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Abstract

In this thesis, we are concerned with the problem of common Lyapunov function
existence for families of linear time-invariant (LTT) systems, and with the precise
nature of the relationship between common Lyapunov function existence and the
exponential stability of switched linear systems. The work of the thesis is motivated
by the practical importance of switched linear systems and the known fact that such
systems can become unstable even when they are constructed by switching between
individually stable constituent systems, giving rise to a need for verifiable conditions
that guarantee the exponential stability of switched linear systems under arbitrary

switching rules.

After introducing, and reviewing the literature on, the common quadratic Lyapunov
function (CQLF) existence problem, we describe a novel approach to the question of
CQLF existence for a pair of LTI systems that is based on analyzing convex cones
of matrices. In particular, in Theorem 4.4.1, we derive a key result that provides
a simple algebraic characterization of a marginal situation of two LTT systems that
are on the ‘boundary’ of those pairs of systems that have a CQLF. This result
provides insight into the issue of how conservative CQLF existence is as a criterion
for the exponential stability of switched linear systems, and we show that it unifies
two of the most powerful results giving necessary and sufficient conditions for CQLF
existence to have previously appeared in the literature. Moreover, we explain how, for
certain system classes, Theorem 4.4.1 provides a way of obtaining verifiable necessary
and sufficient conditions for CQLF existence that can be interpreted in terms of
the dynamics of switched linear systems. Based on the same underlying ideas, a
corresponding result is derived for pairs of discrete-time LTT systems. We also extend
a recent result giving necessary and sufficient conditions for CQLF existence for pairs
of LTI systems whose system matrices are in companion form to the case of a general

pair of exponentially stable LTI systems with system matrices differing by rank one,

x1



and describe in Corollary 5.3.1 a class of switched linear systems for which CQLF

existence is equivalent to uniform exponential stability under arbitrary switching.

Several problems relating to the stability of positive switched linear systems are also
considered. In particular, for pairs of exponentially stable positive LTI systems, we
present results on the CQLF existence problem, on the common diagonal Lyapunov
function (CDLF) existence problem, and on the problem of common copositive Lya-
punov function existence. We show that for switched linear systems constructed
by switching between a pair of exponentially stable positive second order LTI sys-
tems, CQLF existence is equivalent to exponential stability under arbitrary switch-
ing. Moreover, we establish that for second and third order systems, any pair of
exponentially stable positive LTI systems whose system matrices differ by rank one
must have a CQLF, and that the associated switched linear systems must be uni-
formly exponentially stable under arbitrary switching. We also derive an algebraic
condition that is necessary and sufficient for a generic pair of exponentially stable
positive LTI systems, of any order, to have a CDLF, using similar arguments to
those employed in the derivation of the result of Theorem 4.4.1 on the CQLF exis-
tence problem. Results giving necessary and sufficient conditions for common linear

copositive Lyapunov function existence are also presented.

Finally, we discuss the possibility of extending our methods to non-linear switched
systems and describe a number of open problems suggested by the work presented

in the thesis.

x11
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Chapter 1

Introduction and Overview

In this introductory chapter, we motivate the study of switched and hy-
brid systems, and point out some of the issues associated with the stability
of these systems. We also provide a brief overview of the work contained

in the remainder of the thesis.

1.1 Introductory remarks on switched systems

The theory of switched or hybrid systems is by now a well-established research field,
with the area attracting interest from across the engineering, mathematics and com-
puter science communities. Loosely speaking, a switched system is one that combines
continuous (or discrete) dynamics with a logic-based switching mechanism that de-
termines abrupt mode switches in the system’s operation at various points in time.
The major improvements that have occurred in computational technology, as well as
the need for control systems to satisfy more demanding performance criteria have led
to a significant increase in the number of switched systems appearing in applications

in the recent past [10, 11, 63, 140, 44|. Alongside this, there has been a corresponding
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increase in the level of interest in the theoretical aspects of these systems within the
research community [69, 15, 133, 66]. From a control perspective, one of the major
attractions of the switching paradigm is that it is often possible to satisfy complex
performance objectives by switching between a number of relatively simple (often
LTI) controllers. Before proceeding, it is worth noting some of the specific reasons

for the recent surge of interest in systems that undergo switching.

(i) First of all, some engineering systems are inherently multi-modal, and for such
systems, a model that incorporates switching is most appropriate. A classic
and very familiar example of this type is given by the longitudinal dynamics
of a four or five speed automobile [131], where the acceleration of the vehicle
depends on the current speed, the throttle angle and the gear that is engaged.
A change of gear may then be viewed as a mode-switch in the overall dynamics

of the car.

3—14
Z 1—2

Figure 1.1: Sample switched system with four constituent modes or subsystems

(ii) Even for a plant that is not itself subject to switching, a switched controller
offers greater flexibility than a single fixed controller and can deliver improved
closed loop performance. In particular, it is sometimes possible to achieve mul-

tiple performance objectives by switching appropriately between a family of
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(iii)

individual controllers, each one designed for a specific task. Further, it is often
possible to achieve such complicated performance objectives by switching be-
tween a number of controllers of simple structure. For a number of examples of
this type, including a controller for a computer disk-drive system providing im-
proved response-time while also reducing overshoot, see [81]. Also, a switched
controller, with three distinct modes of operation, for a variable-speed wind-

turbine power generator is described in [64, 63].

The need for modern adaptive control systems to function effectively in uncer-
tain and rapidly varying environments, and to cope with failures and external
disturbances, has been a major motivation for investigating switched systems.
In this context, the Multiple Models, Switching and Tuning paradigm [96, 95]
has emerged as a powerful methodology for designing controllers for systems

that are subject to sudden and large changes in their operating conditions.

Traditional adaptive control schemes use a single model and controller, whose
parameters are tuned to improve the accuracy of the model and the perfor-
mance of the controller. However, this type of adaptation can prove too slow
in cases where the environment in which the controller is supposed to work
is subject to rapid or abrupt changes. The Multiple Models, Switching and
Tuning paradigm addresses several of the limitations of traditional adaptive
control in dealing with uncertain and rapidly varying environments. Here,
rather than use a single model to represent the plant, a number of different
models are selected to represent the various situations in which the system has
to operate. A controller is then designed for each of these models. At each in-
stant, based on some performance criterion, the model that best describes the
current environment is selected, and the corresponding control input is applied
to the plant. Effectively, the system switches between the various controllers

depending on what model best describes the system at each instant. A recent
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application of this paradigm has been to the design of reconfigurable flight
control systems that can cope with a variety of sensor and actuator failure

events [10, 11].

(iv) For a system that is subject to constraints, a switched controller is often the
most natural way to meet performance objectives while still satisfying the

constraints on the system [81].

Alongside their undeniable practical importance, switched systems have also emerged
as a rich source of interesting and challenging mathematical problems. One possible
approach to the analysis of systems that undergo switching would be to treat the
continuous dynamics and the logic-based switching action separately. For instance,
differential or difference equation models could be used to describe the dynamics
with discrete event systems or finite state automata employed to encapsulate the
switching action. Such an approach is unsatisfactory however, as it takes no account
of the potentially complex interaction between the various dynamic modes and the
switching mechanism. Ignoring this interaction could prove dangerous, as the inter-
play between the switching action and the dynamics can lead to unexpected or even
catastrophic behaviour. This is of paramount importance given that switched sys-
tems are often applied in safety critical situations, such as the examples cited above
from the aeronautical and automotive industries. As a simple example to illustrate
the type of unusual behaviour that can arise as a result of switching, consider the

following scenario of a "car in the desert" [126].

Example 1.1.1 Consider the situation depicted in Figure 1.2 below.
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Figure 1.2: Car in the desert - switching and dehydration!

The driver is thirsty and would like to get back to the oasis in order to wet his palate.
FEither of the two paths a or b in Figure 1.2 will lead the car safely to the oasis.
However, by switching between these two paths it is possible to zig-zag away from
the oasis along the path c, leading to a parched throat and the possible demise of the

driver!

While the above example may appear somewhat frivolous it illustrates the key point
that a switched system can exhibit behaviour that is not present in any of its con-
stituent subsystems or modes. In a sense, we can think of the two paths a and b as
representing safe or stable subsystems, while the path ¢ shows that unsafe or catas-
trophic results can ensue from an inappropriate choice of switching rule. For this
reason, it is important to develop analysis tools and results for these systems that
take into account the effects of the interplay between the switching mechanism and
the dynamics of the component modes of the system. In spite of the considerable
body of work carried out in the area over the past ten years or so, several basic ques-
tions related to the properties of switched systems remain unanswered and at best

partially understood. Perhaps the most important of these relates to their stability.
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For engineering systems, the issue of stability is of critical importance. If the stability
of a system can be guaranteed, then the designer is free to concentrate attention on
performance-related issues. To quote from Narendra and Balakrishnan’s paper of

1997 [95]:

It is well known that efficient design methods for various classes of con-
trol systems can be developed only when their stability properties are well

understood.

In this regard, a major complication that arises when considering switched systems
is that it is possible for instability to arise even for systems constructed by switching
between a number of individually stable subsystems. The simple example of the car
in the desert above illustrates this point, and a number of analytic examples display-
ing the same sort of behaviour are given in [69, 28, 64]. In the next chapter, when
we discuss some of these issues in more detail, we shall present an example of an un-
stable switched system that is constructed by switching between stable constituent
systems. In the light of this fact and of the critical importance of stability for all
control systems, it is not surprising that a major research effort has been dedicated
to developing a fuller understanding of the stability properties of switched systems,
and in particular to the determination of criteria that can be used to guarantee the
stable operation of such systems. One way of approaching this problem is to look
for verifiable conditions for the existence of a common Lyapunov function for the
constituent subsystems of a switched system. It is known [69] that if such a function
exists, then the overall system will be stable for arbitrary switching rules. Fur-
thermore, a number of converse theorems have recently been established for various
classes of switched systems [27, 86], essentially showing that, for a switched linear
system, where the constituent subsystems are linear time-invariant (LTT) systems, a
common Lyapunov function will always exist if the overall system is exponentially

stable for arbitrary switching patterns.
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It is worth pointing out that the converse theorems mentioned in the previous para-
graph [27, 86| show that requiring the existence of a common Lyapunov function is
not a conservative criterion for the exponential stability of switched linear systems.
In fact, these results demonstrate that if such a system is uniformly exponentially
stable under arbitrary switching, then all of its constituent subsystems will have a
common Lyapunov function. We shall have more to say on the issue of common Lya-
punov functions and conservatism later in the thesis. In fact, for a large part of the
thesis we shall be concerned with determining verifiable conditions for the existence
of a common quadratic Lyapunov function (CQLF) for the constituent systems of
a switched linear system, as well as with understanding the precise connection be-
tween CQLF existence and the stability of switched linear systems. In particular, we
shall investigate the ‘myth’ that CQLF existence is a conservative criterion for the
stability of switched linear systems. In this context, while it has been established
that requiring the existence of a CQLF can be conservative for the exponential sta-
bility of certain switched linear systems, it is important not to leave the argument
at this point without further investigating the nature of this conservatism. We shall
see that some of the results presented later in the thesis indicate that there are a
number of classes of switched linear systems for which CQLF existence is not nec-
essarily a conservative criterion for exponential stability under arbitrary switching.
The identification of such system classes is a problem of considerable importance.
In fact, knowing that the stability of a switched linear system was equivalent to the
existence of a CQLF for its subsystems would be a significant advantage as quadratic
Lyapunov functions are easier to search for, and are more fully understood, than the

more complex Lyapunov functions that have emerged in recent years.

Another related ‘myth’ about CQLFs is that they generally provide little dynamical
insight into the workings of a system. We shall be presenting results that indicate

that quite the opposite can be the case and that, in certain cases, there is a strong
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connection between the existence of a CQLF and the possible dynamic behaviours

that a switched linear system may exhibit.

Before drawing these introductory paragraphs to a close and proceeding to give an
overview of the work described in the remainder of the thesis, it seems appropriate to
formulate something of a ‘mission statement’. Broadly speaking, our goal is to add to
the current understanding of the stability issues associated with switching systems;
providing, where possible, verifiable and dynamically meaningful conditions for the
stability of such systems, based for the most part on the existence or non-existence
of common quadratic Lyapunov functions. Hopefully, this preamble has made clear

both the importance of, and the need for, such conditions.

1.2 Overview and Contributions

When presenting new work, it is of course important to set it in context, and for
this reason the next two chapters are given over to describing the background to
the results presented in the remainder of the thesis. In Chapter 2, we introduce
mathematical definitions for switched linear systems as well as for several notions
associated with such systems that are needed in our later discussions. Those types
of stability that are most relevant for the work of later chapters are defined, and
we present a numerical example to emphasize that switched linear systems are ca-
pable of exhibiting behaviours not present in any of their constituent systems. In
particular, we show that a switched linear system can become unstable for certain
switching patterns, even when its constituent systems are individually stable. A brief
review of some of the recent work done on the general stability theory of switched
linear systems and on non-quadratic Lyapunov functions is also given, with the most

relevant results stated explicitly.

For a large part of the thesis, we shall be concerned with the question of com-
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mon quadratic Lyapunov function (CQLF) existence for families of LTT systems and
with the precise relationship between CQLF existence and the stability question for
switched linear systems. The systematic study of this issue begins in Chapter 3
with a comprehensive review of the various approaches taken to the CQLF existence
question and the results obtained so far. Apart from its practical importance arising
from the stability issues associated with switching systems, the question of CQLF
existence is also a challenging problem in linear algebra. For this reason, it has at-
tracted the attention of both the mathematics and the engineering communities, and
the results that we shall consider are drawn from the literature on linear algebra as
well as systems’ theory. A number of questions on the relationship between CQLF

existence and the stability of switched linear systems are also raised in this chapter.

In spite of the volume of work done on the CQLF existence problem, it is fair to
say that results giving simple, interpretable necessary and sufficient conditions for
a number of LTT systems to have a CQLF are somewhat scarce. With few excep-
tions, most of the results currently available in the literature either give sufficient
conditions for CQLF existence, or else rely on numerical methods that do not have
a meaningful dynamical interpretation, and that provide little or no insight into the
CQLF existence problem itself. In fact, this is true even when we consider the prob-
lem of determining conditions for a pair of systems to have a CQLF. In Chapter 4,
we describe a new approach to the CQLF existence problem for pairs of LTI systems
based on analyzing convex sets of matrices. The essence of this approach is to con-
sider a marginal situation where a pair of systems are on the ‘boundary’ (in a sense to
be made precise in the text) of possessing a CQLF. We show, under mild additional
assumptions, that in this situation the two system matrices satisfy simple algebraic
conditions that relate directly to the stability of switched linear systems. The power
of this approach is underlined by showing that the same techniques can be applied

to the CQLF existence problem in discrete-time, yielding similar conditions to those
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found in the continuous-time case.

In Chapter 5, we describe how the results of Chapter 4 can be used to obtain nec-
essary and sufficient conditions for CQLF existence for certain system classes, and
show that, in a sense, these results provide a unifying framework within which two of
the most powerful results on CQLF existence in the literature can be treated. First
of all, an intuitively appealing and insightful proof of the known conditions for a pair
of second order LTT systems (in both continuous-time and discrete-time) to have a
CQLF is given, and we point out how the conditions obtained relate the question of
CQLF existence to the stability of the associated class of switched linear systems in
this case. A key point is that the proofs given here indicate why the results for second
order systems take the simple form that they do. We next show that a result recently
derived in [128] on CQLF existence for pairs of LTI systems whose system matrices
are in companion form can be extended to the case of two LTI systems whose system
matrices differ by a general rank one matrix. It is pointed out that this result can
be thought of as a time-domain extension (to the case of general rank one difference
between system matrices) of the classical SISO Circle Criterion. Furthermore, much
of the work of the chapter is given over to demonstrating the key role played by the
results of Chapter 4 in determining the simple conditions for CQLF existence in this
case. As a by-product of this analysis, a class of switched linear systems is identified
for which CQLF existence is not a conservative way of establishing exponential sta-
bility under arbitrary switching. It is important to appreciate that the conditions for
CQLF existence derived in this chapter are not only simple to state, but also have

clear implications for the dynamics and stability of switching systems.

In a sense, one could say that the classes of switching systems considered in Chapter
5 are classical as they have been the subject of interest in the control community for
some time now. With the advent of new application areas for control theory in such

fields as communications and systems’ biology, positive systems and systems that

10
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switch between a number of different positive systems (positive switched systems)
seem likely to assume a position of considerable importance in years to come. At
this point, it should be stated that by a positive system, we mean one whose state
vector is constrained to be non-negative for all time. The practical importance of
such systems has long been recognized, and a rich theory of positive LTI systems

now exists with close connections to the theory of non-negative matrices [32, 72].

In Chapter 6, we turn our attention to the stability issues associated with positive
switched linear systems. Initially, we present some results on the CQLF existence
problem for families of positive LTI systems and describe another class of switched
linear systems for which CQLF existence is not a conservative criterion for expo-
nential stability under arbitrary switching. However, when considering the stability
question for positive switched linear systems, the specific properties of positive LTI
systems naturally suggest certain types of Lyapunov function other than CQLFs.
For instance, if a positive LTI system is exponentially stable, then it not only has
a quadratic Lyapunov function, but has a diagonal quadratic Lyapunov function,
or diagonal Lyapunov function [32|. In view of this, it is natural to consider the
question of when two or more stable positive LTI systems have a common diagonal
Lyapunov function (CDLF), and to investigate the possibility of basing stability cri-
teria for positive switched linear systems on CDLF existence. After presenting some
simple sufficient conditions for CDLF existence, we derive an algebraic condition that
is necessary and sufficient for a generic pair of n-dimensional exponentially stable
positive LTT systems to have a CDLF. An important point to note is that this result
is derived using the same underlying ideas that inspired the analysis of the CQLF

existence problem presented in Chapters 4 and 5.

Given that the trajectories of a positive system are constrained to remain within the
positive orthant, there is no need to impose the global conditions of a traditional

Lyapunov function when analysing the stability of these systems. In fact, the usual

11
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requirements of a positive definite function with negative definite derivative along
system trajectories need only be satisfied in the positive orthant in this case. A
function satisfying these relaxed conditions is known as a copositive Lyapunov func-
tion, and it is natural to consider such functions when dealing with the stability of
positive systems. In view of this, in Chapter 6, we shall also address the question of
the existence of common copositive Lyapunov functions for families of positive LTI
systems and present a number of preliminary results in this direction for both linear
and quadratic copositive Lyapunov functions. We shall see that it is once again
possible to obtain significant results in this context following the methods applied to
the CQLF existence problem in Chapters 4 and 5. In fact, we shall derive necessary
and sufficient conditions for a general pair of positive LTI systems to have a common

linear copositive Lyapunov function following this approach.

Throughout the discussions in Chapters 4 through 6, the issue of determining when
certain convex sets of matrices intersect is something of a recurrent motif. For
instance, when considering the general CQLF existence problem, the set of positive
definite solutions of the Lyapunov inequality for a given Hurwitz matrix plays a key
role. In particular, the geometrical properties of the boundary of this set are crucial
to the proofs of several of the results described in Chapters 4 and 5. Hence, it seems

that a thorough understanding of the boundary structure of sets of the form
Py={P=P' >0:ATP+ PA <0},

(where A is Hurwitz) will lead to further advances in our understanding of the general
CQLF existence problem and its relation to the stability of switched systems. With
this in mind, in Chapter 7 we present a collection of preliminary technical results on
the boundary structure of these sets, highlighting the role played by their geometry
in the proofs of the main results of earlier chapters. We also give some time to
a discussion of how the work presented here for switched linear systems may be

extended to the non-linear case, and describe a number of open problems relating to

12
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the work of thesis that should form the basis of future research. Finally in Chapter

8 we review the contents of the thesis and present our conclusions.

The work described in the thesis has led to a number of publications in interna-
tional conference proceedings and peer-reviewed journals. In particular, work has
been presented at the IFAC world congress, the American Control Conference, the
European Control Conference and the IEEE Conference on Decision and Control
[63, 122, 77, 76, 124], and [38] has been accepted for presentation at the 16th In-
ternational Symposium on Mathematical Theory of Networks and Systems (MTNS
2004). Also four journal papers [129, 64, 78, 123] have either appeared or been ac-
cepted for publication while [79] has recently been accepted for publication in Linear

Algebra and its Applications.
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Chapter 2

Stability of switched linear

systems

In this chapter, we define switched linear systems as well as those types
of stability that shall concern us throughout the thesis. In addition, we
discuss a number of problems connected with the stability of switched
linear systems and provide a brief review of the known results on the

stability of switched systems that are available in the literature.

2.1 Introductory remarks

A key issue in the study of switched systems is that a system constructed by switching
between a number of individually stable subsystems can become unstable for certain
switching patterns. Essentially, the interaction of the switching mechanism with the
individual dynamic modes can lead to instability. It is this fact that provides the
motivation for much of the work presented in this thesis. In fact, our primary concern

throughout shall be with finding conditions on families of subsystems that rule out

14



2.2 Switched linear systems - definitions

the possibility of this type of behaviour; that is with determining conditions that
guarantee the stability of the overall system, irrespective of how and when switching
occurs. In this chapter, we introduce the definitions necessary for a formal treatment
of the issues related to this question. In particular, mathematical definitions are given
for switched linear systems as well as for the relevant notions of stability. Some of
the major questions that arise in the study of stability theory for switched linear

systems are described and a brief survey of recent results in the area is provided.

2.2 Switched linear systems - definitions

In this section we define the class of switched linear systems, as well as a number
of basic notions related to these systems that we shall need in our later discussions.
While some of the definitions given below are quite formal, it should be kept in mind

that, essentially, a switched linear system is a system of the form
&= A(t)z,

where A(t) can switch between some given finite collection of matrices Ay, ..., Ak in
R™*™. Thus, a switched linear system is obtained by switching between a number
of linear time-invariant (LTI) systems ¥4, : & = Az, 1 < ¢ < k, referred to as
its constituent systems or modes. We shall be considering systems that are free to
switch in a more or less arbitrary manner between their constituent systems, and
we generally assume that the precise switching pattern, determined by the mapping
t — A(t) is not known. However, we do require that once the system switches into a
given mode, it remains in that mode for a specified finite time, which can be chosen
to be arbitrarily small; thus excluding the possibility of infinitely fast switching and
ensuring that only a finite number of switches can occur in a finite time. Note that
a switched linear system can thus be thought of as a family of linear time-varying

systems obtained as the matrix-valued function t — A(t) varies over all allowable

15



2.2 Switched linear systems - definitions

switching patterns. We shall now make these ideas more formal.

Suppose that we are given a set of matrices A = {A1, Ag,..., Ax} in R™". We
now introduce the set of matrix-valued mappings, PC(A) to formalize the notion
of an allowable switching pattern. PC(.A) is defined to be the set of matrix-valued

functions ¢ — A(t) from R into the set A with the following properties.

(i) A(.) is piecewise constant and continuous from the right. This means that for
each ¢ € {1,...,k}, the set of ¢ in R such that A(t) = A; is a disjoint union
of intervals of the form [so,s1) where s; > so. Essentially, A(t) is switching

between the matrices in .A.

(ii) There is some constant 7,,;, > 0, such that given any two points ¢, s in R such
that A(t) # A(s), |t — s| > Tyin. This guarantees that each of the intervals in
(ii) are of length at least Ty,in. The constant 7,,;, is independent of ¢, s and

may be arbitrarily small.
The switched linear system 3 4, associated to A, is now defined to be the family of
time-varying systems, defined on R, given by
(t) = A(t)x(t) t>to,z(to) = xo (2.1)

where ¢y > 0 and x( are initial times and states respectively and ¢ — A(¢) belongs to
PC(A). Note that we are defining ¥ 4 to be the collection of time-varying systems

of the above form obtained as ¢t — A(t) varies over all elements of PC(.A).
Comments:
The above definition is just a formalization of the ideas that were dis-

cussed at the beginning of the section. By considering mappings t —

A(t) in PC(A), we are ensuring that:
(i) t — A(t) is piecewise constant;
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(ii) there can only be finitely many switches in any finite time-interval.

