, there is little differences between the
errors obtained from the algorithms with hyperbolic rotation and those without, as
long as subsequent Schur complement of each iteration is positive-definite. Clearly, it
is much faster not to include the hyperbolic rotation. As displacement rank increases,

the benefit of hyperbolic rotation becomes apparent.

All the optimisations in Test Three and Test Four have converged to the correct
optimum points, thus resulting in similar hyperparameter values for every sample
data. Similarly, the generalised Schur algorithm works sufficiently well, even without
the implementation of the hyperbolic rotation. Since only data with one gap has been
tested, the use of hyperbolic rotation is justifiable only if higher displacement rank of

the augmentation matrix is encountered.

The modified Durbin-Levinson’s algorithm has proven in the final test to be superior,
in terms of speed performance, than the generalised Schur algorithm. However, the
latter is capable of handling time-series data with missing gaps, using Hessian
information in the optimisation routine and computing the standard deviation (of any

data point).

Theoretically, both algorithms are capable of handling large-scale data size of up to
one million data points and beyond, only to be constrained by the memory capacity of
the machine. As memory chips are relatively inexpensive in today’s market; therefore
the algorithms are more restricted by processor time. Generally, the modified Durbin-
Levinson’s algorithm is highly recommended for strictly time-series data, whereas the
Schur algorithm is more suitable for time-series data with missing gaps. An

application using the generalised Schur algorithm is presented in §3.8.

79

Fast Algorithm Implementation for Gaussian Regression

3.8 Application of Schur Algorithm on Contest Data

The effectiveness of the modified generalised Schur algorithm is demonstrated by
application of Gaussian regression on a dataset of 5,000 points sampled at 1Hz
(CATS Benchmark, 2004). The data contains four gaps, specifically at the following
locations, (981s — 1000s), (1981s — 2000s), (2981s — 3000s), (3981s — 4000s) and
(4981s — 5000s). Before applying Gaussian regression, the number of separable
components in the data is investigated to determine whether a single Gaussian process
model with compound covariance function or a multiple Gaussian process model
(Leithead et al., 2005b) is required. However, it is not of interest to identify the
individual components in the data, which is discussed in §4.4. The intent here is to
integrate the generalised Schur algorithm in Gaussian regression to perform analysis
on the data. The time-series data is shown in Figure 16 with the spectral density
function shown in Figure 17. The data has a component with lengthscale longer than
the gap at frequencies less than 0.045Hz. Any other component is treated as noise.
Gaussian regression, using the correlation function (26), is employed to identify the

low frequency component.

80

Fast Algorithm Implementation for Gaussian Regression

800

o
c
o I I I I I T I
|l ____ 1 [P A B e == | _ _ _ |
= | | | | | | T
= o S R e =__ ! ____ |
| | i | |
= _ \m | | | | |
= < | | I | |
- 2 r-————~71- "~~~ e —— 2 e
= m. | | | | |
= o < | | | | |
— N} B0 | | | | |
- (=) e | | | | |
~ mb o r———- +-—-——= - = === [i =i T R +- - ==
o= o[-~ - T I-——-- [t Bt I - = -
|72 B T~ [| s ettt o B T
m R W \\\\\ T--- - - F-—— s =" "1~~~ — T
BEYe) m © [+--—-—- I—==-= F-m -t - —=A - - — - - |
3] = N B R e I AR
- .nl.a o | | | I |
/RO R S [NEN [[y oo
(=3 [} ..nm | | | | |
18 > e a1 ____ e R
= 1) Q = [[| | | |
— 17} | | | | | |
. o8 & Wl
o S W > | | | | | |
Tw w ..Qﬂu I I I I I I
N § s c | | | | | |
< o) | | | | | |
= OS ho) [l i T [l el (e S o s = [T
- o 17} L A
— BE=] Q © [____1____ A ___ [
N =] i I T
== 1) (ST e e e e T [l To T
17 Q | L _J_o____a1____ a_____ [Lo __
= o ! Q | | |
Q (75}
L T ¥ g —_—-—— - - - =-= - ==
Yo} m [| | |
-~ = [N A S T S R L I
= W | | |
o \© o | | |
B o v L __ 2 _/_ 0 ____L____1____J_____ _____L____/|
p— 10) | | |
. - St | | |
= = | | |
o I | |
o - | | |
\m = L
i | 1
I S D e R D I
I [
— Sl e Bty Bl e e e [TTT 77
I I I ~— I = N T DOy B B D [Lo
o o o o o o o o o o o o o o o
o o o o o (¢ N~ © Yo} <t ™ N ~—

(zH/gp) Aousnbauyjiemod

Frequency (Hz)
81

Figure 17 Power spectra of the data showing the presence of multiple components.

Fast Algorithm Implementation for Gaussian Regression

The values of the hyperparameters for a, d and b are 2.422 x 104, 0.00379 and 154.52,
respectively. The optimisation procedure took approximately 27 minutes and 7
iterations to converge. A typical section from 950s and 1250s, including one of the
missing gaps, is shown in Figure 18. The prediction with two times standard
deviations (black lines) demonstrates the filtering of noise from the original data. The
fit of the data is predicted over the gap as shown in the figure, with the confidence

intervals being much wider over the missing data region.

200 a

150

100

50

_1 00 L L 1 1 1
950 1000 1050 1100 1150 1200 1250

Seconds

Figure 18 Noisy data (grey), prediction (black) and confidence intervals.

3.9 Conclusions

The implementation of the generalised Schur algorithm developed in this chapter is
vital to the incorporation of Gaussian process model with fast time-series applications.
It is worthwhile noting that by implementing the codes in C language ensures faster
computations than coding in MATLAB. Hyperbolic rotation is not necessary if the

augmentation matrix has low displacement rank. The generalised Schur algorithm is

82

Fast Algorithm Implementation for Gaussian Regression

particularly useful in, but not limited to, handling large-scale time-series data, with

missing gaps.

Besides modified as a fast algorithm, the generalised Schur algorithm can also be used
to estimate the increments from a large dataset; that is, to identify a nonlinear
dynamic system in incremental form. The identification process introduces correlation
of the noise present at different values of the time parameter, but this is lessened by
the measured time parameter following the selection of only a subset. This
methodology is described in Chapter 6, where a novel idea to integrate state-space and

time-series domains together within a single stochastic model is developed.

83

Multiple Gaussian Processes

Chapter 4

Multiple Gaussian Processes

4.1 Introduction

In this chapter, the nonlinear relationship underlying the measured data set is
interpreted to consist of two or more additive components. The components may have
the same explanatory variable or different explanatory variables. A Gaussian
regression methodology to extract the components, with the class of functions for
each represented by a distinct Gaussian process, is presented. Gaussian regression
based on these compound multiple Gaussian process models is distinct from Gaussian
regression based on a single Gaussian process with a compound covariance function
(Mardia and Marshall, 1984) and has not previously been investigated. Their utility is
illustrated with respect to a data set with the explanatory variable having variable
density and with respect to a 5,000-point time-series data set with missing gaps

(CATS Benchmark, 2004).

84

Multiple Gaussian Processes

4.2 Gaussian Regression with Two Stochastic Processes

Consider the situation when the nonlinear relationship underlying measured data has
the form, h(z,w)=f(z)+g(w). The two components have different characteristics

and can have the same explanatory variable, i.e. z=w, or different explanatory

variables, i.e. z # w . The task is to extract either or both of f(z) and g(w).

Let the set of measurements be (v, (Z,, WY, where
y,=h(z,,w,)+n, = f(zl.)+ g(wi)+ n, and n; is additive measurement noise. Possible
models for the classes of functions, f(z) and g(w), are the Gaussian processes, f, and
gw, respectively. It follows that h, = (fZ +gw) is itself a Gaussian process and a
possible model for the class of functions, h(z,w). With the mean functions of f, and
gw zero, the mean function of h, is zero and its covariance function is the sum of
the covariance functions of f, and gy. The joint prior probability distribution for

F=[f

Z

f, 1", G=[g, - g, 1 and H=F+G=[I I][F' G']' has

mean zero and covariance matrix

F AFF AFG AFH
E|G| [F' ¢" H'||=|Ay Aw Ag (40)
H AHF AHG AHH

where A, =E[FF'], Ay =E[GG"], A, =EHH"], A, =Al. =E[FG"],

A=A, =E[FH"] and A, = A", = E[GH"]. Note that

|:AFHj| :|:AFF +AFGj| :|:AFF AFG :||:I:| (41)
AGH AGF + AGG AGF AGG I
and
Awe Mg |[1
A=A+ Apg +Age + A =[1 I{AZ Azjm (42)

Conditioning on the data in the usual manner, the joint posterior probability

distribution has mean vector and covariance matrix

85

Multiple Gaussian Processes

F AFH AFF AFG AFH AFF

G|=|Ag |07Y and [Age A Ay |=| Agg |07 [AFF Agg AHH]

H AHH AHF AHG AHH AHH
respectively, ~ where Y'=[y, -~ y,J and Q=A,, +B with
B= E[[nl oy]T [n1 Ry,]] , the measurement noise covariance matrix.

When the correct values, G, are known, then Gaussian regression could then be

applied to the data, Y —G , with the underlying nonlinear relationship modelled by f,
alone. The prediction for F, given Y and G, is F= A0 [Y - G] , where
O = A +B. Similarly, when the correct values, F, are known, the prediction for G,
given Y and F, is G = A O:'[Y —F], where O, = A, +B . Hence, for consistency,

assuming that the predictions for F and G are reasonably accurate,

F_[AsQr 1Y -GT) A0/ Y -G @)
G| [AeQdTY-F1] [AgQTY - F]

When the two Gaussian processes, f, and gy, are independent, then the cross-
correlation between them is zero; that is, Arg = Agr = 0. The predictions for F and G

then become

lj‘ _ AFF Q_lY (44)
G A
-G A, +B
with O = Agr + Agg + B. In addition, since Y (A; = o'y,
Y-F Ag +B
m _ {AFFQ;[Y - é]} "
G| [AgeQs[Y-F]

Hence, the necessary self-consistency condition, (43), for a prediction to be

reasonably accurate is met when f, and g, are independent.

The above discussion suggests the following Gaussian regression approach to the
extraction of the two components. The prior model for the class of possible function

pairs, (f(z),g(w)), is modelled by the pair (f,,g,,), where f, and g, are independent

86

Multiple Gaussian Processes

zero mean Gaussian processes with covariance functions C,(z,z’) and C, (w,w'),

respectively. The pair, (fZ .2), thus has zero joint mean function and joint covariance

[a4 00

When conditioned in the usual manner on the data Y, the posterior model is the

function

i~

Gaussian process pair, (f ,gw), with respectively, joint mean function and joint

z

ﬁ;lf(z) _ fz _ AzF -1
LﬁmHgJ{AWJQ Y

covariance function

and (47)
éff (Z’Z’) 6vfg(z’vvl) — |:Azz' _AzFQilAFz' _AZFQilAFw’ :|
Cgf (W’Z') ng (W’W’) _AWFQ_IAFZ’ Aww’ _AWFQ_IAFW'
Where Azz’ = E[fzfz']’ Aww' = E[gwgw']’ AZF = A]l;z = E[sz] and

A, =A%, =E[g,G]. The associated prior model for the combined nonlinear
relationship, h(z,w), is the Gaussian process, h, , =f, + g . Its mean is zero and its
compound covariance function is

C, [(W,Z)(W',z')] =C,(z,2')+ C, (w,w')
When conditioned on the data, Y, the posterior model for h(z,w) has mean function

and covariance function
i, (w,z)=h,, = A(,uQ"'Y and
5}1 ((W’ Z)a (W': Z')) = A(w,z)(w’,z’) - A(w,z)HQ71AH(w',z')
where A,) = E[hw,zhw',z':l and A,y = E[hw,ZH] . Note that
AHH :AFF +AGG: Q:AHH +B :AFF +AGG +B
and

A(w,z)(w',z') = Azz' + A A(w,z)l—l = AZF + AWG

ww'?

