
Analysis of Congestion Models for TCP Networks

by

Robert J. Kilduff
The Hamilton Institute

National University of Ireland
Maynooth

Co. Kildare

A dissertation submitted to
the National University of Ireland

Faculty of Engineering
in partial fulfilment of the requirements

for the degree of
Masters of Engineering Science

November, 2003

Research Supervisor: Prof. Douglas Leith



Abstract

The Internet has become a global phenomena that allows people across the world to ex-
change information in a fast and convenient manner. In its journey to its current form,
the Internet has evolved from a network research project initiated by US researchers at
the Defense Advanced Research Projects Agency (DARPA) to a global network of inter-
connected computers. Many services which we take for granted today, such as e-mail and
the World Wide Web (WWW), rely on the underlying Internet networking technologies
to provide the pervasive Internet services modern society has come to expect.

The objective of this thesis is to investigate the development of mathematical models
suitable for the analysis and design of TCP congestion control. While there are a multi-
tude of protocols in use in the Internet, the most prevalent is the Transmission Control
Protocol (TCP). We review current models for TCP congestion control and compare the
NS packet level model (the de-facto standard for simulation studies) against real TCP
implementations on a testbed network. A recently proposed simplified hybrid model with
drop-tail queuing is assessed against NS and a number of modifications studied. Based
on the insights gained, a simplified mathematical model of TCP congestion avoidance
dynamics in synchronised networks is validated.
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Chapter 1

Introduction

1.1 Introductory Remarks

The internet is an evolving entity that is host to a variety of information and applications
that have become pervasive to both personal and business users. The performance of the
Internet is determined not only by the network and hardware technologies that underlie
it, but also by the software protocols that govern its use. As the internet increases in
complexity, the need for mathematical models that can be used to design such protocols,
in a principled manner, is becoming more pressing. The objective of the work presented
in this thesis is to contribute to this process by studying a number of packet and fluid
models of networks employing TCP-like congestion control mechanisms. Motivated by
the ubiquity of networks employing drop-tail queuing policies we concentrate on models
of such networks and validate their predictions against measured data from real networks.
A major contribution of our work is to evaluate these models from the point of view of the
network dynamics; namely, to investigate those effects that most influence the dynamic
behaviour of the network.

1.2 Scope of Thesis

In this thesis we consider networks that employ TCP congestion control mechanisms.
Roughly speaking, TCP congestion control algorithms employ two modes of operation;
Slow Start and Congestion Avoidance. The Slow Start mode of operation governs the
initial evolution of data transfers whereas the Congestion Avoidance mode governs the
evolution of data transfers once the Slow Start mode has been completed. Here we are
chiefly concerned with the behaviour of networks whose dynamics are principally governed
by the Congestion Avoidance mode of operation; these are sometimes described as long
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lived flows. While such flows certainly do not dominate network traffic, they do constitute
an important class of data transfers. According to studies by Brownlee et al [1] (performed
in June 2002) of TCP flow duration in a typical Internet link, at least fifty five percent
of flows have lifetimes of over two seconds, with two percent of flows having lifetimes of
more than fifteen minutes.

The profile of Internet traffic highlights the range of conditions in which TCP is required
to operate. It is clear then that models for TCP network congestion should accommodate
a wide variety of data traffic profiles and a range of time scales. This is a complex
requirement and to simplify the task, we will make the following assumptions about the
environment that we consider. Specifically:

1. We focus on relatively long lived flows that progress through the Slow Start phase of
TCP and operate in the Congestion Avoidance mode for several congestion epochs.

2. We assume that the source application always has data to send (such as a bulk FTP
transfer).

3. Other flows in the network adhere to the same assumptions (no short lived flows).

For TCP, the de-facto standard model for simulation studies is NS [2]. NS is a packet
level model i.e. a model that tracks individual packets as they travel across the network.
Network elements are implemented as objects which are inter-connected to build up a
representation of a network. One of the main features of packet level models is their
complexity, which often makes it difficult to obtain the insight required for analysis and
design. Here, our focus is on analysis and design and we seek models at a suitable level of
abstraction that capture the key features, particularly with regard to dynamics, that are
design driven. Some features that models for analysis and design might capture include
the following:

• Mode changes. TCP transitions through a variety of modes including Slow Start
and Congestion Avoidance, as the flow conditions change. The behaviour of the
TCP source is different in these different modes.

• Entrainment. TCP sources send packets back-to-back when they have a group of
packets to transmit. This can lead to packets becoming entrained with associated
early overflow of queues and so called ’phase effects’ [3].

• Time varying delays. Round-trip-times in networks are not fixed, depending not
only on propagation delays on links but also queueing delays.

2



1.3 Structure of Thesis

This thesis is organised as follows. In chapter 2 we give an overview of congestion control
mechanisms in the TCP protocol. In chapter 3 we compare the NS packet level model
against real TCP implementations on a testbed network. In chapter 4, a simplified hybrid
fluid model recently proposed by Bohacek et al [4] is compared with NS and a number of
modifications proposed. Using the insight gained, a simple mathematical model of TCP
congestion avoidance in synchronised networks is evaluated and analysed in chapter 5. A
summary and conclusion are presented in chapter 6.

1.4 Contribution of thesis

In this theses we perform a preliminary study of modelling for the analysis and design of
TCP congestion control networks. We compare the NS packet level model against a real
TCP implementation and validate it under certain network conditions. During this study
we highlight TCP features such as entrainment and phase effects in both NS and real
TCP implementations. We report on the accuracy of NS when modelling entrainment
and phase effects.

We compare the hybrid model of Bohacek et al [4] against NS and extend it to investigate
discrete effects at the queue. The impact of quantisation, entrainment and back-to-back
packets on the hybrid model are investigated.

We verify, through simulation, the results of a mathematical analysis of TCP congestion
control in a synchronised multi-flow network. This analysis establishes the stability of
TCP flows and develops criterion for fairness and convergence.

In terms of publications, the work in this thesis has led to one publication in the Proceed-
ings of the Twelfth Yale Workshop on Adaptive Learning and Systems on the subject of
Towards an Analysis and Design Framework for Congestion Control in Communication
Networks [5], and a paper submitted to Automatica.
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Chapter 2

An Overview of Congestion
Avoidance in TCP

In this chapter we describe the features of TCP relevant to congestion control. This
chapter is organised as follows. Section 2.1 provides some background information on
TCP and describes the features that can exist in a typical TCP flow. In section 2.2 we
look at the main TCP variants. Section 2.3 provides additional details of TCP that are
relevant to our discussion. Finally section 2.4 summarises the contents of this chapter.

2.1 TCP Overview

TCP is one part of two well known protocol standards commonly referred to as TCP/IP.
TCP sits on top of the IP layer and passes segments onto the IP layer for further pro-
cessing. These segments are then passed onto the lower level layers and eventually onto
the network. TCP was officially adopted as a standard in RFC 1 793 [6] in 1981 and
was designed to deal with message flow control and error correction, ensuring reliable
delivery of a message from a source application to a destination application. IP was also
officially adopted as a standard in RFC 791 [7] in 1981. IP deals with logical addressing
and specifies source and destination addresses. These address are used to route a message
to its destination and to provide a return address for any response.

The origins of TCP/IP stem from DARPA research into resilient networks for use in a bat-
tlefield environment [8]. The goal of this research was to design a protocol suite that could
cope with network link failure and ensure delivery of data to its destination. As TCP/IP

1The Requests for Comments (RFC) document series is a set of technical and organizational notes
pertaining to the Internet. These documents are maintained by the Internet Engineering Task Force
(IETF).
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evolved it moved from the research environment to be deployed in isolated networks that
were eventually interconnected to become what we now know as the Internet[8].

TCP is a bi-directional, reliable, end-to-end protocol for controlling data transmission.
TCP sources break messages from higher protocol layers into datagrams that are en-
capsulated in packets which are then transmitted over the network. These packets are
reassembled by the TCP receiver into the original message and passed onto the higher
level protocol layers. For every packet sent on the network by a source an acknowledge-
ment (ACK) is expected to be transmitted back from the destination. This ACK (or lack
thereof) is used by the source to determine if the acknowledged packet was successfully
received at the destination. In this manner packets can be tracked and retransmitted if
required.

To facilitate further discussion of TCP, the general features of TCP will be highlighted.
We do not describe a specific TCP variant here but provide an overview of features a TCP
variant can possess. These features will be dealt with in an historical and chronological
manner. Refer to [9] for a more detailed description of the TCP protocol. In order to
describe the TCP protocol some concepts are needed:

• Round Trip Time (RTT): the time taken for a packet to be sent from a source
to a destination and for the corresponding acknowledgement to be received by the
source, assuming no packet loss.

• Advertised window (wnd): the amount of data a destination has advertised that it
is willing to receive. This is reported in every ACK sent by the destination to the
source2.

• Source congestion window (cwnd): the number of packets in flight i.e. transmitted
but not yet acknowledged, assuming the source is not restricted by the advertised
window.

• Send window (swnd): the minimum of wnd and cwnd.

• Additive Increase Multiplicative Decrease (AIMD): TCP increases its congestion
window by adding to it on receipt of ACK’s and decreases the send window by a
multiplicative factor on receipt of an indication of packet loss.

• Slow Start: In Slow Start mode the congestion window is doubled every RTT which
leads to an exponential rate of increase.

• Slow start threshold (ssthresh): the threshold in packets below which the source
remains in slow start mode.

2For ease of understanding, all window sizes are described in terms of packets in this thesis. In a real
TCP implementation these window sizes can be in terms of bytes.
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• Fast Retransmit: a mechanism whereby the source retransmits a packet after re-
ceiving a number of duplicate ACK’s (normally three) rather than waiting for a
retransmit timer to timeout.

• Fast Recovery: the mode entered after a packet drop is detected via Fast Retransmit.
In this mode the congestion window is restricted in value until the dropped packet
is successfully retransmitted.

• Retransmission Time-Out (RTO): the interval a source waits without receiving an
ACK before marking a packet as lost, retransmitting it and entering Slow Start
mode. TCP calculates RTO based on current RTT and RTT variance.

• Congestion Avoidance: the mode the source enters after Fast Recovery. The source
uses an AIMD strategy, linearly increasing its congestion window at a rate of one
packet per RTT.

• TCP state machine: TCP is state based and maintains a local data structure to
track the state of a connection. States include CLOSED, ESTABLISHED, LISTEN,
and other intermediary states.

• TCP Control Block (TCB): an internal data structure that holds TCP state infor-
mation and internal variables.

• Maximum Sized Segment (MSS): the maximum packet size that can be sent by a
TCP source.

During the initial phase of a TCP connection the receiver (or receivers when the data
flow is bi-directional) provides details of the amount of incoming data that it can process
(wnd). This informs the source of the maximum data that the destination is currently
willing to receive. In early implementations of TCP, sources transmitted data in a burst
with further bursts on receipt of change in the advertised window size. This caused
problems as the source tended to overwhelm the network. To address this issue Jacobson
et al [10] proposed a series of measures.

Jacobson et al [10] proposed Slow Start mode. In this mode the congestion window
increases on the receipt of an ACK according to the following formula

cwnd(n+1) = cwnd(n) + 1 (2.1)

where n indexes the ACK’s received. Assuming the advertised window is greater than
the current cwnd, the source will send as many packets onto the network as allowed by
its cwnd. The source will transmit new packets every time a new ACK is received and
increments cwnd according to (2.1). As cwnd packets are sent in an RTT, the congestion
window increases by cwnd packets per RTT. This leads to a doubling of the amount of
packets sent in the next RTT causing exponential growth of cwnd, see for example Figure
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Figure 2.1: Exponential Growth of TCP Slow Start

2.1. The source increases its send window in this manner until one of two conditions is
met:

1. ssthresh is reached. In this case the source transitions to Congestion Avoidance
mode and will continue in this mode until condition 2 is met.

2. Packet loss is detected by the source. In this case the source reduces its cwnd by
half and transitions to Fast Recovery mode.

Packet loss was originally detected at the source by the expiry of a retransmission timer.
This timer is set based on current network conditions and is tied to variations in RTT.
See [9] [10] for more details. This was found to be an inefficient mechanism for detection
of packet loss and the Fast Retransmit mechanism was proposed to address this issue [10].
With Fast Retransmit a packet is retransmitted if three duplicate ACK’s are received.
This occurs as the destination only ACK’s the last packet in sequence that it has received.
If the destination receives packets out of order, due to a packet being dropped, it will
send duplicate ACK’s for the last packet received in order. The receipt of three of these
duplicate ACK’s is an indication of a dropped packet as detailed in RFC 2001 [11]. The
source then sets ssthresh and cwnd to half its current value of cwnd. See, for example,
time period 0.31s in Figure 2.1.

Following Fast Retransmit the source enters into Fast Recovery mode. The dropped
packet(s) are retransmitted and the source remains in Fast Recovery mode until the
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Figure 2.2: TCP Flow States

retransmitted packet is acknowledged by the destination. See time period 0.68s - 0.75s in
Figure 2.2.

Following successful retransmission of lost packet(s)the source then enters into Congestion
Avoidance mode. The congestion window increases according to the following formula

cwnd(n+1) = cwnd(n) + 1/cwnd(n) (2.2)

As with Slow Start the source transmits a new packet every time an ACK is received
but in this mode cwnd is only increased by 1/cwnd. As cwnd packets are sent in an
RTT, cwnd increases by one packet per RTT. This leads to a near linear increase in cwnd
with a slope of 13. See time period 0.75s - 1.96s in Figure 2.2. The source remains in
Congestion Avoidance until a packet drop is detected. In this way the TCP flow will cycle
between Fast recovery and Congestion Avoidance until the end of the flow unless there is
a retransmission timeout for a packet, in which case the TCP flow control will reset cwnd
to one and restart the flow in Slow Start mode.

As the TCP source send rate is clocked by incoming ACK’s the source can react to
prevalent network conditions. This feedback control mechanism, called the TCP self

3The increase is linear in RTT but not in time as the RTT will vary over time as network queues fill
and empty.
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clocking mechanism, leads to a situation whereby the source increases its congestion
window at a slower rate under heavy network load than under light network load.

2.2 TCP Variants

In order to understand the current status of TCP it is important to look at its development
and in particular the reasoning behind specific design features. Early implementations
of TCP used a go-back-n model (send sequence goes back n packets) when packets were
lost. These implementations had no congestion control and led to a series of ’congestion
collapses’ on the Internet. During these congestion collapses the data throughput of
connections was severely reduced due to excessive retransmission of packets. These issues
were addressed by a version of TCP called Tahoe [10] in which the problem of congestion
was approached by a ‘Conservation of Packets’ principle whereby new packets were not
put into the network until the old ones left. Tahoe is thus a self clocking system, formed
by the transmission of data and the receipt of acknowledgements.

Tahoe offered a means of combating congestion through dynamically altering the size of
the protocol’s send window. As can be seen in Figure 2.3 the algorithm follows these
simple rules:

1. As an initial condition or if the RTO expires, set cwnd to one.

2. In Slow Start increase cwnd by one packet for each ACK until ssthresh is reached.

3. On reaching ssthresh enter Congestion Avoidance mode.

4. In Congestion Avoidance increase cwnd by 1/cwnd for each ACK received.

5. On detection of a packet loss, cwnd is reset to one, Slow Start is entered and ssthresh
is set to half its current value.

Congestion Avoidance and Slow Start are independent algorithms with different objectives
but in practice they are implemented together. Slow Start probes the network so that the
TCP source can get an initial indication of the network bandwidth available. Congestion
Avoidance more gently probes the network so that the TCP source can adapt to changing
network conditions. A TCP connection will start in Slow Start mode but switch to
Congestion Avoidance mode after cwnd reaches the value of ssthresh. In addition to these
enhancements Tahoe also includes Fast Retransmit, better RTT variance estimation, and
exponential retransmit timer back-off. These enhancements dramatically enhanced the
throughput performance of TCP [12].
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Historically, the next major variant of TCP is called Reno TCP [11]. This variant of TCP
is similar to the Tahoe TCP, except it also includes Fast Recovery [11]. Reno TCP does not
return to Slow Start after Fast Recovery (which ends on the receipt of the retransmitted
packet), instead it reduces the congestion window to half the current window size as can
be seen in Figure 2.4. Note that in this example the TCP flow goes into Timeout mode
following Slow Start due to excessive packet transmission during Slow Start. Reno also
includes delayed ACKs which will be discussed in the next section.

TCP Tahoe and Reno experience poor performance when multiple packets are lost from
one window (cwnd) of data4. With the limited information available from cumulative
acknowledgments, a TCP source can only learn about a single lost packet per round trip
time. An aggressive source could choose to retransmit packets early, but such retrans-
mitted packets may have already been successfully received. TCP NewReno [13] address
this issue by modifying the action taken when receiving new ACK’s. In order to exit Fast
Recovery, the source must receive an ACK for the highest sequence number sent before
entering Fast Recovery. Thus, unlike TCP Reno, new ”partial ACK’s” (those which rep-
resent new ACK’s but do not represent an ACK of all outstanding data) do not take TCP
NewReno out of Fast Recovery. In this way, Reno retransmits one packet per RTT until
all lost packets are retransmitted.

Although TCP NewReno addresses the issue of multiple drops within a window of data,
it does not use all the information on dropped packets available at the receiver. This issue
is addressed by the Selective Acknowledgment (SACK) mechanism [14], combined with a
selective repeat retransmission policy. The receiving TCP sends back SACK packets to
the source informing the source of data that has been received and any gaps that may
exist due to dropped packets. The source can then retransmit packets that have been
dropped. This has the benefit of allowing the source to intelligently retransmit packets
and react to multiple dropped packets.

2.3 Additional TCP Details

In this section we briefly describe some additional features of TCP relevant to this thesis.
To start with we look at the TCP packet format which is shown in Figure 2.5. The TCP
packet comprises the following fields:

• Source Port and Destination Port. Identifies points at which upper-layer source and
destination applications receive TCP services.

• Sequence Number. Specifies the number assigned to the first byte of data in the
current message. In the TCP handshake phase, this field also can be used to identify

4Note that cwnd represents the number of packets in flight for the flow until a packet(s) is dropped.

11



an initial sequence number to be used in an upcoming transmission.

• Acknowledgment Number. Contains the sequence number of the next byte of data
the source of the packet expects to receive.