Constituent systems:

For each i € {1,...,k}, the LTI system
Y4, 2(t) = Aix(t)

is referred to as the ' constituent system of the switching system (2.1). The
overall system (2.1) is constructed by switching between the constituent systems

TS

ke

The switching signal and sequence:

Given a function A(.) in PC(A) and some initial time ¢y, we can define a piecewise

constant function o : [tg, +00) — {1,2,...,k} by
A(t) = Aa(t) for all ¢ > to.

In keeping with the standard practice in the literature [28, 69] we shall call o the

switching signal.

Furthermore, we can form the sequence of ordered pairs
(t()aio)?(tl,il)?--~7(tN7iN)7"' (22)
where ty € [tg, +00), iny € {1,...,k} for all N > 0 and

A(t) = AiN for ty <t <tngr;

A(tn+1) # A(ty) for all N > 0.

In the spirit of [15] we shall refer to this sequence as the switching sequence. The

times tg,t1,...,tm,... are known as the switching instances.

The switching signal can be thought of as an input that determines the switching

action of the system (2.1), specifying the instances when switching takes place and

17



2.2 Switched linear systems - definitions

which system is to be activated at each such time. Similarly, the switching sequence
lists the times when switching occurs together with which system is active between

any two such instances.

As a final piece of notation x(t,tg,zp,0) denotes the state of the system (2.1) at
time t starting from an initial state zg at time ¢ with the switching signal given by
o. When the meaning is clear from context, we shall simply use z(t) to denote a

trajectory of the system.

Of course, before proceeding to discuss the properties of solutions to (2.1), it is
important to establish that such solutions actually exist. Keeping in mind that
between any two switching instances, (2.1) evolves in the same manner as a standard
LTI system, it is fairly easy to see that (2.1) has continuous piecewise C'* solutions
x(.) for all initial states zg and all initial times ¢o!. In fact, there is one such solution
corresponding to each function A(.) in PC(A). To see this, let the switching instances
be tg,t1,t2,. .., tm, ..., and remember that for ¢, <t < ¢, the system (2.1) evolves
as the LTT system X 4(; ). Then it follows by combining the transition matrices of
the LTI systems X4,,..., X4, [118] appropriately, that for any ¢ > ¢y, the unique

solution corresponding to a given A(.) is given by

2(t) = [eAlm)t=tm) Alm—1)(tm—tm-1) | GA(01)(t2=12) GA(t0) (1=t0) |1

where t,, is the last switching instant before ¢.

To illustrate how systems such as (2.1) evolve, suppose that the dynamics are given
by @(t) = A;x(t) over some finite time interval [t,,ty41), where A; is one of the
matrices in A. At ¢, the system switches and the dynamics in the following
interval [ty41,t,42) are given by @(t) = Ajxz(t) for some j # i. We assume that the

state vector z(t) does not jump discontinuously at t,1. Hence the initial state at

LA piecewise C' function is a continuous function that is piecewise differentiable with a

piecewise continuous first derivative.
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time ¢4 for &(t) = Ajx(t) is the terminal state of @(t) = A;z(t) at ty41.

Figure 2.1 below depicts a sample trajectory of a second order switched linear system
with two constituent systems. Notice that while the trajectory is continuous, its

derivative has discontinuities at the switching instances.

1 T
Switching instant
System exolying in /
0.5F B
ol 4
™
8
System evolving in
-0.5r mode 1 Bl
1k 4
-15 1 1 1 1 1 1
-3 -2.5 -2 -15 -1 -0.5 0 0.5

Figure 2.1: Sample trajectory of a second order switched linear system

Linear differential inclusions:

In the next section we shall define the various types of stability with which we are
going to be concerned throughout the thesis. Before doing this, it is worth noting
briefly that it is possible to treat some of the questions relating to the stability of
switched linear systems within the framework of linear differential inclusions (LDIs)

[137]. Specifically, given the set of matrices A, we could consider the LDI
x(t) S {Alx, Aoz, ... ,Akaj‘}. (2.3)

This is a more general setting than that which we have chosen, allowing for the

possibility of infinitely fast switching and non-measurable selections from the set
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2.3 Stability of switched linear systems

A. Some of the results that we quote later in this chapter are taken from the
mathematics literature on LDIs. However, for our purposes the framework provided
by the definition given in (2.1) is more than adequate as this covers the vast majority

of switched linear systems encountered in practice.

2.3 Stability of switched linear systems

Stability is a fundamental requirement for all control systems and switched linear
systems are no exception to this general rule. In view of this, it is hardly surprising
that the recent growth of interest in these systems has led to a considerable effort
being expended on the investigation of their stability properties. As we shall see,
there are a number of questions pertaining to the stability of switched linear systems
that are as yet unanswered. Before embarking on a discussion of these questions, we
now introduce the formal definitions of the types of stability that are of interest to

us.

2.3.1 Definitions of stability

A point p € R™ is an equilibrium point of the system (2.1) if A;p =0 for 1 <i <k.
In particular, the origin is always an equilibrium point for (2.1). In the following
definitions, for a point x € R", ||z|| denotes the usual Euclidean norm of z, given by

|z)|* = 2.

Definition 2.3.1 The origin is said to be a uniformly stable equilibrium point of
(2.1) if given any € > 0, there is some § > 0 such that ||xg|| < § implies ||z(t, to, xo,0)|| <
€ for all t > tg and all switching signals o. The choice of § does not depend on ty or

g.
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2.3 Stability of switched linear systems

Figure 2.2: Stability

Comments:

Roughly speaking, this means that we can ensure that a trajectory of
the system (2.1) remains close to the origin by choosing the initial state
sufficiently close to the origin. Note that in Definition 2.3.1 the unifor-
mity is with respect to both the initial time ¢y and the switching signal

g.

In addition to stability, an equilibrium point is often required to be attractive in the
sense of the following definition. The idea here is that any trajectory that starts

close to an equilibrium point eventually converges to that equilibrium.

Definition 2.3.2 The origin is said to be globally uniformly attractive if given any

R > 0 ande > 0, there exists some T > 0 such that if ||xo|| < R, then ||z(t, to, zo,0)| <
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€ for allt > tg + T and all switching signals 0. Once again the choice of T does not

depend on ty or o.

The definition of asymptotic stability is now obtained by combining the notions of

uniform stability and attractivity.

Definition 2.3.3 The origin is said to be a uniformly asymptotically stable equilib-

rium if it is uniformly stable and globally uniformly attractive.

We next define the related notion of uniform exponential stability where an estimate

on the rate at which the state converges to the origin is also given.

Definition 2.3.4 The origin is said to be uniformly exponentially stable if there
exist constants v, X > 0 such that ||x(t, to, xo, )| < ye =10 ||ag|| for all t >ty and

all switching signals o.

It is important to understand that all of the above definitions of stability are uniform
not only with respect to the initial time ¢y but also with respect to the switching
signal o. So for instance, if the origin is uniformly exponentially stable in the sense
of Definition 2.3.4, then it is exponentially stable for any admissible switching signal
o. For most of the thesis, we shall be interested in obtaining conditions for the
exponential or asymptotic stability of (2.1) under arbitrary switching signals. Tt is
also possible to investigate whether or not (2.1) is stable for some restricted class
of switching signals, and some of the research on switched systems has focussed on
identifying switching signals that result in stability. We shall say more of this later

in the chapter.

Exponential and Asymptotic Stability:

Before proceeding we should note that, for switched linear systems, the notions of

global uniform attractivity, uniform asymptotic stability and uniform exponential
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stability are all equivalent [4]. In fact this result is proven for homogeneous (not
necessarily linear) switched systems. The equivalence of uniform exponential stability
and uniform asymptotic stability has also been established in [27], where the authors
use the term linear polysystem for the switched linear system (2.1). In view of
this equivalence, we shall speak of the uniform exponential stability and uniform

asymptotic stability of switched linear systems interchangeably.

Bounded-input bounded-output (BIBO) stability:

Thus far, the definitions that we have considered concern the unforced system (2.1),
without taking into account any input or output signals. In practice of course, it
is necessary to allow for control inputs, and to deal with the stability issues associ-
ated with input-output systems. It is in this context that the important notion of

bounded-input bounded-output (BIBO) stability , which we now introduce, arises.

Given the sets of matrices {Ay, ..., Ay} CR™" {By,...,B,} CR™" {C},...,Cy} C

RP*™ consider the switched input-output equations

i = Alt)z+ Bt)u (2.4)

y = C(t)x.

Here x(t) € R™ is the state vector, u(t) € R™ is the input, y(¢) € R? is the output and
A(t), B(t), C(t) switch between the matrices in the sets {A1,..., A}, {B1,...,Bp},
{C1,...,Cy} respectively, in such a way that the mapping t — (A(t), B(t),C(t))
satisfies properties analogous to those imposed on the mapping ¢t — A(t) in the defi-
nition of the unforced switched linear system (2.1). Switching signals and switching
sequences can be defined for input-output systems in much the same way as we have
defined them for the system (2.1). The idea behind the definition of BIBO stability
is that a bounded input signal u should give rise to a bounded output signal y under

the assumption of zero initial state.
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Definition 2.3.5 The input-output system (2.4) is uniformly BIBO stable if there
exists a positive constant n such that for any initial time to, any bounded input signal

u and any switching signal, the zero-state response y satisfies
sup [|y(t)[| < nsup [lu(t)]]
t>to t>to

In a sense, if a system is BIBO stable, this means that an input signal cannot be
amplified by a factor greater than some finite constant 7, in passing through the sys-
tem. We shall not deal explicitly with BIBO stability in this thesis, but will rather
concentrate on the internal stability properties of the system (2.1). However, it is
important to keep in mind that there are strong connections between the asymp-
totic or exponential stability of (2.1) and the BIBO stability of (2.4) [118, 85]. In
particular, if the system (2.1) is uniformly exponentially stable, then the correspond-
ing input-output system (2.4) will be uniformly BIBO stable provided the matrices
B(t),C(t) are uniformly bounded in time. This will of course be the case when

B(t),C(t) switch between a finite family of matrices.

2.3.2 Stability problems for switched linear systems

For an LTT system
Yu:i(t) = Ax(t) AeR™",

establishing whether 3 4 is uniformly exponentially stable or not is relatively straight-
forward. In fact, it is well-known that 34 is uniformly exponentially stable if and
only if all of the eigenvalues of the system matrix A lie in the open left half of the
complex plane [118, 50]. Such matrices are known as Hurwitz matrices. Unfortu-
nately, for switched linear systems of the form (2.1) the situation is considerably more
complicated. In particular, the exponential stability of each of the constituent LTI

systems ¥ 4,,...,24, is not sufficient to ensure that the overall system is uniformly

k
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exponentially stable for arbitrary switching signals. This fact has been demonstrated
by several examples presented in [69, 28, 64] and elsewhere. In fact, it is not overly
difficult to find examples of systems constructed by switching between exponentially
stable LTI systems, for which there exist switching signals that result in divergent

trajectories.

Unstable switching system with stable constituent systems:

Example 2.3.1 Consider the two second order LTI systems ¥ 4,, ¥4, where

4.4908 —35.1122 —5.3169  64.9156
1 — 7A2 —_

41.8926 —6.2049 —22.0802 4.0163

It is easily checked that both Ay and A are Hurwitz so that the LTI systems ¥4,
and ¥ 4, are uniformly exponentially stable. However, if we run a simulation of the
system

T=A(t)r A(t) € {41, Ao},
starting at t = 0 with A(0) = Ay and x(0) = (0.7,0.3) and switching every m/80

seconds we obtain the results shown in Figure 2.3 below.
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System trajectory diverges
even though individual modes
are stable!

Figure 2.3: Switching between stable systems can lead to instability

Clearly, for this particular switching signal, the switched system is unstable, even

though the constituent systems X 4,, X4, are exponentially stable.

The next result, taken from [130] describes a simple condition on a family of expo-
nentially stable subsystems that guarantees the existence of a destabilizing switching

signal, such as that in the above example, for the associated switched linear system.

Theorem 2.3.1 Let Ay, ..., A, be Hurwitz matrices in R™*™ so that the associated
LTI systems ¥ 4,,...,X4, are exponentially stable. Suppose that there exist non-
negative real numbers aq, ..., ax, not all zero, such that a1 A1 + asAs + - - - + apAg

has an eigenvalue X\ with non-negative real part. Then the associated switched linear
system (2.1) is not uniformly exponentially stable for arbitrary switching signals.
Furthermore, if a1 A1 + agAs + - - - + ap Ag has an eigenvalue with positive real part,

then there exists a periodic switching signal that results in a divergent trajectory.

Comments:
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Note that it is possible to use Theorem 2.3.3 below to show that if
there exist constants agq,...,ax such that a1 A; + --- + i A has an
eigenvalue in the closed right half plane, then the system (2.1) is not
uniformly exponentially stable for arbitrary switching signals. However,
the result of Theorem 2.3.1 is stronger than this, as it establishes that if
a1 A1+ - -+ai Ay has an eigenvalue in the open right half plane, then it is
possible to obtain an unbounded solution of (2.1) through an appropriate
choice of switching signal. In fact, the destabilizing switching signal can
be taken to be periodic. In this context, the work of Pyatnitskii and
Rapoport on the relationship between absolute and periodic stability

should be noted [111].

It should be noted that the approach taken in [130] relies on identifying
a specific way in which instability can arise in the switched linear system
(2.1). Specifically, it is shown that if the hypotheses of Theorem 2.3.1 are
satisfied then the system (2.1) can become unstable through so-called
‘chattering’, in a similar manner to Example 2.3.1. This is reminiscent
of the describing function approach taken in [82] (for example) where
conditions for the existence of an oscillatory instability of a non-linear

feedback system are considered.

The above observations give rise to a number of natural questions regarding the
stability of systems of the form (2.1) [69]. We now list three of the major such

questions to have received attention in the literature in the recent past.

(i) Arbitrary switching:

Here we are interested in determining when the system (2.1) is uniformly
exponentially stable in the sense of Definition 2.3.47 This requires the system

to be exponentially stable for all possible switching signals ¢. In particular
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this must be true for any constant signal o(¢) = 4, and hence a necessary
condition for stability under arbitrary switching is that each of the constituent

LTI systems ¥ 4,,...,24, is exponentially stable.

k
(ii) Dwell Time:

When the system (2.1) fails to be exponentially stable for all switching signals,
there may be a subclass of signals for which the system is exponentially stable.
In particular, it is known [69, 92| that provided the interval between successive
switches is sufficiently long (switching is slow enough), the system will be
stable. The essence of the dwell-time problem is to determine the minimum
time that needs to be left between successive switches in order to preserve

stability.

(iii) Stabilizing switching sequences:

For switched systems constructed by switching between a number of individu-
ally unstable systems, it is sometimes possible to construct specific switching
signals that result in exponentially stable trajectories [33, 144]|. Such signals
are commonly referred to as stabilizing switching signals or sequences and this

problem is concerned with identifying these signals when they exist.

While all of the above problems are both interesting and important, for the most part
we shall concentrate on problem (i); that of guaranteeing the exponential stability of
switched linear systems for arbitrary switching signals. Our approach to this problem
shall be to look for conditions for the existence of common Lyapunov functions for
families of LTI systems. Some of the basic ideas and key results underpinning the
use of common Lyapunov functions in the stability analysis of switched systems are

discussed in the next section.
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2.3 Stability of switched linear systems

2.3.3 Lyapunov theory for switched linear systems

The concept of a Lyapunov function has played a key role in the stability theory of
linear and non-linear systems for some time [73, 118, 141, 56]. In view of this, it
is not surprising that a considerable amount of recent work has focussed on apply-
ing similar ideas to switched systems. In particular, many authors have attempted
to derive conditions for the stability of switched systems based on the existence of
common Lyapunov functions for their constituent systems. In this context, two fun-
damental facts have now been established for switched linear systems. First of all,
if the constituent systems of the switched linear system (2.1) have a common Lya-
punov function, then the overall system is exponentially stable for arbitrary switch-
ing signals. Conversely, a number of authors have shown that if the system (2.1) is
uniformly exponentially stable for arbitrary switching signals, then its constituent
systems have a common Lyapunov function. We shall now discuss some of the major

results of this type in more detail.

To begin with we state a result due to Molchanov and Pyatnitskiy. This theorem was
originally proven in [86] for linear differential inclusions but we give the result as it
applies to switched linear systems of the form (2.1). Before stating the theorem, we
need to introduce some notation as well as recall a few basic concepts from convex

analysis [116].

Given a point x € R™, and the set A = {A4,..., Ax} C R™*" Az shall denote the set
{Ajz,..., Agx} C R™. For a positive integer k, we say that a function V' : R — R
is (positively) homogeneous of degree k if V(Ax) = AV () for all x € R, and A\ € R
(A > 0). Finally, we recall the definition of the one-sided directional derivative for a

convex function V' : R” — R at a point € R™ in the direction of y € R™ [116].

ov(z) . V(z+ty) —V(x)
= inf
oy t>0 t

Theorem 2.3.2 The origin is a uniformly exponentially stable equilibrium of the
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2.3 Stability of switched linear systems

system (2.1), in the sense of Definition 2.3.4 (that is, for arbitrary switching sig-
nals), if and only if there exists a strictly convez, positive definite function V(x),

homogeneous of degree 2, of the form

V(z) = a'L(zx)x  where L(z) € R™" and

L) = L(z)=L(cx) for all non-zero c € R,z € R",

whose derivative along trajectories of the system (2.1) satisfies

s oV (x)

<_ 2
max = < o]

for some v > 0.

Comments:

The function V(.) appearing in Theorem 2.3.2 defines a common Lyapunov function
for each of the constituent LTI systems ¥ 4,,...,%4, associated with the switched
linear system (2.1). Thus if a switched linear system is uniformly exponentially stable
for arbitrary switching signals, such a common Lyapunov function is guaranteed to
exist. Note however that the function V(.) need not be a smooth (or even C!)
function?. Based on the above result, Molchanov and Pyatnitskiy have also shown
that the constituent systems of a uniformly exponentially stable switched linear
system always have common Lyapunov functions of piecewise quadratic and piecewise
linear type. These particular types of Lyapunov functions shall be discussed in more

detail in later sections.

While the Lyapunov function appearing in Theorem 2.3.2 is not necessarily smooth,
a similar result, due to Dayawansa and Martin [27], shows that if the system (2.1) is
uniformly exponentially stable for arbitrary switching signals, then there is a smooth

common Lyapunov function for its constituent systems. More specifically, the fol-

2A C! function is a differentiable function with continuous first partial derivatives.
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2.3 Stability of switched linear systems

lowing result is proven in [27] where the authors use the term linear polysystem for

what we are calling a switched linear system.

Theorem 2.3.3 For the switched linear system (2.1) the following are equivalent.

(i) The origin is a uniformly exponentially stable equilibrium for arbitrary switch-

1mg signals.

(ii) The origin is a uniformly asymptotically stable equilibrium for arbitrary switch-

1mg signals.

(iii) There is a C' positive definite function V : R — R, positively homogeneous
of degree 2 such that VV (x)A;x is a negative definite function of x for all
A; e A.

(iv) There is a C* positive definite function V : R"™ — R such that VV (x)A;zx is

a negative definite function of x for all A; € A3

The two results above establish that the existence of a common Lyapunov function for
the constituent systems of a switched linear system is sufficient for its uniform expo-
nential stability and, perhaps more significantly, that the converse is also true. That
is, that the constituent systems of a switched linear system that is uniformly expo-
nentially stable under arbitrary switching always have a common Lyapunov function.
A number of other authors have obtained similar results, including Brayton and Tong
in [16] where a converse theorem for discrete-time systems was established. The work
presented in [70] and [114] is also worth mentioning in this regard. Furthermore, a

version of Theorem 2.3.3 for switched non-linear systems was proven in [75].

The abstract results of this section assure us that if a switched linear system is

uniformly exponentially stable for arbitrary switching signals, then its constituent

3A function is C if it has continuous partial derivatives of all orders.
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2.4 Switched linear systems and Lyapunov functions

systems have a common Lyapunov function. In order to make use of these results in
practice however, we need ways of searching for common Lyapunov functions and of
determining whether or not they exist. In the next section, we shall briefly review
some of the techniques that have been developed to search for Lyapunov functions

of various types for switched linear systems.

2.4 Switched linear systems and Lyapunov func-

tions

In order to apply the results described in the previous section to analyse the stability
of switched linear systems, we need reliable methods of searching for, or determining
the existence of, Lyapunov functions. Of course, it is not feasible to conduct a
search over the entire class of possible Lyapunov functions, and for this reason,
the common practice is to restrict ourselves to searching for Lyapunov functions of
specific forms. The most common types of functions used in practice are quadratic,
piecewise-quadratic and piecewise-linear functions. In this section, we shall describe
some of the techniques for applying Lyapunov functions to the stability analysis of

switched systems that have been developed in recent years.

2.4.1 Common quadratic Lyapunov functions

Perhaps the most familiar type of Lyapunov function is that given by a quadratic
form V(z) = 27 Px. The stability analysis of LTI systems is completely covered by
such functions as exponential stability is equivalent to the existence of a quadratic
Lyapunov function in this case [118, 141]. For the switched linear system (2.1),
it follows from Theorem 2.3.3 that if there exists a common quadratic Lyapunov

function (CQLF), V(x) = 2T Pz, for the constituent systems Y4,,...,%4,, then
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2.4 Switched linear systems and Lyapunov functions

the overall system is uniformly exponentially stable for arbitrary switching signals.

Part of the appeal of using such functions comes from the fact that the condition for

V(z) = 2T Px to be a CQLF for $4,,...,%4, can be written in a very simple linear
algebraic form. Specifically [69, 133], V(z) = 27 Pz is a CQLF for $4,,...,%4, if
and only if

P=pP" > 0 (2.5)

ATP+PA; < 0 for1<i<k.

To date, much work has been carried out on the problem of CQLF existence for
families of LTI systems and a number of theoretical results are now available [101,
133, 129, 88]. Furthermore, it is important to note that the conditions given by (2.5)
define a system of linear matrix inequalities (LMIs) in the decision variable P, and
hence modern numerical techniques from the theory of convex optimization can be
applied to determine whether or not a CQLF exists [12, 13]. However, it should be
noted that there are some issues with the numerical approach to CQLF existence, and
that the general theoretical problem of determining analytic and verifiable conditions
that are equivalent to CQLF existence is still open. The problem of CQLF existence
shall be a major topic throughout this thesis and we shall have much more to say on
this question and the approaches to it, numerical and otherwise, in later chapters. In
particular, detailed background on the problem and a review of the relevant literature

are presented in the next chapter.

While quadratic Lyapunov functions possess many advantages, it has been noted by
various authors [27, 17, 125] that CQLF existence may be a conservative way of estab-
lishing exponential stability for general switched linear systems or linear time-varying
systems. In particular, an example has been described in [27] that illustrates that it
is possible for a switched linear system to be uniformly exponentially stable under
arbitrary switching even if its constituent systems have no CQLF. This has naturally

led to the consideration of other, potentially less restrictive, classes of Lyapunov func-
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tions in the literature. One early example of the use of a non-quadratic Lyapunov
function for demonstrating the stability of a time-varying system is given by the
so-called Lur’e Postnikov Lyapunov functions. These functions combine quadratic
and integral terms and arose in connection with the classical Popov stability crite-
rion [141, 56, 109]. We shall now discuss a number of other more general types of
Lyapunov function that have appeared in the literature on the stability of switched

systems over the past number of years.