87

Multiple Gaussian Processes

The above approach to extracting components is applied below to an example in
which the nonlinear relationship has two components with different explanatory

variables.

Total prediction for f+g

Figure 19 Data, prediction and confidence intervals.

Example 4.1: The two components are (D(u):2+tanh(0.5u)+ 0.y and
F(v):l.S—sin(l.Sv) with scalar explanatory variables, u and v, respectively. The

domains of the explanatory variables are [-3<u <3] and [-3 <v<3]. The data set

consists of 600 measurements, {yi, (u,.,vi)}leéoo

-, > with additive Gaussian white noise of
variance 0.01; that is, y, =®(u,)+T(v,)+n, with n; the additive noise. The

N=60
i=1

explanatory variable pairs, {(x,,v,)}","", liec on a reasonably smooth trajectory in the

(ui,vl.) plane. The noisy data, denoted by crosses, is shown in Figure 19.

The prior model for the components are the zero mean independent Gaussian

processes, @, and I',, with the exponential squared covariance functions, (48),

Cy (u,u')=a, exp(— dy,(u— u')z) and Cp.(v,V')= qa, exp(— d.(v— v’)z) (48)

88

Multiple Gaussian Processes

The equivalent single Gaussian process prior model, H, , =® +I" , is mean zero
with compound covariance function (C@ (,u')+ C. (v, v')). The correlation between

two noise values, n; and nj, is bo;, where J; is the kronecker-delta and between two

measurements, y; and yj, 1s

E[)’w)’j] =Ctb(ui’uj)+Cl"(vi’v_l')—}_bé‘ii (49)

Applying Gaussian regression based on the single Gaussian process, H , , the values

for the hyperparameters are determined by maximising the likelihood of the data,
Y= [yl,---, Yy]T , given the correlation, (49), between the data points. The
hyperparameters values so obtained, are ap=1.512, dp=0.0782, ar=8.058, dr=0.311
and »=0.0093. The prediction for H (u,v)=®(u)+T(v) over the domain, [-3<u <3]
and [-3<v<3], and the associated confidence intervals are shown in Figure 19. In
addition, for i=1,...,N, the value, y;, together with the prediction for h(ui,vl.) and the

confidence interval is plotted against the index, i, in Figure 20. Because the (ul. ,vl.) lie

on a smooth trajectory, the plotted curve in Figure 20 is also smooth.

&9

Multiple Gaussian Processes

Total prediction for f+g - With and without Transformation

Data points
Prediction
—— — Confidence intervals

[[| | |
0 100 200 300 400 500 600
Explanatory variable index, i

Figure 20 Data, total prediction and confidence intervals on time-series scale.

The two components ®(«) and I'(v) are extracted using (47) as discussed above. The
prediction and confidence interval for ®(«) and I'(v), are depicted in Figure 21 and

Figure 22, respectively.

90

Multiple Gaussian Processes

F(u)

G(v)

Prediction for F - No Transformation

2L . — |
B Prediction
— Confidence intervals

-3 I I I | |

-3 -2 -1 0 1 2 3

u
Figure 21 Prediction and confidence intervals for @.
Prediction for G - No Transformation
6

—— Confidence intervals /

Prediction =

Figure 22 Prediction and confidence intervals for I'.

91

Multiple Gaussian Processes

Comparing the confidence intervals in Figure 21 and Figure 22 to the confidence
interval in Figure 20, the former are clearly very much broader than the latter. Indeed,
the confidence intervals for the two components are excessive and the predictions for
the two components are too uncertain to be of any real value. This difficulty is not
specific to Example 4.1 or to the different explanatory variable case but is generic, see
§4.3 and §4.4. The method, based on a multiple Gaussian process prior model for
extracting the components, investigated in this sub-section, is not effective. An

improved approach is necessary.

4.3 Multiple Gaussian Processes Models with Different
Explanatory Variables

In this sub-section, the case with the underlying nonlinear relationship having two

components with different explanatory variables, i.e. h(w,z)|,_,,.,=f(u)+g(v)

with u # v, is considered. The requirement remains to extract either or both of f(u)

and g(v).

4.3.1 Cause of Excessively Wide Confidence Intervals

The method for extracting the two components, suggested in §4.2, fails when applied
in Example 4.1. The problem is the very broad confidence intervals and so excessive
uncertainty in the separate predictions for the two components. These very broad
confidence intervals arise because an arbitrary constant can be added to f(u) and
subtracted from g(v) without changing h(u,v). The measured values are unchanged as
is the likelihood of the data. The confidence intervals for f(u) and g(v) include a large
factor to account for the uncertainty introduced by this arbitrary constant. This issue is
not peculiar to Example 4.1 but is generic pertaining whenever there is freedom to
add a constant to f(u), whilst subtracting it from g(v). To improve the method,

suggested in §4.2, requires the freedom to add/subtract a constant to be removed.

92

Multiple Gaussian Processes

One approach to removing the uncertainty due to the arbitrary constant would be by at
least one of the Gaussian processes, f, and g,, being a non-stationary Gaussian
process that would exclude the addition or subtraction of an arbitrary constant. The
effectiveness in this case of the method, suggested in §4.2, is illustrated by Example

4.2.

Example 4.2: The two components are ®(u) and I'(v) with explanatory variables,
u= (ul,uz) and scalar v. The dataset consists of 1,599 measurements,
N=1599

{y;,(u,,v,)}. ", with additive Gaussian white noise; that is, y, = ®(u,) +I'(v,) +n,

with #; the additive noise.

The prior model for the class of possible functions for ®(u) is the zero mean Gaussian

process, @y, with the squared exponential covariance function, (50),

Co (u’ u') =dy exp{—%i dd)k [(u)k - (u')k]2} s = {up,un} (50)

where (u); is the & element of u. Two prior models for the class of possible functions
for I'(v) are considered, namely, the zero mean Gaussian process, I'y, corresponding to
linear functions and to quadratic functions passing through the origin, see Appendix
D. Both of these Gaussian processes are non-stationary and cannot accommodate the
addition or subtraction of an arbitrary constant. The Gaussian processes, @, and I,

are independent.

Using Linear Covariance Function

The covariance function for the Gaussian process, I, is

Cr(vi,vj):wrvivj (51)

It models the linear functions such that I'(0) = 0. The equivalent Gaussian process

prior model, H, =®,+I" , is zero mean with compound covariance function

(Cq, (u,u)+Cr (v, v’)). The correlation between two measurements, y; and yj, is

93

Multiple Gaussian Processes

1 2
E[yz'a yj]: g exp{— Ezdmk [(ui)k - (uj)k]2}+ Wrvv, + bé‘g/ (52)
k=1

Applying Gaussian regression based on the single Gaussian process, H , , the values

for the hyperparameters are determined by maximising the likelihood of the data,
Y = [yl,m,y N]T, given the correlation, (52), between the data points. The
hyperparameter values, so obtained, are a, =14.7357, dq,l =2.308x107",
a’q,2 =2.084x107, w. =0.018 and 5=0.098. For i=l,...,N, the prediction for

h(u,,v,) and the confidence interval is plotted in Figure 23.

94

Multiple Gaussian Processes

F(u) + G(v)

F(u) + G(v)

F(u) + G(v)

F(u) + G(v)

Total prediction of F(u1,u2) and G(v) with confidence intervals

| | | | | |
0 50 100 150 200 250 300 350 400

0.6

0.4+

0.2

1 | l
650 700 750 800

|
600

| l |
400 450 500 550

N

| | | | 1 | |
800 850 900 950 1000 1050 1100 1150 1200

1 | | | | | 1
1200 1250 1300 1350 1400 1450 1500 1550 1600
Data points

Figure 23 Total prediction for h(u,,v;) and its confidence intervals.

95

Multiple Gaussian Processes

The two components, ®(u) and I'(v), are extracted in the usual manner using (47).

The prediction and confidence interval for ®(u) and I'(v) are depicted in Figure 24

and Figure 25, respectively.

0.2 Prediction of F(u1,u2) using linear covariance function in G(v)

-0.8
24 (Y
%
.
26 R
°
o %%
e 8
28
150 200
U1 u2

250

Figure 24 Prediction and confidence intervals of extracted ® component with I, having

linear covariance function.

96

Multiple Gaussian Processes

Prediction of G(v) using linear covariance function in G(v)
05 T T T T T T T T 7

0.4

0.2

0.1

=)
~
T

-0.5 ! ! ! ! ! ! ! ! |
13 14 15 16 17 18 19 20 21 22

v

Figure 25 Prediction and confidence intervals of extracted I" component with I, having linear
covariance function.

Comparing the confidence intervals in Figure 24 and Figure 25 to the confidence
intervals in Figure 23, the former are no wider than the latter, in marked contrast to

Example 4.1.

Using Quadratic Covariance Function

The covariance function for the Gaussian process, I',, is given by (53).

Cr (vi’vj):WF (Vi)Z(Vj)2 (53)

It models quadratic functions without a linear term such that I'(0) = 0. The correlation

between two measurements, y; and y;, is

E[yi’yj]= ag GXP{—%ZZ_:dq,k [(lli)k _(uj)k]z}—i_wl‘ (vi)z(vj)z +b5ij (54)

97

Multiple Gaussian Processes

Applying Gaussian regression based on the single Gaussian process, H, , =®, +I",

u

the values for the hyperparameters are determined by maximising the likelihood of the

data, Y=[y1,---,yN]T, given the correlation, (54), between the data points. The
hyperparameter values, so obtained, are a, =2.51, a’cbl =1.3x107",
dy, =5.05x% 107, w. =1.515x107 and b =0.0979. For i=1,...,N, the prediction for

h(u,,v,) and the confidence interval is plotted in Figure 26.
The two components, ®(u) and I'(v), are extracted in the usual manner using (47).

The prediction and confidence intervals for ®(u) and I'(v) are depicted in Figure 27

and Figure 28, respectively.
Comparing the confidence intervals in Figure 27 and Figure 28 to the confidence

intervals in Figure 26, the former are narrower than the latter, in contrast to Example

4.1.

98

Multiple Gaussian Processes

Total prediction of F(u1,u2) and G(v) with confidence intervals

l | | 1
0 50 100 150 200 250 300 350 400

0.6

04 i
S
& 02
+
S 0
L

0.2

I

- 4 | | | | | | |

400 450 500 550 600 650 700 750 800
>
O
+
=
i w |

| | | | | | |
800 850 900 950 1000 1050 1100 1150 1200

S
O
+
E)
L

| | | | | | |
1200 1250 1300 1350 1400 1450 1500 1550 1600
Data points

Figure 26 Prediction for h(u,v) and its confidence intervals.

99

Multiple Gaussian Processes

0.2 Prediction of F(u1,u2) using quadratic covariance function in G(v)

-0.8
_\
24

26

28 |
150 200 250
1 u,

Figure 27 Prediction and confidence intervals of extracted ® component with I', using
quadratic covariance function.

100

Multiple Gaussian Processes

Prediction of G(v) using quadratic covariance function in G(v)
05 T T T T T T T

13 14 15 16 17 18 19 20 21

Figure 28 Prediction and confidence intervals of extracted I' component with I, using
quadratic covariance function.