• Length. Indicates the number of 32-bit words in the TCP header.

• Unused. Reserved for future use.

• Flags. Carries a variety of control information, including the SYN and ACK bits
used for connection establishment, and the FIN bit used for connection termination.

• Window Size. Specifies the size of the source’s receive window (that is, the buffer
space available at the destination for incoming data).

• Checksum. Indicates whether the header was damaged in transit.

• Urgent Data Pointer. Points to the first urgent data byte in the packet.

• Options. Specifies various TCP options such as the MSS, the window scale value
and the time the packet was sent. Also used by SACK receivers to pass lost packet
information back to the source.

• Payload. Contains upper-layer information

Source Port Destination Port

Sequence Number

Acknowledgement Number

Len Unused Flags Window Size

Ugent Data PointerChecksum

Payload

TCP Options

32 Bits

Figure 2.5: TCP Packet Format
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TCP maintains an internal state machine to track the state of a TCP connection. This
information is stored in the TCB and is updated as the connection changes state such as
whether a connection is established or closed or in a variety of other states [9]. For exam-
ple, TCP initiates a three part handshake to establish a connection with a destination.
This handshake is used to set up initial conditions for the connection and works in the
following way:

• The source sends a synchronisation packet (SYN) to the receiver so that its sequence
numbers can be captured by the receiver and used to track incoming packets. The
source’s state is SYN SENT. The receiver’s state is SYN RECVD.

• The receiver sends a SYN ACK packet so that its sequence numbers can be captured
by the source and used to track incoming packets. From the receiver’s perspective
the connection is complete and its state is now ESTABLISHED.

• The source sends an ACK packet and the connection is completed. The source’s
state is now ESTABLISHED.

The TCB also contains per connection information such as the cwnd, wnd and the RTT.
TCP uses these variables to manage flow control in order to ensure a suitable amount of
data is transmitted onto the network and to reduce packet retransmission to a minimum.

In addition to congestion control the areas addressed by TCP flow control includes re-
ceiver overflow. If traffic is sent at too fast a rate for the receiver to process, its buffers
may overflow and packets will need to be retransmitted. The receiver buffer size is first
advertised during the initial TCP handshake and subsequently updated in every ACK
transmitted to the source.

To manage a flow, TCP uses a sliding window mechanism to control the sending of packets
as shown in Figure 2.6. The send window (swnd) slides over the data stream as ACK’s are
received or wnd changes and TCP thereby uses the send window to control the amount
of packets that can be in transit in the network.

Another characteristic of TCP worthy of note deals with the unnecessary transmission of
packets both from the source and the destination that affected early versions of TCP. This
phenomenon known as ’Silly Window Syndrome’ causes inefficient usage of the network
and impacts the source and destination as they have to process a large number of small
packets. On the receiver side two mechanisms are used to address this issue. The first
is used after advertising a zero window. The receiver waits to transmit an ACK until
a minimum of half of the receiver’s buffer becomes free or it has MSS bytes ready to
transmit (in this case the receiver is also a source). With the second mechanism the
receiver delays sending new advertised windows until two packets have been received or
for a certain time (normally 200ms). For further details see [15].
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Figure 2.6: TCP sliding window6

On the source side, the Nagle algorithm [16] dictates when to transmit a packet. If the
source has less than one MSS of data to send, a new packet will not be sent if there
is any outstanding unacknowledged data. If the data to be sent is greater than one
MSS, it is sent immediately. This algorithm deals with situations where applications are
sending data at either slow or fast rates. When an application is sending at a slow rate
data is ’clumped’ and transmitted when required. This situation typically happens with
interactive applications such as telnet. For applications with a requirement for faster
data rates, the data is transferred in one MSS segments. This typically occurs in an
application such as FTP where large data transfers are required. For more detail on both
these mechanisms see [9].

The features above affect TCP network congestion analysis. In particular, for fast data
rate applications, the receiver side changes cause one ACK to be sent for every two packets
sent. This means that the the update rule for cwnd, (2.1) and (2.2), are only called at
half the rate of the situation where the ACK’s are not delayed. Turning this feature on
or off for a TCP flow can have a large effect on its performance.

2.4 Summary

In this chapter we provided an overview of TCP congestion control. We noted that there
are many variants of TCP. The main variants of TCP in use today are flavours of TCP
Reno and TCP Sack. The main difference between these TCP variants lies in the manner
in which they deal with lost packet recovery. For this thesis we concentrated on New
Reno and Sack. We also discussed some general features of TCP such as the TCP packet

6This diagram is based on a paper on TCP performance by Geoff Huston [17]
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format, the TCP state machine, TCP receiver overflow, the TCP sliding window and the
’Silly Window Syndrome’ that are relevant to congestion control.
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Chapter 3

NS Packet Level Model
Experimental Validation

In this chapter we look at the NS [2] model and compare its predictions against data
measured from a real network. NS is the accepted standard for modelling TCP networks
but has only undergone limited validation against real networks [18]. A network consists
of sources and sinks connected together via links and routers. The path between source-
sink pairs consists of wireline or wireless links. We focus here on wireline links, which
can be modelled as a constant propagation delay together with a queue to buffer bursty
traffic. Motivated by the ubiquity of drop-tail in current networks we focus on drop-tail
queues. As a complete validation of NS for TCP is beyond the scope of this thesis, we
also only consider the simple dumbbell network topology (Figure 3.1) that is widely used
in the research literature.

This chapter is organised as follows. In section 3.1, NS is briefly described. The hardware
and software setup of our test network is detailed in section 3.2. In Section 3.3 we present
a number of experiments to compare NS predictions and data from a the testbed network.
Section 3.4 provides a summary of the chapter.

3.1 Overview of NS

NS is a discrete event packet level simulator. It contains a large set of components of which
a subset is used for TCP. NS began as a variant of the REAL network simulator [19] in
1989 and has evolved substantially over the past few years. In 1995, NS development
was supported by DARPA through the Virtual InterNetwork Testbed (VINT) project at
the Lawrence Berkeley National Laboratory and has continued to be supported through
various DARPA projects.
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NS uses a dual software architecture which utilises both C++ and Object Tcl (OTcl).
Typically OTcl is used as a frontend to the simulator where scripts can describe the
simulation environment. C++ implements the lower level simulation elements such as
network queues and links. Where required the class hierarchy in C++ is mirrored in
OTcl so that there is a consistent view of the simulation environment from the users
perspective. The logic behind the use of OTcl at the frontend is that OTcl is an interpreted
language and thus suitable for use in situations where there is likely to be a large degree
of change in the program. This is the case with simulation scripts. The C++ components
of NS provide fixed functionality and use C++ as it provides better performance than an
interpreted language. The functionality of this code can be modified by rebuilding the
components but can also be modified by parameters passed through from the OTcl layer.

The NS simulator class, referenced as ns, contains all of the objects to be used in the
simulation. These objects can be network components such as nodes, links and queues.
These are defined within the simulator class and cross referenced to build up a network
topology. For a detailed description of the use of these network components see the NS
Manual [20].

As detailed in [20] NS models the well known variants of TCP such as Tahoe, Reno,
New Reno and SACK. These objects are implemented in C++ and mirrored in the OTcl
object hierarchy. Parameters specific to a TCP variant can be set at the OTcl level
and bound to the relevant object or object instance at the C++ level. The core of the
implementation is based on the Tahoe code. The other implementations of TCP override
the Tahoe methods or add new methods as required. The code source is provided with
NS and can be modified and rebuilt to add new TCP variants to NS.

A generic script for sending bulk data can be seen in Appendix A.3.1. This script was
used throughout the course of this thesis and models the simple dumbbell network as
detailed in Figure 3.1. The main elements of the script are:

1. the record procedure which logs the simulation data.

2. the main code that sets up the simulation environment and schedules the simulation
events.

3. the finish procedure which performs post simulation tasks.

The script allows for varying the duration of the simulation, the number of sources in the
simulation, the start and stop time for the sources, the duration of the link delay and the
queue size for the link. The post processing script output the data in dual column format
with time in the first column and simulation data in the second column.
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Figure 3.1: Test Network Topology

3.2 Test Environment

3.2.1 Hardware

A test network was constructed to allow experiments to be run with real TCP imple-
mentations. The test network architecture is shown in Figure 3.1. We used RFC 1918
IP addresses and the network was isolated except when experiments required access to
external networks.

The two source machines and the two destination machines use the same specification:

Dell Optiplex GX250, Pentium 4, 2.0GHz
256MB RAM
Intel PRO/1000 network card
FreeBSD 4.8 RELEASE #74

The router required extra network interfaces and was the aggregation point for the network
and thus a higher specification server machine was chosen.

Dell PowerEdge 1600SC, Pentium 4, 2.8GHz
2GB RAM
4xIntel PRO/1000 network card
FreeBSD 4.8 RELEASE #74

3.2.2 Source Software and Instrumentation

In order to collect measurements of internal TCP state variables such as the congestion
window, it was necessary to instrument the TCP stack. The FreeBSD instrumentation
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was achieved through the use of the sysctl kernel interface with logged information written
to memory. A user level application then extracts the logged information.

The FreeBSD instrumentation was achieved by inserting macro code at appropriate points
in the TCP input and output code. The data was logged into a structure defined in
tcp logit.h (see Appendix A.1.1) with elements in the following format:

struct tcplog {

int type;

struct timeval tv;

u_short sport;

u_short dport;

union {

int snd_rtt;

int snd_srtt;

u_long snd_cwnd;

u_long snd_ssthresh;

u_long snd_wnd;

tcp_seq starttime;

} data;

}

The type field indicates the quantity stored. Valid types are RTT, Smoothed RTT,
CWND, SSTHRESH, WND and STARTTIME (used to determine the time in µs when
ACK’s are received or new packets are sent). The next field is a timestamp in the Unix
format of seconds since 1/1/1970. The next two fields hold the source port and the
destination port so that a connection can be uniquely identified1. The next field is filled
depending on the macro chosen.

Data is logged via macros defined in tcp logit.h. An example for RTT is:

#define TCP_STASH_RTT(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_RTT; \

l->sport = w; \

l->dport = x; \

l->data.snd_rtt = v; \

} while(0);

1As this is a simple test environment we do not need to use source and destination IP address to
uniquely identify a TCP connection.

19



These macros are the instrumentation probes that are inserted into the FreeBSD TCP
kernel code at appropriate points. Most macros are placed in the kernel code that process
incoming ACK’s (tcp input.c and tcp timer.c). The exception to this is the STARTTIME
macros for sent packets which are inserted into tcp output.c. The macros write to a
circular memory buffer. The buffer is exposed to the user level application via the sysctl
API, see tcp logit.c (Appendix A.1.2).

The user level program to extract the logged kernel information is called tcplog (see
Appendix A.1.3). This program copies the kernel buffer (using the sysctl defined above)
that contains the logged data to a buffer in the user memory space. The program then
cycles through the local buffer and writes the logged records out to a file. Additionally
the program takes a port number as a parameter for filtering as the buffer may contain
data from a number of source ports. If a port is specified on the command line tcplog
only outputs records for that port, otherwise all records are outputted. The number of
records is outputted and can be used to ensure that the circular buffer hasn’t overrun.

A TCP source program called send was developed to provide constant TCP traffic from
sources in the test network. It works by sending a stream of MSS length packets to a
destination. The number of packets and the address of the destination are passed to send
as command line options. The C code for send, send.c can be seen in Appendix A.2.1.
The program opens a connection to the ’discard’ service on the destination machine using
the socket API. The ’discard’ service is a service that is primarily used for test purposes.
It receives packets from TCP and discards them. The program sends the number of MSS
packets specified on the command line and terminates the connection, outputting the
sending TCP port, the amount of time elapsed and the bits/bytes sent. The sending
port is required by the tcplog program discussed above to uniquely identify the TCP
connection.

Comment on other mechanisms to extract TCP kernel data

While we used the sysctl interface to log data, an alternative approach is to use the /proc
interface. The latter is used, for example, by the web100 instrumentation patch [21] for
Linux. Web100 is an implementation of an IETF Internet draft TCP MIB [22] which
allows for low level instrumentation of the TCP stack.

The sysctl and /proc mechanisms to log TCP data both insert probes into the kernel code
and thus are both event driven. The sysctl mechanism logs this data to memory which is
copied in it entirety to user space and thus the entire contents of the logged data can be
processed. The /proc mechanism in contrast requires a user level program to sample in
real-time the TCP data made available via the proc kernel interface. This causes issues
when a sample interval less than than 20ms is required as the the sleep call in Linux
can only guarantee to wake up a process after a minimum of 20ms. This means that
the finer details of changes to TCP variables may be missed. This is especially true as
the transmission speed increases. Running the sampling program ’full out’ with no sleep
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call does not alleviate this problem as the kernel process scheduling algorithm allocates
system resources to the kernel during busy periods and the logging program may thus
miss important information.

3.2.3 Router Software

The router functionality was provided using Dummynet [23]. This emulates the effects
of queues, bandwidth limitations and communication delays by modifying the existing
protocol stack allowing straight forward configuration of the network environment. Dum-
mynet is used in conjunction with ipfw, the IP firewall code in FreeBSD. Ipfw allows
the selection of IP packets based on a combination of source and destination addresses
and ports, protocol types (UDP, TCP, ICMP, ...), interface, and direction (in or out).
The packet filter is programmed through a set of rules, which are applied in sequence to
packets until a match is found. The rules specify actions to be taken, one of which is to
forward packets to a Dummynet pipe. A pipe simulates the presence of a communication
path, with bandwidth limitations, propagation delays, and queues.

3.3 Comparison of NS and Test Network

A series of experiments was run to compare NS with the FreeBSD TCP implementation.
Delayed ACK’s were turned off for the initial experiments. We also turned off caching at
the sender as this causes previous values for ssthresh and cwnd to be passed through to
new connections to the same destination. NS tests were run with the New Reno variant
of TCP as this is the variant currently used by FreeBSD. 1500 byte packets were used
throughout these experiments unless otherwise stated.

Our test network environment is isolated and so does not experience the cross traffic
that exists on a real network. In addition we do not consider the effects of the host
configuration (such as number of network cards, number of user/kernel TCP processes
etc) on results as this is beyond the scope of this thesis.

3.3.1 Single Flow

The bottleneck link for this experiment was 10Mbit/s, queue of 17 packets and delay of
40ms. The delay is made up of 37.6ms of link delay and 1.2ms of propagation delay on
the forward and backwards links. Figure 3.2 shows a comparison of the NS and FreeBSD
congestion window time histories for a single flow. We note the window inflation/deflation
[11] during Fast Recovery (e.g. 0.4s to 2.6s) which is not captured by NS.
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Figure 3.2: Comparison of one TCP flow using FreeBSD and NS. (10Mbit/s, 40ms delay,
queue size 17 packets)

A more detailed comparison of NS and FreeBSD during Slow Start is shown in Figure 3.3.
We can see an almost exact match and can clearly see rapid increases in cwnd followed by
periods of no increase, which is a signature of packet entrainment. When a source sends a
packet out onto the network, it receives an ACK one RTT later. The reception of an ACK
causes the source to send more packets(which are sent back-to-back). This leads to the
build up of a train of back-to-back packets on the network. Both NS and FreeBSD drop
49 packets during Slow Start. We also note that FreeBSD and NS experience different
Fast Recovery times after Slow Start. This may be due to the different implementations
of Fast Recovery in NS and FreeBSD.

A detailed comparison between FreeBSD and NS for Congestion Avoidance is shown in
Figure 3.4. The window inflation/deflation during Fast Recovery leaves the FreeBSD flow
at a higher initial value for cwnd and thus the flows diverge in the time axis. This can be
seen more clearly in Figure 3.5 which is a close up of one period of Congestion Avoidance.
One of the plots is shifted to align the time axes to allow better comparison2. Observe
that there is a good match of slope and maximum value.

2We shall repeat similar time shifts in future when appropriate without reference
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Figure 3.3: Comparison of one TCP flow during Slow Start using FreeBSD and NS
(10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 3.4: Comparison of one TCP flow during Congestion Avoidance using FreeBSD
and NS (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 3.5: Close up of comparison of one TCP flow during Congestion Avoidance using
FreeBSD and NS (10Mbit/s, 40ms delay, queue size 17 packets)

3.3.2 Two Flows

The bottleneck link for this experiment was 10Mbit/s, queue of 17 packets and delay of
40ms. The delay is made up of 37.6ms of link delay and 1.2ms of propagation delay on
the forward and backwards links. All the experiments for two flows are run on the same
machine and in the same process unless otherwise stated. Figure 3.6 shows a comparison
of NS and FreeBSD for two flows. We note the window inflation/deflation during Fast
Recovery (e.g. 0.3s to 4s) which is not captured by NS.

Figure 3.7 shows a close up of Slow Start with two flows. Again we see a good match
between NS and FreeBSD. In addition we can see indications of entrainment in cwnd as
in the single flow case but with interleaved trains of packets from each flow. The number
of packet drops also matches. 48 packets were dropped in total, 32 by flow 1 and 16 by
flow 2 for both NS and FreeBSD. We also note that FreeBSD and NS experience different
Fast Recovery times after Slow Start. This may be due to the different implementations
of Fast Recovery by NS and FreeBSD.

Figures 3.8 and 3.9 show close ups of Congestion Avoidance for FreeBSD and NS. We
note that there is a good match of slope and maximum value but that the plots diverge
over time due to there being different initial values for cwnd on exit from Fast Recovery in
FreeBSD when compared to NS. We also observe the interleaved entrainment of packets
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Figure 3.6: Comparison of two TCP flows using FreeBSD and NS (10Mbit/s, 40ms delay,
queue size 17 packets)
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Figure 3.7: Comparison of two TCP flows during Slow Start using FreeBSD and NS
(10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 3.8: Comparison of two TCP flows during Congestion Avoidance using FreeBSD
and NS (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 3.9: Close up of comparison of two TCP flows during Congestion Avoidance using
FreeBSD and NS (10Mbit/s, 40ms delay, queue size 17 packets)
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for the two flows.