2.4.2 Piecewise linear systems and the S-procedure

For certain classes of switched linear systems, the global nature of the conditions in
(2.5) can be unduly restrictive. An example of such a class is that of piecewise-linear
systems. For such systems, the switching action is state-dependent and typically the
state space is partitioned into a number of regions (often polyhedral) €1,...,Qp,

with the dynamics within §2; given by
t=Ax, forl<i<k. (2.6)

Thus, for each i € {1,...,k}, A; only determines the system dynamics within ;.
For this reason, it is unnecessary to demand that the derivative of V(z) = 27 Px
along trajectories of & = A;x, given by T (AT P + PA;)x, is negative on the entire
space. In fact, it is enough to require that l‘T(AZTP + PA;)x is negative for x in ;.

This is the underlying idea of the so-called S-procedure [12, 47].

In the S-procedure, we construct matrices Si,...,S; such that 27 S;z > 0 for x in

; and then search for a positive definite P satisfying the conditions
AP+ PA;+8S;i<0 forl1<i<k. (2.7)

It follows from the fact that 27 S;z > 0 for = in Q; that if (2.7) is satisfied then

w1 (AT P + PA;)z is negative when x € Q; for 1 < i < k. However, it is possible
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2.4 Switched linear systems and Lyapunov functions

for the expression 27 (AT P + PA;)z to take either negative or positive outside of
Q;, and for this reason the conditions of (2.7) may be easier to satisfy than those of
(2.5). As with the conditions for CQLF existence, (2.7) defines a system of LMIs in

the variable P.

2.4.3 Piecewise quadratic Lyapunov functions

In the hope of obtaining less restrictive stability criteria for piecewise linear systems of
the form (2.6), a number of authors have considered piecewise quadratic Lyapunov
functions. Here, rather than searching for a single quadratic Lyapunov function
V(x) = 27 Pz for the system (2.6), the idea is to search for a family of such functions
satisfying certain local conditions, and then to piece these together appropriately to

form a Lyapunov function for the overall system.

For example, in [47] under the assumption that the individual regions ; are poly-
hedra, Johansson and Rantzer describe a procedure for searching for a piecewise

quadratic Lyapunov function of the form *

V(z) =2 Px  for z € Q, (2.8)
where P; € R™ ™ for i = 1,2,...,k. The conditions for stability that they derive
relax those of (2.5) in a number of ways.

(i) The use of different quadratic forms for the different operating regions €2; can
lead to greater flexibility in the definition of the Lyapunov function V.

(ii) The matrices P; are not required to be globally positive definite. In fact, by
applying the S-procedure, the inequality 7 Pz > 0 is only required to hold

for x € ;.

4The function takes a slightly different form in regions €2; that do not contain the origin.

For details consult [47]
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(iii)

Similarly, the condition ZL‘T(A;TFPi + P;A;)x < 0 is only required to hold for

x € €.

The results presented in [47] were derived for the class of piecewise affine systems

and can also be applied to more general switched or hybrid systems.

A few specific points relating to the results described in [47] are worth noting.

(i)

(i)

(iii)

The matrices P; are parameterized so as to ensure that the overall function

V(x) is continuous.

The conditions for (2.8) to define a piecewise quadratic Lyapunov function
for the system (2.6) are expressed in the form of a system of linear matrix
inequalities (LMIs) which means that modern convex optimization algorithms

can be applied to search for piecewise quadratic Lyapunov functions.

It is possible to search for a piecewise quadratic Lyapunov function defined
with respect to a partition of the state space other than that dictated by the
dynamics. This means that if an initial search is unsuccessful, it may be possi-
ble to find a piecewise quadratic Lyapunov function defined with respect to an
alternative, possibly finer, partition of the space. The problem of selecting an
initial partition, and of devising automatic methods of successively refining the
partition, in order to systematically search for piecewise quadratic Lyapunov

functions is in general far from straightforward.

The same authors have extended the results and ideas of [47] in [48, 113], and sim-

ilar results leading to LMI-based conditions have been reported in [104, 105] by

Pettersson and Lennartson. Piecewise quadratic Lyapunov functions have appeared

before in stability analysis in the work of Power and Tsoi and also of Weissenberger

[110, 143]. An important point about this type of Lyapunov function is that the

constituent systems of a switched linear system of the form (2.1) that is exponen-
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tially stable under arbitrary switching always have a common Lyapunov function of
piecewise quadratic type. This was shown by Molchanov and Pyatnitskiy in [86] and

some related work has been presented in [149].

2.4.4 Piecewise linear Lyapunov functions

Another class of Lyapunov functions that has received attention in relation to sta-
bility questions is that of piecewise linear Lyapunov functions [106, 107, 147, 9, 151].
While the study of such functions is not new [117, 143] it has undergone something of
a resurgence of late. A number of factors have contributed to this phenomenon. For
instance, given that the trajectories of switched systems can be non-smooth at the
switching instances, intuitively it seems appropriate to use Lyapunov functions that
can themselves be non-smooth to analyse these systems. Moreover, for systems con-
structed by switching between LTI systems with real eigenvalues, the nature of the
trajectories of such systems suggests that piecewise linear (rather than quadratic)
Lyapunov functions are particularly suited to their stability analysis. Hence the
emergence of switched systems has naturally led to renewed interest in the study of
this type of Lyapunov function. Furthermore, the advances made in computational
technology and optimization algorithms in recent years have rendered it far easier to
carry out numerical searches for piecewise linear (and quadratic) Lyapunov functions

than was previously the case.

Typically, piecewise linear Lyapunov functions are defined using either the [; or the
Il vector norms on the state space R™. As usual [42], the [; norm of a vector

= (z1,...,7,)7 € R" is defined as
zlly = [z + [22] + - - + |2l
with the [, norm given by

e = max .
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As an example of the use of Lyapunov functions based on the [y norm, Wulff et al

[147]| define a unic function on R™ to be a function of the form
V(z) = |[Mz| (2.9)

for some non-singular matrix M € R™*™. They then derive a simple necessary and
sufficient condition for a second order LTI system to have a unic Lyapunov function.

Specifically, given a matrix A in R?*2 they show that the associated LTI system
by A - T = Az

has a unic Lyapunov function if and only if all of the eigenvalues A of the system

matrix A lie in the so-called 45°-region given by
{z € C: |Im(z)| < |Re(z)],Re(z) < 0}.

Furthermore, a sufficient condition for a pair of exponentially stable second order
LTI systems to have a common unic Lyapunov function is also derived in the same

paper. Specifically, the following is shown.

Theorem 2.4.1 Let two Hurwitz matrices A1, Ay in R?>*? be given such that the
eigenvalues of Ay and Ay are all real. Suppose that for some ag € [0,1], apAy +
(1 — ag) Az has a complez eigenvalue and that for all o € [0,1], the eigenvalues of
aA;+(1—a)Asg lie in the interior of the 45°-region. Then the associated LTI systems

YAy, Y4, have a common unic Lyapunov function.

Comments:

It should be noted that the above result provides a simple eigenvalue-
based condition for a pair of LTI systems to have a common piecewise
linear Lyapunov function, and moreover that the condition that it de-

scribes is co-ordinate independent.
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As well as the [1-based unic functions, several authors have considered Lyapunov

functions, defined on R, of the form
V(z) = |[Wz| (2.10)

where W € R™*" is a matrix of rank n and m > n. In fact it has been shown in
[86], that the switched linear system (2.1) is uniformly exponentially stable under
arbitrary switching if and only if its constituent systems have a common Lyapunov
function of this form. In the same paper, the following necessary and sufficient
conditions for ||Wz||« to define a Lyapunov function for the single LTI system X 4
were derived. A constructive proof of this same result, based on linear programming,

was given by Polanski in [107].

Theorem 2.4.2 Let A € R™™ be Hurwitz. Then a necessary and sufficient condi-
tion for V(zx), given by (2.10) to be a Lyapunov function for the LTI system ¥4 is

that there exists a matriz Q € R™ ™ such that
WA=QW
and
m
Git Y lail <0

J=1,j#i

for 1 <i<m.

The level curves of Lyapunov functions of the form (2.10) are centrally symmetric
polyhedra, with the number of faces on the polyhedron being determined by the
integer value m. Those Lyapunov functions of the form (2.10) for a system X 4, whose
level curves have the minimum possible number of faces, v(A), were considered in
a recent paper by Bobyleva [9]. In that paper, a number of results were presented

relating this minimum number v(A) for the LTI system ¥4 to the location of the
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spectrum of the system matrix A. Some of these results are related to the so-called

‘45°7 criterion of [147].

In connection with piecewise linear Lyapunov functions, the work of Yfoulis and
Shorten [151] on numerical techniques for searching for such functions is worth not-
ing. Currently, the difficulty of systematically searching for such functions increases
dramatically with the dimension of the state space and general search methods only

appear to work effectively up to dimension three.

Lyapunov functions defined using the [; and [, norms are special cases of Lyapunov
functions defined using general vector norms. For a general such norm ||.|| on R™,
and W € R™ "™ of rank n (m > n), the problem of determining when ||Wz|| defines
a Lyapunov function for the LTI system X 4 has been considered by Kiendl et al. in
[57]. The conditions presented there are only sufficient in general, although Polanski

has subsequently identified situations where they are also necessary in [108].

2.4.5 Multiple Lyapunov functions

The concept of multiple Lyapunov functions is another related approach to the stabil-
ity analysis of switched systems, with the key idea being to use a number of different
Lyapunov functions, rather than a single Lyapunov function, to investigate stabil-
ity. Here, the focus is not on guaranteeing stability for arbitrary switching. Rather,
through the use of multiple Lyapunov functions, it is possible to identify ways of
restricting the switching action so as to ensure that the system remains stable. To
date a number of papers dealing with multiple Lyapunov functions have appeared
and several closely related results are now available [15, 103, 104|. Theorem 2.4.3
below is a fairly typical example of the results in this area, and should hopefully

illustrate the key ideas behind the method.

While several of the theorems on multiple Lyapunov functions in the literature appear
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involved and technical in nature, the underlying ideas are quite simple. In fact, the
technique itself is related to the intuitive observation that a switched system will be
stable provided the switching between its constituent systems occurs at a sufficiently
slow rate [69]. It should be noted that very similar ideas have arisen before in the
context of time-varying systems in the work of deSoer and others on the stability of

slowly-varying systems [29, 135].

In this context it should be pointed out that it is not a generally true precept that
‘slower switching means greater stability’. For instance, consider again the two sec-
ond order systems of Example 2.3.1. We have seen that switching between the two
systems every /80 seconds leads to instability. Now if we start from the same initial
conditions but slow down the rate of switching to one switch every /40 seconds,
we obtain the stable trajectory shown in Figure 2.4 below. However, if we switch at

the slower rate of one switch every 7 /30 seconds, we obtain the trajectory shown in

Figure 2.5.
0.8
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Figure 2.4: Switching every 7/40 seconds
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Now, with the same initial conditions once again and the yet slower rate of switching

of one switch every m/30 seconds, we obtain the trajectory shown in Figure 2.5.

Trajectory is diverging

Figure 2.5: Switching every 7/30 seconds

This simple example illustrates that it is possible for a switched system to be stable

at one rate of switching, and unstable for a slower rate.

In order to state the next theorem succinctly, we need to introduce a piece of notation

associated with switching signals for the system (2.1).

Consider the system (2.1). Given i € {1,...,k} and a switching signal, we denote
by tg.i) the j*" instant when the constituent system % A, 1s switched on or activated.
While we state the following theorem for switched linear systems, it has been proven

by Branicky in [15] for switched non-linear systems.

Theorem 2.4.3 Consider the system (2.1). Suppose that we have a family of C*

positive definite functions V;, 1 < i < k, such that, V; decreases along the trajectories
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of the system whenever X 4, is active, and moreover that Vl(ac(tyll)) < ‘/Z({L‘(tgz))) for

all j. Then the system is uniformly stable.

The idea of the theorem is illustrated in Figure 2.6 below.

\

Figure 2.6: Multiple Lyapunov functions V7, V5: solid line indicates that the corresponding

system is active

Comments:

It follows from Theorem 2.4.3 that a switched system will be stable if
we can find a set of Lyapunov functions Vi, ..., Vi, one for each of
its constituent systems, such that each time the i** constituent system
is switched on, the value of V; is no greater than it was the previous
time the i** system was switched on. Thus, to ensure stability, we need
to wait until the value of V; has decreased sufficiently before we switch
back to the i** subsystem. In a sense, the essence of this method is the
observation, related to earlier work on slowly-varying systems [29], that

if we switch sufficiently slowly, then the system will be stable. Multiple
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Lyapunov functions provide a way of deciding when and how to switch

once the individual functions V; have been chosen.

However, a drawback of the method is that the Lyapunov functions V;
must be selected in advance, and in order to do this, the individual
systems must be stable. Thus the method cannot effectively be used to
obtain stabilizing switching laws for systems switching between unstable
systems. Also, while the results of [15] were proven for non-linear sys-
tems, finding appropriate Lyapunov functions for non-linear constituent
systems is far from straightforward. Furthermore, in the linear case, the
wrong choice of functions V; may well lead to unnecessarily conservative

restrictions on allowable switching signals.

As mentioned previously, a number of variations on the basic theme of Theorem
2.4.3 exist. For instance, it is possible to obtain a similar result where we compare
the initial value of V; each time X 4, is activated with the terminal value of the last
interval when it was active [14]. A version of Theorem 2.4.3 which can be used to
demonstrate asymptotic stability for switched linear systems has been proven by
Peleties and deCarlo [103, 28] and Pettersson and Lennartson have derived similar

results in [104].

2.5 Concluding remarks

In this chapter, we have introduced the class of switched linear systems as well as
the types of stability that are of interest to us. We have also presented a numerical
example to illustrate some of the well-known issues that can arise in studying the
stability of this class of systems. Throughout the thesis, we shall mainly be interested
in obtaining verifiable conditions for a switched linear system to be exponentially

stable under arbitrary switching. However, in this chapter we have also discussed
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a number of other problems related to the stability of switched linear systems, and
presented a brief review of the general literature on the stability theory of switched
linear systems. In the next chapter, we move on to discuss one of the major topics
of the thesis; namely the common quadratic Lyapunov function (CQLF) existence

problem.
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Chapter 3

The common quadratic Lyapunov
function (CQLF) existence

problem

In this chapter, we introduce the problem of CQLF existence for families
of LTI systems and discuss the relationship between CQLF existence
and the stability of switched linear systems. We also summarize the
results on CQLF existence that have appeared in the systems theory and
linear algebra literature. Background on the CQLF existence problem for

discrete-time systems is also presented.

3.1 Introductory remarks

It is now known that CQLF existence can be a conservative criterion for the expo-
nential stability of certain switched linear systems [27]. For this reason, much recent

work has focused on deriving conditions for stability based on more general types of
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Lyapunov functions, such as those outlined in the previous chapter. In this light, it
may seem natural to question whether there is a point to continuing to work on the
CQLF existence problem and its relation to the stability of switched linear systems.
However, there are a number of very valid reasons for still being concerned with this
problem. In fact, the very observation that CQLF existence can be a conservative
criterion for the exponential stability of switched linear systems raises a number of

important questions.

First of all, exactly how conservative is CQLF existence for the exponential stability
of general switched linear systems? This important question has been raised in
relation to the classical Circle Criterion by Megretski in [8]. No answer can be given
to this without a more thorough theoretical understanding of the problem of CQLF

existence than we currently have.

Furthermore, the conservatism of CQLF existence has been established by providing
specific examples of switched linear systems that are exponentially stable under ar-
bitrary switching, while their constituent systems do not have a CQLF. It is surely
natural to ask if there is anything special about these examples, or more impor-
tantly, whether it is possible to identify classes of systems, of practical relevance,
for which CQLF existence is not conservative? This is a question of great interest
and importance, as quadratic Lyapunov functions are well-understood, and modern
optimization techniques can be used to efficiently test for the existence of CQLFs
for families of LTI systems. Thus, if we know that we are dealing with a system for
which CQLF existence is not a conservative stability criterion, then the question of
whether the system is stable or not can be settled simply and efficiently, without
having to resort to the more sophisticated types of numerical search techniques re-
quired by piecewise Lyapunov functions. As before, in order to make progress on
this question, we must first obtain more knowledge and a deeper understanding of

the theoretical nature of CQLF existence for families of stable LTI systems.
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Finally, a thorough understanding of the CQLF existence problem may well lead
to the development of insights and techniques that can then be used to further our
understanding of the more complicated types of Lyapunov function described in the

previous chapter.

Our main purpose in this chapter is to present an overview of what is currently
known about the problem of CQLF existence for families of exponentially stable LTI
systems. We shall describe a number of different approaches that authors have taken
to this problem and discuss the major results on CQLF existence that have appeared
in the literature. While most of the chapter is taken up with the CQLF existence
problem for continuous-time systems, in the final section we shall also briefly review
the work that has been done on the related problem of CQLF existence for discrete-

time systems.

3.2 Background on the CQLF existence problem

Recall from (2.5) that the conditions for V(z) = 27 Px to be a CQLF for the LTI

systems Y 4,,...,%4, are that P = PT > 0 and A;TFP—FPAZ- <Oforl<i<ek

k

For the sake of clarity, we now state explicitly what we understand by the CQLF

existence problem for continuous-time LTT systems.

The CQLF existence problem:

Given the Hurwitz matrices Ay, ..., Ay in R™*™ (with the associated exponentially
stable LTI systems ¥ 4,,...,%4,) , determine if there exists a single positive definite

P = PT > 0in R™ " guch that
ATP4+PA; <0 forl1<i<k.

If such a P exists, then V(z) = 27 Pz is said to be a CQLF for the LTI systems

YA 24

ket
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3.2 Background on the CQLF existence problem

Before discussing the CQLF existence problem, we first need to record a number of
facts about the Lyapunov inequality for a single matrix. Perhaps the most funda-
mental result in this area is the following well-known theorem [118, 43, 62] relating
the location of the spectrum of a matrix A to the existence of a positive definite

solution to the corresponding Lyapunov inequality.

Theorem 3.2.1 Let A € R™ " be given. There exists a positive definite P = PT > (

i R™™ such that
ATP+ PA=Q (3.1)

with Q@ < 0 if and only if A is Hurwitz. Furthermore, if A is Hurwitz, then there is
a unique Hermitian solution P to (3.1) for every choice of Hermitian Q, and P is

positive definite if and only if Q) is negative definite.

Comments:

(i) The Lyapunov equation (3.1) is a special case of the more general

matrix equation, known as the Sylvester equation, given by
AX+XB=C, (3.2)

where A, B, C' in R™*™" are given and X is an unknown. It is known
that (3.2) has a unique solution X for every C' in R™*" if and only
if o(A) No(—B)! is empty [62, 43]. It follows from this that there
is a unique Hermitian solution P of (3.1) for every Hermitian @ if
and only if 0(A) No(—A) is empty. Note that this is certainly the

case when A is Hurwitz.

15(A) denotes the spectrum of the matrix A. So if \1,..., ), are the eigenvalues of A,

O'AZ{/\l,...,/\n}.
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3.2 Background on the CQLF existence problem

(ii) Given a Hurwitz matrix A, and a Hermitian @, the unique solution

P of (3.1) is given by the expression [118§]
P=— / At QeM dt (3.3)
0

The set P4 of solutions of the Lyapunov inequality:

It follows from Theorem 3.2.1 that if A in R™*™ is Hurwitz, then there exists a
positive definite P such that ATP 4+ PA < 0. In fact, the set of all positive definite
solutions of the Lyapunov inequality corresponding to A forms a non-empty open
convex cone in the space of symmetric matrices Sym(n,R). Formally, if we define

P4 as
Pa={P=P' >0:ATP+PA <O}, (3.4)
then we have the following simple facts about the set P4.
(i) P4 is a convex cone. This means that given matrices P;, Py € P4 and real
numbers A > 0, u > 0, the matrix APy + uP» is in P4 also.
(i) If we denote the closure of P4 in the space Sym(n,R) by P4, then
Pa={P=P'>0:ATP+ PA<0}.

The following result, derived by Loewy in [71], completely characterises pairs of

Hurwitz matrices A, B in R™*" for which P4 = Pp.

Theorem 3.2.2 Let A, B be Hurwitz matrices in R™*™. Then Pp = P4 if and only

if B = A for some real p >0 or B = A1 for some real A > 0.

An immediate consequence of Theorem 3.2.2 is that, for a Hurwitz matrix A, the
two sets P4 and P4-1 are identical. This is a highly significant fact as it effectively

means that a result on CQLF existence for a family of LTI systems ¥4,, ..., X4, can
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3.2 Background on the CQLF existence problem

also be applied to any family of systems obtained by replacing some of the matrices
A; with their inverses A, 1. The convex cones P4 shall play a major role in much of

the work presented later in the thesis.

The Lyapunov operator [ 4:

A slightly more abstract way of thinking about the Lyapunov equation (3.1) is to

consider the linear operator £,4 defined on the space Sym(n,R) by
Li(H)=ATH+ HA for all H € Sym(n,R). (3.5)

It is important to appreciate that £4 maps the space of symmetric matrices into

itself, and as such is a linear operator defined on a vector space of dimension w
We assume that Sym(n,R) (and R™*") is equipped with the inner product
(A, B) = trace(ATB) (3.6)
Note the following important points about the operators £ 4.
(i) It is possible to obtain a matrix representation of £ 4 as follows. Let eq,..., e,

be the standard basis for R™. Then the symmetric matrices

Eii = eiezT, 1§7J§TL

1
Ei; = —(eie;r—l—ejeT), 1<i<j<n

V2 i
form an orthonormal basis for Sym(n,R), with respect to the inner product
given by (3.6). It is then possible to represent the operators £4 with respect

to this basis, obtaining an w X w matrix.

(ii) For the matrix representation in (i), we have that £, = £ 4.

(iii) If the eigenvalues of A € R™*™ are \1,..., A, then the eigenvalues of L, are
given by \; + A; for 1 <4 < j <n [43]. In particular, £, is invertible (in fact

all of its eigenvalues lie in the open left half plane) if A is Hurwitz.
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3.2 Background on the CQLF existence problem

(iv) For a Hurwitz matrix A € R"*", the set P4 is the pre-image of the cone of
negative definite matrices under the mapping £4. So, writing P, for the cone

of positive definite matrices in R™*™, we have that

Pa=L, (=Pn).

Similarity and the Lyapunov equation:

The following simple lemma records a fundamental fact concerning the effect of a

similarity transformation on the solutions of the Lyapunov equation (3.1).

Lemma 3.2.1 Let A € R™*" be Hurwitz and T € R™ ™ be non-singular, and define

A=T71AT. Then,
ATP+PA < 0

o AT(TTPT) + (TTPT)A < 0. (3.7)

Hence the matrix P is in P if and only if 77 PT is in P ;- An immediate consequence
of Lemma 3.2.1 is that X 4,,...,34, have a CQLF if and only if Y- ’szk have

a CQLF, where /L =T714,T,1<i<kfora given non-singular 7.

The matrix pencil o, «)[A1, A2J:

The concept of a matrix pencil, which we introduce now, will play a key role in many
of the results to be presented later on. At this point, it should be mentioned that
the term matrix pencil has previously been used in the mathematics literature in a

slightly different way to that understood here [36].