With both non-stationary Gaussian processes, I',, considered in Example 4.2, the
method based on two Gaussian process prior model for extracting the components,
proposed in §4.2, is effective, providing useful predictions for the two components.
Having identified the cause of the excessively wide confidence intervals observed in
Example 4.1 and the remedy, specifically, to remove the freedom to add or subtract an
arbitrary constant to the two components, the method for extracting components,

discussed in §4.2, must be modified to remove that freedom in the general case.

4.3.2 Freedom of Choice in Two Gaussian Process Model

In §4.2, a Gaussian regression approach to extracting the two components, f(z) and

g(w), from a nonlinear relationship, h(z,w)=f(z)+g(w), underlying measured data,
{y.»(z,,w,)}Y,, is suggested. The approach is based on modelling the class of

function pairs, (f(z),g(w)), by the independent Gaussian process pair, (f;,gw).

However, the model is not uniquely determined by the data, only the single Gaussian

101

Multiple Gaussian Processes

process model, h,.=f,+gy, for the class of functions, h(z,w), and there remains a
substantial freedom of choice, see §4.3.1. A particular manifestation of this freedom
of choice is explored in this Sub-section, specifically, the freedom to transform the

Gaussian process pair, (f;,gw).

Given the specific set of values of the explanatory variables, {z,w,}",,

corresponding to the measurement data set, the transformed prior model is defined by

the Gaussian process pair, (f],g’), such that

fZ

f! f, T, | F 1 0,7, |g,
Ask =l 1125 (55)

G

and
F =T F 56
G’ - G ()
: T T T T T T
with T =\ 1+ = fand 77 =[1) - gl [=[r) -]

where F=[f, - f, 1, ¥=[f, - {1, G=[g, - g1 and
G'=[g, - g, 1". Note that (56) does not necessitate the equality of 7, and T,, at

other values of the explanatory variables. The transformed pair, (f],g!), has zero

joint mean function and joint covariance function

Cf'f (Z’Z,) C;g (Z,W,) fz' ' ' A;z’ A;w’
' ’ ' N E ' [fz' gw’] = ' ’
Co(z, W) C (W, W) gl AN A

f
10! T Z o 7
R A I S el | IR
0 1|-T, F _T_T““T_T_
G z w

102

Multiple Gaussian Processes

Azz’ Azw’ : AZF AZG 1 0
_ |
1 O : Tz i| Azw Aww' : AwF AwG O
= I | m——————— 4————————
0 VT Ars Apy i A Ay }Z_T____T;TT
AGZ' AGW' ! AGF AGG

where A;z’ = E[fz,fz"]ﬁ A'w'z :A’zw' = E[fz’g’w'] and A’ww' = E[g’wg;v’]

It follows that the prior probability distribution for [F'T G'T]T has zero mean and

covariance matrix

A 0
T[OFF N }TT (58)
GG

The prior model for hy ,, the prior joint probability distribution for H and Y and the

likelihood of the data all remain unchanged since
F
h'Z[,w[:(fz[+gw[)+(Tzi_Twi)|:G:|:hzi,wi s izla".:N

[I INT =[I I]

Hence, the measured data set is equally well explained by all the transformed models,

defined by (55) and (56); that is, with all possible choices of T.

Conditioning on the data in the usual manner, the posterior model becomes the
Gaussian process pair, (E’,g;), with, respectively, joint mean function and joint

covariance function

103

Multiple Gaussian Processes

ﬁ;l,f (Z) f" |:A;H:| ' -1 |:fz' :| ' ' -1
U= =] U AL, + BT Y =E|| 7 [H[AL, +B]'Y
mg(w) gy A gw

fz AzH fz

| | | A
_ 1 0: Tz E gl" H QilY: 1 0: Tz f_w_]-[_ QilY: 1 O: Tz g’\!
0 11-7,|||F 0 1!-T,| Ay 0 11-7,| F
G Agy G

and
Cizz) Ciw) | [Ny Nl [Aul ot
érff ' Nrfg N A A - ArH [AHH+B] I[AHZ’ AHW']
ef (Z5W) ng (W7W) wz' ww' wH
Azz' 0 : AzF 0
| 1 0
1 0: TZ 0 Aww’ : O AwG
= it fo——m 0 1
0 1I-T A 0 TAx 0 |55
0 AGW'! 0 AGG ’ "
AZH 1 O
[IOETZ}A”‘ Ay, Ay Ay Ayl 001
- | -—= 0 Hz Hw' | £ HF vl YV ___
0 1!-T, | Ay e
AGH z w
~ ~ |~ ~
B | i fzz' {}zw’ i sz ézG 1 O
! Oi L. Q_ZV_V'__Q_W_W’_%_/;VLF___/E_W_Q 0 1
CRE e o e P
AGZ' AGW' :AGF AGG
__/N\zz' /N\zw'__,’_ 7; /N\Fz' KFW'
IN\WZ' /N\ww' T lw KGZ' KGW'
+|:AZF AzG}[TT TT]_’_{ T, }{AFF AFGj|[TT TT]
AWF AWG TW GF AGG
where

Multiple Gaussian Processes

Hence,
f,
T T T, |F 1 07, ||g
NZ — NZ + — = | —NXV' (59)
el &) L-nd6) o -1) F
G
where I<N“=[FZl EN]T and a=[§wl EWN]T-

It follows that the posterior probability distribution for [F'T G]T has, respectively,

mean vector and covariance matrix

ﬁ” A;H -1 AFF -1 ﬁ
o= M AL, +B]TY =T Y=T|-~ 60
|:G/:| |:AGHj| HH AGG Q G ()

A 0 A
T (|: (;F A }_{A " }Ql [AFF Ao]]T:T =T [%FF
GG GG GF

Similarly to the prior, the posterior model for h,y and the posterior joint probability

and

>l >

¥ }T:T (61)

GG

distribution for H and Y remain unchanged from those for the untransformed

Gaussian process pair model.

To distinguish and so choose between the possible models, information, additional to
the measurement data, Y, is required. The nature of that additional information and

the selected choice is driven by the application context.

Remark 4.1: Comparing (55) and (59), the Gaussian process pairs, (f,,g|) and
(f,,g,), and the Gaussian process pairs, (f/,g,) and (f,,8,), are related by the
same transformation. The prior and posterior probability distributions for [F'T G'T]r

are related to the prior and posterior probability distributions for [FT GT]T by the

same transformation, T. Therefore, the choice of transformation, that is, the choice of

105

Multiple Gaussian Processes

Gaussian process pair model, can equally well be made with respect to either prior or

posterior models.

4.3.3 Improved Two GP Model with Different Explanatory Variables

Reverting to the case when two components with different explanatory variables, f(u)
and g(v) with u # v, underlie the measured data {y,,(u,,v,)}",, the transformation

of the Gaussian process pair (fy,gy), discussed in the sub-section 4.3.2, is exploited to

remove the freedom to add/subtract an arbitrary constant to the components.

Given the specific set of values of the explanatory variables, {u,v,}",

corresponding to the measurement data set, the transformation (55) is chosen such

that

T, =T, =[-X" 1 X"]/2N) with X=[1 1 - 1]"eP? (62)

Hence, following §4.3.2 but with z=u and w=v, the prior model becomes the

transformed Gaussian process pair

fl.l
' I_L T 1 T
¢ | |e, -1 G| |0 1] LX —LX|F
G

and, on conditioning on the data, the posterior model becomes the transformed

Gaussian process pair

f,
T T 1 F 1 0i—--LX" X g
gl g, -1 G| [0 11 X —-5xX || F
G

F' F F’' F I-XLX' XLX'
=T and lj =T lj with T = “’T N :
G’ G G’ G X5EX I1-X4X

Hence,

106

Multiple Gaussian Processes

X X' LF;} =[x -x EJ =0

X'F' =X'G' and X'F' =X"G’

or equivalently

Remark 4.2: The prior model no longer belongs to the class of all Gaussian process

pairs but to X, the class of all Gaussian process pairs (f,,g,), subject to the
condition, X'F=X'G, where F=[f, - f, 1", G=[g, - g, 1" and
X=[1 --- 1]"eP”. The posterior model belongs to the same set of Gaussian

process pairs. The condition, X'F = X'G , precludes the addition or subtraction of an

arbitrary constant to the individual components.

It follows from above that a suitable modified procedure for extracting the two

components when they have different explanatory variables is the following.

1. Choose the hyperparameters on the basis of the single Gaussian process
model, h,, by maximising the likelihood of the data, Y.

2. Determine the predictions and confidence intervals by the standard approach
of Section 4.1 with a pair of independent Gaussian processes.

3. Modify the predictions and confidence intervals using the transformation,

T,=T,=[-X" | X"]/2N) with X=[1 --- 1]"eP".

The prediction for f is

fr=f, - LX"(F-G)

u

with variance
A = X Ry =R =3 Ay = A,0)X
HEFXT =X K R = Ryg = R+ Koo)X
and the prediction for g/, is
g =8, +5 X (F-G)

with variance

107

Multiple Gaussian Processes

Kuu' - ﬁCT (KFu' - T\Gu') - #(KuF - KuG)X
+(ﬁ)2 [XT _XT]XT (KFF _KFG _KGF +KGG)X

since the joint mean is

and the joint covariance is

|:Kuu' K“v,:|+|:_ﬁXT ﬁXT :||:/~\Fu’ KFV':|+|:KuF KuG:||:_ﬁX ﬁX:|
Ay A, #XT _ﬁXT AGu' AGV' AvF AvG ﬁx _ﬁx

vu \A4

+—ﬁXT XAy Ay |- X X
=X _ﬁXT AGF AGG ﬁX —ﬁX

2

A Ay 1~ o~ ~ o~
:|:K““ K“V :|+ﬁ|: 1 :|[XT (AFu' _AGu') XT(AFV' _AGV')]

+34[-1 1{(1\“_1\"6”}[—1 1]
(A =Ay)C

-1 - - - -
+(ﬁ)2{ 1 }XT (AFF _AFG _AGF +AGG)X[_l 1]

Example 4.3: Step 3 of the above procedure is applied to Example 4.1. The resulting
prediction and confidence intervals for ®(u) are depicted in Figure 29 and for I'(v) in
Figure 30. Due to the removal of the arbitrary additive constant, the confidence
intervals in Figure 29 and Figure 30 are much narrower than those of Figure 21 and
Figure 22. In fact, they are narrower than the confidence intervals in Figure 20, since
in the latter, the intervals encompass the combined uncertainty in ®(u) and I'(v). The

predictions remain unchanged other than a uniform vertical adjustment corresponding

to fixing the arbitrary constant due to meeting the condition X'F =X'G .

108

Multiple Gaussian Processes

F(u)

Prediction for F - Transformation and normalised mean

Figure 29 Prediction and confidence intervals of @ after normalisation

4.5

G(v)

Prediction for G - Transformation and normalised mean

Figure 30 Prediction and confidence intervals of I after normalisation.

109

Multiple Gaussian Processes

Example 4.4: Returning to Example 4.2, the prior model for the component, I'(v), is
chosen to be the stationary Gaussian process, I'y, with exponential squared covariance

function

C; (V,V')= ar exp{—%afF (V—V')z} (63)

Applying steps 1, 2 and 3 of the above procedure, the hyperparameter values are
a, =266, ap.=1.02, d, =11x107, d, =45x107, d.=99x10" and

b=0.0978 . The predictions and confidence intervals for ®(u) and I'(v) are depicted
in Figure 31 and Figure 32, respectively.