3.3.3 Prevalence of Entrainment

Packet entrainment can be inferred from the results of the previous experiments for one
and two flows. We see this through the time history of cwnd as updates to cwnd reflect
incoming ACK’s. However, while entrainment appears to exist on our testbed network,
it is unclear whether it might exist on networks with a more complex topology and mix
of traffic. We therefore performed experiments to determine if entrainment does indeed
exist on a live production network. We used a machine located in Trinity College Dublin
running FreeBSD 4.8 as the destination with delayed ACK’s turned off. Our testbed
was connected to the NUI Maynooth campus network via the testbed router. A tracer-
oute from the NUI Maynooth testbed network to the Trinity College Dublin destination
machine was as follows:

Tracing route to salmon.maths.tcd.ie [134.226.81.11] over a

maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.220.3.1

2 <1 ms <1 ms <1 ms cismay.may.ie [149.157.1.6]

3 2 ms 1 ms 1 ms mantova-atm3-1-26.bh.access.hea.net

[193.1.194.21]

4 2 ms 2 ms 2 ms tcd-site-gige2-0.tcd.access.hea.net

[193.1.196.150]

5 2 ms 2 ms 2 ms tcd-hsrp187.tcd.client.hea.net

[193.1.192.187]

6 2 ms 2 ms 2 ms mathgate.tcd.ie [134.226.10.51]

7 2 ms 2 ms 2 ms salmon.maths.tcd.ie [134.226.81.11]

Note that this route included the traversal of a number of firewalls and the Dublin internet
exchange. Figure 3.10 shows sample time histories for two flows during Slow Start running
to the external destination. This experiment was run at 17:54 on 3/11/2003 (Monday) and
would have experienced a moderate level of cross traffic. We can see that the packets are
still significantly entrained. Figure 3.11 shows a close up of the cwnd time histories during
Congestion avoidance. Again the presence of significant entrainment can be observed.

In addition to the foregoing tests, further experiments were carried out with an artificial
delay inserted into the network using dummynet. This experiment was run at 18:26 on
3/11/2003 and would have experienced a moderate level of cross traffic. Figure 3.12 shows
the results for two flows during Slow Start running to the external destination with a delay
of 40ms. Figure 3.13 show the results during Congestion Avoidance. Evidently, significant
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Figure 3.10: Congestion window time histories of two FreeBSD TCP flows over a live
network during Slow Start
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Figure 3.11: Congestion window time histories of two FreeBSD TCP flows over a live
network during Congestion Avoidance
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Figure 3.12: Congestion window time histories of two FreeBSD TCP flows with a 40ms
delay over a live network during Slow Start

packet entrainment is present. We note that there are also cases where entrainment is
somewhat broken up. Figure 3.14 shows us an example from the same experiment.

While it remains an open question as to the level of entrainment in real networks, we have
seen that entrainment can indeed exist at a significant level in production networks3.

3.3.4 Phase Effects Associated with Entrainment

One of the reasons that the prevalence of packet entrainment is of interest is that the
associated phase effects are known (at least in simulation) to have a significant impact on
the fair allocation of bandwidth between competing TCP flows. To explore this further,
we carried out a series of experiments where the flows are run from two separate machines
that are configured in the same manner. These experiments were run multiple times with
different start times and ordering of which flow started first. The results were robust and
consistent. Figure 3.15 shows the congestion window time histories when both flows have
the same RTT. Figure 3.16 shows the same experiment but with the RTT for one flow
increased by 1ms. Evidently, this small change in RTT has had a very substantial impact
on the allocation of bandwidth between the flows. Similar behaviour is observed in NS,

3We note that there are techniques to break up entrainment such as pacing TCP[24].

29



8.94 8.96 8.98 9 9.02 9.04

21

21.5

22

22.5

23

23.5

24

Time [s]

C
w

nd
 [p

kt
s]

FreeBSD cwnd1
FreeBSD cwnd2

Figure 3.13: First close up comparison of two FreeBSD TCP flows with a 40ms delay over
a live network during Congestion Avoidance
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Figure 3.14: Second close up comparison of two FreeBSD TCP flows with a 40ms delay
over a live network during Congestion Avoidance
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Figure 3.15: Two FreeBSD TCP flows run on separate machines with the same RTT
(800Kbit/s, 100ms delay, 1000 byte packets, queue size 15 packets)

see Figure 3.17. Such effects are of course well known and have been reported for example
by Floyd et al [3] but to our knowledge, this is one of the first times in open literature
that phase effects have been demonstrated in a real network (as opposed to a simulation).
Interestingly in our experiments we found that it was not possible to reproduce this effect
under the same conditions but with the two sources running on the same machine and
in the same process. Figure 3.18 shows results for two flows on the same machine with
an extra 1ms in the RTT for one of the flows. The source and destination machines had
separate network cards for each flow and therefore the difference is presumably due to
software scheduling issues rather than ordering imposed by the hardware.

To explore this further and in particular to study the accuracy of NS predictions we
repeated a number of the simulation experiments similar to those carried out by Floyd
et al [3]. The network for these experiments consisted of a dumbbell network with two
sources with a single flow each, one router and one destination. The bottleneck link
bandwidth is 800Kbit/s, round trip propagation delay 200ms and the queue size is 15
packets. The links for the two sources have a bandwidth of 8000Kbit/s and a delay of
10ms. The packet size for the experiments is 1000 bytes. The delay on one of the source
links was varied so as to change the RTT for that flow and comparisons were then made
of cwnd for each flow. See Appendix A.3.3 for the OTcl script used in these experiments
and Appendix A.3.2 for the dummynet configuration. Figures 3.19 and 3.21 show the NS
results for 2ms and 40ms differences in RTT’s between the flows. Observe the way the
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Figure 3.16: Two FreeBSD TCP flows run on separate machines with flow 1 delay 100ms
and flow 2 delay 101ms (800Kbit/s, 1000 byte packets, queue size 15 packets)
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Figure 3.17: Two NS TCP flows run on separate sources with flow 1 delay 100ms and
flow 2 delay 101ms (800Kbit/s, 1000 byte packets, queue size 15 packets)
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Figure 3.18: Two FreeBSD TCP flows run on the same machine with flow 1 delay 100ms
and flow 2 delay 101ms (800Kbit/s, 1000 byte packets, queue size 15 packets)

unfairness between the flows flips for the two different RTT’s. This is a result of the so
called phase effect referred to by Floyd et al [3]. Floyd et al ran these experiments using
NS only. We ran the same experiments in our test network. Figures 3.20 and 3.22 show
the results. We can see similar phase effects. We note the amplitude and periodicity
differences in the congestion window time histories for NS and FreeBSD.

3.3.5 Effect of Delayed ACK’s

Delayed ACK’s are commonly used in TCP. If this option is turned on at the destination
the rate of incoming ACK’s is reduced at the sender. Figure 3.23 shows what happens
in our test environment when delayed ACK’s are turned on. Synchronisation between
flows is lost and the output rate during Slow Start and Congestion Avoidance is reduced,
see Figures 3.24 and 3.25. Figure 3.26 shows the results for the same experiment run
in NS. The congestion window time histories are significantly different than the results
from the test network. Close ups of Slow Start, Figure 3.27, and Congestion Avoidance,
Figure 3.28, also show significant differences for congestion window time histories when
compared to Figures 3.24 and 3.25.
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Figure 3.19: Two NS TCP flows run on the different machines with flow 1 delay 210ms
and flow 2 delay 208ms (800Kbit/s, 1000 byte packets, queue size 15 packets)

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Time [s]

C
w

nd
 [p

kt
s]

FreeBCD cwnd1
FreeBSD cwnd2

Figure 3.20: Two FreeBSD TCP flows run on the different machines with flow 1 delay
210ms and flow 2 delay 208ms (800Kbit/s, 1000 byte packets, queue size 15 packets)
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Figure 3.21: Two NS TCP flows run on different sources with flow 1 delay 210ms and
flow 2 delay 250ms (800Kbit/s, 1000 byte packets, queue size 15 packets)
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Figure 3.22: Two FreeBSD TCP flows run on the different machines with flow 1 delay
210ms and flow 2 delay 250ms (800Kbit/s, 1000 byte packets, queue size 15 packets)
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Figure 3.23: Congestion window time histories of two FreeBSD TCP flows with delayed
ACK’s (10Mbit/s, 40ms delay, queue size 17 packets, delayed ACK interval 100ms)
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Figure 3.24: Close up of comparison of two FreeBSD TCP flows with delayed ACK’s
during Slow Start (10Mbit/s, 40ms delay, queue size 17 packets, delayed ACK interval
100ms)
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Figure 3.25: Close up of comparison of two FreeBSD TCP flows with delayed ACK’s
during Congestion Avoidance (10Mbit/s, 40ms delay, queue size 17 packets, delayed ACK
interval 100ms)
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Figure 3.26: Congestion window time histories of two NS TCP flows with delayed ACK’s
(10Mbit/s, 40ms delay, queue size 17 packets, delayed ACK interval 100ms)
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Figure 3.27: Close up of comparison of two NS TCP flows with delayed ACK’s during
Slow Start (10Mbit/s, 40ms delay, queue size 17 packets, delay interval 100ms)
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Figure 3.28: Close up of comparison of two NS TCP flows with delayed ACK’s during
Congestion Avoidance (10Mbit/s, 40ms delay, queue size 17 packets, delay interval 100ms)
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3.4 Summary

In this chapter we developed a test network and instrumented the FreeBSD TCP stack.
We compared NS to the testbed for one and two flows in both Slow Start and Congestion
Avoidance. We demonstrated the presence of entrainment in a live network. We also
confirmed phase effects in our test network. The results above point to entrainment effects
being a determining factor in flow fairness under certain network conditions. Indeed in
certain circumstances lockouts can occur. This was a pilot study and more work is clearly
required to validate NS properly. However on the basis of our tests, NS was found to be
remarkably accurate for the synchronised flow case. For the non synchronised flow and
delayed ACK cases NS was found to be less accurate.
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Chapter 4

Comparison of Hybrid and NS
Models

Our focus in this chapter is on bottleneck networks employing a drop-tail queueing policy.
While models have been proposed with active queueing such as RED [25], far fewer exist
for drop-tail queuing. One model that supports drop-tail queuing is the hybrid model for
TCP proposed by Bohacek et al [4]. Hybrid dynamic systems involve a mixture of contin-
uous/discrete dynamics and logic based switching [48, 49, 50]. Typically, these systems
evolve according to underlying continuous/discrete dynamics and experience abrupt mode
changes triggered by a set of conditions within the system. In this chapter we compare
the hybrid model for TCP proposed by Bohacek et al [4] with NS. The hybrid model
includes TCP mode transitions, the impact of time varying delays on cwnd evolution and
drop-tail queuing while working within a fluid-like framework.

The chapter is organised as follows. Section 4.1 presents the details of the hybrid model. In
section 4.2 we compare the hybrid model with NS. In section 4.3 we investigate modifying
the hybrid model to include a discrete queue as a means of developing a more powerful
model of packet drop taking account of the effect of discrete events inherent in TCP on
the hybrid model. In section 4.4 we provide a summary of our findings.

4.1 Hybrid Model

The hybrid model splits the network into TCP sources and network queues. We consider
each in turn.
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4.1.1 Source Model

The main modes for a TCP source under congestion control are Slow Start, Fast Recovery,
Fast Retransmit and Timeout. See Figure 4.1.

Slow Start:

TCP starts in Slow Start mode where the congestion window wf for flow f doubles every
round trip time. This exponential growth is modelled as follows

ẇf = log m
RTTf

wf (4.1)

where m is a constant that dictates the growth rate and RTTf is the RTT for flow f .
Assuming doubling of wf every RTTf and constant RTTf the value of m is 2. The
instantaneous per flow send rate rf is given by

rf =
βwf

RTTf
(4.2)

The constant β is introduced by Bohacek et al, to capture effects associated with the
rapid change in RTT observed in Slow Start [4]. From empirical evaluation of NS traces,
Bohacek et al determined a value of β = 1.45 as a suitable corrective factor.

The TCP source exits Slow Start if wf is greater than the Slow Start threshold, ssthrf ,
otherwise wf increases until a packet is dropped at the queue. There is a delay between
when a packet is dropped and when the TCP source detects the drop. To model this as a
drop the TCP source moves into a Slow Start delay mode where it continues to increase
wf and rf as per (4.1) and (4.2) for the duration of the drop detection delay DDDF ,
The source then moves to either Fast Recovery mode or Timeout mode depending on the
number of packets lost, ndrop. If ndrop ≥ wf − 2 there will not be enough duplicate ACK’s
to trigger a transition to Fast Recovery mode and a timeout will result. If ndrop ≥

wf

2
+ 2

there will not be enough ACK’s to allow the retransmission of all the packets that were
dropped and a timeout will again result.

Fast Recovery:

In Fast Recovery wf and rf are reset to

wf =
w−

f

2
, rf =

1+w−

f
/2−ndrops

RTTf
(4.3)

where w−

f is the value of wf at the time when the first packet drop is detected by the
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source. The number of RTTf ’s the source should remain in Fast Recovery is given by

k = dlog2

1+w−

f
/2

1+w−

f
/2−ndrops

e (4.4)

This is only true where ndrops ≤ w−

f /2 + 1 otherwise the number of RTTf ’s the TCP
source remains in Fast Recovery is given by

k = 1 + dlog2 ndropse (4.5)

Congestion Avoidance:

In Congestion Avoidance mode wf increases linearly at a rate of one packet per RTTf .
This is modelled by

ẇf = 1
RTTf

wf (4.6)

The instantaneous send rate rf is

rf =
wf

RTTf
(4.7)

The TCP flow remains in Congestion Avoidance until a packet drop occurs. There is a
delay between when a packet is dropped and when the TCP source detects the drop. To
model this the TCP source moves into a Congestion Avoidance delay mode which behaves
in a similar manner to the Slow Start delay mode. After delay DDDF , the source moves
to either Fast Recovery mode or Timeout mode.

Timeout:

The Timeout mode is entered when

wf ≤ max{2 + ndrop, 2ndrop − 4} (4.8)

and the transition to the Timeout mode is only possible from either Slow Start delay
mode or Congestion Avoidance delay mode. The model assumes that the TCP source
remains in this mode for 1 second and that rf = 0. After this period wf is reset to one,

ssthrf is reset to
w−

f

2
where w−

f is the value of wf at the time when the first packet drop
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slow-start:

ẇf = log m
RT Tf

wf

rf =
βwf

RTTf

slow-start delay:

ẇf = log m
RTTf

wf , ṫtim = −1

rf =
βwf

RTTf

cong.-avoidance:

ẇf = L
RT Tf

rf =
wf

RTTf

cong.-avoidance delay:

ẇf = L
RT Tf

, ṫtim = −1

rf =
wf

RTTf

fast-recovery:

ẇf = 0, ṫtim = −1

ṙf = 0

timeout:

ṫtim = −1
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Figure 4.1: Hybrid model for flow f using TCP-Sack congestion control. The symbol
⊗

represents wf ≤ max{2+ndrop, 2ndrop−4} and
⊕

represents ttim = RTTf , wf =
w−

f

2
, rf =

1+w−

f
/2−ndrop

RTTf
and k given by (4.4) and (4.5)1

is detected by the source.

4.1.2 Queue Model

Queue Empty:

Similarly to the sources, a fluid queue model is proposed by Bohacek et al [4] which
involves three modes: Queue Empty, Queue Not Full and Queue Full. Let F be the set of
flows {f1, f2, ...fn} and L be the set of links {l1, l2, ...ln}. In the Queue Empty mode let
sl

f denote the input rate for flow f on link l and let rl
f denote the output rate for flow f

on link l. The queue size is modelled as a first order differential equation given by

q̇l
f = sl

f − rl
f ∀fεF, lεL (4.9)

The output rate rl
f of the queue equals the input rate when the total input rate sl is less

1This diagram is reproduced from work by Bohacek et al [4].

43



`-queue-empty:

q̇`
f = s`

f − r`
f , f ∈ F

r`
f =







s`
f s` ≤ B`

s`
f

s`
B` otherwise

`-queue-not-full:

q̇`
f = s`

f − r`
f , f ∈ F

r`
f =

q`
f

q`
B`

`-queue-full:

ż` = s`
− B`

q̇`
f = (s`

f /s`
− q`

f /q`)B`, f ∈ F

r`
f =

q`
f

q`
B`

q` > 0?

q` ≤ 0?

q` = q`
max, s` > B`?

s` ≤ B`? z` := 0, E
[

drop in flow f
∗ ∼ pf∗

]

z` = L?

z` := 0, E
[

drop in flow f
∗ ∼ pf∗

]

r`′

f , f ∈ F , `′ ∈ L[`]

q`, r`
f , E

[

drop in flow f
]

, f ∈ F

Figure 4.2: Hybrid model of TCP Network Queue at link l where ql =
∑

fεF qf
l and

sl =
∑

fεF sf
l ,∀lεL

2

than or equal to the queue service rate B l. Otherwise the output rate is B l is distributed
between the incoming flows based on the proportion each contributes to the total input
sl. That is

rl
f =

{

sl
f sl ≤ Bl

sl
f

sl B
l otherwise

}

(4.10)

Queue Not Full:

In the queue not full mode the queue size model is as in (4.9) but the output rate rl
f is

distributed among the flows based on the proportion of the queue they occupy so that

rl
f =

ql
f

ql
Bl (4.11)

2This diagram is reproduced from work by Bohacek et al [4].
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where ql is the total size of the queue.

Queue Full:

In the Queue Full mode the output rate is modelled by (4.11) and the queue size is given
by

q̇l
f = (

sl
f

sl
−

ql
f

ql
)Bl ∀fεF, lεL (4.12)

The excess fluid zl arriving at the queue is given by

żl = sl −Bl (4.13)

This aggregated fluid represents the total volume of dropped packets and must be assigned
to the input flows. This is a key issue in accurately modelling the behaviour of TCP.
When drops are synchronised (every flow sees a drop when the queue is full), Bohacek
et al considers a drop rotation model whereby dropped packets are assigned to flows in a
round-robin fashion. Bohacek et al also consider assigning drops randomly between flows
using a uniform distribution.