Let the matrices Aq, Ay in R™*™ be given. Then, in keeping with the notation of
[133, 129], the matrix pencil o, o)[A1, A2] is defined to be the parameterized family

of matrices given by

040,00) [A1; A2] = {A1 +vA2 1 v > O} (3.8)
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3.2 Background on the CQLF existence problem

We say that the pencil 0.9 o)[A1, A2] is non-singular (Hurwitz) if A; + yAs is non-
singular (Hurwitz) for all v > 0. Note that if A; is itself non-singular, then the
pencil 0,.)[A1, A2] is non-singular if and only if the matrix product Al_lAg has
no negative real eigenvalues. Furthermore, if both A; and As are non-singular,
then the product A; A5 ! has no negative real eigenvalues if and only if the product
Al_lAg has no negative real eigenvalues. In particular, this is true if A;, Ao are
Hurwitz matrices. For this reason, when we are discussing singularity for matrix
pencils associated with Hurwitz matrices A1, Az, we shall often use the products
A1A L and AflAQ interchangeably. Note that it also follows that o,y oo)[A1, Ay 1]
is non-singular if and only if o[ o) [Al_l, Ay] is non-singular if A; and Ay are both

non-singular.

Note that for two Hurwitz matrices Ay, A2 in R™*", the matrix pencil 0.9 o) [A1, A2]
is non-singular (Hurwitz) if and only if (1 — «)A; + aAs is non-singular (Hurwitz)

for 0 < a < 1.

CQLFs and stability radii:

Finally, for this section, we note the connection between the CQLF existence problem
and the so-called complex stability radius [41]. For any matrix A € C™"*" let ||A]|
denote the matrix norm induced by the usual Euclidean norm on C" [42], and for

r > 0 let B,(A) denote the open ball, in C"*", centred at A of radius r.
B,(A) ={X e C"": | X — A| < r}

Then, given a Hurwitz matrix A € C™*™, the unstructured complex stability radius

rc(A) is defined by
rc(A) = inf{||A]| : A € C"",0(A+ A) N RHP is not empty }. (3.9)

Here A is thought of as a perturbation on the nominal matrix A, and RH P denotes

the closed right half plane. Then, rc(A) gives us the open ball of largest radius
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3.3 Numerical approaches to the CQLF problem - LMIs

about A in C™*"™ that consists entirely of Hurwitz matrices. The connection with
the CQLF existence problem is given by the fact that r¢(A) is also the maximal
value of r > 0 such that, for every X in B,(A), there is some P = P* > 0 in C"*"

satisfying

A*P+PA < 0

X*P+PX < 0.

Having provided some background on the CQLF existence problem, we now move on
to discuss the various approaches that have been taken to this problem, beginning
in the next section with the numerical approach based on linear matrix inequalities

(LMIs).

3.3 Numerical approaches to the CQLF problem

- LMIs

The question of whether or not a CQLF exists for a family of LTI systems can be
cast as a feasibility problem for a system of linear matrix inequalities (LMIs) [12]
2. Specifically, there exists a CQLF, V(z) = 2’ Pz, for the family of exponentially

stable LTI systems ¥ 4,,...,24, if and only if the system of LMIs given by

k

P=pP" > 0 (3.10)

AFP+PA; < 0 for1<i<k

is feasible. The advantage of looking at the problem in this way is that modern

techniques from convex optimization can be applied to test the feasibility of the

2If a solution exists to a system of LMIs, the system is said to be feasible; otherwise it is

infeasible.
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3.3 Numerical approaches to the CQLF problem - LMIs

system (3.10) in an efficient manner and to determine if a CQLF exists for the
systems X 4,, ..., 24,.

Conversely, it is also possible to verify that no CQLF exists for the family of LTI

systems X4, ..., %4, using LMI methods. In fact, it is known [12, 47] that if there
exist symmetric matrices Ry, ..., R € R™*" satisfying
k
R; > 0, Z(AZTRZ + RzAz) > 0, (3.11)
i=1

then ¥ 4,,...,%4, donot have a CQLF. Once again, (3.11) defines a system of LMIs
in the variables Ry,..., Rg. Thus, software packages such as the MATLAB LMI
toolbox [34] can be used to demonstrate either the existence or non-existence of a
CQLF for a family of LTI systems X 4,,...,%4,. Of course, in recent years the use
of LMIs in control has grown considerably [31] and these techniques are now used

for far more than testing for the existence of a CQLF.

While LMIs provide a highly effective numerical way of checking for the existence
of a CQLF, it is important to point out a number of drawbacks that are associated

with this approach.

(i) Examples have been found where known analytic results can be used to show
that a CQLF exists for a family of systems (or does not exist), but the com-
monly used LMI toolbox for MATLARB fails to give a definitive answer to the

question. Examples of this kind can be found in [80, 64].

(ii) LMIs provide a “black box” approach to the CQLF existence problem, giving
little insight into the relationship between CQLF existence and the stability of
switched linear systems. In particular, it is important to stress that the issues
raised in the opening section of this chapter cannot be settled within the LMI

framework.

In the light of these observations, the importance of developing a more complete
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theoretical understanding of the CQLF existence problem, as well as of deriving
dynamically meaningful analytic conditions for CQLF existence is clear. For the
remainder of this chapter, we shall be describing the work done by the numerous

authors who have considered the CQLF problem from a more theoretical standpoint.

3.4 Structural results

In this section, we shall describe a number of classes of systems for which particularly
simple conditions for CQLF existence are known. In fact, for each of the classes
described here, any family of LTI systems, ¥4,,...,34,, belonging to the class
will have a CQLF if and only if each of the system matrices Ay, ..., Ay is Hurwitz.
Essentially, for any switched linear system constructed by switching between a family
of LTI systems belonging to one of these classes, the exponential stability of each
of its constituent LTI systems guarantees the uniform exponential stability of the
overall system for arbitrary switching signals. The results to be discussed here take
the following straightforward form; if the system matrices Ay, ..., Ay have a certain
structure, then there is a CQLF for the associated family of LTI systems ¥ 4,,...,%X4

k

if and only if each of the A;,1 <1i < k is Hurwitz.

3.4.1 Systems for which the ‘Euclidean norm’ defines a

CQLF

To begin with, we describe a number of system classes that have CQLFs of a par-

ticularly simple form. Specifically, note that the usual Euclidean norm V(z) = 27z

will be a CQLF for the exponentially stable LTI systems ¥4,,...,3 4, if and only if

k

[136]
AT 4+ A; <0 forallie{l,...,k}. (3.12)
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3.4 Structural results

A number of matrix classes have been identified for which this is the case.

(i)

(i)

(iii)

[22] If for each i € {1,...,k}, A; is symmetric and Hurwitz, then A; is in fact

negative definite for 1 < ¢ < k and hence the condition (3.12) holds.

It is shown in [125] that for a family of matrices Aj,..., Ag in R?*2 of the

form

Wi

Ai = ’
—Hi

wi >0, 1<i<k, (3.13)
condition (3.12) is satisfied. Hence V(x) = z7z is a CQLF for the associated

set of second order LTI systems ¥ 4,,...,34

ke

Recall that a matrix A in R"*" is said to be normal if AAT = AT A. Tt follows
from a standard result of linear algebra [42] that if A € R™*" is normal and
Hurwitz, then there is a real orthogonal matrix O in R™*" such that OAO”

is block diagonal of the form

Bl 0 ... 0
0 By ... 0
(3.14)
0 0 0
L0 0 B, |

where each block B; is either a negative scalar b; € R, or a real 2 x 2 block
of the form (3.13). Therefore it follows that O(A + AT)OT < 0, and by
congruence that A + AT < 0. It now follows immediately that any family of

normal Hurwitz matrices Ay, ..., A in R™*" satisfies the condition (3.12).

Note that a perturbation result has been derived in [87] that allows the above obser-

vations to be extended to larger classes of systems.
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3.4.2 Triangular systems

In the previous subsection, we described a number of system classes for which, when
a CQLF exists, it can take a particularly simple form. Specifically, for the system
classes discussed there, if the matrices Aq,..., Ay were all Hurwitz, then the LTI
systems ¥ 4,,...,24, had a CQLF, V(z) = 2T Pz, with P given by the n xn identity
matrix. The next system class to which we shall turn our attention is the class of LTI
systems whose system matrices are Hurwitz and in upper triangular form [42]. We
shall see that families of LTI systems of this form always have a CQLF V (x) = 2! Px,
and that in this case P can be chosen to be a diagonal positive definite matrix. It
should be noted that analogous results to those presented here for upper triangular

matrices also hold for lower triangular matrices.

In [125, 132], Shorten and Narendra analysed the stability of switched linear systems
constructed by switching between constituent systems ¥4,,..., %4, where each A; €
R™™ is Hurwitz and upper triangular for 1 < i < k. (Note that this requires that
each of the A; has real eigenvalues.) Firstly, they proved the uniform exponential
stability of such systems using a direct argument, showing how these systems can
be viewed as cascades of simple first order systems. This result was then extended
to cater for upper triangular matrices (in C™*") with complex eigenvalues as well as
matrices that can be simultaneously transformed by similarity into upper triangular

form.

In the same papers, the above stability result was also established by showing that
a family of LTI systems ¥4,,...,%4,, where the A; are Hurwitz upper triangular

matrices in R"*", always has a CQLF, V(z) = 27 Pz. Moreover, P may be taken
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3.4 Structural results

to be in the form

1 0 0
0 P22 ... 0
pP= . (3.15)
0 .0
i 0 ... ... DPnn |
This result was extended to show that if Aj,..., Ay can be simultaneously trans-
formed into upper triangular form by similarity, then the systems ¥ 4,,..., ¥4, have

a CQLF. Formally, the following result was derived. Note that the same result has

also appeared in [88].

Theorem 3.4.1 Let Aq,..., A, be Hurwitz matrices in R™ ™. Suppose that there
is some non-singular T € C™"" such that T~ A;T is upper (lower)-triangular for

1 <1 < k. Then the associated LTI systems X 4,,...,24, have a CQLF.

From the above discussion, we can see that systems ¥ 4,,...,%4,, where Ay, ..., Ay
can be simultaneously put into triangular form by similarity, have a number of very
appealing properties. Firstly, all that is required for a CQLF to exist for such
systems is that each of the system matrices is Hurwitz. Also, as pointed out in [125],
triangular systems allow for particularly simple design laws as they can treated as
cascades of simple first or second order systems. However, we should point out that
the conditions of Theorem 3.4.1 are restrictive and that the property of simultaneous
triangularizability is not robust. This point has been partially addressed by Mori,
Mori and Kuroe in [88], where Theorem 3.4.1 has been extended slightly using a
perturbation argument. Another limitation of Theorem 3.4.1 is that, in order to
apply it, we must first determine whether the matrix 7" exists or not. In general,

this is a far from straightforward task [112].

In the context of triangular systems, the results presented in [25] on triangular linear

differential inclusions should also be noted. Finally for this section, we note that a
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3.5 Necessary and sufficient conditions for CQLF existence

similar result to Theorem 3.4.1 has appeared in [22], and that it was established in
[5] that, given a triangular Hurwitz matrix A € R™*"  there exists a diagonal P > 0

such that ATP + PA < 0.

3.5 Necessary and sufficient conditions for CQLF

existence

The simplest possible necessary and sufficient condition for a family of LTT systems
Y A5, 24, to have a CQLF is that the individual matrices Ay,..., Ay are all
Hurwitz. For the system classes considered in the previous section, this simple
condition was indeed equivalent to the existence of a CQLF. In general however,
this is not the case, and in fact, verifiable necessary and sufficient conditions for
CQLF existence are known for only a handful of system classes. In this section,
we shall describe classes of LTI systems for which checkable necessary and sufficient
conditions for CQLF existence are known. The first class to be considered is that of

second order systems.

3.5.1 Second order systems

In [133], Shorten and Narendra considered the problem of determining necessary and
sufficient conditions for a family of LTI systems X4, ,...,%4,, where A; € R?*2/1 <
1 < k, to have a CQLF. They approached the general problem in two stages. First
of all, the question of when two second order exponentially stable LTI systems have
a CQLF was addressed and the following result was obtained. Note that this result

has also appeared, without a proof in [21].

Theorem 3.5.1 Let Ay, Ay be Hurwitz matrices in R>*?. Then the LTI systems
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3.5 Necessary and sufficient conditions for CQLF existence

Y4, X4, have a CQLF if and only if the matriz products AlAgl and A1As have
no negative real eigenvalues. An equivalent condition is that the matriz pencils

040,00 [A1, A2] and o, «)[A1, AY) are Hurwitz.
Comments:

The conditions of Theorem 3.5.1 have a number of advantages. First of
all, they are easy to check and are appealingly simple. Moreover, the
form of these conditions links the existence of a CQLF with the expo-
nential stability of switched linear systems, and provides insight into the
conservatism of CQLF existence as a criterion for exponential stability.
Specifically, given two Hurwitz matrices A, Ay in R?*2, consider the

pair of switched linear systems given by
z = A(t)xr A(t) € {Ay, Az} (3.16)
i = Al)x At) € {A, A} (3.17)

Then it follows from Theorem 3.5.1 that if there is no CQLF for the

systems X 4,, 2 4,, then either:

(i) there exists some v > 0 such that A; + A3 has an eigen-

value in the right half plane;
or

(i) there is some v > 0 such that A;+vA; ! has an eigenvalue

in the right half plane.

In the first case, it follows from Theorem 2.3.1 that the switched lin-
ear system (3.16) is not uniformly exponentially stable under arbitrary
switching. Similarly in the case (ii), the system (3.17) is not uniformly

exponentially stable under arbitrary switching. Thus, Theorem 3.5.1
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3.5 Necessary and sufficient conditions for CQLF existence

provides insight into the question of how conservative CQLF existence
is as a criterion for the exponential stability of switched linear systems.
In fact, it tells us that if two second order LTI systems ¥ 4,, ¥4, do
not have a CQLF, then at least one of the associated switched linear
systems (3.16), (3.17) is not uniformly exponentially stable for arbitrary
switching signals. We shall be revisiting this issue again in later sections

and chapters.

Having dealt with the question of CQLF existence for a pair of second order stable
LTI systems, the authors in [133] turned their attention to the problem of determining
when an arbitrary finite family of such systems possesses a CQLF. Using Helly’s
theorem for convex sets [116], they established that if any collection of three systems
from the family ¥4,,...,X4, has a CQLF, then there is a CQLF for the overall
family. They then described a method that can be used to test for the existence of
a CQLF for three stable second order LTI systems, thereby, in principle, providing

a complete answer to the CQLF existence problem in the second order case.

Recently, the problem of CQLF existence for second order systems has been addressed
in a different manner in [19]. In this paper, it is shown that the existence of a
CQLF for a family of second order LTI systems is equivalent to the positivity of a
certain integral. While this integral condition can be checked numerically, it is less
transparent than the conditions of Theorem 3.5.1, and it is difficult to see how it

relates to the dynamics of the associated switching systems.

3.5.2 Systems in companion form - the Circle Criterion

LTT systems whose system matrices are in companion form have long played an im-
portant role within control theory [50, 93, 51|, and in the current subsection we turn

our attention to the stability of switched linear systems constructed by switching be-
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tween a pair of such systems. Formally, let A1, Ao be Hurwitz matrices in companion

form in R™*™, and consider the system
T=A(t)r A(t) € {A1, A2} (3.18)

We shall describe results below that give necessary and sufficient conditions for the
LTI systems ¥ 4,, ¥4, to have a CQLF. It should be pointed out that some of
the results discussed here were first discovered in a different context, by authors
investigating the problem of absolute stability for the class of non-linear feedback
systems known as Lur’e systems [141, 93, 51]. One of the most fundamental results
derived in this area is the so-called Kalman-Yakubovic-Popov, or KYP, Lemma which
is given below as Theorem 3.5.2. Note that a number of different versions of the KYP

Lemma have been derived by various authors [51, 141, 93].

Theorem 3.5.2 Let a Hurwitz matriz A € R™ "™ column vectors b,c € R™ and
v > 0 in R be given. Suppose that the pair (A,b) is completely controllable [118],

and that
% +Re{cT(jwl — A} >0 for allw € R. (3.19)

Then there is some real € > 0, a positive definite P = PT > 0 in R™" and a real

column vector ¢ € R™ such that

ATP4+PA = —qqF —eP (3.20)

Pb—c = g

Theorem 3.5.2 plays a key role in the proof of the celebrated stability criterion known
as the Circle Criterion, derived in [97] by Narendra and Goldwyn. While this result
originally arose out of an interest in the absolute stability of Lur’e systems, from our
point of view the Circle Criterion gives the following condition for CQLF existence

for pairs of LTI systems whose system matrices are in companion form.
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Theorem 3.5.3 Let A, A — bc! € R™ ™ be Hurwitz matrices in companion form
where b, c are column vectors in R". Then the LTI systems ¥ 4, % 4_y.r have a CQLF

if and only if

1+ Re{c"(jwl — A7} >0  forallw € R. (3.21)

The sufficiency of condition (3.21) for CQLF existence was proven in the original
paper of Narendra and Goldwyn, while the necessity was proven by Willems in [146]

based on the results of [145].

Theorem 3.5.3 describes a frequency domain stability criterion for time-varying sys-
tems, related to the classical Nyquist criterion for time-invariant systems, and it
allows for a similar graphical interpretation [97, 141]. In a recent paper [128], the
problem of CQLF existence for pairs of stable LTI systems in companion form was
revisited by Shorten and Narendra, and the following simple time-domain version of

the Circle Criterion was derived.

Theorem 3.5.4 Let A, A — bcT € R™ "™ be Hurwitz matrices in companion form
where b, c are column vectors in R™. Then the LTI systems ¥ 4, ¥ 4_p.r have a CQLF

if and only if the matriz product A(A — bcl) has no negative real eigenvalues.

Comments:

As pointed out in [128], Theorem 3.5.4 can be seen as a time-domain
version of the Circle Criterion. While the original result requires the
positivity of (3.21) to be verified for every real value of w, the time-
domain version can be checked by a relatively straightforward eigenvalue
calculation. Furthermore, as with the result for second order systems
given in Theorem 3.5.1, the form of the above condition can be used to

gain insight into the relationship between CQLF existence and stability
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for switched linear systems using the result of Theorem 2.3.1. It should
also be noted that it is considerably easier to prove the necessity of
the time-domain condition for CQLF existence than is the case for the

original frequency-domain formulation.

3.6 Sufficient Conditions for CQLF existence

In the previous two sections we have seen that by restricting our attention to specific
classes of systems, such as second order systems, it is sometimes possible to derive
verifiable necessary and sufficient conditions for CQLF existence for families of LTI
systems. While no verifiable necessary and sufficient conditions have been found for
a general family of LTT systems to have a CQLF, a number of authors have published
sufficient conditions for CQLF existence. The aim of this section is to summarize

the results of this nature that have appeared in the literature in recent years.

3.6.1 Triangular Systems in Disguise

A number of the sufficient conditions reported over the past number of years are
intimately related to the results for triangular systems presented in Section 3.4.2
above. In fact, the system classes covered by some of these results are subclasses of

those systems that fall within the framework of Theorem 3.4.1.

Commuting System Matrices:

The following result on CQLF existence for systems with commuting system matrices

was established by Narendra and Balakrishnan in [94].

Theorem 3.6.1 Let Aq,..., Ay be a set of Hurwitz matrices in R™"™ such that
AZ‘A]' :AJAZ fori,j € {1,2,,]6}
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3.6 Sufficient Conditions for CQLF existence

Then the associated LTI systems X 4,,...,24, have a CQLF.

A standard result of linear algebra [42] states that if the matrices Ay, ..., Ay commute
pairwise, then there is a single unitary matrix U € C™*" such that U* A;U is in upper
triangular form for 1 < ¢ < k. Thus, the class of LTI systems covered by Theorem
3.6.1 is a subclass of those systems whose system matrices can be simultaneously put
into triangular form, and this result can be thought of as a special case of Theorem
3.4.1. However, it should be noted that a direct, and constructive, proof of Theorem
3.6.1 is given in [94]. Related results for non-linear switched systems with commuting

vector fields have recently appeared in [120, 74].

Lie-Algebraic Conditions:

Theorem 3.6.1 suggests that the properties of the matrix commutators
[AZ‘,A]'] :AZ‘A]‘—AJ'AZ' for 4,5 € {1,...,k}

may play an important role in determining whether or not the LTI systems ¥ 4,,...,%4,
have a CQLF. This issue was addressed for discrete-time systems by Gurvits in [37],
and we shall now discuss some recent work on Lie-algebraic conditions for CQLF

existence [1, 67, 68| which can be seen as a continuation of this line of research.

Before stating the next theorem, we need to introduce two basic concepts from Lie
theory. First of all, a real matrix Lie-algebra is a subspace of R™*™ that is closed

with respect to the commutation operator
[A,B] = AB — BA.

Secondly, the Lie-algebra generated by a set of matrices {41, Ag,..., Ag} in R™*™ is
defined to be the smallest Lie-algebra in R™*™ containing each of Ay, ..., Ay and is
denoted by {A1,...,Ar}ra. For background on the theory of Lie-algebras, consult
[18, 45].
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3.6 Sufficient Conditions for CQLF existence

The following result gives a sufficient condition for the existence of a CQLF for the

stable LTI systems ¥ 4,,1 < i < k and was established in [68].

Theorem 3.6.2 If Ay,..., A are Hurwitz matrices in R™*"™ and {Ay, ..., Ax}ra is

a solvable Lie-algebra, then the LTI systems ¥ 4,,...,%X4, have a CQLF.

See [18, 45, 1] for the definition of a solvable Lie-algebra. For our purposes it is
enough to note that if the Lie-algebra {A;,..., Ax}r4 is solvable, then the system
matrices Aj,..., Ar can be simultaneously put into upper triangular form. Thus,
as with Theorem 3.6.1, the class of systems covered by this Lie-algebraic result is a
subclass of those systems which can be simultaneously put into upper triangular form.
However, as pointed out in [68], the Lie algebraic condition of Theorem 3.6.2 is co-
ordinate-independent and does not require that a transformation that simultaneously
puts Aj, ..., Ay into upper triangular form be found. It is also explained in [68] and

[66] how to test for the solvability of a Lie-algebra.

The following extension of theorem 3.6.2 was established in [1].

Theorem 3.6.3 Let Ay, ..., Ay be Hurwitz matrices in R™*™ and let g = {A1,..., Ax}ra.
Then if g = r @ 1 with r a solvable ideal and 1 a compact subalgebra of g, the LTI

systems X4,,...,24, have a CQLF.

Theorem 3.6.3 extends Theorem 3.6.2 by allowing the Lie-algebra {Aj,..., Ax}tra
to be the direct sum of a solvable ideal and a compact subalgebra. To say that 1is a
compact Lie-algebra amounts to requiring that all of the matrices in 1 have strictly

imaginary eigenvalues.

Comment on the CQLF existence problem and commutators:

At this stage it is worth noting the following points about the link between the

question of CQLF existence for a pair of exponentially stable LTI systems, ¥4,,
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¥ 4,, and the commutator [A;, Ag]. Firstly, Theorem 3.6.1 shows that if [41, A2] has
rank zero, then there is a CQLF for the systems ¥ 4,, X4,. In addition, Laffey has
shown in [60] that if [A;, A2] has rank 1, then A; and Ay can be simultaneously
triangularized. Thus, in this case also, the systems ¥ 4,, ¥4, have a CQLF. Now,
it is not difficult to find examples of exponentially stable LTI systems ¥ 4,, X4,
with no CQLF, where rank([A1, A2]) = 2. In view of these facts, the problem of
deriving conditions for X 4,, ¥4, to have a CQLF when the rank of [A;, Ag] is 2
arises naturally. At the time of writing, this general problem appears to be open.
However, the results of Theorem 3.5.1 and Theorem 3.5.4 give some insights into this
question, as they provide necessary and sufficient conditions for CQLF existence for

system classes where the rank of the commutator [A;, As] can be equal to 2.