Prediction of F(u1,u2) using squared exponential covariance function in G(v)
0.2

F(u)

200 250

150
U1 u

2

Figure 31 Prediction and confidence intervals of extracted @ component with I', using
squared exponential covariance function.

110

Multiple Gaussian Processes

Prediction of G(v) using squared exponential covariance function in G(v)
05 T T T T T T T T

13 14 15 16 17 18 19 20 21 22

Figure 32 Prediction and confidence intervals of extracted I' component with I, using
squared exponential covariance function.

Comparing Figure 31 to Figure 24 and Figure 27, and Figure 32 to and Figure 25 and
Figure 28, the confidence intervals are commensurate with those obtained with the
non-stationary Gaussian process models considered in Example 4.2. The freedom to
add or subtract an arbitrary constant to the components is removed by Step 3 and,

hence, the confidence intervals are not overly wide.

When the nonlinear relationship underlying measured data has two additive
components with different explanatory variables, Steps 1, 2 and 3 provide an
improved procedure for extracting the two components. The confidence intervals are
no longer excessive and the predictions for the two components are no longer too

uncertain to be of any real value. Any arbitrary additive constant is removed by

condition, X'F = X'G , see Remark 4.2.

111

Multiple Gaussian Processes

4.4 Multiple Gaussian Processes Model with Same Explanatory
Variable

In this sub-section, the case with the underlying nonlinear relationship having two
components with the same variable, i.e. h(z,w) lyey = h(z) =f (Z)+ g(z) , 1s considered.
The requirement remains to extract either or both of f(z) and g(z). The difficulty with

excessively wide confidence intervals persists.

Example 4.5: The underlying nonlinear relationship has two components each
dependent on the scalar explanatory variable, z, i.e. h(z) = f(z) + g(z). The Gaussian

process models, f. and g., for the classes of all possible components both have an

exponential squared covariance function of the form aexp{—%(zi —zj)z}. The

hyperparameters for f. are ar = 1.8 and dr = 2.5, and the hyperparameters for g. are a,

= 0.95 and d, = 120. The measurement noise is assumed to be Gaussian white noise

800
i=1 >

with variance, b = 0.04. A data set, {y,,z} is obtained for the above two

component nonlinear relationship wherey, =f (zi)+ g(zi) +n,, {f (zi)}?Sf and {g(zi)}fﬁ?
are realisations for the stochastic processes, f, and g, respectively, sampled at 100Hz
and {n,}}”) are the additive noise values. The correlation between two measurements

is
d
E[yz‘ayj']: ag exp(_%(zi _Zi)2j+ a, exp(—;g(zi _Zi)zJ'i'b@j

where 5,-j is the Kronecker delta.

Using the known hyperparameter values, the procedure in §4.2 based on two
independent Gaussian processes is applied to the data set. The data values and
prediction for h(z) together with the prediction error and confidence intervals are

shown in Figure 33.
The predictions for the two components, f(z) and g(z), together with their confidence

intervals are shown in Figure 34. Comparing the confidence intervals in Figure 34 to

the confidence intervals in Figure 33, the former are clearly very much broader than

112

Multiple Gaussian Processes

the latter. As in Example 4.1, the confidence intervals for the two components are
excessive and the predictions too uncertain to be of any real value. This difficulty is
not specific to Example 4.5 but is generic to the case with the components having the

same explanatory variable.

Noisy data, prediction and prediction error with confidence intervals

3 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Data

ol —— — Error estimate
Prediction and confidence intervals

Function values

Seconds

Figure 33 Two lengthscale data (xx), prediction (--), error and confidence interval (==).

113

Multiple Gaussian Processes

Long and short length-scale predictions with confidence intervals

3 :
2 L
1 1L
LY
§ N
2 0
>
c
o
e 1
=}
[
2 le”
3-
----- Long lengthscale
Short lengthscale
-4 ! | ! : : ; ‘
0 1 2 3 4 5 6 f 8

Seconds

Figure 34 Prediction and confidence intervals of the posterior joint probability distribution.

4.4.1 Improved Two GP Model with Same Explanatory Variables

When the underlying nonlinear relationship has two components with the same

explanatory variable, i.e. h(z)=f(z)+g(z), the method for extracting the two

components, suggested in §4.2, fails as it did in the case with the components having
different explanatory variables, see §4.2 and §4.3. The confidence intervals for the
individual components, f(z) and g(z), are much wider than the confidence interval for
the total nonlinear relationship, h(z). The predictions for the individual components
are, thus, very weak and of little utility. The reason for the wide confidence intervals
remains the same. There is uncertainty of attribution between the two components;
that is, an arbitrary term can be added to f(z) and subtracted from g(z) without
changing h(z). Unlike the case with the two components having different explanatory
variables, the arbitrary term is no longer a constant but depends on the explanatory
variable, z. When that ambiguity is removed in the case with different explanatory
variables, the confidence intervals of the individual components become much

narrower. A similar approach is required to remove the ambiguity and so tighten the

114

Multiple Gaussian Processes

confidence intervals for the individual components, when the explanatory variables

are the same. An appropriate method is described below.

As discussed in §4.3.2 but with w=z, the Gaussian process pair model for the class of
function pairs (f(z),g(z)), is not uniquely determined by the data only the single
Gaussian process model for the class of functions, h(z). There remains a substantial
freedom of choice. A particular manifestation of this freedom of choice is explored in
§4.3.2, specifically, the freedom to transform the independent Gaussian process pair,

(f,,g,), defining the prior model or equivalently to transform the Gaussian process

pair, (E,g’z) , defining the posterior model. Similarly to §4.3, the transformation is

exploited to remove the uncertainty of attribution between the two components.

The context within which the two Gaussian processes model is being applied, must
inform the choice of the transformation. From the applications, from which
motivation for the development of the two Gaussian processes model arises, the
context has the following attributes.
a. The component, f(z), is the major component; that is, the part of the data
explained by it must be as large as possible.
b. The components, f(z) and g(z), represent separate unrelated aspects of the

underlying nonlinear relationship.

N
=1

Given the specific set of values of the explanatory variables, {z,}._,, corresponding to

the measurement data set, the transformation (64) is chosen such that

T=[01A 0] (64)

where Qp=A+B, ATFfzzAszzE[fZFT] and A,=E[FF']. Hence, following

§4.3.2 but with w=z, the prior model becomes the transformed Gaussian process pair

£,] [f L F] [1 0} a0]| [f+A 006
=l 0T A0 L= g ’
el el

1| 8= _
_Asz QF1 g, _AfZF Or'G
and, on conditioning on the data, the posterior model becomes the transformed

c

Gaussian process pair

115

Multiple Gaussian Processes

£ [t [LJE] [401G
|:~Z'j|:|:~z:|+|: j|[0 Af FQF1]|:~:|: g fZF F_IN
gl &) 1 ’ G| |8 A0 G

Furthermore,
F' F F+A -1 - o o -1~
[,}ZT{ }: i FFQfIG and | & =] E | F“\FFQFIGN (65)
G G (I -A0Or)G G’ G (I -AwOr)G
-1
wm:[’ A }
0 I-Au0;

The joint mean and covariance function for the posterior Gaussian process pair model,

(E’, g'), is provided by Theorem 4.1.

Theorem 4.1: (a) With the transformation chosen to be 7' =[0 i A, +O;'], the joint

mean and joint covariance function for the posterior Gaussian process pair model,

(E’, g'), have the following equivalent forms.

(i)
fr| |f 1 F
g 18] 1 ’ G
and
A,fzfz' A,fzgz' — Afzfz' Afzgz'
A:ngz' A;zgz' Angz' Agzgz' (66)
. 0 Al Ay A 0 0
0 —Ars ! Ao Agg Oc' Ay O:' Ay
+ AfZF AfZG 0 0 N 0 AfZFQl-jl AFfZ, AFgZ,
_Ang AgZG QF_IAFfz' B QEIAFfZ' 0 _Asz Ql:l Asz' AGng
where

_ AT _ _ AT _ _ AT _ _ AT _
Asz_ AFfz _AZF > Asz_ /\GfZ _AZG > AgZF_ Ang _AwF|w=z > AgZG_ Ang _AwG|w=z

~ ~

Af f ,:Azz' > Af

=A} , =Alves Ay =
= =Ayrlyer > =A oy lv-zw-z
22 222 ' fz’gz wz'lw=z 2,8, ww' lw=z,w'=z

_ AT — A
T Agzrfz i haw! |w'=z' H Angz

N _ AT N N _ AT X N _ AT X N _ AT X
AfZF_ AFfZ =A AfZG_ AGfZ _AZG ’ Ag F— I\FgZ _AwFlw:z ’ AgZG_AGgZ _AwG|w:z

b
zF 7

~

N A N N/ N N/ N Y
A ff =A A =A =A w'|w'=z > A g f, A =A wz'|w=z s A 8,8, =A ww’|w=z,w'=z'

'
b
2 7z fzgz’ gz’fz z A fz’gz

116

Multiple Gaussian Processes

(ii)
f‘z +Af FQI-TI(A;
gz _Asz Q;lG
and (67)
Afzfz, _AfZF QI;IAGGnglAFfz, 0
0 Nyo +Ap, +A, +AfZFQ;1AGGQF"AFfZ,
(iii)
A Q'Y
(AfZF+AgZG)QilY _AfZF QFAY
and
_ 68
(A £,y _AfZF QFlAFfZ,) 0 ()

[(A £t + Agzgz,) - (AfZF+AgZG)Q_1 (A Ff, +AGgZ,)]
- (A £, _Asz QI;IAFfZ,)

0

(b) The posterior model pair of Gaussian process is

£ f
g | |h, -1
where fz' =A,;0/'Y, EZ =A, ,O'Y.

Proof 4.1: (a) Several identities are required, namely,

Gg, — AGgZ, —Agg QilAGgZ, =(0 —Agg)QilAGgZ, = QFQilAGgZ,
A Oi'Rg,, =A O Ag, =—A

>l

fzgz'

~ 4 3 4 =
AgZGQF AFfZ,_ AgZGQ AFfZ'_ _Ag £,

z1z

KGG = AGG _AGG QilAGG =(Q _AGG)QilAGG = QFQilAGG
AfZF QElAGG Q;AFfZ, :AfZF QilAGGQI;IAFfZ' = _AfZGQ;AFfZ, = _AfZF Ql-leGfZ'

(i) It follows immediately from §4.3.2 with the transformation defined by
T=[01A 0]

(ii) The joint mean follows immediately from (a). The joint covariance is

117

Multiple Gaussian Processes

Afzfz, Afzgz, 0 Af F F AFf A AfZF AfZG 0 0
~ ~ + ~ +| ~ ~ 1 -1
Angz, Agzgz, 0 f FQF A Agzp Ang F AFfZ, T XF AFfz,
N 0 AfZFQ; AFF /N\FG 0 0
0 —-A f,F Q}:l /N\GF /N\GG ;AFfZ, - QEIAFfZ,
/N\f f, /N\f , 1 o~ B ~
i {N . A N }+|:_ 1:|[_AfZFQF1AGGQF1AFfZ' _Afzgz']

+{ AfF FAGGQF }[1 —1]+{_1J fFQF_IAGG F Ffzr[l _1]

ngz'

Afzfz, _Asz Q;AGGQI;IAFfZ, 0
0 A , +Afzgz, +Angz, +AfZFQ];1AGGQ];1AFfZ,

(iii) The joint mean is
f,+A 0G| [A OV A O'A,0'Y
gz _Af FQF_IG Ag GQ_IY _Af FQF_IAGG Q_IY

[AOY A0 (©@-0007Y] [A OV A, OV A, OY
gGQ*Y A 0 (0-0007Y |7 |A, (O Y A O Y HA, LOY

L OF'Y
_(A fZF+Ang)QilY -A f,F Q;Y

and the joint covariance is

A, “Aip Qe A, 0
0 [(Age, + Ay,)= (A ptA, 6)O (A ri, A Gy,)]
~ (A, A O Ar,)
since
Aor A Or'ReoOr Ay = A=A O Ao O Ay

=Ry —A 0 (0-0.)0:'A
- (A fzfz' _[\fzF QilAFfz') a (Asz Ql;lAFfz' _Asz QilAFfz')
= A, A QA

and

ngg,' + /N\fzgz' + /N\ngz' +A; 0:'A g Or' Ay,

= (Agzgz, _AgZG Q_IAGgZ,)_AfZFQ_lAGgZ, T e, GQ_IA f, +(Af F<F AFfZ, _AfZFQ_lAFfZ,)
=[(Are, + 8,)= (Ap ety DO (Mg +86 N=(App —A¢ O Ay)

118

Multiple Gaussian Processes

(b) The cross-covariance function between FZ' and EZ, equals the covariance function
for ! since

B[-k, —h,1] =E[A, .07 (Y=G)~£,1Y"0 A, —h,]

= A O BI(Y -G)Y' 10 Ay, — A OFE(Y —G)h, - EIf,Y'I0'A,,, +EI[f,h,]
= A 0700 Ny Ay O A — A 07Ny, A

A, —A O A, =E[E - £ - 1]

It follows immediately from (a) (iii) that g, = HZ - fz' as required.