4.1.3 Complete Model

The queue and TCP source model must be combined to obtain a complete network model.
The round-trip time RTTf , the drop detection delay DDDf and the number of drops ndrop

are inputs to the TCP source model. The send rate rl
f is the queue model input. The

complete model for the dumbbell topology has been implemented in Matlab (see Appendix
A.4.1)

4.2 Comparison of Hybrid Model with NS

The hybrid model involves many approximations that must to be validated. As a first step
we look at a single flow on a dumbbell network topology. Figure 4.3 shows a comparison
of the NS model and the hybrid model for a single flow running on a network with a 10Mb
link, 40ms delay, queue length of 17 packets and packet size of 1500 bytes. We note that
NS models the transmission delay over the link and the hybrid model omits this delay so
we have reduced the fixed delay in the NS simulations by 1/B, where B is the bandwidth
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Figure 4.3: Comparison of a single flow for NS and hybrid models (10Mbit/s, 40ms delay,
queue size 17 packets)

of the bottleneck link, to compensate. We only consider the Slow Start and Congestion
Avoidance modes here as the Fast Recovery mode and the Timeout mode are dependent
only on the packets dropped in the previous modes.

Slow Start:

As can be seen, our comparison with NS highlights some issues with the model proposed
by Bohacek et al [4]. We initially look at Slow Start. Figure 4.4 compares the output
from the hybrid model and NS during Slow Start. The entrainment effect can clearly be
seen in the NS plot as a rapid increase in cwnd followed by a dead-time. This effect is due
to the back-to-back transmissions of packets from the source coupled with inter packet
delay introduced by the 1/B delay due to packet transmission time over the link.

The total network capacity (queue plus link delay-bandwidth product) for a TCP flow
before a drop is 50 packets. In the NS model the first drop occurs at 0.2511s when cwnd
is 48 packets. This is probably due to the entrainment of packets causing the queue to
overflow earlier as the effective input rate is greater that the averaged input rate on which
the total network capacity calculation of 50 packets is based. The hybrid model drops a
packet at a wf of 52.48.

A second difference between the hybrid and NS model predictions can also be seen in
Figure 4.4. The NS cwnd time history plot is laterally displaced compared to the time
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history predicted by the hybrid model. This is thought to be due to the entrained packets
in NS causing increases in the queue length as received ACK’s generate back-to-back pairs
of packets from the source which causes the second packet to be queued as the first is
transmitted. These queue increases are cumulative and increase exponentially as packets
sent onto the network are acknowledged and additional packets are sent out back-to-back.
This leads to the triangular patterns seen in Figure 4.5 which have peaks of cwnd/2 (every
second packet is queued) and occur once per RTT. These queue increases cause increases
in RTT as

RTT = RTTf + ql/B (4.14)

These packet level effects are not modelled by the fluid-like queue in the hybrid model.
The difference at the Slow Start peak of the NS plot is due to the sum of these additional
delays3 which is 1.2ms + 2.4ms + 4.8ms + 9.6ms which is 18ms. This is the delay between
the NS model and the hybrid model and can be seen in Figure 4.4 when cwnd reaches 97
packets for the NS plot. We do not include the delay due to the triangular peak starting
at 19ms as the hybrid model queue captures this delay.

An important feature for Fast Recovery and Timeout is the drop model used and specif-
ically the number of dropped packets. This affects the recovery time for the source and
thus affects the time the models spend in Fast Recovery mode. In the NS model 49
packets are dropped and in the hybrid model 44 packets are dropped. As can be seen in
Figure 4.3, NS spends longer in Fast Recovery mode compared to the hybrid model. This
is again thought to be an artifact of the entrainment effect as the entrained input rate to
the queue will be higher than the averaged input rate seen by the hybrid model queue
and thus the NS queue will see more packet drops.

Congestion Avoidance:

The differences in Slow Start outlined above affect the initial conditions for Congestion
Avoidance in the hybrid model. We therefore artificially force the initial conditions of the
hybrid model in Congestion Avoidance to match those observed in NS. The entrainment
issues outlined above also affect Congestion Avoidance mode but are less pronounced
as the rate of increase of cwnd is less than in Slow Start mode. Back-to-back packet
transmission will only occur when an ACK is received that causes cwnd to pass through
an integer value and thus only once per RTT. This means that we will only see one
dropped packet per flow per congestion epoch and 1/B extra delay per epoch (caused
by the second of the back-to-back packets remaining in the queue while the first packet
is transmitted) . Figure 4.6 shows a comparison for single flows starting in Congestion
Avoidance. The results are quite similar with the main differences being the overshoot

3Line rate is 1/B which is 1.2ms for a 10Mb link with a packet size of 1500 bytes.
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Figure 4.4: Comparison of NS and hybrid model congestion window during Slow Start
(10Mbit/s, 40ms delay, queue size 17 packets)

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

14

16

18

Time [s]

Q
ue

ue
 S

iz
e 

[p
kt

s]

NS queue
Hybrid queue

Figure 4.5: Comparison of NS and hybrid model queues during Slow Start (10Mbit/s,
40ms delay, queue size 17 packets)
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Figure 4.6: Comparison of NS and hybrid model during Congestion Avoidance (10Mbit/s,
40ms delay, queue size 17 packets)
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Figure 4.7: Close up comparison of NS and hybrid model during Congestion Avoidance
(10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 4.8: Comparison of NS and hybrid model with two flows for Congestion Avoidance
(10Mbit/s, 40ms delay, queue size 17 packets)

by the hybrid model. Figure 4.7 shows a more detailed view of part of the plot in Figure
4.6. We can see a difference in the slope of cwnd between the two models and a difference
in the Fast Recovery length. Figure 4.8 shows the corresponding comparison for two
flows. We see similar behaviour to that seen in the single flow case. Note the difference
in cwnd peaks between the models is highlighted here as the hybrid model crosses the
integer boundary at 26 packets whereas the NS model does not. This leads to different
starting points for the flows in each model following Fast Recovery. We note also the
small difference in slope. The Fast Recovery times seen in both models are similar.

4.3 Hybrid Model with Discrete Queue

A key aspect of the hybrid model is the way in which packet drops are modelled. While
round-robin dropping is evidently accurate when drops are synchronised the formulation
of a drop model under more general conditions is an open problem. The fundamental
problem here is that packet drops are discrete in nature (the queue does not drop fractions
of packets). It seems natural therefore to consider using a discrete rather than continuous
model of the queue. Retaining the hybrid source model of Bohacek et al [4] we consider
modelling the queue as a discrete FIFO buffer as follows.
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4.3.1 Discrete Queue Model

Let Q denote an ordered sequence with elements Qi ε {1, 2...nf}, i ε [1, qmax] and nf is
the number of flows. Let q denote the number of elements in Q. Let Q

⊕

f denote the
right addition operator such that (Q

⊕

f)i = Qi, i ε [1, q] and (Q
⊕

f)q+1 = f . Let σ
denote the left shift operator such that (σQ)i = Qi+1. On arrival at the queue of a packet
from flow f we have

Q ←

{

Q
⊕

f q < qmax

Q otherwise

}

(4.15)

and

ndropf ←

{

ndropf q < qmax

ndropf + 1 otherwise

}

(4.16)

and when the queue is serviced

Q← σQ (4.17)

Packet arrivals are calculated by simply integrating incoming fluid and marking a packet
arrival when pl

f crosses an integer boundary.

ṗl
f = sl

f (4.18)

Inputs to the queue model are therefore the send rates from each flow . Outputs from the
queue are the number of drops per flow ndropf and RTTf . The automaton for this model
is shown in Figure 4.9.

The send rate rf of source f is given by
wf

RTTf
on the assumption that wf packets are in

flight. Packet drops change the number of packets in flight so in addition to the discrete
queue model the input to the queue is modified to
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ṫq := −1

tq <= 0?pl
f >= 1?

ṗl
f := sl

f

tq := 1
B

Q← σQ
Q←{Q

⊕

f q < qmax

Q otherwise

ndropf ←{0 q < qmax

1 otherwise

pl
f := pl

f − 1

rl
f

RTTf ,
ndropf

Discrete Queue

Packet Arrival: Service Queue:

Figure 4.9: Discrete queue for Hybrid model

rf =
wf

RTTf
−

ndropf

RTTf
−

ndropf

w+

f
RTTf

(4.19)

where ndropf/RTTf accounts for the discrepancy between wf and the actual number of
packets in flight and ndropf/w

+
f RTTf accounts for the corresponding change in the number

of ACK’s with w+
f denoting wf at the time when the drop is detected at the source.

The Matlab code to implement this discrete model is given in Appendix A.4.2.

Figure 4.10 shows a comparison between NS and the hybrid model with discrete queue.
It can be seen that similar results are obtained as with the standard hybrid model with
a continuous queue for a single flow (compare with Figure 4.3) but with the capability to
examine discrete effects in the queue.

Congestion window time histories for the hybrid model with discrete queue model for two
flows can be seen in Figure 4.11. The results for the same experiment in NS can be seen in
Figure 4.12. In Slow Start mode for the hybrid model with discrete queue, more dropped
packet are assigned to flow 2 (25 packets) rather than flow 1 (15 packets). This causes
flow 1 to enter Timeout mode while flow 2 enters Fast Recovery mode. In addition we
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Figure 4.10: Comparison of NS and hybrid model with discrete queue for a single flow
(10Mbit/s, 40ms delay, queue size 17 packets)

can see that synchronisation between the flows is lost in Congestion Avoidance mode.

4.3.2 Discrete Queue with Entrained Packets

We implemented a modification to the discrete queue model to investigate the mechanism
leading to drop synchronisation. We implemented entrainment of packets at the queue
concentrating on Slow Start and Congestion Avoidance modes.

Slow Start

The entrainment for Slow Start is implemented by sending trains of packets to the queue
as wf cross integer boundaries of powers of two. We pass a back-to-back packet pair into
the queue, delay by the line rate and entrain the next back-to-back pair. Thus one packet
is serviced and one packet is queued. We send a train of packets to the queue when

wf > 2n, statef = SS (4.20)

where statef is the current source mode for flow f and n is a counter initially set to one
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Figure 4.11: Two TCP flows from the hybrid model with discrete queue (10Mbit/s, 40ms
delay, queue size 17 packets)
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Figure 4.12: Two TCP flows from NS (10Mbit/s, 40ms delay, queue size 17 packets)
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which is incremented by one for each train sent. We define a second counter for entrained
back-to-back packets m such that

m = wf/2 (4.21)

The back-to-back entrainment is modelled at the queue as

Q =







(Q
⊕

f)
⊕

f q < qmax− 1
Q

⊕

f q < qmax
Q otherwise







(4.22)

and

ndropf =







ndropf q < qmax− 1
ndropf + 1 q < qmax
ndropf + 2 otherwise







(4.23)

We use a line rate timer ts to space the back-to-back packet trains and send back-to-back
packets until m = 0. The hybrid automaton for the discrete queue with entrainment can
be seen in Figure 4.13.

Figure 4.14 shows a comparison between NS and the hybrid model for one flow. We can
see the hybrid model now exhibits similar queue behaviour to the NS model. The extra
delays caused by the temporarily filling of the queue causes temporary reduction in the
slope of wf in the hybrid model but wf still does not match the NS model cwnd trace.
The entrainment effects in the hybrid model queue are delayed with respect to the NS
model and thus the NS model sees a drop before the hybrid model.

It is well known that the Slow Start mode of TCP is difficult to model with a continuous
time approximation. We postulate that the discrete nature of the source is best modelled
by a discrete model at the TCP source. This type of model could capture the abrupt
steps seen during Slow Start and also implement the packet trains at the TCP source
rather than attempting to recreate the effects at the queue.

Congestion Avoidance

The entrainment for Congestion Avoidance is implemented by sending trains of packets
to the queue as wf crosses integer boundaries. We pass two back-to-back packets into
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Figure 4.14: Comparison of Slow Start between NS and the hybrid model with discrete
queue and full entrainment (10Mbit/s, 40ms delay, queue size 17 packets)

the queue, delay by the line rate and send the remaining packets also delayed by the line
rate. Thus one packet is serviced and one packet is queued initially. We send a train of
packets to the queue when

wf > n, statef = CA (4.24)

where statef is the current source mode for flow f and n is a counter initially set to one
and incremented by one for each train sent. We define a second counter for entrained
packets m such that

m = wf (4.25)

The back-to-back entrainment is modelled at the queue as in (4.22) and (4.23)

We use a line rate timer ts to space the entrained packet and send packets until m = 0.
The hybrid automaton for the discrete queue with entrainment can be seen in Figure 4.13.
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Figure 4.15: Comparison of Congestion Avoidance between NS and the hybrid model with
discrete queue and full entrainment (10Mbit/s, 40ms delay, queue size 17 packets)

Figure 4.15 shows a comparison between NS and the hybrid model for one flow. We can see
the hybrid model now exhibits similar queue behaviour to the NS model. The comparison
for two flows is shown in Figure 4.16. We note that the flows remain synchronised. We
also note from Figure 4.17 , which is a closeup of a section of Figure 4.16, that the drops
for each flow are separated by exactly half an RTT as would be expected in the entrained
case4.

4.3.3 Discrete Queue with Back-to-back Packets

While entrainment evidently gives rise to synchronised drops, it is unclear whether en-
trainment is necessary for synchronisation to occur. Rather than model full entrainment
of packets, we therefore investigated a simpler model where two back-to-back packets are
introduced when cwnd worth of packets have successfully been transmitted. We imple-
mented a change to the discrete queue model to emulate this behaviour so that after cwnd
packets we have

4The difference in initial values at the start of each cycle is due to the congestion window of one flow
crossing through an integer boundary at 26.
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Figure 4.16: Two TCP flows in Congestion Avoidance from the hybrid discrete queue
model and full entrainment (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 4.18: Two TCP flows from the hybrid discrete queue model and back-to-back
entrainment (10Mbit/s, 40ms delay, queue size 17 packets)

(Q
⊕

f)
⊕

f, pl
f = pl

f − 2 (4.26)

Matlab code for discrete queue with entrainment is shown in Appendix A.4.3. As can
be seen in Figure 4.18 this simplified model does generate synchronisation of the flows,
observe that there is a drift in the congestion windows histories over time relative to NS,
similar to that observed with the Bohacek et al model (see Figure 4.8).

4.3.4 Non Synchronised Flows

The forgoing discussion relates to situations where packet drops are synchronised. In this
section we briefly assess the accuracy of our models when drops are not synchronised.

Discrete Queue with entrainment:

We consider two flows, the first flow delayed by 60ms and the second flow delayed by 40ms.
Figure 4.19 shows the results for NS. Figure 4.20 shows the results for the hybrid model
with discrete queue and entrainment. Evidently the congestion window time history is
different from the NS congestion window time history of Figure 4.19 and the hybrid model
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Figure 4.19: Two non synchronised TCP flows in Congestion Avoidance from NS
(10Mbit/s, flow 1 60ms delay, flow 2 40ms delay, queue size 17 packets)

does not accurately capture the behaviour in the non-synchronised case.

Discrete Queue with back-to-back packets:

We consider two flows with a variety of different delays in a dumbbell network with a
10Mbit/s link and a queue size of 40 packets. We can see in Figures 4.21, 4.22 and 4.23
that the model does capture the short-term behaviour reasonably well, but that in the
longer term it is less accurate.

4.4 Summary

The hybrid fluid model proposed by Bohacek et al [4] was compared to NS. We found that
the hybrid model failed to accurately capture the evolution of TCP’s congestion control
window during Slow Start. This was owing to important packet level effects not included
in the hybrid model. The hybrid model was found to predict the congestion window
evolution during Congestion Avoidance fairly accurately (small differences in the slope
and peak values) under synchronised dropping. The hybrid drop model is not suited to
modelling non-synchronised drops for small numbers of flows (Bohacek et al propose a
stochastic drop model). The discrete nature of the queue in the network plays a key role
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Figure 4.20: Two non synchronised TCP flows in Congestion Avoidance from the hybrid
discrete queue model and full entrainment (10Mbit/s, flow 1 60ms delay, flow 2 40ms
delay, queue size 17 packets)
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Figure 4.21: Comparison of two non synchronised TCP flows in Congestion Avoidance
in NS with the Hybrid Model with Discrete Queue and Back-to-back Packets (10Mbit/s,
flow 1 60ms delay, flow 2 40ms delay, queue size 40 packets)
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Figure 4.22: Comparison of two non synchronised TCP flows in Congestion Avoidance
in NS with the Hybrid Model with Discrete Queue and Back-to-back Packets (10Mbit/s,
flow 1 50ms delay, flow 2 40ms delay, queue size 40 packets)
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Figure 4.23: Comparison of two non synchronised TCP flows in Congestion Avoidance
in NS with the Hybrid Model with Discrete Queue and Back-to-back Packets (10Mbit/s,
flow 1 140ms delay, flow 2 40ms delay, queue size 40 packets)
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in determining non-synchronised drops. We investigated the use of a discrete queue model
in conjunction with the fluid source model proposed by Bohacek et al. It was found that
flow synchronisation was not captured by the modified model unless back-to-back packet
sequences were included, thereby gaining new insight into the mechanism underlying drop
synchronisation. However, we found that this model was insufficient to accurately capture
the long term evolution of TCP’s congestion control window in non synchronised dropping
regimes.
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Chapter 5

Analysis and Design of Synchronised
Communication Networks

We have seen in the last chapter that a hybrid dynamic model can provide a good approx-
imation to the Congestion Avoidance mode of TCP. In this chapter we concentrate on
the dumbbell topology and the case of synchronised flows. We model a network using the
TCP AIMD congestion control algorithm as a positive linear system. Taking a first princi-
ples approach, we show that such such a network possesses a unique equilibrium and that
this equilibrium is globally convergent. Using these results we also establish conditions
for fair co-existence of traffic in networks employing a mix of AIMD algorithms.

The chapter is organised as follows. In section 5.1 we define some mathematical prelimi-
naries. Section 5.2 generates the network model and provide a mathematical insight into
our network model. In section 5.3 we analyse the convergence and fairness of our model.
Section 5.4 verifies our findings using NS simulations. Our findings are summarised in
section 5.5.

5.1 Definitions and Mathematical Preliminaries

Throughout, the following notation is adopted: R denotes the real numbers; R
n denotes

the n-dimensional real Euclidean space; R
n×n denotes the space of n × n matrices with

real entries; xi denotes the ith component of the vector x in R
n; aij denotes the entry

in the (i, j) position of the matrix A in R
n×n. We use the symbol � to denote that the

entries of a matrix (vector) are greater than zero. We say that the matrix A is strictly
positive if all entries of the matrix are positive; namely, A � 0.