3.6.2 Further sufficient conditions

We now discuss a number of miscellaneous results that give sufficient conditions for
a set of exponentially stable LTT systems to have a CQLF. The first conditions that

we shall present are expressed in terms of so-called M-matrices [43].

M-Matrix-based conditions:

A matrix A in R™*" is said to be an M-matriz [43, 7] if

(i) The off-diagonal elements of A are non-positive, i.e. a;; <0 for 1 <i,j <n,
i# 7.
(ii) All of the eigenvalues of A are in the open right half plane. (therefore —A is

Hurwitz.)

Mori, Mori and Kuroe established in [89] that a family of systems X4,,..., X4, will
have a CQLF if the system matrices Aq,..., Ay satisfy a certain condition stated

in terms of M-matrices. In the paper [91], the same authors extended this result as
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well as deriving a corresponding condition for families of discrete-time systems. In
the statement of the next theorem, taken from [91], the following notation is used.
Given a family of matrices A1, ..., Ay in R™*™ al(,iq) denotes the element in the (p, q)

position of the matrix A;, 1 <i <k.

Theorem 3.6.4 Let Aq,..., A be Hurwitz matrices in R™ ™. Suppose that there
exists a non-singular T € C™™ such that writing A; = T AT for 1 < i < k, we

have that the matriz B given by

by = —maxRe(al)) 1<p<n,
1

bpy = —max|d§fq)\ 1<p,qg<n, p#q
(]

18 an M-matriz. Then there is a CQLF for the systems X4,,...,X4

k-

It is pointed out in [91], that if the matrices Ay,..., Ay can be simultaneously put
into triangular form, then the conditions of Theorem 3.6.4 are satisfied. Thus, the
class of systems covered by Theorem 3.6.4 is larger than those covered by Theorem

3.4.1.

Lyapunov operator conditions:

We now look at conditions for CQLF existence that are expressed in terms of the
Lyapunov operators L,4, introduced in Section 3.2 above. Several results of this
general type have been published by Ooba and Funahashi in the sequence of papers
([101], [99], [100]). In [101], two simple sufficient conditions for the existence of a
CQLF for a pair of exponentially stable LTI systems ¥ 4,, ¥4, are presented. The
key idea behind both of the results in this paper is that ¥4, and ¥ 4, have a CQLF
if and only if there is some positive definite P € P,, such that £A1£;121(P) e P,
where P, is the cone of positive definite matrices in R™*™. Before stating the next
result, recall that for a symmetric linear operator L on the space of symmetric

matrices Sym(n,R), the notation L > 0(< 0) means that (L(H), H) > 0(< 0) for
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3.6 Sufficient Conditions for CQLF existence

all non-zero H € Sym(n,R), where (H, K) = trace(H” K) is the inner product on

Sym(n,R).

Theorem 3.6.5 Let Ay, Ay € R™" be Hurwitz and suppose that
Ll A Lay—a, — (LH La, + LY, La,) <0, (3.22)

Then ¥ 4,, X4, have a CQLF.

Note that the condition (3.22) is equivalent to
LY La, + LY L4, > 0.

A second similar condition involving the commutator of £ 4, and L 4, is also presented
in [101]. While both of these conditions can be checked numerically, neither one is
constructive. Also, it is important to keep in mind that the conditions are only
sufficient for CQLF existence and can only be used as a test for two systems ¥ 4,,

S,

The same authors have derived more general versions of these two results in [100]
as well as the following corollary that relates the existence of a CQLF for ¥ 4,,% 4,
to the norm of the commutator A;As — AsAq. In the statement of the next result,
for a matrix A € R™", ||A||?> = (A, A), while for a linear operator L on Sym(n,R),

|L||s denotes the operator norm induced by ||.||. Thus, ||L|[s = supj =1 [|L(A)]|.

Corollary 3.6.1 Let Ay, Ay be Hurwitz matrices in R™*™. Suppose that

1

HAlAQ —A2A1|| < — — .
201 L5 lsl1£s s

(3.23)

Then ¥ 4,, ¥4, have a CQLF.

A different type of sufficient condition, again based on Lyapunov operators, for the

family of LTI systems ¥4,,...,X4, to have a CQLF was derived in [99]. Before we
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state the main result of that paper, we need to introduce the notion of a semi-positive
matrix in R™*™, Simply put, a semi-positive matrix is a matrix that maps some
vector with positive entries to another vector with positive entries. More formally, if
we write R’ for the cone of vectors in R™ all of whose components are positive, then

A € R™™™ is semi-positive if there is some z € R} such that Az € R"}.

Given the Hurwitz matrices Aq,..., A in R™*", for each ¢, j with 1 < ¢, j < k, define

the number p;; to be

pij = Amin(£4,£3] (In)), (3.24)

where Ajpin(A) denotes the minimum eigenvalue of a symmetric matrix A, and I, is
the n x n identity matrix. We then have the following sufficient condition for the

systems X 4,,...,24, to have a CQLF.

Theorem 3.6.6 Let Ay, ..., Ax be Hurwitz matrices in R™*"™, and define the matriz

M € RF*F by

M = [pijh<ij<k (3.25)

where the p;; are given by (3.24). If M is semi-positive, then ¥4,,...,3 4, have a
CQLF.

Comments:

In order to use the condition in Theorem 3.6.6, it is necessary to be able
to test a matrix for semi-positivity. While some algebraic conditions are
known that guarantee semi-positivity 7], in general it is necessary to
perform this test numerically. However, if we can find a vector x € R
such that Mz € R, then it is explained in [99] how to construct a

CQLF for the systems ¥ 4,,...,24,. We shall encounter the notion of
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3.7 The CQLF problem and convex sets of matrices

semi-positivity again in a later chapter, and see that there is a strong
connection between the properties of semi-positive matrices and those

of the Lyapunov operators.

Before finishing this section, it is worth noting that a numerical test for CQLF

existence based on Lyapunov operators has recently been published in [20].

3.7 The CQLF problem and convex sets of ma-

trices

Certain convex sets of matrices arise quite naturally in the consideration of the
CQLF existence problem for finite families of stable LTI systems, and it is possible
to approach the problem through studying the properties of these sets. There are
essentially two distinct ways of considering the question of CQLF existence in this

light. Specifically, the following two classes of matrix cones have been studied.

(i) For a symmetric matrix P € R"*", define
Ap ={AcRY™ . ATP+ PA <O} (3.26)
We can then recast the CQLF existence problem in the following way.

Given the Hurwitz matrices Ay, ..., Ag in R™™"™ determine if there
exists some positive definite P € R™ "™ such that {Aq,..., Ax} C

Ap.

For a given symmetric P, the set Ap is a convex cone of matrices that is
closed with respect to matrix inversion. Such sets of matrices, known as convex
invertible cones (CICs), have been studied by Cohen and Lewkowicz in [22,

23, 65|, and a number of their key properties have been identified. In the
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3.7 The CQLF problem and convex sets of matrices

paper [3]|, Ando has also investigated the properties of these cones, and derived
an abstract characterization of sets of the form Ap. In fact, he describes
necessary and sufficient conditions for a given set of matrices to be of the form
Ap for some positive definite matrix P. However, to date the results obtained
through this line of research have been largely abstract, albeit very interesting,
in nature, and have not led to easily verifiable conditions for CQLF existence.
The sets Ap are also discussed in the survey [40] of the role played by cones

in questions of matrix stability.

An alternative, and more direct, approach to the CQLF problem, that is also
based on studying convex sets of matrices, is to study the sets P4 introduced
in Section 3.2. In terms of these sets, the CQLF existence problem can be

stated as follows.

Given the Hurwitz matrices Ay, ..., A in R™*™  determine if the

intersection
Pa, NPay--- NPy, (3.27)
1S non-empty.

This is the essence of the approach taken by Shorten and Narendra to the
CQLF problem for second order systems in [133], and most of the work that
we shall be presenting in this thesis arises from considering the CQLF problem
in this way. The question of determining when the above intersection (3.27) is
non-empty has also been addressed in [22, 24| and in [19]. In this last paper, the
author provides a characterization of the sets P4 that is essentially based on
the observation that a matrix P = PT > 0 in R"*" satisfies AT P+ PA < 0 if
and only if there is some orthogonal matrix 7 in R™*™ such that P = TT PT is
diagonal and (TTAT)T P+ P(TT AT) < 0. Based on this characterization, it is

shown that the existence of a CQLF for a family of LTI systems is equivalent
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to a related multi-variable integral being positive. The resulting condition
appears to be difficult, if not impossible to check however, and no example of
its use is given in [19]. A more tractable condition for second order systems is
derived in the same paper. This has already been discussed in Section 3.5.1

above.

We note that related work on geometrical properties associated with the Lyapunov

equation has been reported in the papers [30, 150].

3.8 CQLFs - The discrete-time case

Our discussion thus far has exclusively focussed on the case of continuous-time
switched linear systems and, consequently on the CQLF existence problem for fam-
ilies of continuous-time LTI systems. Of course, similar issues to those discussed
can also arise in discrete-time, and we shall be presenting results for discrete-time
systems as well as continuous-time systems. In this, the final section of this chapter,
we introduce the CQLF existence problem for families of discrete-time LTI systems,
indicate the relevance of this problem in the context of discrete-time switched linear
systems, and give a brief overview of the literature on the CQLF existence problem

in discrete-time.

3.8.1 Background on the CQLF problem in discrete-time

Given a matrix A € R™*", it is well-known that the associated discrete-time LTI

system

S92 +1) = Az(5),  x(jo) = xo (3.28)
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is exponentially stable if and only if all of the eigenvalues of A lie inside the unit
circle in C [118, 50] 3. Such matrices are known as Schur matrices. As is the case
with continuous-time systems, the situation becomes considerably more complicated

when we consider switched systems [2, 37] of the form
Shoa(+1) = AG)a(i),  AG) € {Ar, ..., Ak} (3:29)

Here the switched system is considered to be the family of all time-varying systems
obtained as we allow the matrix-valued function A(.) to vary over all piecewise con-
stant mappings from the integers into the set A = {Ay,..., Ax} (where switching
can take place at the times jo,jo + 1,750 + 2,...). The various types of stability as
well as the concepts of switching signals and switching sequences for (3.29) can be
defined analogously to the continuous-time case. Note that the stability questions
for discrete-time switched linear systems can also be treated within the framework

of linear difference inclusions of the form [37]

J?(j+1) S {Al.l‘(j),,Akx(j)} (3.30)

As with switched linear systems in continuous time, the system (3.29) may not be
uniformly exponentially stable for all switching signals, even if all of the individual
system matrices Ay, ..., A are Schur. However, if a common Lyapunov function ex-
ists for its constituent systems ¥ 4,,...,34,, then the system (3.29) will be uniformly
exponentially stable for all switching signals. In particular, if a common quadratic
Lyapunov function (CQLF), V(z) = 2T Pz, exists for EdAl, ce Edk, then the expo-

nential stability of the associated switched linear system (3.29) is guaranteed.

Formally, V (z) = 27 Pz is a CQLF for the stable discrete-time LTI systems Effh, - Eff‘k

if and only if P = PT > 0 and

ATPA;— P <0 for1<i<k. (3.31)

3When discussing discrete-time systems, we shall use the superscript ‘d’ in order to avoid

confusion with the continuous-time case.
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The Stein inequality:

For a single matrix A in R™*", the inequality
ATPA-P <0 (3.32)

is known as the Stein inequality [35]|, and has a number of properties analogous to
those of the continuous-time Lyapunov equation (3.1). In particular, the following

result holds [118, 50].
Theorem 3.8.1 Let A € R™ ™ be given. There exists a positive definite P = PT > 0
in R™ "™ satisfying

ATPA-P=Q (3.33)

with Q@ = QT < 0 if and only if A is Schur. Moreover, if A is Schur, then there is a
unique symmetric solution P to (3.33) for every symmetric Q, and P will be positive

definite if and only if Q) is negative definite.

The bilinear or Cayley transform:

As indicated above, there is an intimate relationship between the Lyapunov equa-
tion (3.1) in continuous-time and the Stein equation (3.33) in discrete-time. This
relationship is made mathematically formal through the bilinear transform |35, 50]

defined by
CA=A-DA+ID) . (3.34)

Specifically, if A is a Schur matrix, then P is a solution of the Stein equation (3.33),

if and only if
C(A)TP+PC(A)=Q

with Q" = 2(A+1)"TQ(A+1I)~!. Thus in particular, it follows that ATPA—P <0
if and only if C(A)T P + PC(A) < 0. The inverse of the bilinear transform is given
by C~1(A) = (I + A)(I — A)~! for A € R™¥",
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3.8.2 Results on the discrete-time CQLF problem

Given the strong connections that exist between the Lyapunov and Stein matrix
equations, it is no surprise that many of the results for the continuous-time CQLF
problem have analogues in the discrete-time case. First of all, we note that testing
whether or not a family of discrete-time LTI systems has a CQLF can be handled

numerically in the same way as for continuous-time systems.

Numerical approaches - LMIs:

The conditions (3.31) for V(z) = 27 Px to be a CQLF for the family of discrete-time
LTI systems 22141, .. ’Zfl% define a system of linear matrix inequalities (LMIs) in
the variable P. As with the CQLF problem for continuous-time systems, this means
that modern optimization routines can be used to test for the existence of a CQLF
in discrete-time [12]. However, the issues associated with using LMIs in continuous-
time (discussed in Section 3.3) still apply, and the determination of dynamically
meaningful, and verifiable, conditions for CQLF existence is as important in the

discrete-time case as it was for continuous-time systems.

Necessary and sufficient conditions in discrete-time:

Necessary and sufficient conditions for CQLF existence are known for a number of
classes of discrete-time LTI systems. As in the continuous-time case, if the matrices
Aq,..., A are known to have certain structures, then there will be a CQLF for
E%l,...,E%k provided that A; is Schur for 1 < i < k. Specifically, the following

results are known.

(i) Given the symmetric matrices Ay, ..., A in R™*™ the discrete-time LTT sys-

tems foh, cee fo‘k have a CQLF if and only if A; is Schur for 1 <14 < k.

(ii) Given the normal matrices Aq,..., Ax in R™*" the discrete-time LTI systems

Eil, e E‘f‘k have a CQLF if and only if A; is Schur for 1 <7 < k.
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In both of the above cases, when a CQLF exists, it can be taken to be the usual

Euclidean norm on R", V(z) = 27 z.

The following discrete-time version of Theorem 3.4.1 for systems that can be simul-

taneously put into triangular form was shown by Mori, Mori and Kuroe in [90].

Theorem 3.8.2 Let Ay,..., A be Schur matrices in R™*™. Suppose that there is
a single non-singular T € C™ ™ such that T~'A;T is upper (lower)-triangular for
1 <4 < k. Then the associated discrete-time LTI systems ngl,...,zik have a

CQLF.
Comments:

Of course, it follows from Theorem 3.8.2 that if the matrices Aq,..., Ax
commute pairwise, then there is a CQLF for th, . 72fl4k' A similar
statement applies to the case where Aq,..., Ay generate a solvable Lie-

algebra [37].

Necessary and sufficient conditions for a pair of second order discrete-time LTT sys-
tems to have a CQLF have been derived by Akar and Narendra in [2]. These con-
ditions are expressed in terms of matrix pencils in the spirit of the continuous-time

results presented in [127, 133].

Convex sets of matrices:

Of course, it is also possible to approach the CQLF existence problem for discrete-
time systems through studying analogous sets of matrices to those used in the inves-
tigation of the continuous-time problem. In this connection, it should be noted that

Ando has obtained a characterization of sets of the form

AL ={A: ATPA-P <0}

78



3.9 Concluding remarks

for some (hidden) P = PT > 0 in the paper [3]. Furthermore, in analogy with the

continuous-time case, for a Schur matrix A in R™*™, we can define the set Pf‘ as
Pl ={P=P">0:ATPA- P <0}.

The properties of these sets for Schur matrices in R?*? are studied in the paper [148],
where a necessary and sufficient condition for a family of second order discrete-time
LTT systems to have a CQLF is derived. The approach and the conditions presented

in [148] are closely related to the work on continuous-time systems in [19].

3.9 Concluding remarks

In this chapter, we have introduced the problem of CQLF existence for families of
exponentially stable LTI systems, and surveyed the results that have appeared on
this problem in the mathematics and engineering literatures. We have also high-
lighted the need for a greater understanding of the theoretical aspects of the CQLF
existence problem than is currently available. In particular, we have pointed out the
importance of understanding how conservative CQLF existence is as a criterion for
exponential stability for switched linear systems, and of identifying classes of switched
linear systems for which CQLF existence is not conservative for stability. The issues
of deriving verifiable, dynamically meaningful conditions for CQLF existence, and of
gaining insights into the link between CQLF existence and the exponential stability
of switched linear systems, shall be major themes in the forthcoming chapters. We
have also provided background and a brief literature review on the CQLF existence

problem for discrete-time systems.

79



Chapter 4

Two results on the CQLF

existence problem

In this chapter, we describe a novel approach to the CQLF existence
problem for a pair of LTI systems. The essence of this approach is to
consider the marginal situation of a pair of LTI systems X 4,, X a,, that
are on the ‘boundary’ of having a CQLF in the sense that there is no
CQLF for $4,, Y4,, but there is a positive semi-definite P = PT > 0
with

AlP+PA; <0 i=1,2

We present a result that, under a mild additional assumption, describes
simple algebraic conditions that must be satisfied in this situation. The
implications of this result for the relationship between CQLF existence
and the stability of switched linear systems are discussed. Using simi-
lar techniques, a corresponding result is derived for the CQLF existence

problem for discrete-time systems also.
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4.1 Introductory remarks

Despite the considerable amount of work that has been done on the question of
CQLF existence, our understanding of the problem is still very far from complete.
In fact, apart from the Circle Criterion and the conditions derived for second order
systems, most of the theoretical results currently available are either too abstract
to be of practical use, or else merely give sufficient conditions for a CQLF to exist
for a family of LTI systems. Moreover, as discussed in the previous chapter, the
numerical approaches to the problem provide little or no insight into the CQLF
existence problem and its relationship with the stability of switched linear systems.
Clearly, it would be desirable to have a general framework within which it was
possible to derive further results giving verifiable necessary and sufficient conditions
for CQLF existence that can be interpreted dynamically. While it is likely to be
extremely difficult, if not impossible, to derive such conditions for general families
of LTI systems, it may be possible to obtain useful results for practically significant

system classes.

Motivated by the above considerations, in this chapter we describe a novel way
of approaching the CQLF existence problem, based on the theory of convex sets
of matrices, and in particular on the existence of separating hyperplanes for non-
intersecting convex sets. This approach is very general in nature, and for certain
system classes can be used to derive dynamically meaningful conditions that are
necessary and sufficient for CQLF existence. In fact, we shall see in later chapters how
the approach developed here can be used to derive attractive conditions for CQLF
existence for important system classes, and how it provides a unifying framework
within which to view some of the major results previously presented in the literature.
It is worth noting that the approach described in this chapter can be applied to the
CQLF existence problem for continuous-time systems and discrete-time systems in

an identical fashion. In fact, essentially the same argument is used to prove the two
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main results of this chapter, one concerning the continuous-time CQLF existence
problem and the other the corresponding problem for discrete-time systems. A key
point about these results is that they provide, in theory, a means of identifying
system classes for which simple, meaningful conditions for CQLF existence can be
obtained. Moreover, they also give insight into the conservatism of CQLF existence
as a criterion for the stability of switched linear systems. We shall see in later
chapters how similar ideas to those described here can be used to study questions

related to other types of Lyapunov functions also.

4.2 A novel approach to CQLF existence - the

underlying ideas

Our objective in this section is to describe, in an informal way, the principal ideas
behind the approach to the CQLF existence problem that is presented in this chapter.
While the discussion here mainly focusses on the continuous-time case, all of the
remarks of this section can be easily translated to apply to the CQLF existence

problem for discrete-time systems also.

Recall that in Section 3.7, it was described how the CQLF existence problem for two

or more LTI systems can be cast in terms of the cones
Pa={P=P">0:A"P+PA<O0}.

First of all, given the Hurwitz matrices A;, Ap in R™"*", there exists a CQLF for ¥ 4,
and X 4, if the two cones P4,, P4, have a non-empty intersection. This is illustrated

in Figure 4.1.
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Figure 4.1: CQLF exists for ¥ 4,, ¥4, - Pa, NP4, is non-empty

On the other hand, if P4,, Pa, do not intersect, then there is no CQLF for the

systems X 4,, X 4,. This situation is illustrated in Figure 4.2.

/ D

Figure 4.2: CQLF does not exist for X 4,, ¥4, - Pa, N Pa, is empty

The key idea underlying our approach to the CQLF existence problem for two LTI
systems is to consider the limiting case of two systems ¥ 4,, ¥ 4, that are on the “bor-
derline” between the scenarios depicted in Figure 4.1 and Figure 4.2. This limiting
case is also the situation with which the main results of this chapter are concerned.
Here, the closures (with respect to the topology on Sym(n,R) induced by the usual
inner product (3.6)) of P4, and P4, have a non-trivial intersection (meaning that
there is a non-zero element in the intersection) but the sets themselves are disjoint.

This is depicted in Figure 4.3.
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Figure 4.3: CQLF existence - a limiting case

Formally, the situation depicted in Figure 4.3 can be described as follows. There is
no CQLF for the systems ¥ 4,, ¥ 4,, but there does exist a non-zero positive semi-
definite P = PT > 0 such that ATP + PA; < 0 for i € {1,2}. The main results
of this chapter show that in this situation, under mild additional assumptions, the
system matrices Ay, Ao satisfy simple algebraic conditions that can be interpreted
dynamically. Furthermore, in the next chapter, we shall show how the results of
this chapter can be used to derive dynamically significant necessary and sufficient

conditions for CQLF existence for certain system classes.

Before finishing this section, it is important to emphasize that all of the above dis-
cussion applies to the CQLF existence question for discrete-time systems also. In
fact, in discrete-time we would consider the limiting case of two exponentially stable
discrete-time LTI systems Edl, 2742 that have no CQLF, but for which there is a

matrix P = PT > 0 satisfying
ATPA;—P<0 fori=1,2.

Once again we shall see that, under mild additional assumptions, in this situation

the system matrices A1, Ao satisfy verifiable and dynamically meaningful algebraic
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conditions. Before moving on to deriving in detail the principal results of this chapter,
in the next section we present a number of preliminary technical facts that will be

needed later on.

4.3 Some mathematical preliminaries

In this section we describe a number of preliminary results concerning the CQLF
existence problem in continuous-time and discrete-time. We shall also present some
facts about parameterizations of hyperplanes in the space of symmetric matrices,
Sym(n,R), that are crucial for much of the later work of the thesis. To begin with,
we state a number of basic lemmas on the CQLF existence problem for continuous-

time systems.

Continuous-time preliminaries:

The following well known lemma [133, 129] provides simple necessary conditions for

CQLF existence for a pair of LTI systems.

Lemma 4.3.1 Let Ay, As be Hurwitz matrices in R™™ ™.  Suppose that the sys-
tems X a,, Ya, have a CQLF. Then both of the matriz pencils 0. «)[A1, A2] and
07[0700)[A1,A51] are Hurwitz, and hence non-singular. Also, the matriz products

A1A51 and A1 As have no negative real eigenvalues.
Proof: Let V(x) = 27 Pz be a CQLF for Y 4,, ¥4,. Then, using Theorem 3.2.2 we
have that

ATP+PA; <0, ATP+PAy<0, A;TP+PAY <.