From Theorem 4.1, the prediction for f] is
fZ’ = f‘z + AZFQF_IG :Af FQF_IY

with variance
App =M Of'ReoOr Ay = A=A O Ay
and the prediction for g/ is
§,=8, - A0/ G=(A +A, O YA . O'Y

with variance

>1

2,8, +AfZgZ, +Angz, +AfZFQl:1AGGQ1:1AFfZ,
=[(Ape, Ay,)= (Mgt A, O (g +Ag, = (A —A O Ay)

Furthermore, the prediction and covariance matrix for [F'",G'"]" are

G' G| |(Ap+A)0'Y-ALO'Y

and
Ay A
T|:NFF NFG i|T T (69)
GF AGG
AFF _AFFQ;AFF 0

= 0 [(AFF +AGG)_(AFF+AGG)Q_l (AFF+AGG)]
- (AFF _AFF Q;)AFF

respectively. Alternative expressions for this prediction and covariance matrix are

|: AFFQI“TIY :| and |:AFFQI:1B O (70)
BO Ao O;'Y 0 BO'ALO'B

119

Multiple Gaussian Processes

since
(AFF+AGG)Q_1Y _AFF QF_IY = BQp_lY - BQ_IY = BQ_IAGG QF_IY
AFF _AFFleAFF:AFFQEIB

[(AFF + AGG) - (AFF+AGG)Q_l (AFF+AGG)] - (AFF _AFF F_l)AFF
= (AFF+AGG)Q71B _AFF Q;B = BQ;B - BQ%B = BQilAGG Q;B

Remark 4.3: By Theorem 4.1 (a) (ii), the Gaussian processes, i’ and g, are

independent. In this manner, context attribute (b) is met.

~

Since the Gaussian processes, f, and g, are independent, the sum of the variances for

f' and g equals the variance of h, and so the confidence intervals on the

predictions are minimal. Adding an arbitrary term to f(z) whilst subtracting it from

g(z) is equivalent to changing Gaussian processes, f, and g,, and the Gaussian
processes, E’ and g/, in such a way that they are no longer independent. Hence,

choosing the transformation to make FZ' and g/ independent removes the ambiguity

of attribution between the two components as required.

From Theorem 4.1 (a) (iii), the following interpretation of the transformation is

possible. The term, A Oy 'G, can be interpreted as an estimate of the contribution to

G explainable by the Gaussian process, f,. A similar interpretation of A,.O;'G can
be made. Hence in (65) and (69), the transformation can be interpreted as removing
from G and G the part that can be explained in terms of the Gaussian process, f,,
and adding it to F and F, respectively. Furthermore from Theorem 4.1 (a) (ii), the
posterior Gaussian process model for the class of possible f(z), namely ?Z' = ?Z' , s the
prior model conditioned on Y as if the data set is simply a realisation of f, plus the
noise only. The posterior Gaussian process model for the class of possible g(z) is

g =h, —f’, the difference between the Gaussian process model for the class of

possible h(z) and the Gaussian process model for the class of possible f(z). In this
manner, the part of the data explained by f, is made as large as possible and context

attribute (a) is met.

120

Multiple Gaussian Processes

The transformation, 7 =[0 i A, +O;'], as required removes the ambiguity of

attribution between the two components in a manner consistent with the context

attributes.

The fact that the transformation applies equally to the posterior as to the prior, see
Remark 4.1, is exploited here to enable the posterior model to meet the context
attributes. It follows that a suitable modified procedure for extracting the two

components when they have the same explanatory variables is the following.

1. Determine the predictions and confidence intervals by the standard approach
of §4.1 with a pair of independent Gaussian processes.

2. Modify the predictions and confidence intervals using the transformation,

T, =[A: Q' 1 0].
The selection of the hyperparameter values is discussed in §4.4.4.

Example 4.6: Step 2 of the above procedure is applied to Example 4.5. The resulting
predictions and confidence intervals for f(z) and g(z) are depicted in Figure 35. Due to
the removal of the arbitrary term, the confidence intervals in Figure 35 are much
narrower than those of Figure 34. Because of the independence of the posterior

Gaussian process pair, they are narrower than the confidence intervals in Figure 33.

121

Multiple Gaussian Processes

Long and short length-scale predictions with confidence intervals

Function values

3- i
----- Long lengthscale
Short lengthscale
-4 ! | ! : : ; ‘
0 1 2 3 4 5 6 f 8

Seconds

Figure 35 Predictions and confidence intervals of F(z) and G(z) after transformation.

Confirmation that the transformation acts to remove any contribution to the
prediction, G, explainable in terms of f, and adds it to the prediction, F,is provided
by Example 4.6. Since the explanatory variable is scalar, f(z) can be considered the

long lengthscale component and g(z) the short lengthscale component. Consider the
decomposition of H and H with respect to the eigenvectors of the covariance matrix

for H. Since H=A,,,0"'Y with covariance matrix, A,,0"'B, and B is diagonal,
v H=b"2v".Y where v, is the i™ eigenvector of the covariance matrix with

eigenvalue, 4., and B =5/ ; that is, the factors with respect to a basis consisting of

the eigenvectors of the covariance matrix are scaled by the ratio of the eigenvalue to
the noise. The eigenvectors that extract long lengthscale factors are smooth with few
zero-crossings thereby averaging out the short lengthscale and more oscillatory
factors, whilst the eigenvectors that extract short lengthscale factors are highly
oscillatory with many zero-crossings thereby averaging out the long lengthscale and
smoother factors. Since the eigenvectors are normalised, a measure of smoothness, i.e.

the number of oscillations, and so the lengthscale extracted by an eigenvector, v;, is

122

Multiple Gaussian Processes

N
the variation, i.e. Z| v,(j)=v,(j—=1)|, where v,(j) is the ;™ element of v;. Given that
j=2

the prediction extracts the component from Y with a particular lengthscale, it might be
expected that the longer lengthscale eigenvectors have bigger eigenvalues. A plot with

vertical axis the magnitude of the eigenvalue and horizontal axis the variation is
shown in Figure 36 for the covariance matrices of H. There is an essentially
monotonic relationship between the magnitude of the eigenvalues and their variation
with the larger eigenvalues having the longer lengthscale. Hence, ordering the
eigenvectors for the covariance matrices of H by the magnitude of the eigenvalues,

orders them by lengthscale.

T T T
><><><><><><$<><><><><><><><><><><><><><><><><><><><>< .
X
XX i
X x
X

0.9+ X x -
. X

0.8 s .

0.6 x -

0.5 . |

eigenvalues

04" x .

0.3]
0.2+ <

0.1+ XXX,

O 1 L 1 1 1 1 1
0 2 4 6 8 10 12 14 16

sum of abs of (Vi'vi-1)

Figure 36 Relationship between eigenvalues and variation or lengthscale of eigenvectors.

123

Multiple Gaussian Processes

0.07
— — Two stochastic processes, f2
0.06 |- i
Two stochastic processes, f1
Single stochastic process, f
0.05 * 9 P 2 .
x Single stochastic process, f1
® Combined single stochastic process
o 0.04- E
=}
©
>
C
[0
2 0.03- s
[
- —
0.02} ™~ .
i """?”o:cn.,.
L0
0.01 / ...QQ‘.:\
. r) 4
o.@;\
| RN
O _ N & & N .% ca0ge
0 10 20 30 40 50 60 70 80
index

Figure 37 Plots of eigenvalues against indexed points. The posterior for the long lengthscale,
F, is denoted by f; and the posterior for the short lengthscale, G, is denoted by f,.

The eigenvalues for the covariance matrix of H are ordered by magnitude and are

plotted in Figure 36, denoted by o. It can be seen that eigenvalues with a broad range
of lengthscales dominate. The eigenvalues for the covariance matrices of F,G, F
and G' are ordered by lengthscale; to be precise, they are ordered according to their

correlation with the ordered eigenvectors for the covariance matrix of H.

In Figure 37, the magnitudes of the eigenvalues are plotted with those for F denoted
by x, those for G denoted by e, those for F' denoted by the solid line and those for
G’ denoted by the dashed line. It can be seen that, in the case of G, the dominant
eigenvalues are similar to those of H but, in the case of F, relatively few long
lengthscale eigenvalues dominate. Furthermore, in the case of F', the dominant
eigenvalues are similar to those of F but, in the case of é', the magnitude of the
eigenvalues for the longer lengthscales, i.e. those that dominate F and F', are much

A

reduced. In other words, the transformation has removed the contributions to G at

124

Multiple Gaussian Processes

these longer lengthscales and added them to F thereby meeting the context attribute

(a).

4.4.2 Application of Two Gaussian Processes Model

In this section, the application of the two Gaussian processes model to extract

information is explored. For clarity, the explanatory variable is always scalar.

In Example 4.5 and Example 4.6, the covariance functions for both Gaussian
processes is the standard squared exponential function (17) but with different
lengthscale hyperparameters. By construction of these examples, a priori, it is known
that the nonlinear relationship underlying the measured data consists of two
components and all hyperparameters are known. In a specific application, the context
may indicate that two components are present and, when they are of different
lengthscale as in Example 4.6 and Example 4.8, provide information regarding the
lengthscales. When the context does not, the presence of two components may be

determined from the data as discussed below using the revised log-likelihood function

(29).

The revised log-likelihood function (29) is introduced in Chapter 3.3 to speed up the
training procedures. However, not only does the revised log-likelihood function allow
faster optimisation, it can also provide additional information when the surface
mapping is portrayed as a three-dimensional plot. In particular, the log-likelihood
function may be multi-model with several maxima each indicating the presence of a

component with different lengthscale.