Strictly positive matrices will play an important role in developing the results. We note
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Router

Destination 2Source 2

Source 1

Figure 5.1: Test Network Topology

the following important theorem for strictly positive matrices.

Theorem 5.1.1 [26, 27, 28] Let A ∈ R
n×n be a strictly positive matrix. Then: (i)

there is an eigenvalue ρ(A) that is simple and whose magnitude is greater that any other
eigenvalue; (ii) A has a positive eigenvector xp corresponding to ρ(A) and any non-
negative eigenvector of A is a multiple of xp; and (iii) limN→∞

1
ρ(A)

AN = xpy
T
p where

AT yp = ρ(A)yp, xp � 0, yp � 0, and xT
p yp = 1.

Corollary 5.1.1 Let A ∈ R
n×n with A � 0. There exists a unique vector xp such that

Axp = ρ(A)xp, xp � 0 and
∑n

i=1 xp = 1. We refer to xp as the Perron eigenvector of the
matrix A and ρ(A) as the Perron eigenvalue of the matrix A.

A requirement for the design of new protocols is that of fairness. We concentrate here on
the following definition of fairness.

Definition 5.1.1 Fairness: Fairness is defined as the requirement that n users, competing
for a bandwidth of B packets per second, should be allocated, under ideal conditions, a
bandwidth of B/n packets per second per user.

5.2 A Network Model

We will use the standard dumbbell, see Figure 5.1 model (assuming drop-tail queueing) for
our network model and concentrate on the Congestion Avoidance mode for our analysis.
We have that
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cwndi → cwndi + αi/cwndi (5.1)

where αi = 1 for standard TCP. On detecting a loss the source enters Fast Recovery
mode. The lost packets are retransmitted and the window size cwndi of source i is
reduced according to

cwndi → βicwndi (5.2)

where βi = 0.5 for standard TCP . It is assumed that multiple drops within a single
round-trip time lead to a single back-off action. When receipt of the retransmitted lost
packets is eventually confirmed by the destination, the source re-enters the Congestion
Avoidance mode, adjusting its window size according to (5.1). A typical window evolution
is depicted in Figure 5.2 (cwndi at the time of detecting congestion is denoted by wi in
this figure).

Time (RTT)

wi

wi(k)

wi(k+1)

k'th congestion epoch

k'th congestion
event

ta(k) tc(k)tb(k)

Figure 5.2: Evolution of window size

Over the kth congestion epoch three important events can be discerned: indicated by
ta(k), tb(k) and tc(k) in Figure 5.2. The time ta(k) is the time at which the number of
unacknowledged packets in the pipe equals βiwi(k); tb(k) is the time at which the pipe is
full so that any packets subsequently added will be dropped at the congested queue; tc(k)
is the time at which packet drop is detected by the sources. Note that we measure time
in units of round-trip time (RTT).

5.2.1 Model of a Network under Synchronisation

We consider a network of n AIMD sources. We parameterized each source by an additive
increase parameter and a multiplicative decrease factor, denoted αi and βi respectively.
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These parameters satisfy αi > 0 and 0 < βi < 1 ∀i ∈ {1, ..., n}. We assume that the event
times ta, tb and tc indicated in Figure 5.2 are the same for every source i.e. that the sources
are synchronised. This synchronisation condition is valid, for example, when sources are
constrained by a shared congested link, the round-trip propagation delay between each
source and destination is identical and each source transmits at least one extra packet per
round-trip time (i.e. αi ≥ 1).

Let wi(k) denote congestion window size of source i immediately before the kth network
congestion event is detected by the sources, see Figure 5.2. It follows from the definition of
the AIMD algorithm that the window evolution is completely defined over all time instants
by knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k) of each congestion
epoch. We therefore only need to investigate the behaviour of these quantities.

We have that tc(k)− tb(k) = 1; namely, each source is informed of congestion exactly one
RTT after the first dropped packet was transmitted. Also,

wi ≥ 0,
n

∑

i=1

wi = P +
n

∑

i=1

αi (5.3)

where P is the maximum number of packets which can be held in the ‘pipe’; this is usually
equal to qmax + BT where qmax is the maximum queue length of the congested link, B
is the service rate in packets per second and T is the round-trip time. At the (k + 1)th
congestion event

wi(k + 1) = βiwi(k) + αi[tc(k)− ta(k)]. (5.4)

and

tc(k)− ta(k) =
1

∑n
i=1 αi

[P −
n

∑

i=1

βiwi(k)] + 1 (5.5)

Substituting into (5.5) from (5.3) yields

tc(k)− ta(k) =
1

∑n
i=1 αi

[
n

∑

i=1

(1− βi)wi(k)] (5.6)

Hence,

wi(k + 1) = βiwi(k) +
αi

∑n
j=1 αi

[
n

∑

i=1

(1− βi)wi(k)] (5.7)

The dynamics of the entire network can be described by writing all n equations in matrix
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form:

W (k + 1) = AW (k) (5.8)

where W T (k) = [w1(k), · · · , wn(k)], and

A =











β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn











+
1

∑n
j=1 αi









α1

α2

· · ·
αn









[

1− β1 1− β2 · · · 1− βn

]

= diag[βi] +
1

∑n
j=1 αi

gT h, (5.9)

with gT = [α1, α2, · · · , αn] and hT = [1 − β1, 1 − β2, · · · , 1 − βn]. Note that the initial
condition W (0) is subject to constraint (5.3) (this simply ensures that the window sizes
specified by W (0) are non-negative and correspond to a congestion event).

It follows that the synchronised network (5.8) is a positive linear system and that the
matrix A is strictly positive: A � 0 since 0 < βi < 1, ∀ i ∈ {1, ..., n}.

Comment: We note that this model incorporates a number of key features of real net-
works: the hybrid nature of AIMD algorithms; time-varying communication delays on
links; and drop-tail queueing.

Comment (Convergence): We note the two following cases where convergence, mea-
sured in number of congestion epochs, does not depend on the network αi [5].

(i) All of the sources share the same increase parameter: α1 = α2 = · · ·αn = α, and

A = diag[βi] +
1

n

[

1 1 · · · 1
]

h (5.10)

Under these conditions the network dynamics (and so the rate of convergence) de-
pends solely on the decrease parameters βi.

(ii) All of the sources share the same decrease parameter (the αi need not be the same
for all sources): β1 = β2 = · · · = βn = β, and the eigenvalues of A (other than the
Perron eigenvalue) have value β. Thus, the rate of convergence to a fixed point is
βk where k is the congestion epoch and using this it follows, for example, that the
95% rise time is

log 0.05/ log β (5.11)

giving a rise time of 4 congestion epochs when β = 0.5. Note that the ratio of the
αi to β determines the duration of the congestion epochs according to the relation
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(5.6).

5.3 Convergence and Fairness

We now present the main mathematical results.

Theorem 5.3.1 Let A be defined as in Equation (5.9). Then: (i) the Perron eigen-
value of A is given by ρ(A) = 1; (ii) the Perron eigenvector of A is given by xT

p =
γ[ α1

1−β1
, ..., αn

1−βn
], where

∑n
i=1 γxpi = 1.

Proof : Since A is a positive matrix, the Perron eigenvector is the only positive eigen-
vector. It follows by inspection that xp is the Perron eigenvector and ρ(A) = 1.

Corollary 5.3.1 For a network of synchronised time-invariant AIMD sources: (i) the
network has a Perron eigenvector xT

p = γ[ α1

1−β1
, ..., αn

1−βn
]; and (ii) the Perron eigenvalue is

ρ(A) = 1. It follows from Theorem 5.1.1 that all other eigenvalues of A satisfy |λi(A)| <
ρ(A). The network possesses a unique stationary point Wss = Θxp, where Θ is a positive
constant. The stationary point is globally attractive, i.e. limk→∞ W (k) = Θxp, and the
rate of convergence of the network to Wss depends upon the second largest eigenvalue of
A.

Proof : We are interested in the evolution of the system

W (k + 1) = AW (k), (5.12)

where A is defined by (5.9) and the initial condition W (0) is subject to constraint (5.3)
(this ensures that W(0) corresponds to a congestion event). The convergence of this
system is determined by

lim
k→∞

W (k) = lim
k→∞

AkW (0),

From Theorem (5.1.1) we have

lim
k→∞

1

ρ(A)
Ak = xpy

T
p ,

where xp is the Perron eigenvector of A, and yp is the associated eigenvector of AT . By
inspection, yT

p = [1, 1, ..., 1]. Hence, it follows that

lim
k→∞

W (k) = lim
k→∞

AkW (0)
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= xpy
T
p W (0),

= Θxp, Θ = yT
p W (0) =

n
∑

i=1

wi(0).

Owing to constraint (5.3), Θ is a constant, independent of W (0). The rate of convergence
of Ak depends on the second largest eigenvalue of A (see item (j) on page 498 in [27]).

Comment(Fair allocation of network bandwidth): Let αi = λ(1 − βi) ∀i and for

some λ > 0. Then W T
ss = Θ/n [1, 1, ..., 1] i.e. w1 = w2 = ... = wn. For networks where

the queueing delay is small relative to the propagation delay, the send rate is essentially
proportional to the window size. In this case, it can be seen that αi = λ(1−β)∀i ∈ {1, .., n}
is a condition for a fair allocation of network bandwidth. For the standard TCP choices
of α = 1 and β = 0.5, we have λ = 2 and the condition for other AIMD flows to co-exist
fairly with TCP is that they satisfy

αi = 2(1− βi). (5.13)

Comment: This equation provides a very useful basis for allocation of bandwidth between
flows. It allows for a network of TCP sources with different α’s and β’s where fairness
can be guaranteed.

5.4 Verification of Predictions through Simulation

The mathematical results above provide some useful insights into the operation of TCP
congestion control within a generalised network environment particularly with regard to
fairness and convergence. In this section we seek to verify these analytic predictions using
NS simulations. We focus on a dumbbell topology with a 10Mbit/s bottleneck link with
20ms delay and a queue size of 17 packets.

5.4.1 Fairness

(i) The analysis predicts fairness of AIMD flows with TCP when every flow on the network
select α and β according to (5.13). Initially we consider two standard TCP flows both
with α = 1 and β = 0.5. As we can see from Figure 5.3 there is a fair allocation of pipe
(same peak window size) between the flows.

We now look at two flows, one a standard TCP flow and the second with values for α
and β that obey (5.13) namely α = 1 and β = 0.5. The second flow uses α = 1.5 and
β = 0.25. The results for this can be seen in Figure 5.4. Again it can be seen that the
pipe is shared fairly between the flows.
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Figure 5.3: Two NS TCP flows (α1 = 1, β1 = 0.5, α2 = 1, β2 = 0.5) (10Mbit/s, 40ms
delay, queue size 17 packets)

(ii) More generally the analysis predicts that the peak window sizes of the two flows will
be in the ratio α1(1− β2)/α2(1− β1). Consider therefore the case where α and β do not
obey (5.13). Flow one is standard TCP with α = 1 and β = 0.5 and flow two uses α = 2
and β = 0.5. We can see from Figure 5.5 that varying α and not adhering to (5.13) causes
an unfair allocation of bandwidth between the flows. The ratio of the peak window size
in Figure 5.5 is 0.47, which is in good agreement with the ratio of 0.5 predicted by the
theoretical analysis. Additionally if β does not adhere to (5.13), there will also be an
unfair allocation of bandwidth between flows. This can be seen in Figure 5.6 where flow
one is standard TCP α = 1 and β = 0.5 and flow two uses α = 1 and β = 0.75. The ratio
of the peak window size in Figure 5.6 is 0.5, which is identical to the ratio predicted by
the theoretical analysis.

5.4.2 Convergence

The analysis indicates that the convergence time (95% rise time measured in congestion
epochs) is log0.05/logβ where β is the second largest eigenvalue of the matrix A. Observe
that the congestion time (measured in epochs) is predicted to be independent of the
increase parameter α when all flows use the same back-off parameter.

(i) β = 0.5. The analysis predicts that convergence should take just over four congestion
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Figure 5.4: Two NS TCP flows (α1 = 1, β1 = 0.5, α2 = 1.5, β2 = 0.25) (10Mbit/s, 40ms
delay, queue size 17 packets)
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Figure 5.5: Two NS TCP flows (α1 = 1, β1 = 0.5, α2 = 2, β2 = 0.5) (10Mbit/s, 40ms
delay, queue size 17 packets)
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Figure 5.6: Two NS TCP flows (α1 = 1, β1 = 0.5, α2 = 1, β2 = 0.75) (10Mbit/s, 40ms
delay, queue size 17 packets)

cycles when β = 0.5. Figure 5.7 shows the results for an experiment where the second
flow is started five seconds after the first flow. Slow start is turned off for the second flow.
We can see that the flows converge after approximately four congestion cycles.

(ii) β = 0.75. Figure 5.8 shows the same experiment but with β = 0.75. We can see that
the convergence is significantly slower, approximately thirteen congestion cycles. In Figure
5.9 α is changed so that α = 2. We can see that it still takes thirteen congestion cycles
for the flows to converge and that the value of α does not affect the rate of convergence
in terms of congestion epochs (the duration of the epochs does of course decrease as α
becomes larger).

(iii) Mixed β. We now consider the case where we have a mixture of flows with different
backoff ratios. From [27] we can see that the rate of convergence is dictated by the second
largest eigenvalue of A. By using two flows with the same, high, values of β, we can affect
the rate of convergence for all flows. This occurs as we are forcing the second and third
eigenvalue of A to be at this high β value. We construct an experiment with five flows,
three flows starting at time zero and two after five seconds. For clarity, we only show one
flow from each grouping as the others are the same. Initially we have five standard TCP
flows with α = 1 and β = 0.5. We can see from Figure 5.10 that the rate of convergence
is around four epochs as expected. We now change the β for the two delayed flows. The
first three flows are standard TCP flows with α = 1 and β = 0.5. The second two flows
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Figure 5.7: Two NS TCP flows (α1 = 1, β1 = 0.5, α2 = 1, β2 = 0.5) , flow 1 starting after
5 seconds (10Mbit/s, 40ms delay, queue size 17 packets)

have α = 1 and β = 0.95. Figure 5.11 show the results of this experiment and we can
see that the number of congestion cycles for convergence after the first three flows start
is now approximately ten epochs. It is therefore possible with just two flows with high
β’s to guarantee the rate of convergence in a network with a large number of flows.

5.5 Summary

In this chapter we verified he predictions of a simple mathematical model for AIMD flows
under drop synchronisation. We have established the stability of synchronised flows using
the model and showed that there is an asymptotic distribution of the network pipe between
flows (the Perron eigenvector). We showed that the rate of convergence is dictated by
the second largest eigenvalue of the matrix describing the network dynamics. We verified
these predictions using NS simulations.

The mathematical framework described in this chapter provides some new insights into
the convergence and fairness behaviour of TCP with synchronised flows. The simple
formula αi = 2(1−βi) can be used as a basis of fairness between TCP flows. Additionally
we establish that convergence (in terms of congestion epochs) is only dependant on the
backoff factor β used in the network and demonstrated that by using large β’s in two or

75



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Time [s]

C
w

nd
 [p

kt
s]

NS cwnd1
NS cwnd2

Figure 5.8: Two NS TCP flows (α1 = 1, β1 = 0.75, α2 = 1, β2 = 0.75) , flow 1 starting
after 5 seconds (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 5.9: Two NS TCP flows (α1 = 2, β1 = 0.75, α2 = 2, β2 = 0.75) , flow 1 starting
after 5 seconds (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 5.10: Five NS TCP flows, flows 1 and 5 shown (flow 1 - 5 α = 1, β = 0.5) , flow 4
and 5 starting after 5 seconds (10Mbit/s, 40ms delay, queue size 17 packets)
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Figure 5.11: Five NS TCP flows, flows 1 and 5 shown (flow 1 - 3 α = 1, β = 0.5, flow 4 -
5 α = 1, β = 0.95) , flow 4 and 5 starting after 5 seconds (10Mbit/s, 40ms delay, queue
size 17 packets)
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more flows we can control the rate of convergence for the whole network.
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Chapter 6

Summary and Conclusions

The objective of this thesis is to investigate the development of mathematical models
suitable for the analysis and design of TCP congestion control. While there are a multitude
of protocols in use in the Internet, the most prevalent is the Transmission Control Protocol
(TCP). We review current models for TCP congestion control. After constructing and
instrumenting a testbed, we compare the NS packet level model (the de-facto standard
for simulation studies) against real TCP implementations. A recently proposed simplified
hybrid model is assessed against NS and a number of modifications studied. Based on the
insights gained, a simplified mathematical model of TCP congestion avoidance dynamics
in synchronised networks is evaluated. Specifically:

• We detailed the TCP source and network conditions used as a basis for our mod-
elling framework. We focused on the dynamics of long lived TCP flows in a dumbbell
network topology with a drop-tail queue. We specified mode changes, quantisation
effects, entrainment and time varying delays as the features we required for mod-
elling for design.

• A test network was developed and the FreeBSD TCP stack instrumented.

• Using the developed testbed network we assessed the NS simulation model in a
variety of network scenarios. It was found that NS provided accurate results for
flows with synchronised drops. For the non-synchronised flows and flows with de-
layed ACK’s, NS was found to be less accurate. We demonstrated the presence of
entrainment in a our testbed network and on a live network. We confirmed the
presence of entrainment and phase effects in NS and our test network.

• The hybrid fluid model proposed by Bohacek et al [4] was compared to NS. We found
that the hybrid model failed to accurately capture the evolution of TCP’s congestion
control window during Slow Start. This was owing to important packet level effects
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not included in the hybrid model. The hybrid model was found to predict the
congestion window evolution during Congestion Avoidance fairly accurately (small
differences in the slope and peak values) under synchronised dropping. The hybrid
drop model is not suited to modelling non-synchronised drops for small numbers of
flows (Bohacek et al propose a stochastic drop model). The discrete nature of the
queue in the network plays a key role in determining non-synchronised drops. We
investigated the use of a discrete queue model in conjunction with the fluid source
model proposed by Bohacek et al. It was found that flow synchronisation was not
captured by the modified model unless back-to-back packet sequences were included,
thereby gaining new insight into the mechanism underlying drop synchronisation.
However, we found that this model was insufficient to accurately capture the long
term evolution of TCP’s congestion control window in non synchronised dropping
regimes.