But then, for any v > 0, it follows that (A; + vA42)T P 4+ P(A; + yA2) < 0 and
(A1 +~7AHTP+ P(A; +~v451) < 0, and hence, from Theorem 3.2.1, A; + Az and

Ay + vAz_l are both Hurwitz for all v > 0.
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Now Aj + vAs is non-singular for all v > 0 if and only if
det(A; +vAy) = det(A1 Ay + yI)det(Ag) # 0,

for all v > 0. But as Ay is Hurwitz, and hence non-singular, this is equivalent
to det(A1A2_1 + 1) # 0 for all v > 0, which amounts to saying that A1A2_1 has
no negative real eigenvalues. An identical argument shows that A; +vA5 ! is non-
singular for all v > 0 if and only if A;As has no negative real eigenvalues. This

completes the proof.

Comments:

Lemma 4.3.1 says that in the situation depicted in Figure 4.1, both
of the matrix pencils oo o0)[A1, A2] and o0 o0)[A1, A3'] are Hurwitz,
and hence non-singular, and that both of the products A; A5 Land A; A
have no negative real eigenvalues. This is closely connected to the re-
sult of Theorem 2.3.1. In fact, it follows from Theorem 2.3.1 that if the
pencil 0,9 o)[A1, A2] is non-Hurwitz, then the switching system con-
structed by switching between ¥ 4, and X 4, is not exponentially stable
for arbitrary switching signals, and hence there could not be a CQLF
for this pair of LTI systems or for the related pair 3 4,, X Ayt Following
similar reasoning we can show using Theorem 2.3.1 that if the pencil
040,00 [A1, Ay !7'is not Hurwitz, then there is no CQLF for the pair of

systems ¥ 4,, X4, or for the pair ¥4, ¥ , 1.
2

Next consider the situation of two LTI systems X 4,, ¥4, that do not have a CQLF
(Figure 4.2). The following lemma describes two ways of adjusting the system matrix
Ay s0 as to construct a related pair of systems that do have a CQLF. The facts
described in this lemma will be used to apply the main results of this chapter to
derive necessary and sufficient conditions for CQLF existence for various system

classes.
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Lemma 4.3.2 Let Ay, Ay be Hurwitz matrices in R™*", and suppose that there is

no CQLF for the systems ¥ 4,, Xa,. Let B = Ay — Ay. Then:

(i) for a > 0 sufficiently large, ¥4, and ¥ 4,1 have a CQLF;

(ii) there is some k with 0 < k < 1 such that ¥ 4,, ¥ A, +xp have a CQLF.

Proof:

(i) Choose some P = PT > 0 such that ATP + PA; < 0 and consider Qo =
ATP + PAy. Let M\yqp be the maximal (real) eigenvalue of Qg, and jiy, be the
minimal real eigenvalue of P. Then, by assumption, iy, > 0 and Ajpee > 0. It now

Amaz e have
Hmin

follows that for any a >
(Ay — al)TP + P(Ay — o) < 0.
Thus, V(z) = 27 Px is a CQLF for ¥ 4,, ¥4, 7. This proves the assertion in (i).

(ii) As in (i), choose some P = PT > 0 such that ATP + PA; < 0. A simple
argument, based on the continuous dependence of the eigenvalues of a matrix on its

entries shows that there is some § > 0 such that for 0 < k < ¢,
(A1 +kB)'P + P(A; + kB) < 0.

Hence, provided 0 < k < 4, there is a CQLF for ¥4, and ¥4, 1xp. This proves (ii).

Comments:

Lemma 4.3.2 tells us that, given two systems ¥ 4,, 24, that do not have
a CQLF (Figure 4.2), it is possible to construct related systems that
do have a CQLF (Figure 4.1) either (i) by moving the eigenvalues of
Ag sufficiently far into the left half plane or (ii) by replacing Ao with a

suitable convex combination of A; and As.
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Both of these actions can be interpreted geometrically in terms of the
sets Pa,, Pa,. In the first case, increasing o moves the eigenvalues of
Ag — ad further into the left half plane and has the effect of making the
set Pa,—qr1 larger until it eventually intersects with P4,. In the second
case, by choosing smaller values of k£ > 0, we are moving Py, +xp closer
to P4, until they intersect. Eventually, for k£ = 0, the two sets actually

coincide.

T PO

Pa P
N TN A1+kB

—_—— -

Figure 4.4: Increasing size of Pa,_o; Figure 4.5: Moving P4, 11p closer to Pa,

Discrete-time preliminaries:

It is possible to derive versions of Lemmas 4.3.1 and 4.3.2 for the discrete-time
CQLF existence problem also. Before we state these discrete-time results, recall
from Section 3.8 that the bilinear (or Cayley) transform is defined as C'(4) = (A —
I)(A+I)~!, with the inverse transformation given by C~1(B) = (I + B)(I — B) ™!,
and that AT PA—P < 0if and only if C(A)T P+PC(A) < 0. The following necessary
conditions for two discrete-time LTI systems to have a CQLF correspond to those

given by Lemma 4.3.1 for the continuous-time case.

Lemma 4.3.3 Let Ay, Ay be Schur matrices in R™*™. Suppose that the discrete-time

LTI systems X% , 4, have a CQLF. Then the matriz pencils o [C(A1),C(A2)],

7[0,00)

04[0,00)[C(A1), C(A2) '] are Hurwitz, and hence non-singular, and the matriz prod-

ucts C(A1)C(A2)™1, O(A1)C(Az) have no negative real eigenvalues.

Proof: If 22141, E‘jb have a CQLF, then so do the continuous-time LTI systems
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Yo(4r)s Bo(a,)- The result now follows directly from Lemma 4.3.1.

It is also possible to combine the properties of the bilinear transform with Lemma

4.3.2 to obtain the following result.

Lemma 4.3.4 Let Ay, Ao be Schur matrices in R™"*™, and let B = Ay—A;1. Suppose

that there is no CQLF for the discrete-time LTI systems EdAl, Effb. Then;

(i) For o > 0 sufficiently large, Effh and Eccl, have a CQLF,

—1(C(A2)—ald)

(i) There is some k with 0 < k < 1 such that Effh and Ei1+k3 have a CQLF.

As in the continuous-time case, both of the techniques described in Lemma 4.3.4 can

be interpreted in terms of the sets P;ll.

Parametrization of hyperplanes:

Finally for this section, we state the following two technical lemmas. These results,
particularly Lemma 4.3.6, are crucial for the work of the next two sections. As the
proofs of Lemma 4.3.5 and Lemma 4.3.6 are technical and quite long, we do not

include them at this point but present them in the appendices.

Lemma 4.3.5 Let u,v,x,y be any four non-zero vectors in R™. There exists a
non-singular T € R™™ such that each component of the vectors Tu,Tv, Tz, Ty is

non-zero.
Lemma 4.3.6 Let x,y,u,v be non-zero vectors in R™. Suppose that there is some
k > 0 such that for all symmetric matrices P € Sym(n,R)

2T Py = —ku® Po.

Then either

x = au for some real scalar «, and y = —(—)v
a
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or

x = Pv for some real scalar 3 and y = —(%)u

Comments:

For fixed z,y € R", the mapping P — z” Py is a linear functional on
Sym(n,R), and the set of P in Sym(n,R) such that 27 Py = 0 is then
a hyperplane through the origin. The hypotheses of Lemma 4.3.6 imply
that the conditions 27 Py = 0 and u” Pv = 0 define the same hyperplane
in Sym(n,R). Moreover, as the constant k is positive, it follows that
the half-space where T Py is negative corresponds with the half space

where u” Pv is positive. This is illustrated in Figure 4.6.

/ 2'Py=u"Pv=0

2T Py <0, (u!' Pv > 0)

TPy >0, (u' Pv <0)

Figure 4.6: Situation considered in Lemma 4.3.6
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4.4 The main results

The main results of the current chapter are derived in this section. First of all,
in Section 4.3.1, we consider a pair of continuous-time LTI systems ¥ 4,, >4, in
the situation depicted in Figure 4.3. We shall see that, under a mild additional
assumption, it is possible to characterize such pairs of systems with simple algebraic
conditions on the system matrices Aj, As. Then, in Section 4.3.2, an identical
analysis is carried out for discrete-time systems and a corresponding, and closely
related, result is derived using the same techniques as are employed in the continuous-

time case.

4.4.1 Continuous-time case

In Theorem 4.4.1 below, we consider a pair of continuous-time LTI systems ¥ 4,, ¥ 4,

such that;

(i) there does not exist a CQLF for ¥4,, ¥ 4,,

(ii) there exists some non-zero positive semi-definite P = PT > 0 such that A7 P+

PA; = Q; <0, rank(Q;) = n — 1, for i € {1,2}.

It is appropriate at this point to comment on the assumption that the ranks of the
matrices (J1, Q2 are both n — 1. Extensive numerical testing with the LMI toolbox
for MATLAB has indicated that, while it is not entirely generic, this rank condition
is satisfied by a substantial number of pairs of systems in the situation of Figure 4.3.
Furthermore, we shall show in a later chapter, when we come to discuss the boundary
structure of the cones Py, that those matrices P on the boundary of P4 for which
the rank of ATP 4+ PA is n — 1 are dense in the boundary. This partially accounts
for how often the conditions of Theorem 4.4.1 have been satisfied in numerically

generated examples.
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Theorem 4.4.1 [129, 122] Let A1, Ay be Hurwitz matrices in R™™" such that ¥ 4,,
Y4, do not have a CQLF. Furthermore, suppose that there is some P = PT > 0

such that
ATP+PA; =Q; <0, i€e{1,2} (4.1)

for some negative semi-definite matrices Q1,Q2 in R™™™ both of rank n — 1. Un-
der these conditions, at least one of the pencils 0.0 o0)[A1, A2], 40,00 (A1, ASY) s
singular. Equivalently, at least one of the matrixz products A1 As and A1A2_1 has a

negative real eigenvalue.

Comments:
As the proof of Theorem 4.4.1 is fairly long, it is worthwhile outlining the principal
steps involved before beginning.
(a) As @1 and Q9 are of rank n—1, vectors 1, o € R™*™ exist such that Qyz1 = 0
and @Qax9 = 0. Furthermore, these vectors are unique up to scalar multiples.
(b) Consider the two hyperplanes H; and Hz in Sym(n,R) defined by:
H, = {H e Sym(n,R):zl HAz =0},

Ho = {H e Sym(n,R): xi HAszs = 0}.

We shall show that, under the hypotheses of the theorem, H; and Hy define

one and the same hyperplane.

(c) Tt then follows that there is some real k > 0 with o7 HA 121 = —kad H Ayxo,

for all H in Sym(n,R).

(d) Finally, we apply Lemma 4.3.6 to deduce the result of the theorem.

92



4.4 The main results

Proof: As Q1 and Q)5 are of rank n — 1, there are non-zero vectors x1, x2 in R™ such

that
tTQuzy = 20T PAz =0, (4.2)
J:QTQQ:L'Q = 2:L‘2TPA2:1:2 =0.
The proof of Theorem 4.4.1 is split into two main stages.
Stage 1:
First of all, we shall show that if there exists P in Sym(n,R) satisfying
eI PAzy <0, 2T PAyzy <0 (4.3)
then a CQLF exists for ¥4, and ¥ 4,.

Suppose that there is some P satisfying (4.3). We shall show that by choosing
61 > 0 sufficiently small, it is possible to guarantee that AT (P +6;P)+ (P + 6, P)A;

is negative definite.
Consider the set
O ={zeR": 27z =1and 2T PAz > 0}.

Note that if Q; was empty, then any positive constant §; > 0 would make A7 (P +

61P) + (P 4 61 P) A1 negative definite. Now assume that €y is non-empty.

The function that takes z to 27 PA;x is continuous. Thus € is closed and bounded,
hence compact. Furthermore z1 (or any non-zero multiple of x1) is not in €; and

thus 27 PAz < 0 for all = in Q.

Let M; be the maximum value of 27 PA;z on Qy, and let M» be the maximum value
of " PAjz on Q. Then by the final remark in the previous paragraph, My < 0.

Choose any constant ¢; > 0 such that
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and consider the symmetric matrix
P+ 6, P.

By separately considering the cases z € Q; and = ¢ Q, 27z = 1, it follows that for

all non-zero vectors x of Euclidean norm 1

2L (AT(P +6,P) + (P4 6,P)A))z <0

provided 0 < §; < A‘}ﬁ‘l. Since the above inequality is unchanged if we scale z by

any non-zero real number, it follows that AT (P + 6, P) + (P + §;P)A; is negative

definite. It now follows from Theorem 3.2.1 that P + 6; P is positive definite.

The identical argument can now be used to show that there is some positive constant
C5 > 0 such that

2T (AY(P 4+ 6,P) 4+ (P 4 61P)A)x < 0

for all non-zero x in R™, provided 0 < §; < C5. Now choose any § > 0 such that

d < min{C1,Ca} and consider the positive definite matrix
P =P +6P.
Then V(z) = 27 Piz is a CQLF for ¥4, and X 4,.

So under the hypotheses of the theorem, there is no P in Sym(n,R) satisfying
the conditions (4.3). We next show that this implies that one of the two pencils

T5[0,00) [A1, A2]; 74[0,00)[A1, A5'] must be singular.

As there is no P satisfying (4.3), any symmetric P that makes the expression

J;{?Alxl negative will make the expression ngAQxQ positive. More formally
a;lT?Alxl <0 <— xQTFAng >0 (4.4)
for P € Sym(n,R). This implies that
:leﬁAlxl =0 << x%FAm =0.
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The mappings P — xipfAlxl and P — mgﬁAgxz define linear functionals on the
space Sym(n,R). Moreover, we have seen that the null sets of these functionals
are identical. Thus, they must be scalar multiples of each other. Furthermore,
(4.4) implies that they are negative multiples of each other. Therefore there is some

constant k > 0 such that

eI PAz = —kal PAsas (4.5)
for all P € Sym(n,R).
Now Lemma 4.3.6 implies that either x1 = axo with Az = —(E)Agxg for some
real a, or x1 = BAsxy and A1z = —(%);1:2 for some real 3. Consider the former

situation to begin with. Then we have
k
Ai(azxg) = —(E)Agxg

k
— (Al-f-(?)Ag)xQ =0

and thus the pencil 0. oc)[A1, A2] is singular and the matrix A; Ay ! has a negative

real eigenvalue.

On the other hand, in the latter situation, we have that

xQZ%A;xl
Thus
Az = —(%)A2 1
— A+ (A = 0

Thus, in this case the pencil 0,(g o) [A1, A5 !1is singular and the corresponding matrix
product A; A, has a negative real eigenvalue. This completes the proof of Theorem

4.4.1.
Comments:
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A key factor in the proof of Theorem 4.4.1 is that there exists a separat-
ing hyperplane between the non-intersecting convex cones Py, and Py,
[116]. In fact, such a hyperplane would exist even without the extra as-
sumption on the rank of the matrices @1, Q2. However, the assumption
that both of these matrices have rank n — 1 means that the separat-
ing hyperplane is effectively unique, and it is this fact that leads to the
conclusions of the theorem. We shall say more of this and similar issues
when we come to discuss the boundary structure of the sets P4 in a later
chapter. In particular, we shall show why the separating hyperplane is

unique under the assumptions of Theorem 4.4.1.

While Theorem 4.4.1 may appear somewhat theoretical, in the next
chapter we shall describe how it can be used to derive concrete, and
applicable, conditions for CQLF existence for a pair of LTI systems. In
fact, we shall see that it unifies, in a certain sense, two of the most

significant results previously derived on the CQLF existence problem.

It is important to appreciate that in the situation of Figure 4.3, there
will generally be many matrices P in the intersection of the boundaries
of P4, and P4,. However, the hypotheses of Theorem 4.4.1 require the
existence of only one positive semi-definite matrix P in this intersection
such that AT P+ PA; has rank n — 1 for i = 1,2. It is not necessary for
all matrices common to both boundaries to have this property in order

for the theorem to apply.

When the hypotheses of Theorem 4.4.1 are satisfied, the result says
that one of the matrix pencils o, oc)[A1, A2]; T4(0,00) [A1, A7'] has an
eigenvalue in the closed right half-plane. As has been remarked before,

Theorem 2.3.1 relates conditions of this sort to the dynamics of the pair
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of switched systems

r = A(t)a: A(t) S {Al,AQ}

i = Atz  At) € {A, A7)

In fact, it follows from Theorem 2.3.1 that any pair of LTI systems sat-
isfying the hypotheses of Theorem 4.4.1 is, on the one hand, on the
‘border’ of those pairs of systems that have a CQLF, while at the same
time, one of the above associated switched linear systems is not expo-
nentially stable under arbitrary switching. This is in itself noteworthy
in view of the commonly held opinion that CQLF existence is an overly
conservative criterion for switched system stability. Loosely speaking, it
shows that there are pairs of systems arbitrarily close to having a CQLF,
for which one of the associated switching systems is not exponentially
stable for all switching signals. Furthermore, it suggests that if we have
a system class to which Theorem 4.4.1 applies, it may be possible to
derive dynamically interpretable necessary and sufficient conditions for
CQLF existence for pairs of systems belonging to that class. This leads
naturally to the important question of how to identify system classes
that satisfy the hypotheses of the theorem. This issue is addressed in
the next chapter where we shall describe two significant classes of sys-
tems for which elegant and powerful conditions for CQLF existence can

be derived with the help of Theorem 4.4.1.

4.4.2 Discrete-time case

It has been pointed out in Section 3.8.2 that it is also possible to approach the CQLF
existence problem for discrete-time systems in terms of convex sets of matrices. In

this section, we shall apply the analysis techniques of the last section to derive
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a similar result for the CQLF existence problem for discrete-time systems. The
approach adopted is the same, with the Stein equation playing the role that the
Lyapunov equation played in the continuous-time case. In fact, a major attraction
of the methods described in this chapter is their generality and adaptability, and we
shall see here and in later chapters how the basic ideas of this chapter can be applied
in a variety of different situations to derive novel results and provide new insights

into various questions relating to Lyapunov functions and stability.

Theorem 4.4.2 below considers the case of two discrete-time LTI systems ¢ . Effb
in the situation of Figure 4.3. Under the same assumptions as in the continuous-time
case, we shall see that similarly simple algebraic conditions on the system matrices
Aq, As are satisfied. The comments made prior to Theorem 4.4.1 regarding the rank

n — 1 assumption on the matrices Q); apply in the discrete-time case also.

Theorem 4.4.2 [78, 77| Let Ay, Aa be Schur matrices in R"*"™ such that the discrete-
time LTI systems Effh, EdA2 do not have a CQLF. Furthermore, suppose that there

is some P = PT >0 such that

ATPA - P=Q, <0, (4.6)

ATPAy —P=Qy <0, (4.7)

for some negative semi-definite matrices Q1, Q2 both of rank n—1. Under these condi-
tions, at least one of the matriz pencils 0.,y ) [C(A1), C(A2)], 04[0,00)[C (A1), C(A2) ]
is singular, and equivalently, at least one of the matriz products C(A;)C(Az) and

C(A1)C(A2)™! has a negative real eigenvalue.

Comments:

While the proof of Theorem 4.4.2 is again quite long, the steps involved are essentially

the same as those in the proof of Theorem 4.4.1.
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(a) There exist vectors x1, x2 in R™, unique up to scalar multiples, such that

Q121 =0, Qax2 = 0.
(b) Next, we show that the two hyperplanes Hi, Ho, in Sym(n,R) defined by
H, = {H e Sym(n,R):zl(ATHA, — A))z =0},
Ho = {H e Sym(n,R):zl (ATHAy — As)zy = 0}
coincide.

(c) Tt then follows that there is some k > 0 such that 2] (ATHA; — Ay)xy =

—kaxl (ATH Ay — Ag)xy for all H € Sym(n, R).
(d) Slightly more algebraic manipulation than in the continuous-time case is then
required to apply Lemma 4.3.6 to complete the proof.
Proof: As Q1 and Q2 are of rank n — 1, there are non-zero vectors x1, xo such that
1 Qix; =0, fori=1,2. (4.8)
As with Theorem 4.4.1, there are two stages to the proof.
Stage 1:
We first show that if there exists some P in Sym(n,R) such that
eT(ATPA, - P)z; < 0, (4.9)
el (ATPAy — Pz, < 0,
then 21141, 2742 have a CQLF.
So assume that there is some P satisfying (4.9), and consider the set

O ={zecR": 2zl =1,27(ATPA, — P)z > 0}.

We shall show that there is a positive constant C7 > 0 such that AT(P + 6, P)A4; —
(P + 61P) < 0 provided that 0 < §; < C;. Note that if Q; was empty, then

A{(P + (51?)_/41 — (P + (51?) < 0 for all ;7 > 0.
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So assume that the set { is non-empty. The function that takes = to 27 (AT PA; —
P)x is continuous. Then € is closed and bounded, hence compact. Furthermore a1
(or any non-zero multiple of z1) is not in Qy and thus 27 (AT PA; — P)z < 0 for all

T in Ql.

Let M; be the maximum value of z7(ATPA; — P)z on Qy, and let My be the
maximum value of 7 (AT PA; — P)z on Q. Then by the final remark in the previous

paragraph, Ms < 0. Choose any constant §; > 0 such that

| M|

01 <
N VA

and consider the matrix

P+ 65,P.

By separately considering the cases € Q1 and = ¢ Qy, 272 = 1, it is easy to see

that for all non-zero vectors z of Euclidean norm 1

2T(AT(P +6,P)A; — (P+6,P))z <0

provided 0 < &1 < ]\‘4 2l et C4 denote the value ]\|/[ 2| > 0. Then for any é; with

0<é <, A’{(P + 51P)A1 — (P + 51P) < 0 as claimed.

The same argument can now be used to guarantee the existence of a positive constant
(5 such that

2T (AY(P +6,P)Ay — (P4 6,P))z <0

for all non-zero x provided we choose 0 < §; < Cy. Then, choose § > 0 less than the

minimum of C7,Cs, and consider the matrix

It follows from Theorem 3.8.1 that P; > 0 and thus V(z) = 27 Pz would be a CQLF

for £4 , ¥9..
Stage 2:

100



4.4 The main results

So under the hypotheses of the theorem, there is no symmetric matrix P such that

2T (ATPA, — P)z1 <0 (4.10)

23 (ATPAy — P)zy < 0. (4.11)

Thus, the two linear functionals defined on the space Sym(n,R) by
P — al(ATPA; — P)x;, ie{1,2},

have the same kernel. As in the proof of Theorem 4.4.1, we can combine this with
the fact that there is no P satisfying (4.10), (4.11), to conclude that there is some

positive constant k such that
JZ{(A{FAl — F)l’l = —kxg(AgﬁAg — F)ZUQ (4.12)

for all real symmetric matrices P.

Expanding the expression
(Aiw; — 2;) " P(Ag + ;)
and noting that, for symmetric P,
el AT Py — 2T PAjz; =0,
we see that, for i = 1,2
el (ATPA; — P)x; = (Ajx; — x) T P(Ass + ;) (4.13)
for all P in Sym(n,R).

Combining this fact with (4.12) and applying Lemma 4.3.6 now shows that either

(All'l + 1‘1) = OJ(AQ.TQ + 1'2), (4.14)
k
(Ajzy — 1) = —E(AQ-%'Z — x2)
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or

(Alxl + .%'1) = Ct(Ag.TUQ — .21?2), (4.15)

k
(Alazl — xl) = —E(AQHJQ + xg).
In the first case (4.14), we have
1 = oA+ 1) (Ag + Do

and substituting this into the second identity in (4.14) yields

k

(Al — I)(Al + I)_I(Ag +I).’)§2 = *@(AQ — I)IEQ

Letting y = (A2 + I)z2 we see that
k
(C(A1) + —5C(A2))y = 0

and hence the pencil 0.,y «)[C(A1), C(As2)] is singular and the product C(A;)C/(Az) ™!

~

has a negative real eigenvalue. A similar argument shows that in the case (4.15),
the pencil 0.9 o) [C(A1), C(A2)™!] is singular and the product C(A;)C(Az2) has a

negative eigenvalue. This completes the proof of Theorem 4.4.2.