Example 4.7: Let the nonlinear relationship be f(z)=sin(1.5z)+0.35cos(10z). 800
data points are measured at 80Hz with additive Gaussian white noise of variance 0.04.
The noisy data, together with the two components, is shown in Figure 38. Using a
standard single Gaussian Process model with the squared exponential covariance
function (17), the revised negative log-likelihood is shown in Figure 39. It is clear from

the two minima that there are two lengthscales present, one associated with each of

125

Multiple Gaussian Processes

the sine functions in the nonlinear relationship. Having eliminated the amplitude
hyperparameter, the revised negative log likelihood is a function of only the
lengthscale hyperparameter, d, and the noise hyperparameter, . The value of the
revised negative log-likelihood function minimised with respect to the noise
hyperparameter, b, is plotted against the lengthscale hyperparameter, d, in Figure 40.
This two-dimensional plot shows more clearly the presence of the two minima. The
hyperparameters are chosen to minimise the revised log likelihood function. With
appropriately chosen initial values, the minimisation routine is caused to separately
converge on each of the minima. The hyperparameters obtained, corresponding to the
long lengthscale minima, are d = 0.552, a = 1.296 and » = 0.077 and, corresponding
to the short lengthscale minima, are d = 20.386, a = 0.525 and n = 0.070. Hence, the

two components in the data have lengthscale hyperparameter values 0.552 and 20.39,

respectively.
2
X X X
XX% ’ >§<<>/XX \X X XX%X
. xS X e X %
e - -y s
SR N % HoK xR x B AV %
AN X Fx PR & foR A
7 X PR KX X%
RO XX% A O 4 K XX o %XX ><\?§§<X‘
P X N T W 5o
%) 05 ;§< % X . X o« PXWOY & &y x %
(0]) % ><;§ s ¥ §§ X Xéx?’;: X%l X X
= K o [} X % ANDS X
© Xx X]) | ox X 2\ Z
52 ! A%
> Kx < g At
C 0 .« I§ >§ Qx X X ‘\] 4
2] Sy A x :
6 & K Kt pX X XXI \
k N;
= -0.5F STA NN S VO i 1
A X::X >;’ WK g‘% x [’ X
% R 0l B RN 2 IS
Y % X % N 405
A TR
AL ¢ 2 s ;&X,&& _
X X
2 =5 ;;é: XX R
Data| . . X
1 5 | ala X X Xx ; i
SR I f, x .
X
-2 | | | | | | | |
0 1 2 3 4 5 6 7 8 10
Seconds

Figure 38 Plots of two sinusoidal functions and sum of the two functions with noise.

126

Multiple Gaussian Processes

Negative log-likelihood function against lengthscale
-900 ‘] — — ‘

-1000 a

-1100 + .

-1200 |- -

-1300 + a

-1400 - 7

log-likelihood function values

-1500 |-

-1600 |-

-1700 Ll L L
10 10 10 10
Lengthscale

Figure 39 Plot of optimised revised negative log-likelihood function against lengthscale
hyperparameter.

127

Multiple Gaussian Processes

200 -
0 -
g
§ 200 - - L :
>]
§ 400 .- - - |
2
2 -600 - - o |
k] L
o | |
2 -800-|- L |
E) \:\\\\\4‘
= 1000 | - o :
g
© -1200 4 - - -- o :
> ‘ ‘ N 4 ‘
z \ \\\ \\\\ BRREE

g MO0 AT R

2 SRR
N R R R .

R

Figure 40 3D plot of revised log-likelihood function against lengthscale and noise variance
hyperparameters.

This approach to determine the number of possible lengthscale solution is extremely
useful for dataset with explanatory variable that is scalar. However, it cannot be used

with all covariance functions. For example, a periodic covariance function of the form

C(Zi,zl.)zaexp(—%sinz[ml(z[—z_/)]j+b5y. (71)

has four hyperparameters and visualising the function mapping in high dimensional

space is difficult, or perhaps impossible.

Covariance function is one of the main ingredients in modelling a Gaussian process.
Data containing more than one component can be characterised by a compound
covariance function. Noise present in the data is assumed to be Gaussian and the
components are assumed to be independent. Note that, no attempt is being made here
to propagate a Gaussian distribution (or any other distribution) through a nonlinear

function.

128

Multiple Gaussian Processes

Suppose that measurements are not of a single function but the sum of several
functions with different characteristics; that is, the measured values are
y, =f(z,)+..+f(z)+n,. A possible probabilistic description of
h(z)=f,(z)+...+ £, (z) is by means of the sum of K independent Gaussian processes,
fl,..,ff. Let the covariance functions for these stochastic processes be
Cg(zi,zj),...,Cf(zi,zj) respectively, then h_ :(le +...+fZK) is a stochastic process

with covariance function Ch:Cfl(zi,zj)+...+CfK(zi,zj), since f!,..f5 are

independent.

Following Chapter 2.4, the prior joint probability distribution for H = [hlz,...,th]T

and Y is Gaussian with mean zero and covariance matrix
E F!}[HT YT]|= {f_ﬂf‘_if_‘i‘i}
Y AHH : QH

with Agy = E[HH'] and Oy = B + Aun. Applying partitioned matrix lemma, the
posterior joint probability distribution for H, conditioned on the data Y, remains
Gaussian with mean M and covariance matrix A , where

M= AHHQ;Y (72)
K:AHH _AHHQ;[IAHH (73)

The prediction for H is the mean M with confidence interval of two times the

standard deviation (£ 2\/diagiX)). The concept is best illustrated with an example.

Example 4.8 (Simple Two GPs Example). Consider a GP-generated function using
the commonly used prior covariance function (74) for a Gaussian process with scalar
explanatory variable, z. It ensures that the measurements associated with nearby
values of the explanatory variable should have higher covariance than widely
separated values; a is related to the overall mean amplitude and d is inversely related

to the lengthscale.

aexp{_g(zi_zjy} 74

129

Multiple Gaussian Processes

Assuming that the measurements contain two components of different characteristics,
f(z) and g(z), let the covariance function for f, be (74) with @ = 1.8 and d = 2.5, and
the covariance function for g, be (74) with a = 0.95 and d = 120. That is, f, has a long
lengthscale and g, has a short lengthscale. Also, let the measurement noise be
Gaussian white noise with variance 0.04, i.e. B; = bd;;, where J;; is the Kronecker
delta. Gaussian regression is applied to a set of 800 measurements,
y,=f (Zl.)-i- g(zl.)+ n,, sampled at 100Hz, with f(z;) and g(z;) the sample values for the
stochastic processes f, and g,, respectively. The data values, with the prediction error
and confidence intervals obtained using (72) and (73), respectively, are shown in

Figure 33.

Remark 4.4: In Example 4.5, the probabilistic description for h(z) is by means of a

single Gaussian process, h., with compound covariance function, C, = (Cf +C g). An

alternative would be by means of a Gaussian process, ﬂz, with the covariance
function, 5h , of the form (74). A suitable value of the lengthscale hyperparameter d is

the same as that for the short lengthscale in Example 4.5, i.e. Hz has the same short
lengthscale as g, in Example 4.5, but a suitable value of the amplitude hyperparameter
a is larger, i.e. the value maximising the likelihood of the data. This simpler
probabilistic description is almost as effective as the probabilistic description with the
covariance function Cj, since the prediction and confidence interval at any point

depend primarily on nearby values rather than remoter values.

130

Multiple Gaussian Processes

Data, prediction and confidence intervals

i

function values

Seconds

Figure 41 Variable density data, prediction and confidence interval.

Prediction with confidence intervals

function values

Seconds

Figure 42 Prediction and confidence interval with long and short lengthscale components.

131

Multiple Gaussian Processes

Prediction with confidence intervals

function values

Seconds

Figure 43 Prediction and confidence interval with long lengthscale and periodical
components.

The benefits for prediction using a compound covariance function, such as C,
become apparent when the density of the data varies. Consider the data in Figure 41.
It clearly contains a long lengthscale component and a short lengthscale component.
Both are sinusoids. However, there are large gaps in the data between 2 and 3.5
(except for two values near 2.5) and between 6 and 8. Consider the first situation
when the covariance function is chosen to be (74), with the hyperparameter d
corresponds to the short lengthscale. The prediction and confidence interval obtained
are shown in Figure 41. Since it now depends on nearby values, the prediction over
the data gaps is poor. Indeed, no prediction is made over the second gap between 6
and 8. Over the data gaps, the confidence interval, reflecting the uncertainty in the
prediction, is enlarged. Now, consider the situation when the covariance function is
chosen to be similar to that of Example 4.5; that is, it is the sum of two functions, the
long lengthscale and short lengthscale. The prediction and confidence interval are
shown in Figure 42. Over the data gaps, the prediction has improved due to the
inclusion of the long lengthscale component in the covariance function. The

confidence interval, reflecting the uncertainty, has reduced considerably. The periodic

132

Multiple Gaussian Processes

nature of the short lengthscale component can be exploited to further improve the
prediction over the gaps. A suitable prior covariance function for a periodic Gaussian

process with scalar explanatory variable is given by (75).

aexp{—%sinz[ﬂﬂ(zi ~z,)]} (75)

Finally, consider the situation when the covariance function is chosen to be the sum of
(74) and (75), the former being the long lengthscale component and the latter for the
periodic short-term component in the data. The prediction and confidence interval are
shown in Figure 43. Over the gaps, the prediction is much improved and the

confidence interval much narrower.

The idea here is extendable to measurements having more than two functions, each
with a different characteristic, with components represented by a suitable class of
covariance functions. Note that, the use of compound covariance function in Gaussian
process prior models has been investigated by several researchers (Rasmussen, 1996;
Gibbs, 1997; Williams, 1999).

4.4.3 Training Procedures

The implementation of multiple Gaussian process models is dependent on a proper set
of training procedures. Two possible pre-emptive approaches may be required before
conducting the optimisation stage.

Hyperparameter Initialisation

This section has been covered in Chapter 3.4.

133

Multiple Gaussian Processes

Training Procedure for Multiple Gaussian Processes with Same Explanatory

Variable

In the case of independent multiple stochastic processes as outlined in §4.4.4, it is
rather interesting to note that the solutions are neither unique nor trivial. Thus, a set of
proper training procedures is necessary. It is possible to obtain different solutions
given the same data with different training methods. As the solution is not unique in
every case, there is a need to explore and provide a standard and improved solution to

solve the problem of multiple stochastic processes in a proper and systematic manner.

Given that the data consists of several stochastic processes, it is important to first
decide the correct order of training the Gaussian process model. The order of the
training procedure is vital to the result of the solution (recall that the solution is not
unique). For simplicity, a model of two stochastic processes is used as an illustration.
Assume that this model is available; it is important to first decide whether to train the
long lengthscale first or the short lengthscale first, alternatively whether the
component with periodic feature should be trained first or the non-periodic one first.

A proper training procedure should be done in the fashion as laid out in Remark 4.5.

Remark 4.5 (Training procedure for multiple lengthscale Gaussian processes).
Assume that the data contains more than one component, each with a distinct
characteristic, the following steps are undertaken to ensure that each component

corresponds to a suitable set of hyperparameter values that are adapted from training.

1. Train the data with a simple covariance function’, consisting of a
single term. The set of hyperparameters, which correspond to the
component which could not fit into other components, is adapted to
maximise the log-likelihood function. For instance, the long
lengthscale component, that is not going to fit into the short lengthscale
component, should be trained first.

2. Use the adapted hyperparameter values to perform Gaussian regression

on the data. Compute the residue.

? A simple covariance function mentioned here is not a compound covariance function.

134

Multiple Gaussian Processes

3. Train the residue to obtain hyperparameters that corresponds to next
component, which is not going to fit into subsequent remaining
components.

4. Repeat step 2 and 3 until the number of trainings corresponding to the

number of stochastic processes is achieved.

The procedure outlined above is based on training the data using a single covariance
function. In summary, components of the multiple Gaussian processes model that are
not going to fit into successive components should be trained first. The residue is then
computed after each subsequent optimisation. The purpose of this procedure is to

obtain all the hyperparameter values of the multiple Gaussian processes model.