• Using the insight gained from the study of the hybrid fluid models, a simple math-
ematical model for AIMD flows under drop synchronisation is proposed and evalu-
ated. We established the stability of flows using this model and showed that there
is an asymptotic distribution of the network pipe between flows. We showed that
the rate of convergence is dictated by the second largest eigenvalue of a certain
matrix describing the network dynamics. We verified these predictions using NS
simulations.

The work performed in this thesis has been a preliminary study of modelling for the design
of TCP congestion control networks. Further work is clearly necessary.
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Appendix A

Source code

A.1 FreeBSD TCP Kernel Changes

A.1.1 Logging Kernel Data Structures - tcp logit.h

#define TCPLLEN 524288

#define TCPLMASK (TCPLLEN-1)

#define TCPL_RTT 1

#define TCPL_SRTT 2

#define TCPL_CWND 3

#define TCPL_SSTHRESH 4

#define TCPL_WND 5

#define TCPL_STARTTIME 6

extern struct tcplog {

int type;

struct timeval tv;

u_short sport;

u_short dport;

union {

int snd_rtt;

int snd_srtt;

u_long snd_cwnd;

u_long snd_ssthresh;

u_long snd_wnd;

tcp_seq starttime;
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} data;

} tcplog[];

extern unsigned int tcpcurlog;

#define TCP_STASH_RTT(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_RTT; \

l->sport = w; \

l->dport = x; \

l->data.snd_rtt = v; \

} while(0);

#define TCP_STASH_SRTT(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_SRTT; \

l->sport = w; \

l->dport = x; \

l->data.snd_srtt = v; \

} while(0);

#define TCP_STASH_CWND(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_CWND; \

l->sport = w; \

l->dport = x; \

l->data.snd_cwnd = v; \

} while(0);

#define TCP_STASH_SSTHRESH(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_SSTHRESH; \

l->sport = w; \

l->dport = x; \

l->data.snd_ssthresh = v; \
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} while(0);

#define TCP_STASH_WND(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_WND; \

l->sport = w; \

l->dport = x; \

l->data.snd_wnd = v; \

} while(0);

#define TCP_STASH_STARTTIME(v,w,x) \

do { \

struct tcplog *l = &tcplog[tcpcurlog++ & TCPLMASK]; \

microtime(&(l->tv)); \

l->type = TCPL_STARTTIME; \

l->sport = w; \

l->dport = x; \

l->data.starttime = v; \

} while(0);

A.1.2 Logging Kernel Sysctl - tcp logit.c

#include <sys/types.h>

#include <sys/time.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

#include <sys/linker_set.h>

#include <sys/sysctl.h>

#include <netinet/in.h>

#include <netinet/in_pcb.h>

#include <netinet/tcp.h>

#include <netinet/tcp_var.h>

#include <netinet/tcp_logit.h>

struct tcplog tcplog[TCPLLEN];

unsigned int tcpcurlog = 0;

SYSCTL_OID(_net_inet_tcp, TCPCTL_LOGIT, tcplog, CTLTYPE_OPAQUE|CTLFLAG_RD,

83



tcplog, sizeof(struct tcplog) * TCPLLEN, sysctl_handle_opaque,

"S,tcplog", "Our tcp log");

A.1.3 Memory Dump of Logged Data- tcplog.c

#include <sys/types.h>

#include <sys/time.h>

#include <sys/sysctl.h>

typedef u_int32_t tcp_seq;

#include "/usr/src/sys/netinet/tcp_logit.h"

#include <stdio.h>

#include <stdlib.h>

int

main(int argc, char **argv) {

struct tcplog tl[TCPLLEN];

size_t len,size;

int num, i ,mib[2], count=0, port=0, mss=1448;

struct timeval boottime;

struct timeval inittime;

tcp_seq initseq;

pid_t pid;

FILE *tempfile;

if (argc > 1) port = atoi(argv[1]);

len = sizeof(tl);

mib[0] = CTL_KERN;

mib[1] = KERN_BOOTTIME;

size = sizeof(boottime);

if (sysctl(mib, 2, &boottime, &size, NULL, 0) == -1) {

perror("sysctlbyname failed");

exit(1);

}

if (sysctlbyname("net.inet.tcp.tcplog", tl, &len, NULL, NULL) != 0) {

perror("sysctlbyname failed");

exit(1);

}

num = len/sizeof(tl[0]);

tempfile = fopen("/tmp/xxx","w");
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for (i = 0; i < num; i++) {

if (port == 0 || (tl[i].sport == atoi(argv[1]) || tl[i].dport == atoi(ar

gv[1]))) {

fprintf(tempfile,"%f %d %d %d ",

tl[i].tv.tv_sec +

1E-6 * tl[i].tv.tv_usec,

tl[i].type,tl[i].sport,tl[i].dport);

switch (tl[i].type) {

case TCPL_RTT:

fprintf(tempfile,"%d RTT", tl[i].data.snd_rtt);

/* in ticks */

break;

case TCPL_SRTT:

fprintf(tempfile,"%d RTT", tl[i].data.snd_srtt);

/* in ticks */

break;

case TCPL_CWND:

fprintf(tempfile,"%f CWND", (float) tl[i].data.snd_cwnd/

mss);

/* in packets */

break;

case TCPL_SSTHRESH:

fprintf(tempfile,"%f SSTHRESH", (float) tl[i].data.snd_s

sthresh/mss);

/* in packets */

break;

case TCPL_WND:

fprintf(tempfile,"%f WND", (float) tl[i].data.snd_cwnd/m

ss);

/* in packets */

break;

case TCPL_STARTTIME:

if (tl[i].sport == 9)

fprintf(tempfile,"%f ACK", (float) tl[i].data.starttime/

mss);

else

fprintf(tempfile,"%f SND", (float) tl[i].data.starttime/

mss);

/* in packets */

break;

default:

fprintf(tempfile,"unknown");

break;
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}

fprintf(tempfile,"\n");

count++;

}

}

fclose(tempfile);

fprintf(stderr,"Number of records: %d\n",count);

if (count >= TCPLLEN){

perror("Too much data for buffer\n");

exit(-1);

}

system("sort /tmp/xxx > /tmp/yyy;cp /tmp/yyy /tmp/xxx;./post_process.sh /tmp/xxx

/tmp/zzz;cp /tmp/zzz /tmp/xxx");

exit(0);

}
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A.2 Test utilities

A.2.1 Program to Send Data (FreeBSD and Linux) - send.c

#include <sys/types.h>

#include <sys/time.h>

#include <sys/socket.h>

#include <sys/uio.h>

#include <netinet/in.h>

#include <err.h>

#include <errno.h>

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int

main(int argc, char **argv) {

char buffer[1448];

struct addrinfo hints, *res, *res0;

struct sockaddr name;

int length;

int error;

int s[2];

char dest[2][3] = { "D1", "D2" }; /* Set in hosts file */

const char *cause = NULL;

int blocks, i, j;

struct timeval before, after;

double elapsed;

struct sockaddr_in src[2];

if (argc != 3) {

fprintf(stderr, "usage: %s address blocks", argv[0]);

exit(1);

}

src[0].sin_family = AF_INET;

src[0].sin_addr.s_addr = inet_addr("192.168.1.51"); /* Local address */

src[0].sin_port = INADDR_ANY;

src[1].sin_family = AF_INET;

src[1].sin_addr.s_addr = inet_addr("192.168.2.51"); /* Local address */
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src[1].sin_port = INADDR_ANY;

for (j=0;j<2;j++) { /* number of flows */

/*

* Open a connection.

*/

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;

/*error = getaddrinfo(argv[1], "discard", &hints, &res0);*/

error = getaddrinfo(dest[j], "discard", &hints, &res0);

if (error) {

errx(1, "%s", gai_strerror(error));

/*NOTREACHED*/

}

s[j] = -1;

cause = "no addresses";

errno = EADDRNOTAVAIL;

for (res = res0; res; res = res->ai_next) {

s[j] = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);

if (s[j] < 0) {

cause = "socket";

continue;

}

bind(s[j],(struct sockaddr *)&src[j],sizeof(struct sockaddr));

if (connect(s[j], res->ai_addr, res->ai_addrlen) < 0) {

cause = "connect";

close(s[j]);

s[j] = -1;

continue;

}

break; /* okay we got one */

}

if (s[j] < 0) {

err(1, cause);

/*NOTREACHED*/

}

freeaddrinfo(res0);

} /* End for */

/*
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* Read number of blocks.

*/

blocks = atoi(argv[2]);

if (blocks <= 0) {

fprintf(stderr, "blocks must be >= 0, not %d", blocks);

exit(1);

}

gettimeofday(&before, NULL);

for (i = 0; i < blocks; i++) {

for (j=0;j<2;j++) { /* number of flows */

if (write(s[j], buffer, sizeof(buffer)) <= 0) {

perror("write failed");

exit(1);

}

}

}

gettimeofday(&after, NULL);

length = sizeof(name);

if (getsockname(s[0], &name, &length)) {

perror("getting socket name");

}

elapsed = after.tv_sec - before.tv_sec +

1E-6*(after.tv_usec - before.tv_usec);

printf("port %d, %d MSS blocks, %f seconds, %f Bps, %f bps\n", name.sa_d

ata[0]*256 + name.sa_data[1], blocks, elapsed, 1024.0*blocks/elapsed, 8192.0*blo

cks/elapsed);

close(s[0]);

close(s[1]);

exit(0);

}

A.2.2 Program to Extract Data from Memory Dump - Awk
Code

#!/bin/sh

awk -v port=$2 ’$2==3 && ($4==0 || $4 == port) {print}’ $1 | sort | awk ’

BEGIN{start=0;}
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{

if (NR == 1)

start = $1;

}

END{printf start}
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A.3 NS Simulations

A.3.1 Generic NS Simulation Script - OTcl Code

# Generic Simulation script.

#

# Robert Kilduff Hamilton Institute 23/04/03.

#

remove-all-packet-headers

add-packet-header IP TCP

set endtime 10.0

set numflows 2

set delay 20ms

set qmax 17

set ns [new Simulator]

#Open the output files

set f [open out.tr w]

for {set i 0} {$i < [expr $numflows]} {incr i} {

set f$i [open out$i.tr w]

puts [set f$i] "\" Flow $i cwnd(pkts)\""

}

puts $f0 "TitleText: Reno flows with constant delay"

set q [open q.tr w]

set nf [open out.nam w]

$ns trace-all $f

$ns namtrace-all $nf

proc finish {} {

global numflows

for {set i 0} {$i < [expr $numflows]} {incr i} {

global f$i

close [set f$i]

}

global ns nf q

$ns flush-trace

close $nf

close $q

exit 0

}
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proc record {} {

global numflows

for {set i 0} {$i < [expr $numflows]} {incr i} {

global f$i

global tcp_src$i

}

global qmon q

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again

set time 0.0001

#Get the current time

set now [$ns now]

for {set i 0} {$i < [expr $numflows]} {incr i} {

puts [set f$i] "$now [[set tcp_src$i] set cwnd_] [[set tcp_src$i] set ssthresh_] [[set tcp_src$i] set rtt_] [[set tcp_src$i] set dupacks_] [[set tcp_src$i] set nrexmit_]"

}

puts $q "$now [$qmon set pkts_]"

#Re-schedule the procedure

$ns at [expr $now+$time] "record"

}

Agent/TCP set window_ 2000

Agent/TCP set packetSize_ 1460

#Agent/TCP set max_ssthresh_ 10000

set node0 [$ns node]

set node1 [$ns node]

set node2 [$ns node]

set node3 [$ns node]

$ns duplex-link $node0 $node2 100Mb 0ms DropTail

$ns duplex-link $node1 $node2 100Mb 0ms DropTail

$ns duplex-link $node2 $node3 10Mb $delay DropTail

$ns queue-limit $node2 $node3 $qmax

set qmon [$ns monitor-queue $node2 $node3 $q 0.0001]

for {set i 0} {$i < $numflows} {incr i} {

set tcp_src$i [new Agent/TCP/Newreno]

set tcp_snk$i [new Agent/TCPSink]

$ns attach-agent [set node[expr $i % 2]] [set tcp_src$i]

puts "node[expr $i % 2]"

$ns attach-agent $node3 [set tcp_snk$i]

$ns connect [set tcp_src$i] [set tcp_snk$i]
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set ftp$i [new Application/FTP]

[set ftp$i] attach-agent [set tcp_src$i]

puts "ftp$i"

}

#Start logging the received bandwidth

$ns at 0.0 "record"

for {set i 0} {$i < $numflows} {incr i} {

$ns at 0.0 "[set ftp$i] start"

}

#$ns at 0.0 "$ftp0 start"

$ns at 40.0 "$ftp0 stop"

$ns at $endtime "finish"

#Run the simulation

$ns run
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A.3.2 Non Synchronised Flows - Dummynet Configuration

ipfw add 400 pipe 1 tcp from any to any 9 out via em0

ipfw pipe 1 config bw 800Kbit/s delay 100ms queue 15

ipfw add 401 pipe 2 tcp from any 9 to any in via em0

ipfw pipe 2 config bw 800Kbit/s delay 100ms queue 0

ipfw add 402 pipe 3 tcp from any to any 9 in via em1

ipfw pipe 3 config bw 8000Kbit/s delay 5ms queue 0

ipfw add 403 pipe 4 tcp from 192.168.3.51 to 192.168.1.51 out via em1

ipfw pipe 4 config bw 8000Kbit/s delay 5ms queue 0

ipfw add 404 pipe 5 tcp from any to any 9 in via em2

ipfw pipe 5 config bw 8000Kbit/s delay 25ms queue 0

#ipfw pipe 5 config bw 8000Kbit/s delay 4ms queue 0

ipfw add 405 pipe 6 tcp from 192.168.3.51 to 192.168.2.51 out via em2

ipfw pipe 6 config bw 8000Kbit/s delay 25ms queue 0

#ipfw pipe 6 config bw 8000Kbit/s delay 4ms queue 0
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A.3.3 Non Synchronised Flows - OTcl script

# EXP 8. To look at non synchronised flows

#

# Robert Kilduff Hamilton Institute 23/10/03.

#

remove-all-packet-headers

add-packet-header IP TCP

set endtime 80.0

set numflows 2

set delay 100ms

set qmax 15

set ns [new Simulator]

#Open the output files

set f [open out w]

for {set i 0} {$i < [expr $numflows]} {incr i} {

set f$i [open out$i w]

}

proc finish {} {

global numflows

for {set i 0} {$i < [expr $numflows]} {incr i} {

global f$i

close [set f$i]

}

global ns nf q

$ns flush-trace

close $nf

close $q

for {set i 0} {$i < [expr $numflows]} {incr i} {

global f$i

global tcp_src$i

}

global qmon q

#Get an instancef0 f1 f2 qmon

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again

set time 0.01

#Get the current time
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set now [$ns now]

for {set i 0} {$i < [expr $numflows]} {incr i} {

}

puts $q "$now [$qmon set pkts_]"

#Re-schedule the procedure

$ns at [expr $now+$time] "record"

}

Agent/TCP set window_ 2000

Agent/TCP set packetSize_ 960

set node0 [$ns node]

set node1 [$ns node]

set node2 [$ns node]

set node3 [$ns node]

$ns duplex-link $node0 $node2 8Mb 5ms DropTail

$ns duplex-link $node1 $node2 8Mb 25ms DropTail

$ns duplex-link $node2 $node3 800Kb $delay DropTail

$ns queue-limit $node2 $node3 $qmax

set qmon [$ns monitor-queue $node2 $node3 $q 0.01]

for {set i 0} {$i < $numflows} {incr i} {

set tcp_src$i [new Agent/TCP/Sack1]

set tcp_snk$i [new Agent/TCPSink/Sack1]

$ns attach-agent [set node[expr $i % 2]] [set tcp_src$i]

puts "node[expr $i % 2]"

$ns attach-agent $node3 [set tcp_snk$i]

$ns connect [set tcp_src$i] [set tcp_snk$i]

set ftp$i [new Application/FTP]

[set ftp$i] attach-agent [set tcp_src$i]

puts "ftp$i"

}

#Start logging the received bandwidth

$ns at 0.0 "record"

for {set i 0} {$i < $numflows} {incr i} {

$ns at 0.0 "[set ftp$i] start"

}

$ns at 40 "$ftp1 stop"

$ns at $endtime "finish"

#Run the simulation

$ns run
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A.4 Matlab Simulations

A.4.1 Hybrid Model Source Code - Matlab Code

% Implementation of Hybrid Systems model of TCP Newreno

% congestion control.

%

% Robert Kilduff 31/07/03

% Hamilton Institute

function xdot = hybrid_sim4()

clear all;

global B;

B = 10000000/(1500*8); % 10Mb for 12000 bit packets

Window_gain = 1;

global number_of_flows;

number_of_flows = 1;

global RTTF;

RTTF = 0.040;

global RTT;

RTT = [];

RTT(1:number_of_flows,1) = RTTF;

DDD = RTTF;

Tf = 10; % Finish time

T0 = 0;

global STEP;

STEP=0.001;

time = [0];

timer0 = zeros(number_of_flows,1);

timer = [];

timer(:,1)=timer0;

tdot = [];

tdot = timer0;

w0 = 1*ones(number_of_flows,1);

global w;

w = [];

w(:,1)=w0;

% r for the sender

rw0 = 0*[1:number_of_flows]’;

global rw;

97



rw = [];

rw(:,1) = rw0;

% loop through all time-steps;

global count;

count = 1;

filter_count = 0;

% Causes variation in the rate of rise of cwnd. Setting it to beta= 1.6

% seems get a better a better result for case where B=833.33, RTTF = 0.040

% and queue = 17. Thus link + queue capacity is 50 packets and link should

% overflow then.