Comments:

As with Theorem 4.4.1, it is only necessary for there to be one P such
that A’ PA; — P is of rank n — 1 for 4 = 1,2, for the hypotheses of

Theorem 4.4.2 to be satisfied.

Note that it is possible to give an alternative proof of Theorem 4.4.2
by combining the properties of the bilinear transform with the result
of Theorem 4.4.1 for continuous-time systems. However, the proof that
we have presented here provides a further illustration of the key ideas
of this chapter as well as demonstrating how the techniques used to

prove Theorem 4.4.1 can be adapted to derive similar results in different
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4.5 An illustrative example

contexts. Several more such illustrations of the adaptability of these

techniques will be encountered in later chapters.

Finally, it is of interest to note that the bilinear transform, relating
the discrete-time and continuous-time CQLF existence problems, arises

naturally in the course of the proof of Theorem 4.4.2.

4.5 An illustrative example

In this section, we present a numerical example to illustrate the result of Theorem
4.4.1. We describe an example for the continuous-time case only, as the ideas behind
the discrete-time result of Theorem 4.4.2 are essentially the same. Specifically, in
Example 4.5.1 we consider pairs of LTI systems that are converging towards the
situation covered by Theorem 4.4.1, and observe the behaviour of the eigenvalues of
the two matrix products mentioned in the statement of the theorem. We shall see
that as two systems ¥ 4,, 24, get closer to the scenario of Theorem 4.4.1, some pair
of complex conjugate eigenvalues of one of the matrices A1 Ay, A1 A5 ! collapses onto

a single negative real eigenvalue of algebraic multiplicity two.

Example 4.5.1 Consider the matrices A and B in R3*3 given by

43876  —13.3912  40.4673
A = —4.3483 —85.7644 —47.3620

—12.6313 37.5234 —87.6206

—44.6189 17.8573 8.9612

B = —15.3243  46.7799 92.4043 |-

7.9629  11.5449 66.3210

and for t > 0 define A(t) = A+ tB. Then, using the LMI toolbox in MATLAB, it
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4.5 An illustrative example

is possible to verify that the LTI systems ¥4, ¥ 4(;) have a CQLF for values of ¢ up
to 0.807. Furthermore, there is no CQLF for ¥4, ¥4 when t = 0.808. Thus, by
continuity the marginal situation depicted in Figure 4.3 occurs for some value of the
parameter t between 0.807 and 0.808. We still need to investigate whether or not the

additional ‘rank n — 17 assumption of the theorem is satisfied in the limat.

With this in mind, we consider the systems X4 and Xy for several values of t
tending towards 0.808. For each of these values, we use the LMI toolbox to find a
positive definite matriz Py such that T Pix is a CQLF for Y4 and Yaw)- We then
calculate the eigenvalues of the symmetric matrices AT P+ P, A and A(t)T P,+ P, A(t)
and compare the largest and second largest eigenvalues of each matriz. The results
of this comparison are illustrated in Figure 4.7 and Figure 4.8 below. We can see
from these plots that the largest eigenvalues of AT P, + P, A and A(t)T P+ P, A(t) are
tending towards zero as we increase t, while the second largest eigenvalues are not.

Thus, the systems Y4 and X () are tending towards the situation of Theorem 4.4.1.
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Figure 4.7: Largest and second largest eigenvalues of AT P, + P, A
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Figure 4.8: Largest and second largest eigenvalues of A(t)T P, + P, A(t)

Now, plotting the real and imaginary parts of the eigenvalues of the matriz products
AA(t) for values of t tending towards 0.808, we obtain Figure 4.9 below. Of course,
for as long as X4 and %4y have a CQLF, the product AA(t) has no negative eigen-
value (Lemma 4.3.1). However as indicated in the Figure, as t approaches 0.808,
one pair of complex conjugate eigenvalues converges towards a single real negative
eigenvalue of algebraic multiplicity two. This is typical of what happens for systems

converging towards the scenario of Theorem 4.4.1.
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Figure 4.9: Eigenvalues of AA(t) for t tending to 0.808

4.6 Concluding remarks

In this chapter we have described a novel approach to the CQLF existence problem for
a pair of exponentially stable LTT systems, based on analysing certain convex cones
of matrices. The key idea underlying this approach was to consider the marginal
situation of a pair of LTI systems ¥4, : © = Az, ¥4, : © = Aoz, that are on the
‘boundary’ of possessing a CQLF in the following sense. There is no CQLF for ¥ 4, ,

Y 4,, but there is a positive semi-definite P = PT > 0 with

ATP4+PA, <0 i=1,2
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In Theorem 4.4.1, we showed that in this situation, under an additional assumption,
the system matrices A1, Ay satisfy simple algebraic conditions. The implications of
this result for the connection between CQLF existence and the exponential stability
of switched linear systems were discussed in the text. In particular, it was noted that
Theorem 4.4.1 shows that there are pairs of LTI systems arbitrarily close to having
a CQLF for which the associated switched linear system is not exponentially stable.
Furthermore, it was observed that for system classes to which the theorem can be
applied, it may be possible to obtain conditions for CQLF existence which are easily
verifiable and are also relevant to the dynamics of switched linear systems. The same
approach was also applied to the CQLF existence problem for discrete-time systems,
and a corresponding result was derived. In the next chapter, we shall see how to use
the results of this chapter to obtain necessary and sufficient conditions for CQLF

existence for certain system classes.

108



Chapter 5

Second order systems and the

Circle Criterion revisited

We show that the results of the last chapter provide a unifying framework
for the SISO Clrcle Criterion and the conditions for CQLF existence 0b-
tained for pairs of second order systems. Also, a recent result giving a
necessary and sufficient condition for CQLF existence for pairs of LTI
systems whose system matrices are in companion form is extended to
pairs of systems whose system matrices differ by a general rank one ma-
trixz. The key role played by Theorem 4.4.1 in determining simple con-
ditions for CQLF existence is highlighted, and the implications of our
results for the connection between CQLF existence and the stability of
switched linear systems are described. In particular, classes of switched
linear systems are identified for which CQLF existence is not a conser-

vative way of establishing stability.
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5.1 Introductory remarks

5.1 Introductory remarks

In the previous chapter we described a novel way of approaching the CQLF ex-
istence problem for a pair of LTI systems based on the theory of convex sets of
matrices. Following this approach, we derived two results on CQLF existence, one
in continuous-time and the other in discrete-time. While these results may appear
to be primarily theoretical in nature, they still provide insights into the question of
CQLF existence and its relationship to the stability issues associated with switched
linear systems. In particular, we have seen how a pair of systems that are right on
the ‘boundary’, in a certain sense, of having a CQLF can still give rise to an unstable
switching system. In this chapter, we shall develop the ideas of the previous chapter
further, showing how the two major results therein can be used to derive necessary
and sufficient conditions for CQLF existence for certain system classes, and indicat-
ing how Theorem 4.4.1 unifies, in a certain sense, two of the most powerful results
on CQLF existence for continuous-time systems obtained thus far. In particular,
we shall show how that theorem can be used to give new, and insightful, proofs of
the necessary and sufficient conditions previously derived for second order systems
in continuous-time and discrete-time, and to obtain a time-domain version of the
classical Circle Criterion. We shall also point out a number of advantages of this
time-domain formulation of the result, and illustrate the results obtained through

numerical examples.

5.2 Second order switched linear systems

In this section, we shall use Theorem 4.4.1 and Theorem 4.4.2 to derive necessary
and sufficient conditions for CQLF existence for pairs of second order LTI systems

in continuous-time and discrete-time. While such conditions have already been ob-
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5.2 Second order switched linear systems

tained in [133, 2|, the proofs that we give here are more intuitive and explain why
the conditions for CQLF existence for pairs of second order systems can take a par-
ticularly simple form. Further, the proofs given here show how the CQLF existence
results for second order systems fit into the general framework of the previous chap-
ter and show how to use the results and ideas of that chapter to derive conditions
for CQLF existence. The fact that it is possible to place the second order results
within a general context raises the possibility of extending the method to other, more
complex classes of system and obtaining similar conditions. The arguments given

here follow those in [129, 78, 122, 77].

5.2.1 Continuous-time systems

Consider a pair of second order exponentially stable LTI systems ¥4,, ¥4, in
continuous-time. Thus, the system matrices A;, Ap are Hurwitz matrices in R?*2,
We shall show how to use Theorem 4.4.1 to derive necessary and sufficient conditions

for ¥4, and ¥4, to have a CQLF.

To begin with, we note the following two simple facts.

(i) It follows from Lemma 4.3.1 that if ¥4,, ¥4, have a CQLF, then the two

matrix pencils o0 o0)[A1, A2] and o [A1, A5'] are Hurwitz, and hence

7[0,00)
non-singular. Furthermore, it also follows that the matrix products A1 A, Land
A1Az have no negative real eigenvalues. This establishes that 0.y o) [A1, As]

and 00,00y [A1, A" must be Hurwitz if a CQLF exists for 4, and X 4,.

(ii) On the other hand, if ¥4,, ¥4, do not have a CQLF, then it follows from

Lemma 4.3.2 that there is some o > 0 such that ¥ 4,7, X4, have a CQLF.

Now suppose that there is no CQLF for ¥4,, ¥4,. Then, from (ii), there is some

a > 0 such that ¥4,_,7, X4, have a CQLF. (See Figure 5.1.)
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Figure 5.1: CQLF exists for ¥4, o1, X4,

If we now reduce «, this reduces the size of the set P4,_os, and the size of the
intersection Pa, NP4, —qr, until the intersection becomes empty and we arrive at the

marginal situation shown in Figure 5.2.

Figure 5.2: Reducing « to arrive at the limiting case

More formally, if we define
ap =inf{a >0: X4, 1,24, have a CQLF },

then it follows that oy > 0 and that the two systems ¥4, _o,7, Y4, satisfy the

hypotheses of Theorem 4.4.1. Loosely speaking, as we increase a, «q is the value
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5.2 Second order switched linear systems

occurring tmmediately before ¥ 4,_,; and ¥4, have a CQLF. Essentially, we are

observing that at this point, Theorem 4.4.1 applies.

It now follows immediately from Theorem 4.4.1 that one of the matrix pencils
O40,00)[A1 — o1, Az] or 09 o0y [A1 — 0, A;l] is singular. In the first case, there is
some v > 0 and some z # 0 in R? such that (A; + vA2)z = agz. Hence the pencil
05[0,00)[A1, A2] is not Hurwitz in this case. In the second case, there is some v > 0
and some non-zero vector  in R? such that (A; +v4;")2 = apz. Hence in this

case, the pencil o [A1, A5Y] is not Hurwitz.

7[0,00)

To summarize the conclusions of the above discussion, we have shown that for two

Hurwitz matrices A, Ay in R2%2:

(a) if X 4,, ¥4, have a CQLF then both of the pencils 0.,y o) [A1, A2] and (g o) [A1, AYY

are Hurwitz;

(b) if ¥4,, ¥4, do not have a CQLF, then at least one of 0,(g[A1, A2] and

T4[0,00) [ A1, A5 is not Hurwitz.

This then establishes the following necessary and sufficient conditions for two second

order LTI systems to have a CQLF.

Theorem 5.2.1 Let Ay, Ay be Hurwitz matrices in R**2. Then Y4y, Xa, have a
CQLF if and only if both of the matriz pencils 0. o) [A1, A2], T4[0,) [Al,Agl] are

Hurwitz.

Moreover, it has been shown in [133]| that for A;, A Hurwitz and in R2*2, the
matrix pencil o oc)[A1, A2] is Hurwitz if and only if the matrix product A; A5 ! has
no negative real eigenvalues. This leads immediately to the following corollary to
Theorem 5.2.1. The form of the conditions given in Corollary 5.2.1 below are more

readily checked than the matrix pencil conditions of Theorem 5.2.1.
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Corollary 5.2.1 Let Ay, Ay be Hurwitz matrices in R**2. Then Y4, X4, have
a CQLF if and only if the matriz products AlAgl and A1 Ay have no negative real

ergenvalues.

Comments:

(i) In [133], as well as the matrix product conditions, an alternative
algebraic method of checking whether or not two or more second
order systems have a CQLF is also described. However, the ge-
ometrical approach that we have taken, based on Theorem 4.4.1,
leads directly to the simple and meaningful conditions for CQLF

existence given in Theorem 5.2.1.

(ii) The argument of this section highlights the key factor that de-
termines that the conditions for CQLF existence for second order
systems take the simple form that they do. For two second order
LTI systems ¥ 4,, £ 4, in the marginal situation of Figure 5.2, the
rank of AT P+ PA; <0 must be 1 for i = 1,2, and Theorem 4.4.1
applies. Any system class to which Theorem 4.4.1 can be applied in
a similar manner may admit similarly simple conditions for CQLF

existence.

(iii) The above results give us two ways to check whether or not a
CQLF exists for two LTI systems ¥ 4,, ¥ 4,. Firstly, we can plot
the eigenvalues of (1 —a)A; + aAy and (1 —a)A; + Ay’ for 0 <
a < 1, and check if both of the eigenvalue loci lie entirely within
the open left half plane. Alternatively, we can use Corollary 5.2.1
and calculate the eigenvalues of the matrix products A1 A4,, A1 A, L

checking that neither product has a negative real eigenvalue.
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5.2.2 Discrete-time systems

We shall next use Theorem 4.4.2 to derive necessary and sufficient conditions for
a pair of second order discrete-time LTI systems to have a CQLF. The technique
used to obtain these conditions is virtually identical to that employed above in the

continuous-time case.

Consider a pair of Schur matrices A;, Ay in R?*? and the associated discrete-time
LTI systems E‘il, Z%Q. Throughout the following argument, for a Schur matrix A,
C(A) denotes the bilinear transform of A given by (3.34). To begin with, we note

the following simple facts.

(i) Tt follows from Lemma 4.3.3 that if %¢ iy 2?42 have a CQLF, then the two matrix
pencils 0,9 o) [C(A1), C(A2)] and o9 o) [C(A1),C(A2)71] are Hurwitz, and
hence non-singular. Furthermore, it also follows that the matrix products

C(A1)C(A2)~1 and C(A;1)C(As2) have no real negative eigenvalues.

(ii) On the other hand, if Eil, EdA2 do not have a CQLF, then it follows from
Lemma 4.3.4 that there is some a > 0 such that EdC’*1(C(A1)—aI)’ 2?42 have a

CQLF.

Now suppose that there is no CQLF for Edl, 2742. Then it follows from (ii) above

that there is some « > 0 such that there is a CQLF for Zé_l and fob.

(C(A1)—al)

For the same reasons as outlined in the continuous-time case, if we define
ap = inf{a >0: E%,l(C(Al)_aI), fob have a CQLF },

then it follows that ch,l (C(A1)—ao]) and E%Q satisfy the hypotheses of Theorem 4.4.2.

Thus either 0,9 «)[C (A1) — oI, C(Az)] is singular or o, o0)[C(A1) —aol, C(Az) ]

gl
is singular. In the first case, it follows that the matrix pencil o,[p o) [C(A1), C(A2)] is

not Hurwitz, while in the second case we have that the pencil 0., o0)[C(A1), C(A2) ]
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is not Hurwitz. Summarizing the above discussion we have the following result on

CQLF existence for pairs of discrete-time LTI systems.

Theorem 5.2.2 Let Ay, Ay be Schur matrices in R2*?. Then the discrete-time LTI
systems Effh, Effb have a CQLF if and only if both of the matriz pencils oo o)[C(A1), C(A2)],

T4(0,00)[C (A1), C(A2)7Y] are Hurwitz.

As in the continuous-time case, we may combine this result with the fact that for
two Hurwitz matrices A;, Ap in R?*2, the matrix pencil 040,00) [A1, A2] is Hurwitz
if and only if the matrix product A1 Ay ! has no negative real eigenvalues and obtain

the following corollary.

Corollary 5.2.2 Let Ay, Ay be Schur matrices in R**2. Then the discrete-time
LTI systems ZC}%’ 2?42 have a CQLF if and only if both of the matriz products

C(A1)C(Ag), C(A1)C(A2)™! have no negative real eigenvalues.

Comments:

Necessary and sufficient conditions for a pair of second order discrete-
time LTI systems to have a CQLF have been previously reported in [2].
The conditions given there are also stated in terms of matrix pencils,
and can be checked either by plotting a root locus, or by direct algebraic
calculations. As for continuous-time systems, through the use of Theo-
rem 4.4.2 we have been able to derive conditions for CQLF existence in
a geometric and intuitive manner. Furthermore, the proof that we have
given here indicates why the simple conditions of Theorem 5.2.2 hold.
As with continuous-time systems, the key point is that in the marginal
situation of Figure 5.2 the rank of A7 PA; — P must be 1 for i = 1,2,

thereby allowing us to apply Theorem 4.4.2.
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5.2.3 Examples

Finally, for this section, we present some numerical examples to illustrate the results

derived above.

Two systems with a CQLF:

Example 5.2.1 Consider the second order LTI systems ¥ 4,, X4, where
16.5603 —31.8756 —1.1144 —-3.1126

Ay = , Ag =
36.2990 —25.4635 —0.9722 —-3.9614

The eigenvalue loci of (1 — a)A; + Ay and (1 — a)A; + oAyt for 0 < a <1 are

given in figures 5.8 and 5.4 below.

30

-30
-5

4‘5 741 73‘5 fi‘i ]%e(x‘j 71‘.5 7‘1 —n‘_s 0 s 4‘@ 7315 ff‘i 72‘5 Re%)\) 71‘5 ,i 70‘5 0

Figure 5.3: Eigenvalue locus of (1—a) A+ Figure 5.4: Eigenvalue locus of (1—a)A;+
QAQ OéA;l
From the above Figures, it is clear that neither locus crosses into the right half plane.

Hence, it follows from Theorem 5.2.1 that there is a CQLF for ¥ 4, and X 4,.

Alternatively, if we calculate the eigenvalues of the products AjAs, A1A2_1, we find

that

o(A1Ay) = {0.2113 4 3195275, 0.2113 — 31.95275}

o(A1A;Y) = {16.1217 4 16.4233;, 16.1217 — 16.42335}.
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Here, o(A) represents the spectrum of the matriz A. It follows from Corollary 5.2.1
that ¥ 4,, ¥ 4, have a CQLF.

Two systems with no CQLF:

Example 5.2.2 Consider the second order LTI systems ¥ 4,, X4, where

A 8.2012 21.5591 —48.8335  7.6504
1= =

—16.1443 —8.8490 —8.2792 —1.5512

The eigenvalue loci of (1 — a)A; + aAs and (1 — a)A; + aAyt for 0 < a <1 are

given in figures 5.5 and 5.6 below.
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Figure 5.5: Eigenvalue locus of (1—a)A;+ Figure 5.6: Eigenvalue locus of (1—a)A;+
OZAQ aAgl

From Figure 5.6, we can see that (1 —a)A; + aAg_l has eigenvalues in the right half
plane for some values of a between 0 and 1. Thus it follows from Theorem 5.2.1 that

YA, Y4, do not have a CQLF.

Alternatively, if we calculate the eigenvalues of the products AjAs, A1A2_1, we find

that

o(A1Ay) = {—627.7259, —61.0403}

o(A1A7Y) = {0.4151,4.7716}.
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Thus, A1As has two negative real eigenvalues, and it follows from Corollary 5.2.1

that ¥ 4,, ¥ 4, do not have a CQLF.

5.3 Pairs of systems differing by rank one

The two most significant classes of systems for which necessary and sufficient condi-
tions for CQLF existence are known are given by second order systems, considered
in the previous section, and systems whose system matrices are in companion form.
For the latter case, the classical SISO Circle Criterion [97] provides a necessary and
sufficient condition for CQLF existence, and recently in [128], a novel time-domain
formulation of this result has been developed. This time-domain version of the con-
dition was discussed in Chapter 3 where it was presented as Theorem 3.5.4. Our
aim in this section is to show that the result of Theorem 3.5.4 extends to pairs of
exponentially stable LTI systems ¥ 4,, ¥4, where Ay — A; is a general rank one
matrix, thereby relaxing the assumption that the matrices must be in companion
form. In later sections, we shall see how this result can also be treated within the
framework of the previous chapter and how Theorem 4.4.1 casts some light on why

the conditions for CQLF existence take a simple form in this case.

5.3.1 Necessary and sufficient conditions for CQLF exis-

tence

Consider two Hurwitz matrices A, A — be!' in R™*™, where b, ¢ are column vectors
in R™. If both of the matrices are in companion form, then Theorem 3.5.4, due
to Shorten and Narendra, establishes that a necessary and sufficient condition for a
CQLF to exist for the associated pair of LTI systems, X 4, ¥ 4_p.r is that the product

A(A —bcT) has no negative real eigenvalues. As previously remarked, this result can
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5.3 Pairs of systems differing by rank one

be thought of as an alternative time-domain formulation of the classical SISO Circle
Criterion. Furthermore, the time-domain version of the result is easier to check than
its frequency-domain equivalent, and provides insight into the relationship between
CQLF existence and the stability of switched linear systems. In Theorem 5.3.2 below,
we use Meyer’s extended form of the KYP Lemma [84] to show that the result of
Theorem 3.5.4 also holds in the case of two LTI systems whose system matrices differ
by a general rank one perturbation. The time-domain condition thus obtained is more
compact than the equivalent frequency-domain condition for CQLF existence, and,
moreover, the necessity of the condition for CQLF existence is immediate from the

time-domain form of the result.

Recall from Section 3.5.2 that the Kalman Yakubovic Popov (KYP) Lemma [51, 93],
stated above as Theorem 3.5.2, established that for a Hurwitz matrix A in R™*™,

and vectors b, ¢ in R™ with the pair (A, b) completely controllable, the condition
2 T 1 A1
5 + Re{c’ (jwI — A)""b} >0 forall we R,

was sufficient for the existence of a positive definite solution P to the constrained

Lyapunov equations

ATP+PA = —q¢" —€P

Pb—c = ﬁq7

for a given positive € and vector ¢ € R™. Using this result, in [97] Narendra and
Goldwyn derived the SISO Circle Criterion, giving a frequency domain sufficient
condition for a CQLF to exist for the systems X 4, ¥ 4_;.r. As stated above, Willems
later established the necessity of the Circle Criterion for CQLF existence in [146].
Following on from this work, Meyer extended the KYP Lemma in [84], removing the
assumption that the pair (A4, b) is completely controllable. Combining the approach
of Narendra and Goldwyn [97] with Meyer’s results [84] yields the following sufficient

condition for CQLF existence for systems differing by rank one.
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Theorem 5.3.1 Let A, A — bc” be Hurwitz matrices in R™*™, where b,c € R".

Suppose that
1+ Re{cT (jwI — A)7'b} > 0 for all w € R. (5.1)

Then there is a CQLF for the pair of LTI systems ¥4, ¥ 4_p.T-

We shall show that the condition (5.1) is equivalent to the matrix A(A —bc!) having
no negative real eigenvalues. In order to do this, we shall need the following technical

lemma. For details, see [50].

Lemma 5.3.1 Let A, A—bc! be Hurwitz matrices in R™", where b,c € R™. Then

for any complex number s,

det(sI — (A —bcl)) — det(sI — A)

det(cT (s — A)~b) = det(sI — A)

Theorem 5.3.2 [123, 124] Let A, A — bc! be Hurwitz matrices in R™ ", where
b,c € R™. Then
1+ Re{c (jwl — A)7b} > 0 for all w € R

if and only if the matriz product A(A — be) has no negative real eigenvalues.

Proof: As A and A —bc” are both Hurwitz, their determinants have the same sign,
and hence det(A(A — bcT)) > 0. Tt follows that A(A — be!) has no negative real

eigenvalues if and only if
det(M + (A — beT)A) = det(M + A% — bt A) > 0 for all A > 0.