A unified training procedure, with the covariance function being the sum of two or
more covariance functions, is useless, such that the resulting hyperparameters do not
correspond to their respective components. This is due to the inability of the
optimisation routine to interpret the distribution of the contributions from each
stochastic process. The predictions are prone to high uncertainties as the Gaussian
process lacks the ability to distribute a proper involvement played by each component

of the covariance functions.

The set of hyperparameters, corresponding to different components of the Gaussian
process models, is achieved with a proper training procedure. These adapted
hyperparameters are then used to compute the prediction and the standard deviations

of the posterior joint probability distribution.

4.4.4 Extension to General Case Prediction

Theorem 4.1 in §4.4 is extendable to predictions of any data points of the explanatory

variable. Consider F and G to be the respective long and short lengthscale

components with scalar predictions fz and g,, at any possible values of the

explanatory variable, z, and vector predictions fz and g, at values of the explanatory

variable of the given training data. It follows that the posterior joint probability

135

Multiple Gaussian Processes

distribution of F and G conditioned on the data Y remains Gaussian with mean M

and covariance matrix A , as given by (76) and (77), respectively.

f, A, O7'Y
el Ao
M=|82 =) fex_C (76)
fZ AfZZQ Y
g,] [A,0Y
Ay A 0A, | —ALOTA,, AL ZALOTA, | SALOTA,,
- I - I Z I _
N — ,:f\,g;z,Q,f}ﬂzz,,,Lf\g,,f,\ggg,A,g,,L,:f\,gzz,Q,f,\i,,,Lf\g,:{\,gi,z,Q,f}g,, (77)
Af _Af QilAf» | _Af QilAg | Af _Af QilAf | _Af QilAg
,,,,,,, otz w=_ 54 _, wm Cw= m o m= Sz _
_AgzzQ_lAf | Agzz _Aqu_lAgﬁ | _AgZZQ_lAf | Agzz _Aqu_lAgzz

where O=B+A; +A, .

Proof'4.2: To obtain the posterior joint probability distribution, on the condition that

the posterior remains independent, appropriate modifications to M and A are made

by applying the following transformation,

M—>M,=TM; A > A, =TAT"

where

Similarly, the estimate of part of the data in G, which is explainable by F, should be
transferred from the prediction for G to the prediction for F. To ensure that the cross-
correlation of the posterior joint probability distribution between F and G is zero, B’
is simply B. The posterior joint probability distribution is a combination of

independent Gaussian processes, with mean vector and covariance matrix to be (78)

and (79), respectively.
= Ay, O Y
My = | prmmmm oo 78
" I:Afzz +Agsz71Y_Afzfo:iY ()
A, =| 0 h 79
=|--+--|, where
=Ty (19)

136

Multiple Gaussian Processes

U=Ag, =A, O Ay,
V = (Afzz + Agzz)_ (Afiz + Agiz p_l (Afza + Agzi)

Remark 4.6: The third row of M in (76), and the third row and column of A in (77)
are not required to compute the posterior joint probability distribution. It is shown

merely for clarity and as a formality.

For general case scenario, Theorem 4.1 can be extended further to explain K

independent stochastic processes within a given model, for K > 1.

Theorem 4.2 (extended version of Theorem 4.1): Given that the prior joint probability
distribution for K independent stochastic processes, Fy,...,Fx and Y is Gaussian with

mean zero and covariance matrix A, the posterior joint probability distribution for
[FlT o Fy]T conditioned on the dataset M, and subject to the condition that they

remain independent, is Gaussian with mean M, and A, . The mean is given by

-1
where I' = (z A%, j(B + ZAXZZJ Y, Vx<K. The standard deviation, X, is

defined to be the square-root of the diagonal elements of A,,.

-1
where O =(ZA’§J—(ZA§ZIB+ZA’;) (ZAZ], Vx <K. Proof 4.2 is

extended to multiple stochastic processes below.

137

Multiple Gaussian Processes

Proof 4.3 (extended version of Proof 4.1): Similarly, the prediction for the
contribution from one component, may alternatively, be in part explainable by another
suitable component, using a suitable choice of smoothing kernel. Hence it should be

appropriate to modify by transferring suitable part of the components of the data to

appropriate section of the posterior. For simplicity, denote @ = A’ (B +A,)_l and

partition 7 =[I | T,], such that

(Dl @1 @1 . @1
_(Dl (DZ (D2 (D2
2
0o Yo o ... o
k=1
T, = :
1o 0 > o
k=1
-' ®K
: Lo
0 0 0 DY Of
k=1

From the covariance of the posterior joint probability distribution, the correlations
between the K components are zero. Note that M is defined to have one row less and

A has a row and a column omitted. That is,

_AIA

— | A% — A, 1A,

M=|-2|0"'Y and A=|Aal”
Azzz Azi : Azz
A

where A, is the cross-correlation between the predicting values of the explanatory

variable and itself, A, = (Xiz)T is the correlation between the predicting values of the
explanatory variable and those of the measurement data. A, is the correlation
between the values of the explanatory variable of the measurement data. Note that,
there is one component less in the definition of A, and A, . The order in which the

components are arranged is not of great importance; unlike the order of the training

procedure, which is discussed in the following section.

138

Multiple Gaussian Processes

4.5 Case Study

An application based on multiple Gaussian processes model with common
explanatory variable is illustrated in this section. The requirement of this application
is to identify missing data measured from a nonlinear dynamic system (CATS

Benchmark, 2004) using the model.

A 5000-point time-series data, sampled at 1Hz and consisting of five missing gaps, is
chosen to be the test data. These gaps are located at the following locations, (981s —
1000s), (1981s — 2000s), (2981s — 3000s), (3981s — 4000s) and (4981s — 5000s). The
poor quality of the data can be seen in Figure 44 and the power spectral density of the
measurement data is shown in Figure 45. The latter reveals that the data comprises of

several components with various frequencies.

600 y .
500 Al]
400 - f*; ::. -
300 - | N
200

100 H Mt

100 :f. A

200 W [T |
3000 | |

400 .

| | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Seconds

Figure 44 Data and long lengthscale prediction with confidence intervals.

139

Multiple Gaussian Processes

Power Spectral Density Estimate via Welch

OF+++

(zH/gp) Aouanba.yjemod

400 L

Frequency (Hz)

Figure 45 Power spectrums of the data and predictions of three independent components.

Attempts to extract three components from the data have resulted the hyperparameter
value of the noise variance, b, to be 35.913. Using the chosen covariance function
(74), for £,, g, and h,, the corresponding hyperparameters are ar and dr, a, and d,, and
ay and dy, respectively. The covariance for the measurements, y;, at time ¢, is (80).

(80)

time-series data contains missing gaps, the generalised Schur algorithm (see Chapter
3.5.2) is employed to handle this dataset. The prediction of the long lengthscale

Appropriate training methods are applied to obtain the hyperparameters. Since the
component with confidence intervals (black lines) is shown in Figure 44, with adapted

hyperparameters a¢ = 2.422 x 10*

and dr = 0.0038. A typical section, from 2850s to

3150s, of the medium lengthscale prediction with confidence intervals using a,

83.6391 and d, = 0.0473, is illustrated in Figure 46. The prediction and confidence

1.274, are

55.962 and d,,

plotted in Figure 47 from 2900s to 3100s. In addition, the total error estimate and

intervals of the short lengthscale component, with ay

confidence intervals (grey lines) are shown in Figure 48. Note that in the section from

140

Multiple Gaussian Processes

4981s to 5000s, the confidence interval amplifies drastically since the data points are
near the edge of the data region and no data is available at those values of the

explanatory variable.

30

-50 | | | | |
2850 2900 2950 3000 3050 3100 3150
Seconds

Figure 46 Medium lengthscale component with confidence intervals.

141

Multiple Gaussian Processes

30

20

o
= —

-0 Y I

_30 | | | [| | | | [
2900 2920 2940 2960 2980 3000 3020 3040 3060 3080 3100
Seconds

Figure 47 Short lengthscale component with confidence intervals.

250

200 - .

150 |- .

100 |-]

-100 - .

-150 - .

-200 + .

-250

| | | [| | | | [
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Seconds

Figure 48 Error estimate with confidence intervals.

142

Multiple Gaussian Processes

Individual components of the data are successfully identified and extracted with the
multiple stochastic processes model. The final frequency spectrums of the fits to the

individual components are shown in Figure 45.

4.6 Discussion

Methods on extraction of components with different characteristics from the data
using Gaussian processes based on models with two or more stochastic processes
have been developed. The extracted components of the posterior joint probability

distribution are completely independent from each other.

When there is any degree of arbitrariness in the data, the normal Gaussian process
model gives a totally unusable prediction due to the arbitrary component. The
transformation is then used to select one model from all possible models to remove
arbitrariness without affecting the likelihood of the data. For data with different
explanatory variables, the choice is made by imposing a condition on an average of
the components; this is equivalent to adding a constant to one component and
subtracting the same constant from another component, in the case of two Gaussian
processes model. The approach does not prejudice the Gaussian processes model and
its ability to explain the data in anyway, hence it is perfectly fine to do so. For data
with same explanatory variable, the choice is made by using additional information
provided within the context of the data. For example, components should be treated as
independent and that the short lengthscale component does not contribute to the long

lengthscale component, in the case of two Gaussian processes model.

From knowledge of the engineering context, it is clear that some situations are
applicable with the multiple Gaussian processes model. For instance, the two
Gaussian processes model gives usable predictions when normal Gaussian process
models do not allow. This is solely due to the removal of arbitrariness. A conclusion
is that Gaussian process modelling cannot be done in isolation without reference and
exploitation of the context. In addition, there is no need to quantify improvement with

numerous numerical experiments. The standard Gaussian process model works in

143

Multiple Gaussian Processes

some situation when used to extract components, but when it does not work, it is
perfectly clear that it does not. Hence, the multiple Gaussian processes model

provides an alternative to resolve the issue.

Identification of components using multiple Gaussian processes has been effectively
applied on some applications, such as de-trending of data, data with missing gaps, and
data with periodic, linear and quadratic features. With this model, the fit of the
prediction is much better, as the error bars have shown to be narrower. The
application of the multiple Gaussian processes model is applied on the wind turbine

data, in the form of a case study in the following chapter.

144

Case Study: Identification of Wind Turbine Dynamics Using Gaussian Processes

Chapter 5

Case Study: Identification of Wind
Turbine Dynamics Using Gaussian
Processes

5.1 Introduction

Gaussian process prior model is one of the many methods for inferring nonlinear
dynamic systems from measured data to identify the underlying structure of the
nonlinear system. Motivated by the interest in Gaussian process and its capability to
perform data analysis on nonlinear dynamic functions, an application of system
identification is performed on the wind turbine data to identify the dynamic structure

of the machine.

The chosen application is a set of measurements obtained from a wind turbine. These
measurements are sampled at 40Hz, for a run of 600 seconds. The set of data includes
measurement readings taken from the rotor speed, the wind speed calibration from the
anemometer mounted on top of the body, located behind the blades, and the pitch

angle values registered on the controller system.

145

Case Study: Identification of Wind Turbine Dynamics Using Gaussian Processes

Since explicit calculations of matrix operations of the Gaussian process prior models
are limited to medium-scale dataset, fast algorithms developed in Chapter 3 are
introduced to handle the large-scale 24,000 points wind turbine data. Given that the
noisy measurement data are sampled at fixed intervals, the datasets are simply time-
series. As such, the structure of the covariance matrices exhibits some special
properties, i.e. Toeplitz, thus having low displacement ranks. Fast algorithms, i.e. the
modified Durbin-Levinson’s algorithm and the generalised Schur algorithm, are
capable of handling such structured matrices with low displacement ranks.
Furthermore, the wind turbine dataset contains dynamics that can be characterised in
the frequency domain, with the model exhibiting a range of operating frequencies.
Identification procedure to train the large-scale data by the use of hyperparameter

initialisation is applied beforehand.