%beta = 1.57188539;

beta = 1.45

L = 1;

Wth = [];

Wth0 = 2000*ones(number_of_flows,1);

Wth(:,1) = Wth0;

k = [];

k0 = 0*ones(number_of_flows,1);

k(:,1) = k0;

m = 2;

% state can be SS = Slow Start, SSD = Slow Start Delay, FR = Fast Recovery,

% TO = TimeOut, CA = Congestion Avoidance, CAD = Congestion Avoidance Delay

for i = 1:number_of_flows state{i} = ’SS’; end

%Queue stuff

% qstate can be QE = Queue Empty, QNF = Queue Not Full, QF = Queue Full

global qstate;

qstate = ’QE’;

% states [q1,...qn]

q0 = 0*[1:(number_of_flows)]’;

global q;

q = [];

q(:,1)=q0;

% states [r1,..rn]

rq0 = 0*[1:(number_of_flows)]’;

global rq;

rq = [];

rq(:,1)=rq0;

global drops;

drops = [];

drops0 = 0*[1:(number_of_flows)]’;

drops(:,1) = drops0;

global dropstime;

dropstime = [];
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global zl;

zl = [];

zl(1) =0;

for i = T0:STEP:Tf;

for j = 1:number_of_flows

state

switch state{j}

case ’SS’

timer(j,count+1) = 0;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = (beta*w(j,count)/RTT(j,count));

% Check for Congestion Avoidance

if w(j,count+1) >= Wth(j);

w(j,count+1) = Wth(j);

state{j} = ’CA’;

end

% Check for Slow Start Delay

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

state{j} = ’SSD’;

end;

queue(j);

case ’SSD’

tdot = -1;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

rw(j,count+1) = (beta*w(j,count)/RTT(j,count));

%check for Fast Recovery

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(1,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);
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timer(j,count+1) = RTT(j,count);

elseif w(j,count+1) < max(2+drops(j), 2*drops(j)-4)

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count+1)/2);

state{j} = ’TO’;

end

queue(j);

case ’FR’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = rw(j,count)+rwdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check Congestion Avoidance

if timer(j,count+1) < 0 & k(j) > 0

timer(j,count+1) = RTT(j,count);

k(j) = k(j) - 1;

if k(j) <= 0

state{j} = ’CA’;

drops(j) = 0;

end

rw(j,count+1) = 2*rw(j,count+1);

end

queue(j);

case ’TO’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=0;

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check for Slow Start

if timer(j,count+1) < 0

state{j} = ’SS’;

Wth(j) = w(j,count+1)/2;

w(j,count+1)=1;

end;

queue(j);

case ’CA’

timer(j,count+1) = 0;

wdot = (L/(RTT(j,count)));

w(j,count+1)=w(j,count)+wdot*STEP;
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rw(j,count+1)=w(j,count)/RTT(j,count);

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

state{j} = ’CAD’;

end

queue(j);

case ’CAD’

tdot = -1;

wdot = (L/RTT(j,count));

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=w(j,count)/RTT(j,count);

timer(j,count+1)=timer(j,count)+tdot*STEP;

%check for Fast Recovery

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(j,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);

timer(j,count+1) = RTT(j,count);

end

%check for TimeOut

if w(j,count+1) < max (2+drops(j), 2*drops(j)-4)

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count)/2);

state{j} = ’TO’;

end

queue(j);

end;

end;

count = count + 1;

end;

output;

function queue(j)

global number_of_flows;

global B;

global count;
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global q;

persistent ql;

global rq;

global w;

global rw;

global drops;

global STEP;

global qstate;

global zl;

global zlcount;

global dropstime;

global RTT;

global RTTF;

Q_max = 17 - 1; % Queue size in ns is number of packets queue can hold +1

sl = sum(rw(1:j,count+1),1) + sum(rw(j+1:number_of_flows,count),1);

switch qstate

case ’QE’

if (sl) <= B;

rq(j,count+1) = rw(j,count+1);

else

rq(j,count+1) = (rw(j,count)/sl)*B;

end

qdot = rw(j,count+1) - rq(j,count+1);

q(j,count+1)=q(j,count)+qdot*STEP; % Euler

RTT(j,count+1) = RTTF;

if sum(q(1:j,count+1),1)+sum(q(j+1:number_of_flows,count),1) > 0

RTT(j,count+1) = RTTF + q(j,count+1)/B;

ql = sum(q(1:j,count+1),1)+sum(q(j+1:number_of_flows,count),1);

qstate = ’QNF’;

end

case ’QNF’

ql

rq(j,count+1) = q(j,count)/ql*B;

qdot = rw(j,count+1) - rq(j,count+1);

q(j,count+1)=max(0,q(j,count)+qdot*STEP); % Euler

RTT(j,count+1) = RTTF + ql/B;

ql = sum(q(1:j,count+1),1)+sum(q(j+1:number_of_flows,count),1);

if (ql >= Q_max)

q(j,count+1) = Q_max - sum(q(1:j-1,count+1),1)

-sum(q(j+1:number_of_flows,count),1);

end
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if (ql >= Q_max) & (sl > B)

qstate = ’QF’;

ql = Q_max;

zl(count+1)=0;

zlcount=0;

drops(j) = 1;

dropstime = [dropstime,count]; %time of drop

elseif ql <= 0

qstate = ’QE’;

RTT(j,count+1) = RTTF;

q(1:number_of_flows,count+1) = 0;

end

case ’QF’

if ((sl)) <= B

qstate = ’QNF’;

q(1:number_of_flows,count+1) = q(1:number_of_flows,count);

RTT(j,count+1) = RTTF + ql/B;

return

end

zldot = sl - B;

qdot = ((rw(j,count+1)/sl) - (q(j,count)/ql))*B;

rw(j,count+1);

q(j,count+1)=q(j,count)+qdot*STEP; % Euler

rq(j,count+1) = q(j,count+1)/ql*B;

if (ql >= Q_max)

q(j,count+1) = Q_max - sum(q(1:j-1,count+1),1)

-sum(q(j+1:number_of_flows,count),1);

end

ql = sum(q(1:j,count+1),1)+sum(q(j+1:number_of_flows,count),1)

RTT(j,count+1) = RTTF + ql/B;

% Assume when queue full that queue is shared out equally between

% flows.

if ql > Q_max

q(j:number_of_flows,count+1) = Q_max/number_of_flows;

end

zl(count+1)=zl(count)+zldot*STEP; % Euler

if zl(count+1) > 1

zlcount = zlcount+1;

% Lets assume round robin distribution

drops(mod(zlcount,number_of_flows)+1) =

drops(mod(zlcount,number_of_flows)+1) + 1;

zl(count+1) = 0;

end
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end

function output()

global count;

global STEP;

global w;

global rw;

global q;

global RTT;

global RTTF;

global dropstime;

global number_of_flows;

hold off

plot([1:count]*STEP,(w(1,:)),’b’)

hold on

plot([1:count]*STEP,(w(2,:)),’r’)

plot([1:count]*STEP,(q(1,:)),’m’)

if length(dropstime) > 0

plot(dropstime*STEP,1,’g+’);

end

hold off
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A.4.2 Hybrid Model Discrete Queue - Matlab Code

% Implementation of Hybrid Systems model of TCP-Newreno

% congestion control. Discrete Queue.

%

% Robert Kilduff 10/09/03

% Hamilton Institute

function xdot = hybrid_sim6()

clear all;

global B;

B = 10000000/(1500*8); % 10Mb for 12000 bit packets

Window_gain = 1;

global number_of_flows;

number_of_flows = 2;

global RTTF;

RTTF = [];

RTTF(1,1) = 0.040;

RTTF(2,1) = 0.040;

global RTT;

RTT = [];

RTT(1:number_of_flows,1) = RTTF(1:number_of_flows,1);

DDD = RTTF(1);

Tf =10;

T0 = 0;

global STEP;

STEP=1/(10*B);

time = [0];

timer0 = zeros(number_of_flows,1);

timer = [];

timer(:,1)=timer0;

tdot = [];

tdot = timer0;

w0 = 13*ones(number_of_flows,1);

global w;

w = [];

w(:,1)=w0;

rw0 = 0*[1:number_of_flows]’;

global rw;

rw = [];

rw(:,1) = rw0;

global count;
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count = 1;

filter_count = 0;

global beta;

beta = 1.45;

L = 1;

Wth = [];

Wth0 = 2000*[1:number_of_flows]’;

Wth(:,1) = Wth0;

m = 2;

ndrops = 1; % simple case first

% state can be SS = Slow Start, SSD = Slow Start Delay, FR = Fast Recovery,

% TO = TimeOut, CA = Congestion Avoidance, CAD = Congestion Avoidance Delay

global state;

state = [];

for i = 1:number_of_flows state{i} = ’CA’; end

%Queue stuff

% qstate can be QE = Queue Empty, QNF = Queue Not Full, QF = Queue Full

global qstate;

qstate = ’QNF’;

global Q_max;

Q_max = 17 - 1; % Queue size in ns is number of packets queue can hold + 1

q0 = 0*[1:(Q_max)]’;

global q;

q = [];

q(:,1)=q0;

global qptr;

qptr = 0;

% states [r1,..rn]

rq0 = 0*[1:(number_of_flows)]’;

global rq;

rq = [];

rq(:,1)=rq0;

global drops;

drops = [];

drops0 = 0*[1:(number_of_flows)]’;

drops(:,1) = drops0;

global dropstime;

dropstime = [];

global tq;

tq = [];

tq(1) = 1/B;

global te;
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te = [];

te(1) = 0;

global encount;

encount = 1;

global enpacket;

global k;

k = [];

k0 = 0*[1:(number_of_flows)]’;

k(:,1) = k0;

enpacket = 0;

global wtmp;

wtmp = [];

wtmp0 = 0*[1:(number_of_flows)]’;

wtmp = wtmp0;

global timertmp;

global boundary;

boundary = [];

b0 = 0*[1:(number_of_flows)]’;

boundary(:,1) = b0;

global lastw;

lastw = [];

l0 = 1*[1:(number_of_flows)]’;

lastw(:,1) = l0;

timecount =1;

for i = T0:STEP:Tf;

if count*STEP > timecount

count*STEP

timecount = timecount + 1;

end

for j = 1:number_of_flows

switch state{j}

case ’SS’

timer(j,count+1) = 0;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = (beta*w(j,count)/RTT(j,count));

% Check for Congestion Avoidance

if w(j,count+1) >= Wth(j);

w(j,count+1) = Wth(j);

state{j} = ’CA’;

end

% Check for Slow Start Delay

107



if drops(j) > 0

%w(number_of_flows+1,count) = DDD;

timer(j,count+1) = RTT(j,count);

wtmp(j) = w(j,count+1);

state{j} = ’SSD’;

end;

queue(j);

case ’SSD’

tdot = -1;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

rw(j,count+1) = (beta*(w(j,count+1) -drops(j) - drops(j)/(wtmp(j)+1))

/RTT(j,count));

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(1,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);

timer(j,count+1) = RTT(j,count);

timertmp=RTT(j,count)*k;

drops(j) = 0;

elseif w(j,count+1) < max(2+drops(j), 2*drops(j)-4)

timer(j,count+1) =1;

w(j,count+1) = floor(w(j,count+1)/2);

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

case ’FR’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = rw(j,count)+rwdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check Congestion Avoidance

if timer(j,count+1) < 0 & k(j) > 0
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timer(j,count+1) = RTT(j,count);

k(j) = k(j) - 1;

if k(j) <= 0

drops(j) = 0;

state{j} = ’CA’;

end

rw(j,count+1) = 2*rw(j,count+1);

end

queue(j);

case ’TO’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=0;

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check for Slow Start

if timer(j,count+1) < 0

state{j} = ’SS’;

Wth(j) = w(j,count+1)/2;

w(j,count+1)=1;

end;

queue(j);

case ’CA’

timer(j,count+1) = 0;

wdot = (L/(RTT(j,count)));

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=w(j,count)/RTT(j,count);

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

wtmp(j) = w(j,count+1);

state{j} = ’CAD’;

end

queue(j);

case ’CAD’

% possibly move next line to check section above

tdot = -1;

wdot = (L/RTT(j,count));

w(j,count+1)=w(j,count)+wdot*STEP;

% Account for dropped packet by subtracting 1 from cwnd as

% cwnd no longer represents the amount of packets in flight.

% Also must subtract 1/cwnd from rate due to the effective

% reduction of cwnd increase due to loss of packet.
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% Note this increase occurs at time of packet drop + 1 RTT.

rw(j,count+1)=(w(j,count) -1 - drops(j)/(wtmp(j)+1))/RTT(j,count);

timer(j,count+1)=timer(j,count)+tdot*STEP;

%check for Fast Recovery

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(j,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);

timer(j,count+1) = RTT(j,count);

drops(j) = 0;

lastw(j,1) = 1;

%check for TimeOut

elseif w(j,count+1) < max (2+drops(j), 2*drops(j)-4)

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count)/2);

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

end;

end;

count = count + 1;

end;

output;

function queue(j)

global number_of_flows;

global B;

global count;

global q;

global rq;

global tq;

global rw;

global drops;

global STEP;

global dropstime;
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global RTT;

global RTTF;

global qptr;

global Q_max;

global state;

global qstate;

global w;

global te;

global encount;

global enpacket;

persistent rqdot;

global lastw;

global boundary;

global wtmp;

global beta;

if strcmp(state(j),’CAD’)

rqdot = (floor(w(j,count+1)) -drops(j) -1

- drops(j)/(floor(wtmp(j))+1))/RTT(j,count);

else

rqdot = (floor(w(j,count+1)) -1)/RTT(j,count);

end

% Integrate fluid from flows

rq(j,count+1) = rq(j,count) + rqdot*STEP;

if (j==1)

q(:,count+1) = q(:,count);

te(count+1) = te(count);

tq(count+1) = tq(count);

% Service the Queue

if qptr > 0

tqdot = -1;

tq(count+1) = tq(count) + tqdot*STEP;

if tq(count+1) <= 0

q(1:min(qptr,Q_max-1), count+1) = q(2:min(qptr+1,Q_max),count+1);

q(min(qptr+1,Q_max):Q_max, count+1) = 0;

qptr = qptr -1;

tq(count+1) = 1/B;

end

if qptr < Q_max

qstate = ’QNF’;

end
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end

end

if w(j,count+1) >= lastw(j)

boundary (j)= 1;

lastw(j) = floor(w(j,count+1))+1;

end

if qptr < Q_max && boundary(j) == 1

if qptr < Q_max - 1

qptr = qptr + 2;

q(qptr-1:qptr,count+1) = j;

rq(j,count+1) = rq(j,count+1) - 1;

else % qptr = Q_max - 1

qptr = qptr + 1;

q(qptr,count+1) = j;

drops(j) = drops(j) + 1;

dropstime = [dropstime,[count*STEP,j]’];

rq(j,count+1) = rq(j,count+1) -1;

end

boundary(j) = 0;

elseif qptr == Q_max && boundary(j) == 1

drops(j) = drops(j) + 2;

dropstime = [dropstime,[count*STEP,j]’];

rq(j,count+1) = rq(j,count+1) - 1;

boundary(j) = 0;

end

if rq(j,count) >= 1

if qptr < Q_max

qptr = qptr + 1;

q(qptr,count+1) = j;

else

drops(j) = drops(j) + floor(rq(j,count+1));

dropstime = [dropstime,[count*STEP,j]’];

end

rq(j,count+1) = rq(j,count+1) - 1;

end

RTT(j,count+1) = RTTF(j) + qptr/B;
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% End of function Queue

function output()

global count;

global STEP;

global w;

global rw;

global q;

global rq;

global RTT;

global RTTF;

global dropstime;

global number_of_flows;

global te;

hold off

plot([1:count]*STEP,(w(1,:)),’b’)

hold on

plot([1:count]*STEP,(w(2,:)),’c’)

plot([1:count]*STEP,sum(q(:,1:count)~=0),’m’)

plot([1:count]*STEP,te(1:count)*1000,’k’);

plot([1:count]*STEP,RTT(1,1:count)*1000,’g’);

if length(dropstime) > 0

for i = 1:length(dropstime)

switch round(dropstime(2,i))

case 1

plot(dropstime(1,i),14,’b+’);

case 2

plot(dropstime(1,i),14,’c+’);

end

end

end

hold off
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A.4.3 Hybrid Model Discrete Queue with Back-to-back Packets
- Matlab Code

% Implementation of Hybrid Systems model of TCP-Newreno

% congestion control. Discrete Queue.

%

% Robert Kilduff 29/08/03

% Hamilton Institute

function hybrid_dis

global B;

B = 10000000/(1500*8); % 10Mb for 12000 bit packets

Window_gain = 1;

global number_of_flows;

number_of_flows = 2;

global RTTF;

RTTF = [];

RTTF(1,1) = 0.040;

RTTF(2,1) = 0.040;

global RTT;

RTT = [];

RTT(1:number_of_flows,1) = RTTF(1:number_of_flows,1);

DDD = RTTF(1);

Tf =10;

%Tf = 1.2329;

T0 = 0;

global STEP;

STEP=1/(3*B);;

time = [0];

timer0 = zeros(number_of_flows,1);

timer = [];

timer(:,1)=timer0;

tdot = [];

tdot = timer0;

w0 = 13*ones(number_of_flows,1);

global w;

w = [];

w(:,1)=[13; 12];

rw0 = 0*[1:number_of_flows]’;

global rw;

rw = [];

rw(:,1) = rw0;

114



global count;

count = 1;

filter_count = 0;

global beta;

beta = 1.45;

L = 1;

Wth = [];

Wth0 = 2000*[1:number_of_flows]’;

Wth(:,1) = Wth0;

m = 2;

ndrops = 1; % simple case first

% state can be SS = Slow Start, SSD = Slow Start Delay, FR = Fast Recovery,

% TO = TimeOut, CA = Congestion Avoidance, CAD = Congestion Avoidance Delay

global state;

state = [];

for i = 1:number_of_flows state{i} = ’CA’; end

%Queue stuff

global Q_max;

Q_max = 17 - 1; % Queue size in ns is number of packets queue can hold + 1

q0 = 0*[1:(Q_max)]’;

global q;

q = [];

q(:,1)=q0;

global qptr;

qptr = 0;

% states [r1,..rn]

rq0 = 0*[1:(number_of_flows)]’;

global rq;

rq = [];

rq(:,1)=rq0;

global drops;

drops = [];

drops0 = 0*[1:(number_of_flows)]’;

drops(:,1) = drops0;

global dropstime;

dropstime = [];

global tq;

tq = [];

tq(1) = 1/B;

global k;

k = [];

k0 = 0*[1:(number_of_flows)]’;
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k(:,1) = k0;

global wtmp;

wtmp = zeros(1,number_of_flows);

global timertmp;

global boundary;

boundary = zeros(1,number_of_flows);

global rq2;

rq2=zeros(1,number_of_flows);

timecount =1;

startj=0;

w(1,1)=13; w(2,1)=12; qptr=1; q(1:qptr,1)=zeros(qptr,1);

for i = T0:STEP:Tf;

if count*STEP >= timecount

count*STEP

timecount = timecount + 1;

end

servicequeue;

for j=1:number_of_flows

RTT(j,count+1) = RTTF(j) + (qptr)/B;

end

startj=startj+1;

for jj = 1:number_of_flows

j=jj;

switch state{j}

case ’SS’

timer(j,count+1) = 0;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = (beta*w(j,count)/RTT(j,count));

% Check for Congestion Avoidance

if w(j,count+1) >= Wth(j);

w(j,count+1) = Wth(j);

state{j} = ’CA’;

end

% Check for Slow Start Delay

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

wtmp(j) = w(j,count+1);

state{j} = ’SSD’;

end;
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queue(j);

case ’SSD’

tdot = -1;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

rw(j,count+1) = (beta*(w(j,count+1) -drops(j)

- drops(j)/(wtmp(j)+1))/RTT(j,count));

if timer(j,count+1) <= 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(1,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2); lastw(j) =

floor(w(j,count+1))+1;

timer(j,count+1) = RTT(j,count);

timertmp=RTT(j,count)*k;

drops(j) = 0;

elseif w(j,count+1) < max(2+drops(j), 2*drops(j)-4)

timer(j,count+1) =1;

w(j,count+1) = floor(w(j,count+1)/2);

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

case ’FR’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = floor(w(j,count)-1)/RTT(j,count);

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

if timer(j,count+1) <= 0

k(j) = k(j) - 1;

if k(j) <= 0

drops(j) = 0;

state{j} = ’CA’;

else

timer(j,count+1) = RTT(j,count);
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end

rw(j,count+1) = 2*rw(j,count+1);

end

queue(j);

case ’TO’

tdot = -1;

w(j,count+1)=w(j,count);

rw(j,count+1)=0;

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check for Slow Start

if timer(j,count+1) <= 0

state{j} = ’SS’;

Wth(j) = w(j,count+1)/2;

w(j,count+1)=1; lastw(j) = floor(w(j,count+1))+1;

end;

queue(j);

case ’CA’

timer(j,count+1) = 0;

wdot = (L/(RTT(j,count)));

w(j,count+1)=w(j,count)+wdot*STEP;

if (rq2(j)>=floor(w(j,count+1))-1)

rq2(j)=rq2(j)-floor(w(j,count+1)); boundary(j)=1;

end

rw(j,count+1)=floor(w(j,count)-1)/RTT(j,count);

queue(j);

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

wtmp(j) = w(j,count+1);

state{j} = ’CAD’;

end

case ’CAD’

tdot = -1;

wdot = (L/RTT(j,count));

w(j,count+1)=w(j,count)+wdot*STEP;

if (rq2(j)>=floor(w(j,count+1))-1)

rq2(j)=rq2(j)-floor(w(j,count+1)); boundary(j)=1;

end

rw(j,count+1)=(w(j,count) -1

-drops(j)/(wtmp(j)+1))/RTT(j,count);

timer(j,count+1)=timer(j,count)+tdot*STEP;

%check for Fast Recovery

if timer(j,count+1) <= 0;

state{j} = ’FR’;
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if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))

/(1+(w(j,count)/2)-drops(j))));

end

rw(j,count+1) = (1+(w(j,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2); lastw(j) =

floor(w(j,count+1))+1;

timer(j,count+1) = RTT(j,count);

drops(j) = 0;

%check for TimeOut

elseif w(j,count+1) < max (2+drops(j), 2*drops(j)-4)

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count)/2); lastw(j) =

floor(w(j,count+1))+1;

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

end;

end;

count = count + 1;

end;

output;

function servicequeue

global B count STEP q tq qptr Q_max;

q(:,count+1) = q(:,count);

tq(count+1) = tq(count);

% Service the Queue

if qptr > 0

tqdot = -1;

tq(count+1) = tq(count) + tqdot*STEP;

if tq(count+1) <= 0

q(1:min(qptr,Q_max-1), count+1) = q(2:min(qptr+1,Q_max),count+1);

q(min(qptr+1,Q_max):Q_max, count+1) = 0;

qptr = qptr -1;

tq(count+1) = 1/B;

end
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end

function queue(j)

global count STEP q qptr Q_max rq rq2 rw drops dropstime boundary;

rq(j,count+1) = rq(j,count) + rw(j, count+1)*STEP;

if (boundary(j)==1)

added=min(2, Q_max-qptr);

if qptr < Q_max

q(qptr+1:qptr+added,count+1) = j;

qptr = qptr + added;

end

if (added < 2)

drops(j) = drops(j) + 2-added;

dropstime = [dropstime,[count*STEP,j]’];

end

rq(j,count+1) = rq(j,count+1) - 1;

rq2(j)=rq2(j)+2;

boundary(j) = 0;

end

if rq(j,count+1) >= 1

added=min(floor(rq(j,count+1)), Q_max-qptr);

if qptr < Q_max

q(qptr+1:qptr+added,count+1) = j;

qptr = qptr + added;

end

rq(j,count+1)=rq(j,count+1)-added;

rq2(j)=rq2(j)+added;

end

% End of function Queue

function output()

global count;

global STEP;

global w;

global rw;

global q;

global rq;

global RTT;
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global RTTF;

global drops;

global dropstime;

global number_of_flows;

hold off

plot([1:count]*STEP,(w(1,:)),’b’)

hold on

plot([1:count]*STEP,(w(2,:)),’c’)

plot([1:count]*STEP,sum(q(:,1:count)~=0),’m’)

plot([1:count]*STEP,RTT(1,1:count)*1000,’g’);

if length(dropstime) > 0

for i = 1:length(dropstime)

switch round(dropstime(2,i))

case 1

plot(dropstime(1,i),14,’b+’);

case 2

plot(dropstime(1,i),14,’c+’);

end

end

end

hold off
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A.4.4 Hybrid Model Discrete Queue with Entrainment - Matlab
Code

% Implementation of Hybrid Systems model of TCP Newreno

% congestion control. Discrete Queue with entrainment.

%

% Robert Kilduff 20/09/03

% Hamilton Institute

function xdot = hybrid_en()

clear all;

global B;

B = 10000000/(1500*8); % 10Mb for 12000 bit packets

Window_gain = 1;

global number_of_flows;

number_of_flows = 1;

global RTTF;

RTTF = [];

RTTF(1,1) = 0.040;

RTTF(2,1) = 0.060;

global RTT;

RTT = [];

RTT(1:number_of_flows,1) = RTTF(1:number_of_flows,1);

DDD = RTTF(1);

Tf = 0.35;

T0 = 0;

global STEP;

STEP=1/(10*B);

time = [0];

timer0 = zeros(number_of_flows,1);

timer = [];

timer(:,1)=timer0;

tdot = [];

tdot = timer0;

w0 = 1*ones(number_of_flows,1);

global w;

w = [];

w(:,1)=w0;

rw0 = 0*[1:number_of_flows]’;

global rw;

rw = [];

rw(:,1) = rw0;
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global count;

count = 1;

filter_count = 0;

beta = 1.45;

L = 1;

Wth = [];

Wth0 = 2000*[ones(number_of_flows,1)];

Wth(:,1) = Wth0;

m = 2;

ndrops = 1; % simple case first

% state can be SS = Slow Start, SSD = Slow Start Delay, FR = Fast Recovery,

% TO = TimeOut, CA = Congestion Avoidance, CAD = Congestion Avoidance Delay

global state;

state = [];

for i = 1:number_of_flows state{i} = ’SS’; end

%Queue stuff

% qstate can be QE = Queue Empty, QNF = Queue Not Full, QF = Queue Full

global qstate;

qstate = ’QNF’;

global Q_max;

Q_max = 17 - 1; % Queue size in ns is number of packets queue can hold + 1

q0 = 0*[1:(Q_max)]’;

global q;

q = [];

q(:,1)=q0;

global qptr;

qptr = 0;

% states [r1,..rn]

rq0 = 0*[1:(number_of_flows)]’;

global rq;

rq = [];

rq(:,1)=rq0;

global drops;

drops = [];

drops0 = 0*[1:(number_of_flows)]’;

drops(:,1) = drops0;

global dropstime;

dropstime = [];

global tq;

tq = [];

tq(1) = 1/B;

global ts;
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ts = [];

ts(1) = 1/B;

global k;

k = [];

k0 = 0*[1:(number_of_flows)]’;

k(:,1) = k0;

enpacket = 0;

wtmp = 0;

global timertmp;

global boundary;

boundary = [];

b0 = zeros(number_of_flows,1);

boundary(:,1) = b0;

global lastw;

lastw = [];

lastw(:,1) = ones(number_of_flows,1);

timecount =1;

global lock;

lock = 0;

global pktcnt;

pktcnt = 0;

global encount;

encount = [];

encount(:,1) = ones(number_of_flows,1);

global enmax;

enmax = [];

enmax0 = zeros(number_of_flows,1);

enmax(:,1) = enmax0;

for i = T0:STEP:Tf;

for j = 1:number_of_flows

switch state{j}

case ’SS’

timer(j,count+1) = 0;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = (beta*w(j,count)/RTT(j,count));

% Check for Congestion Avoidance

if w(j,count+1) >= Wth(j);

w(j,count+1) = Wth(j);
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state{j} = ’CA’;

end

% Check for Slow Start Delay

if drops(j) > 0 ;

timer(j,count+1) = RTT(j,count);

wtmp = w(j,count+1);

state{j} = ’SSD’;

end;

queue(j);

case ’SSD’

tdot = -1;

wdot = (log(m)/RTT(j,count))*w(j,count);

w(j,count+1) = w(j,count)+wdot*STEP; %Euler

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

rw(j,count+1) = (beta*(w(j,count+1) -drops(j)

- drops(j)/(wtmp+1))/RTT(j,count));

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(1,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);

timer(j,count+1) = RTT(j,count);

timertmp=RTT(j,count)*k;

drops(j) = 0;

elseif w(j,count+1) < max(2+drops(j), 2*drops(j)-4)

% Hybrid model uses 1 second here

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count+1)/2);

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

case ’FR’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP; %Euler

rw(j,count+1) = rw(j,count)+rwdot*STEP; %Euler
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timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

if timer(j,count+1) < 0 & k(j) > 0

timer(j,count+1) = RTT(j,count);

k(j) = k(j) - 1;

if k(j) <= 0

drops(j) = 0;

state{j} = ’CA’;

end

rw(j,count+1) = 2*rw(j,count+1);

end

queue(j);

case ’TO’

tdot = -1;

wdot = 0;

rwdot = 0;

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=0;

timer(j,count+1) = timer(j,count)+tdot*STEP; %Euler

% Check for Slow Start

if timer(j,count+1) < 0

state{j} = ’SS’;

Wth(j) = w(j,count+1)/2;

w(j,count+1)=1;

end;

queue(j);

case ’CA’

timer(j,count+1) = 0;

wdot = (L/(RTT(j,count)-1/B));

w(j,count+1)=w(j,count)+wdot*STEP;

rw(j,count+1)=w(j,count)/RTT(j,count);

if drops(j) > 0

timer(j,count+1) = RTT(j,count);

wtmp = w(j,count+1);

state{j} = ’CAD’;

end

queue(j);

case ’CAD’

tdot = -1;

wdot = ((L- 1/(wtmp+1))/RTT(j,count)-1/B);

w(j,count+1)=w(j,count)+wdot*STEP;

% Account for dropped packet by subtracting 1 from cwnd as

% cwnd no longer represents the amount of packets in flight.

% Also must subtract 1/cwnd from rate due to the effective

126



% reduction of cwnd increase due to loss of packet.

% Note this increase occurs at time of packet drop + 1 RTT.

rw(j,count+1)=(w(j,count) -1 - drops(j)/(wtmp+1))/RTT(j,count);

timer(j,count+1)=timer(j,count)+tdot*STEP;

if timer(j,count+1) < 0;

state{j} = ’FR’;

if drops(j) > w(j,count+1)/2 + 1

k(j) = 1+ceil(log2(drops(j)));

else

k(j) = ceil(log2((1+(w(j,count)/2))/(1+(w(j,count)/2)

-drops(j))));

end

rw(j,count+1) = (1+(w(j,count)/2)-drops(j))/RTT(j,count);

w(j,count+1) = floor(w(j,count)/2);

timer(j,count+1) = RTTF(j) + Q_max/B;

drops(j) = 0;

encount(j) = 0;

%check for TimeOut

elseif w(j,count+1) < max (2+drops(j), 2*drops(j)-4)

% Hespanha uses 1 second here

timer(j,count+1) = 1;

w(j,count+1) = floor(w(j,count)/2);

drops(j) = 0;

state{j} = ’TO’;

end

queue(j);

end;

end;

count = count + 1;

end;

output;

function queue(j)

global number_of_flows;

global B;

global count;

global q;

global rq;

global tq;

global rw;

global drops;

global STEP;
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global dropstime;

global RTT;

global RTTF;

global qptr;

global Q_max;

global state;

global qstate;

global w;

global ts;

global lock;

persistent rqdot;

global lastw;

global boundary;

global state;

global encount;

global enmax;

persistent ensent;

count

rqdot = rw(j,count+1);

% Integrate fluid from flows

rq(j,count+1) = rq(j,count) + rqdot*STEP;

if (j==1)

q(:,count+1) = q(:,count);

ts(count+1) = ts(count); % Send packet timer

tq(count+1) = tq(count); % Queue timer

end

if w(j,count) >= lastw(j)

boundary (j)= 1;

lastw(j) = floor(w(j,count))+1;

end

% First packet goes straight through the Queue

% OK as send initially set to 0.

% Queue packets if required

% Tx entrained packets for flow. For SS every second packet is

% back to back and needs to be queued for 1/B.
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if strcmp(state(j),’SS’) || strcmp(state(j),’SSD’)

% New train of packets required

if log2(w(j,count+1)) > encount(j)

enmax(j) = floor(w(j,count+1))/2;

encount(j) = encount(j) + 1;

end

% If bandwidth not in use, lock and send train

if enmax(j) > 0 && lock == 0

lock = j;

ts(count) = 1/B;

% Assume no packet currently being serviced by the queue

if qptr == 0

q(qptr+1,count+1) = j;

qptr = qptr + 1;

ensent = 1;

end

end

% Count line rate intervals

if lock == j

tsdot = -1;

ts(count+1) = ts(count) + tsdot*STEP;

if ensent < enmax(j)

if ts(count+1) <= 0

ts(count+1) = 1/B;

ensent = ensent + 1;

if qptr < Q_max - 1

q(qptr+1:qptr+2,count+1) = j;

qptr = qptr + 2;

elseif qptr < Q_max

q(qptr+1,count+1) = j;

qptr = qptr + 1;

% Catch case where service routine will remove a packet

if tq(count) + -1*STEP <= 0

q(qptr+1,count+1) = j;

qptr = qptr + 1;

else

drops(j) = drops(j) +1;

dropstime = [dropstime,[count*STEP,j]’];

end

else

drops(j) = drops(j) + 2;

dropstime = [dropstime,[count*STEP,j]’];

end
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end

else % train sent

lock = 0;

ensent = 0;

enmax(j) = 0;

end

end

end

if strcmp(state(j),’CA’) || strcmp(state(j),’CAD’)

% New train of packets required

if w(j,count+1) > encount(j)

enmax(j) = floor(w(j,count+1));

encount(j) = encount(j) + 1;

end

if enmax(j) > 0 && lock == 0

lock = j;

ts(count) = 1/B;

% Add extra packet

if qptr < Q_max -1

q(qptr+1:qptr+2,count+1) = j;

qptr = qptr + 2;

ensent = 1;

elseif qptr < Q_max

q(qptr+1,count+1) = j;

qptr = qptr + 1;

drops(j) = drops(j) + 1;

dropstime = [dropstime,[count*STEP,j]’];

else

drops(j) = drops(j) + 2;

dropstime = [dropstime,[count*STEP,j]’];

end

end

% Count line rate intervals

if lock == j

tsdot = -1;

ts(count+1) = ts(count) + tsdot*STEP;

if ensent < enmax(j)

if ts(count+1) <= 0

ts(count+1) = 1/B;

ensent = ensent + 1;

if qptr < Q_max

q(qptr+1,count+1) = j;
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qptr = qptr + 1;

else

drops(j) = drops(j) + 1;

dropstime = [dropstime,[count*STEP,j]’];

end

end

else % train sent

lock = 0;

ensent = 0;

enmax(j) = 0;

end

end

end

if j == 1

% Service the Queue

if qptr > 0

tqdot = -1;

tq(count+1) = tq(count) + tqdot*STEP;

if tq(count+1) <= 0

% Catch case where service routine will remove a packet

if qptr > Q_max

q(1:min(qptr-1,Q_max), count+1) = q(2:min(qptr,Q_max+1),count+1);

q(min(qptr,Q_max+1):Q_max+1, count+1) = 0;

qptr = qptr -1;

tq(count+1) = 1/B;

else

q(1:min(qptr,Q_max-1), count+1) = q(2:min(qptr+1,Q_max),count+1);

q(min(qptr+1,Q_max):Q_max, count+1) = 0;

qptr = qptr -1;

tq(count+1) = 1/B;

end

end

if qptr < Q_max

qstate = ’QNF’;

end

end

end

RTT(j,count+1) = RTTF(j) + qptr/B;

% End of function Queue
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function output()

global count;

global STEP;

global w;

global rw;

global q;

global rq;

global RTT;

global RTTF;

global dropstime;

global number_of_flows;

global te;

hold off

plot([1:count]*STEP,(w(1,:)),’b’)

hold on

plot([1:count]*STEP,sum(q(:,1:count)~=0),’m’)

if length(dropstime) > 0

for i = 1:length(dropstime)

switch round(dropstime(2,i))

case 1

plot(dropstime(1,i),14,’b+’);

case 2

plot(dropstime(1,i),14,’c+’);

end

end

end

hold off
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