It was suggested (Leithead et al., 2003a) that the measurement data contains at least
two components, i.e. due to the aerodynamics and drive-train dynamic cross-
interference with the electro-mechanical components. Applying the concept of
classifying each independent component in the data as a single stochastic process,
thereby, subsuming multiple independent stochastic processes, the technique extracts
the required lengthscale from the measurement data, ensuring that it remains
independent with absolute zero cross-correlation with respect to other components

within the data.

Modelling these extracted components into state-space formulation requires an
additional step of spatial filtering to be applied on the wind speed data. This is due to
the point wind speed measurement being a poor representation of the wind-field.
Hence, spatial filtering is required to account for the averaging over the rotor disc.
(Note that the spatial filter introduces a small delay on the wind speed data. This is
compensated by advancing the spatially filtered wind speed by an equivalent time
increment of 0.24 seconds, in this case). A probabilistic description of a single
stochastic process is used to predict the fit of the outcome, with relation to the
components of the explanatory variable. In the case of the wind turbine data, the rotor
acceleration, computed from the first order derivative of the rotor speed, is modelled
as a function of the rotor speed, wind speed and blade pitch angle. With the intent to

separate the wind speed component from the rotor speed and pitch angle for a possible

146

Case Study: Identification of Wind Turbine Dynamics Using Gaussian Processes

controller design, a single stochastic process is insufficient. Due to the uncorrelated
relationship between the aecrodynamics features for the wind speed and the drive train
dynamics of the rotor speed and blade pitch angle, the state equation can be modelled
to be the sum of two independent Gaussian processes. This is particularly useful in
designing the controller for the wind turbine, such that only the function, which

depends on the rotor speed and pitch angle, is required.

Engineered by the Gaussian process prior model, the wind turbine dynamics can be
analysed and identified in a probabilistic manner with the use of non-parametric

modelling.

5.2 Efficient Algorithms Implementation for Time-Series Data

Two main issues are resolved with the implementation of fast algorithms, developed
in §3.5, for Gaussian regression on the large-scale 24,000 wind turbine time-series
dataset. Firstly, the O(N*) memory requirement to store the N x N covariance matrix
is replaced by the introduction of vector-level storage algorithm. Secondly, O(N°)-
operations, viz. log-determinant and matrix inversion of the covariance matrix, are

reduced to O(kN?)-operations with the implementation of fast algorithms.

To further improve optimisation procedure, algorithm based on hyperparameter
initialisation (see §3.4) is applied prior the training. This allows faster convergence
since proper initial values for the hyperparameters that are specific to the case are
systematically obtained. Hence, nonsensical solutions are suppressed. This additional
approach is useful in some cases to prevent any possibility of under-fitting or over-

fitting of the data.

5.3 Identification of Wind Turbine Dynamics

Methods and algorithms, developed in the previous few chapters of this thesis, are

applied on a physical application, viz. identification of the wind turbine dynamics.

147

Case Study: Identification of Wind Turbine Dynamics Using Gaussian Processes

Several identification procedures using Gaussian process prior models are carried out
here. The identification procedure of the wind turbine dynamics are classified into

two main parts:

1. Phase 1 — Data cleaning

2. Phase 2 — Relationship construction

Briefly, the wind turbine datasets, consisting of time-series data of the wind speed,
rotor speed and the blade pitch angle, are heavily corrupted with noise. Gaussian
regressions are applied to these datasets to remove the noise in the first phase of the
identification procedure. Models with multiple Gaussian processes with common

explanatory variable are applied in this phase.

In the second phase, the predictions obtained from the first phase of the procedure are
constructed to form a dynamic relationship between the aerodynamic torque and the
functions of wind speed, rotor speed and the blade pitch angle. The requirement here
is to confirm the independent relationship between function of the rotor speed and the
blade pitch angle, and the function of wind speed. This is a rather important
verification because by separating the wind speed components from the rest of the
data, it allows engineers to design a more efficient controller based on the knowledge
that the other component depends only on the rotor speed and blade pitch angle, both
of which can be controlled mechanically or electronically. On the other hand, the
wind speed (or rather, wind field that passes through the rotor blades) can not be

controlled.

5.3.1 About the Data

The raw wind turbine data consists of the wind speed, rotor speed and the blade pitch
angle, specifically, site measurements obtained concurrently from a commercial IMW
wind turbine. The measurement data consists of a run of 600 seconds sampled at 40
Hz and is corrupted by significant measurement noise. The dynamics of the wind
turbine, when operated above rated wind speed, are assumed to conform to the simple

model as illustrated in Figure 49. The generator torque of the IMW wind turbine

148

Case Study: Identification of Wind Turbine Dynamics Using Gaussian Processes

considered here is kept constant by the controller. The dynamics of the converter are
sufficiently fast so that no distinction is required to be made between the demand and
achieved generator torque. The generator torque is regulated by means of the blade
pitch angle. The controller maintains the generator speed within a small percentage of

rated value.

> Ta WR
> Aero- —: Drive-train >
\4 dynamics | >
—> TG (Dg
p Actuator 46‘1_ Controller |«
Ta: Aerodynamic torque
Tg: Generator torque demand
Bq: Demanded pitch angle
B: Blade pitch angle
V: Wind speed
oR: Rotor speed
Og: Generator speed

Figure 49 A simple model of the wind turbine dynamics.

149

wn

Q

wn

wn

Q

(]

o)

S

A [I I I I I =

m | | | | I I H'I

.- | | | | | | ——=

% | | | | | | ——

= e e e e e el — bt
\\\\\ I

G \\\\\ 4o [[=1 ____

20 e R i R R ™ — SRt R

.m \\\\\ - - - - - == = = —- k-t - = - - = -t -————"

0 | | | | = | |
\\\\\ B R B —— = e

U | ” | | ” |

wn | | | | | |

Q [~~~ 7~~~ 7 T T T T T T T = O T 0T [R

m | | | = | | |

= | | , | | | |
\\\\\ + - = == = = — = -—— 4" ——"——|-"—-———+ - — = — -

m:. .m [____1____ . ___._’’—_—~+_-_-J-.--_”"-“-”-—-—”Z-1-—-—--

a = i = S S

2 7 T e = e S R

o w - --- T - - - == - ="~ -"~"ft-—-——-—-4-—-=--- == === t-==-7

m D | | | | | |
\\\\\ T T T T T T T T = e e

H % | ” | | | ” |
T |_ == L - __ 41 _ _ __ 1_____ - ___ 1 __ _ _

z

2 S | | | | | | |

M m | | | | | | |
\\\\\ I B - _r_-_-_-_1-_ - -_-_J”-—”-—-—”—“ZZTZ—Z—Z—tTZ—Z—Z-—Z—4

— [CCCC1-CC-oCz7CCCCCCCiCCCCLCICCIiCICIZiZZIZ]

O \\\\\ R |y — — — e | - — — — — |
\\\\\ T

n \\\\\ B D [- — — — _ - _

.w | | | | | | |

Lnla_ \\\\\ T T T I L) - - = |

| | | | | | |

Q X T T T T T T T T

= | | | | | | |

.H \\\\\ I e e [| I [|

n | | | | | | |

| | | | | | |

IPW | | | | | | |

L] | | | | | |

.V.J [____p-_-___J»-_-_-__‘;t-_-_-_-1--_-_“2”-”-—_-_-—-“—Z—-—-—Z—r-—-—--+
\\\\\ T

- | ft-—--- +-—-—-—- - == —= Pt - — =A== == -———- + - ———

= -4 - === I— = === [it === = + ===

& —— P N — | - ! N R —— = = — — B —
o o o o o o o (@)

Q ™ N - A\ N ™ 5

nUa (zH/gp) Ausus(q |es1oadg Jeamod

Frequency (Hz)

Figure 50 Wind speed spectrum.

The values of the wind speed are obtained from a mean adjusted nacelle anemometer

measurement, with a mean value of 17.5m/s, apart from the turbulence intensity of

12.5% observed. The power spectral density function for the wind speed is depicted in

Figure 50. As the measurement of the point wind speed results in a poor

representation of the wind field, it has to be spatially filtered to account for the

averaging over the rotor disc, thus induces a small delay on the wind speed. This can

be compensated by an equivalent time increment of 0.24 seconds to the filtered wind

speed. The resulting effective wind speed may then be interpreted as the uniform wind

speed over the rotor disc such that the power spectral density function of the

aerodynamic torque induced by the effective wind speed and the power spectral

density function of the aerodynamic torque induced by the non-uniform spatially

varying wind field actually experienced by the rotor, are the same for frequencies less

than 10y, where € is the rated rotor speed. The spatial filter is shown in Figure 51.
150

n
]
7]
%)
Q
Q
]
=
[a W
g
-mm d
)
A o 3
3 > 2
Z 8

G Q 3
o e
= (RS-
=)
%)
.8 |

S —
m » 2
g, O
A
2
M A
= —_
=) —
s | |7l%
£ =
(T
o
e A
o
ks
Q
=
= £73
= ° 2
— A 75}
2 =
2 z
o5}
]
7]
<
O

R: Radius of rotor

Wis ol va)

V2 +0(7)s
V

(V2 + o

G(s)z

y: Wind speed decay

factor (1.3)

7: Time constant (20s)

Figure 51 Spatial filter implemented for wind speed.

D Estimate

Welch PS

—H -t

R

4 - — — —

R

- =

— -

—— - 4 —

4 - — — —

— Ak

J -

— - L

OF+++

10+ ++

(zH/gp) Ansueq [enjoeds Jemod

Frequency (Hz)

Figure 52 Rotor speed spectrum.

The measured rotor speed is some combination of the measurement of the rotor speed

and the generator speed scaled by the gearbox ratio. The effectual result of this

151

mixing is significant at the intermediate and high frequencies but has no consequence

@ L 2 %5 2 3 8 2
2 = 5 o 28 § 9 b
3 e 8§ 2 2 £ E L
3 <= 2 % 5 S =)
= - @w S v B .8 Bo
g S = v 8 £ 8 = , , , , , , =
o o Q = Q - | | | | | | =]
< [DR = v +—] (e}
. — 175) o o O D) (D] .o— | | | | | | |
% — — = = = W o | | | | | |
= o) O e B - = W wuuuu”uuuuu”uuuuw,uuuuwuuuu”uuuumuuuu\l u”uuuuu
= 5 S ¥ = = < et e T e e St S =~
— 5}) c Lo C 0 1l ___L___J____1_-___E====—--___1]
(@) — < falv o - B [Ll __ 1= ___]
) — = e + n (72 R [=]
< o > ©n o} | | T i I i = |
=) 5 Y o 2 o= RS = a2 e [t e e R e A e
ﬂ LPIVV = = e = m \\\\\ [ey =
S5 | 8 §F 6 o 2] SRR B R R E R
n Q LPIW - (O] —~ + = [L O S R R T]
E |5 g2, @ s =
S| g < G BE 4 o =
(=} < > hoj O (e} .Lu Q [--Z---d----ft--o-CoeEC-Co-C-oimoD =__-_ft---Z-z--Z-+
. = [Z-°C [(- --I1----CC-ZoC = " __[C_-------1
m:. o] m w m o m = o