Applying an appropriate similarity transformation if necessary, we may assume with-

out loss of generality that the rank one matrix be! is in one the Jordan canonical
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forms

w0 0 0 0
0 ... ... 0 1 ... ...0

(i) bl = , (i) be! = . (5.2)
0 ... ... 0 0 ... ... 0

Now, for be” in one of the above forms, it can verified by direct computation that
det(M + A% — beT A) = Re{det(A + A% — b A — vV \jbeT)},
for all A > 0. Writing A = w? it follows that, for all real w,
Re{det(w?T + A% — bcT A — jwbc!)} > 0. (5.3)

Noting that as A is Hurwitz, det(w?I 4+ A?) is positive for all real w, it follows by

direct calculation that for all w € R,

Re{det(w?I + A% — beT A — jwbcl)} > 0

< Re{det(w?I 4+ A?) + det(w?T + A% — bcT A — jwbe!) — det(w?T + A%} >0
Re{det(w?I + A?%) + det(w?I + A? — beT A — jwbe!) — det(w?I + A%)}
— >0
det(w?l + A?)
Re{det(w?I + A% — bcT A — jwbeT) — det(w?I + A2)}
1 . 4
= It dot(w?] + A7) >0 (54)
Next, note that
det(w?l + A% — bt A — jwbcl) = det(jwl — (A — bel))det(—jwl — A)
det(w?T + A%) = det(jwl — A)det(—jwl — A). (5.5)
Using (5.5), we see that the condition (5.4) is equivalent to
det(jwl — (A —bcT)) — det(jwl — A
| 4 RegdetUwl = (A =be)) = det(jul = 4), (5.6)

det(jwl — A)

for all w € R. Finally Lemma 5.3.1 shows that this is equivalent to
14 Re{c! (jwl — A)71b} >0
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for all w € R as claimed.

It is now relatively straightforward to combine Theorem 5.3.2 with Theorem 5.3.1
to obtain the following necessary and sufficient condition for a CQLF to exist for a

pair of LTI systems 3 4,, ¥4, with rank(As — 4;) = 1.

Theorem 5.3.3 Let Ay, Ay be Hurwitz matrices in R™*™ with rank(As — A;) = 1.
Then the LTI systems ¥ 4,, X4, have a CQLF if and only if the matriz product A A
has no negative real eigenvalue or, equivalently, the matriz pencil o, o) [Aq, A;l] 18

non-singular.

Proof: If ¥ 4,, ¥4, have a CQLF, then it follows from Lemma 4.3.1 that the product
A1 As has no negative real eigenvalues. Conversely, assume that A1 A3 has no negative
real eigenvalue. Then, writing A; — Ay = bc! Theorem 5.3.2 implies that 1 +
Re{c”(jwI — A)~'b} > 0 for all real w. It then follows immediately from Theorem

5.3.1 that the systems X 4,, ¥4, have a CQLF.

Comments:

We have shown that the matrix A(A — be?) having no negative real
eigenvalues is equivalent to the condition (5.1), for a general rank one
perturbation be’. While (5.1) has been known as a sufficient condition
for CQLF existence for some time, it is far from straightforward to show
directly that it is also necessary for CQLF existence. However, when the
condition is expressed in the equivalent matrix product form, it follows
immediately from Lemma 4.3.1 that it is necessary for CQLF existence.
Furthermore, while the condition (5.1) requires us to check that 1 +
Re{c? (jwI — A)~'b} is positive for every real value of w, the condition
of Theorem 5.3.3 only requires a single eigenvalue computation, and is

thus more readily tested.
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5.3 Pairs of systems differing by rank one

It has been mentioned before that Theorem 3.2.2, due to Loewy, may be used to
extend a result on CQLF existence for a family of systems to any related family
obtained by replacing various system matrices with their inverses. In the present

case, we can immediately write down the following corollary to Theorem 5.3.3.

Corollary 5.3.1 Let Ay, Ay be Hurwitz matrices in R™™ with rank(As —Al_l) =1.

Then the following three statements are equivalent.

(i) The matriz product AflAg has no negative real eigenvalues.
(ii) The switched linear system
2(t) = A()x(t)  A(t) € {A1, A2} (5.7)
1s uniformly exponentially stable for arbitrary switching signals.

(i5i) The systems ¥ 4,, X4, have a CQLF.

Proof: (i) < (iii): From Theorem 3.2.2, ¥ 4,, ¥ 4, have a CQLF if and only if EA;“
3 4, have a CQLF, and hence from Theorem 5.3.3, if and only if the matrix product

AflAg has no negative real eigenvalues.

(ii) < (iii): It is immediate that (iii) implies (ii). On the other hand, if there is no
CQLF for ¥4,, ¥ 4,, it follows from the above argument that Al_lAg has a negative
real eigenvalue. Hence, there is some v > 0 such that A; + vAs has an eigenvalue
in the closed right half plane. Thus from Theorem 2.3.1, the switched linear system
(5.7) is not uniformly exponentially stable under arbitrary switching. This completes

the proof.

Comments:

It is important to underline that Corollary 5.3.1 provides an example of
an entire class of switched linear systems for which requiring the exis-

tence of a CQLF is not a conservative criterion for exponential stability.
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5.3 Pairs of systems differing by rank one

In fact, for two Hurwitz matrices Ay, As with rank(A; — Ay 1y =1, the
existence of a CQLF for X4,, ¥4, is equivalent to the uniform expo-
nential stability of the associated switched system (5.7) under arbitrary

switching.

Finally for this section, we note that the result of Theorem 5.3.3 can be extended
slightly to apply to a larger class of systems in the following way. The key observation
behind the following result is that two systems X 4,, ¥4, have a CQLF if and only

if the systems ¥ 4,, .4, have a CQLF for any positive constant c.

Corollary 5.3.2 Let A1, As be two Hurwitz matrices in R™*™. Suppose that there is
some ¢ > 0 such that rank(As —cAy) = 1. Then a necessary and sufficient condition
for there to be a CQLF for the systems Xa,, X4, is that the matriz product Ay A

has no negative real eigenvalue.

Proof: The necessity of the condition follows immediately from Lemma 4.3.1. Con-
versely, suppose that A;As has no negative real eigenvalues. Then (cA;)Az has no
negative eigenvalues either and rank(As — cA;) = 1. Hence from Theorem 5.3.3,

YA, 24, have a CQLF, and thus so do X 4,, ¥ 4, as claimed.

Comments:

Corollary 5.3.2 provides another example of a class of systems for which
simple necessary and sufficient conditions for CQLF existence can be
given. Of course, a difficulty with using the corollary is that it is nec-
essary to check whether or not a positive constant ¢ exists such that
rank(Ay — cA;) = 1. One way of testing for the existence of such a
constant is to calculate the eigenvalues of AI_IAQ. If this matrix has
a positive real eigenvalue of geometric multiplicity n — 1, then there is

such a constant and Corollary 5.3.2 may be applied. To see this, note
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that there is some ¢ > 0 such that rank(As —cA;) = 1 if and only if, for
this c, AflAg — ¢l also has rank one. This is then equivalent to ¢ being
an eigenvalue of Al_lAg of geometric multiplicity n — 1.

5.3.2 Examples

We shall now present two numerical examples to illustrate the ideas and results of

the previous subsection.

Example 5.3.1 Consider the stable third order LTI systems ¥ 4, ¥ 4_3.r where

—47.3992 33.3965  7.7548 0.4608 0.4122
A=1 187324 10.5304 —35.5976 |,0=| 04574 |:¢=| 0.9016
15.3888  30.8884 —22.9334 0.4507 0.0056

If we calculate the eigenvalues of A(A — bc'), we find that
o(A(A — beT)) = {2668.4, —1488.7 + 327.7j, —1488.7 — 327.75}.

Thus, it follows from Theorem 5.3.3 that the systems ¥4, ¥ 4_p.r have a CQLF.

Example 5.3.2 Consider the two third order LTI systems ¥ 4,, ¥ 4, where

—-31.0609 —6.0655 —1.1295
A = 2.7560 —43.4734 -—-19.0071 |-

—9.7284 —22.8422 —12.3802

—62.1219 —-12.1310 —2.2590

Ay = 55120 —86.9469 —38.0142

—18.9567 —44.9843 —24.8604
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Then note that in this case rank(As — A1) = 3. However, it can be easily checked
in MATLAB that the eigenvalues of AIlAQ are given by {2.1294, 2, 2}, and that
the eigenspace corresponding to the eigenvalue 2 has dimension 2. Thus by the com-
ment after Corollary 5.3.2, it follows that there is some positive constant ¢ such that

rank(As — cA1) = 1. In fact,

0 0 0
Ay — 241 = 0 0 0
0.5 0.7 —-0.1

Hence, we can apply Corollary 5.53.2 to test for a CQLF. The eigenvalues of AyAs

are given by
o(A1As) = {12.8, 1820.3, 5884},

and hence it follows from Corollary 5.5.2 that ¥ 4,, ¥ 4, have a CQLF.

A practical application of Theorem 5.3.3:

Note that in the recent paper [142], the result of Theorem 5.3.3 has been used to
analyse the robust stability of a controller designed for four-wheel steering vehicles.
Essentially, in [142] the authors consider the problem of designing a controller that
manipulates the front and rear steering angles of the vehicle to track reference signals
for yaw-rate and side-slip angle. The controller presented in the paper is based on
the so-called single-track model of the lateral dynamics of the vehicle, and relies on
the assumption of constant longitudinal speed. A key factor that has to be taken
into account in the design process is that the steering angle on the rear tyres is
constrained to lie within a relatively small range, effectively introducing a saturation
effect into the corresponding control action. After an appropriate transformation,
in order to establish the input-output stability of the overall system in [142], it is
sufficient to demonstrate the asymptotic stability of the closed loop system depicted

in Figure 5.7 below.
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’ii@ u | #=Ar+bu O c

A4

Figure 5.7: Closed loop system analysed in [142]

R and of the vectors b, ¢ in R1*! are determined

The entries of the matrix A in
by various physical parameters associated with the vehicle. It should be noted that
the values of some of these entries depend on the constant longitudinal speed of the
vehicle, and that all of the underlying physical parameters are subject to uncertainty.
The output 9, . of the forward path is the rear steering angle that is demanded by
the controller. As mentioned above, this angle is constrained to lie within a limited
range and this fact is captured by the saturation non-linearity ¢ in the feedback

path. The state equations for the closed loop system in Figure 5.7 can be written in

the form:
i = (A - k(z)bch)z, (5.8)

where k(z) is a non-linear function satisfying 0 < k(z) < 1 for all z. It now follows
that the existence of a CQLF for the two bounding LTI systems ¥ 4, ¥ 4_;.r would
guarantee the asymptotic stability of the system (5.8). But from Theorem 5.3.3, we
know that if the matrices A and A — bc! are Hurwitz, then there is a CQLF for
Y4 and ¥ 4_,.r if and only if the matrix product A(A — bel) has no negative real

eigenvalues.
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5.3 Pairs of systems differing by rank one

In [142|, for three different fixed values of the longitudinal speed, the matrices A
and A — be! were calculated for a large number of possible values of the underlying

physical parameters, and in each case:

(i) it was verified that A and A — be! were Hurwitz;

(ii) the eigenvalue of the product A(A — beT) closest to the negative real axis was

calculated.

All of the eigenvalues calculated in (ii) were then plotted, in what can be thought
of as a root-locus for the non-linear system (5.8). This plot is reproduced below in

Figure 5.8 with the kind permission of M. Vilaplana.
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Figure 5.8: Eigenvalue plot taken from [142]

It is clear that none of the eigenvalues plotted in Figure 5.8 lie on the negative real
axis. Thus, the authors of [142] were able to conclude that the system (5.8) was

asymptotically stable using Theorem 5.3.3.
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5.4 A new perspective on the Circle Criterion

In Section 5.2, we saw how Theorem 4.4.1 could be applied to derive necessary and
sufficient conditions for CQLF existence for pairs of second order LTI systems. In
this section, we shall revisit the problem of determining necessary and sufficient
conditions for a CQLF to exist for a pair of LTI systems ¥4, ¥ 4_;.r, whose system
matrices differ by rank one. It may appear that we are merely re-deriving, in a
somewhat circuitous manner, the results already established in Theorem 3.5.4 and
Theorem 5.3.3. However, the presentation here is based on Theorem 4.4.1 and the
methods described in the previous chapter, as opposed to the purely algebraic proof
given in the last section. In fact, our main goal in this section is to show that Theorem
4.4.1 provides a general framework within which both the results for second order
systems, and the SISO Circle Criterion can be unified, and to provide insight into
why the condition for CQLF existence for pairs of LTI systems differing by rank one
takes the simple form given in Theorem 5.3.3. We have already stated that where
Theorem 4.4.1 can be applied, simple conditions for CQLF existence are likely to
hold. As such, we wish to show the role played by Theorem 4.4.1 in determining
conditions for CQLF existence for those classes of systems covered by the SISO
Circle Criterion and Theorem 5.3.3. Moreover, we wish to provide another example
of a significant system class to which Theorem 4.4.1 can be applied, and provide a
further illustration of how this theorem may be used to find necessary and sufficient
conditions for CQLF existence for various system classes. Incidentally, it is worth
noting that for both of the system classes to which Theorem 4.4.1 is applied in this
chapter, the rank of the commutator [A;, As] = A1 As — A3 A is at most two. In the
light of this observation, it is natural to ask whether or not it is possible to identify
further system classes where the rank of [A;, As] is at most two, to which Theorem

4.4.1 can be applied in a similar fashion.
It is important to emphasize that while some of the proofs of this section are quite
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lengthy, the arguments presented provide insight into the result of Theorem 5.3.3.
In fact, they indicate why the matrix product conditions for CQLF existence derived
in Theorem 5.3.3 hold. As in the case of second order systems, a key role is played

by the rank of the matrices Q; appearing in the statement of Theorem 4.4.1.

5.4.1 Two Lemmas on rank-one perturbed matrices

In this short subsection, we present two technical lemmas concerned with pairs of
Hurwitz matrices that differ by rank one. Both of these are needed in order to show
the role played by Theorem 4.4.1 in determining necessary and sufficient conditions

for CQLF existence for pairs of systems whose system matrices differ by rank one.

On a number of occasions so far, we have seen that the properties of the matrix
pencils 00 o0)[A1, A2, 04[0,00)[A1, A5 1 can play an important role in determining
whether or not a CQLF exists for ¥ 4,, ¥4,. The following lemma, which is taken
from [61], shows that if rank(As — A1) = 1, then one of these pencils cannot be

singular.

Lemma 5.4.1 Let A, A —bc” be Hurwitz matrices in R™ ™. Then the matriz prod-
uct A™Y(A — be?) has no negative real eigenvalues. Equivalently, the matriz pencil

O4[0,00) [ A, A — bel'] is non-singular.

Lemma 5.4.2 [125] Let A, A — bc! be Hurwitz matrices in R™™ with b,c in R™.
Suppose that for some Ao > 0, the matriz product A(A — \obc”) has a negative
real eigenvalue (the pencil 0.y o) [A=1) A — \obcT] is singular). Then for all real
A > )Xo, the product A(A — \bcT) also has a negative real eigenvalue (the pencil

T+[0,00) [A=Y, A — \bel] is singular).

Comments:
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From Lemma 4.3.2, it follows that for sufficiently small values of A > 0,
the matrix product A(A—Abc?) will not have a negative real eigenvalue.
Lemma 5.4.2 states that as we increase ), if at any point A(A — AbcT)
has a negative real eigenvalue, then it will continue to do so for all larger

values of A also. The proof of Lemma 5.4.2 is given in Appendix B.

5.4.2 Systems in companion form

To begin with, we assume that we are given two Hurwitz matrices A, A — be! in

R™*™ in companion form. Thus we may write

0 1 0 0 0 co
0 0 1 0 0 c1
A= ,b= ,C = (5.9)
0 0 0o ... 1 0 Cn—2
—ag —ai —as ... —Qp_1 1 Cn—-1

The following preliminary points are important for the work of this section.

(i) It follows from the Circle Criterion (Theorem 3.5.3) that there is a CQLF for

Y4, Xg_per if and only if
N(w) =14 Re{c! (jwl — A)7'b} >0 (5.10)
for all w € R.
(ii) Furthermore, if we define
Ae =sup{A >0:%¥4 and ¥ ,_y,.r have a CQLF },
then (provided A\, < o0) it follows by continuity that
To(w) =1+ Ref{Ac! (jwl — A)71b} > 0,
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for all real w and I'.(wp) = 0 for at least one wy € R.

(iii) Later on, we shall need to know how the coefficients of the numerator polyno-
mial of the rational function I'(.) are related to the entries of A and b. It has
been pointed out in [51], and in Chapter 10 of [118], that for A,b, c as in (5.9),

co+ec1s+...+ep18"t

det(sI — A) ’

cl(sI— A= (5.11)

for all s in C. From this it follows that we can write

_ p(w)
TWw) = Get@er + 49

where p is a monic even polynomial ! in w of degree 2n. Furthermore, as

det(sI — A) =ag+a1s+ ...+ ap,_15""1 + 57, we may write
p(w) = det(W?I + A%) + p1(w)

where

p(w) = coag+ (—coaz + cra1 — coap)w?

4
+ (cpaq — c1as + coag — czay + cqap)w” + ...

+ (—Ch_2+ cn1an_1)w?" 2. (5.12)

Note that we can identify any monic even polynomial of degree 2n with the
vector in R™ formed by the coefficients of w®, w?,...,w?* 2. If we do this,
it then follows from (5.12) that for a given A € R™ ™ in companion form,
the relationship between the entries of the vector ¢ and the polynomial p is

described by the affine mapping (from R"™ to R")

T(c) =0(A)+ L(A)c (5.13)

LA polynomial is monic if its leading coefficient is equal to one. An even polynomial in

w only contains even powers of w.

133



5.4 A new perspective on the Circle Criterion

where ©(A) is a vector that depends on the entries of A and L(A) is the linear

map given by the matrix (in R™*"™)

aop 0 0 0 0O ... 0 0
—ag al —a 0 0 e 0 0
L(A) = ayg —as a9 —a1 ap ... 0 0 (5'14)
0 0 0 0 0 ... =1 ap

(iv) It is important to note that the determinant of L(A) is not independent of the
entries of A. For instance, the product term agaias . ..a,—1 only appears once
in the expression for the determinant. For this reason, if we consider det(L(A))
as a polynomial in ag,...,a,_1, it is not uniformly zero. Thus, for any com-
panion matrix A in R™*" such that L(A) is singular, it is possible to find
another matrix A’, also in companion form, arbitrarily close to A with L(A’)

invertible, simply by perturbing the entries ag, a1, ...,a,—1 appropriately.

The case of L(A) invertible:

We first consider a pair of Hurwitz matrices A, A — bc! in companion form such
that L(A) is invertible. From point (iv) above, it is clear that this is not an overly
restrictive assumption to make. Furthermore, we shall later see how to remove this

assumption and derive a result for general pairs of Hurwitz companion matrices.

In Theorem 5.4.1 below, we show the relevance of Theorem 4.4.1 in the present
context. Specifically, we consider a pair of LTI systems in the marginal situation
depicted in Figure 4.3, and demonstrate that the hypotheses of Theorem 4.4.1 are

generically satisfied under our current assumptions.

Theorem 5.4.1 [123] Let A, A — bc” be Hurwitz matrices in R™", where A,b,c €

R™ are in the form of (5.9), and L(A) is invertible. Assume that there is no CQLF
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for ¥4 and ¥ 4_y.r. Furthermore, suppose that there is a CQLF for ¥4 and ¥ 4_ .1
for all real X with 0 < X\ < 1. Then given any € > 0, there is some vector ¢ € R"

with ||c — || < € for which there exists a matriz P = PT > 0 satisfying

ATP4+PA = Q<0 rank(Qy)=n—1

(A=bTY'P+PA-bT) = Q<0 rank(Qe) =n— 1.

The proof of this result is extremely long and technical so, rather than including it

at this point, it is presented in Appendix B.

Comments:

The previous result indicates that, in a sense, Theorem 4.4.1 applies
generically in the present context. Specifically, suppose that we have
two LTI systems ¥4, ¥ 4_p.r, where A, A —bc! are Hurwitz, and A, b, ¢
are in the form (5.9). From Lemma 4.3.2, it follows that for small enough
values of t, ¥4 and X 4_,.r have a CQLF. Consider the smallest value
to of ¢ for which the systems X4, ¥, 4 ;. do not have a CQLF. We
can think of this as being the point at which a CQLF fails to exist for
the systems as we vary ¢t. Then Theorem 5.4.1 shows that even if the
hypotheses of Theorem 4.4.1 are not satisfied at this point, there exists
a matrix A’ and a vector ¢, arbitrarily close to the original A and c,
such that when a CQLF fails to exist for X 47, ¥ 407 (as we vary t),

Theorem 4.4.1 can be applied.

We are now in a position to derive a necessary and sufficient condition for a pair of
LTI systems ¥4, ¥ 4_,.r to have a CQLF, where A and A — bc” are in companion

form and the matrix L(A) is invertible.

Theorem 5.4.2 [123] Let A, A — bc” be two Hurwitz matrices in companion form

in R™™ where b, c are column vectors in R™. Assume that the matriz L(A) defined
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by (5.14) is non-singular. Then a necessary and sufficient condition for a CQLF
to exist for the systems L4, ¥ 4_por is that the matriz product A(A — bel) has no
negative real eigenvalues or equivalently, that the matriz pencil o, ) [A=1 A —bcT]

18 non-singular.

Proof: If there is a CQLF for the systems X 4, ¥ 4_;.7, then it follows from Lemma

4.3.1 that the product A(A — bc!) has no negative real eigenvalue.

Conversely, suppose there is no CQLF for ¥4, ¥ 4_;.r. Then it follows from Lemma
4.3.2 that for small enough values of A > 0, the systems ¥4, ¥ 4_,.r will have a
CQLF. Define A. = sup{\ > 0: X4 and ¥ ,_y,.r have a CQLF }. Then A, <1 and

Y4 and ¥4, .1 satisfy the conditions of Theorem 5.4.1.

It now follows from Theorem 5.4.1, Theorem 4.4.1 and Lemma 5.4.1 that for any

€ > 0 there exists a vector ¢ in R™ such that:

(i) [[Aec =l <&

(ii) A(A —bcT) has a negative real eigenvalue.
It now follows from the continuous dependence of the eigenvalues of a matrix on
its entries that, in the limit as e tends to zero, A(A — A.bc!) has a negative real

eigenvalue. Finally, Lemma 5.4.2 implies that A(A — bc’) also has a negative real

eigenvalue.

Extension to the case of (potentially) singular L(A):

We now show how to extend Theorem 5.4.2 to the case where the matrix L(A) may
be singular. With this aim in mind, let A, A — bc? in R™*" be Hurwitz matrices
in companion form such that L(A) is singular. It follows immediately from Lemma
4.3.1 that if the systems ¥4, ¥ 4_,.r have a CQLF, the matrix product A(A — bcl)

has no negative real eigenvalues.
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Conversely, suppose that there is no CQLF for ¥ 4, ¥ 4_;.r. Then as mentioned in
the comments at the beginning of this subsection, it is possible to find an arbitrarily
small perturbation, d A, on the entries of A that will make L(A + JA) non-singular.
More formally, it is possible to find a vector dc in R™, of arbitrarily small norm, such
that for the companion matrix A+ b(dc)?, L(A + b(6¢c)T) is non-singular. Thus, the
polynomial in ¢ given by det(L(A + tb(dc)T)) is not uniformly zero. In fact, there
can be at most finitely many values of ¢ for which L(A + tb(dc)T) is singular. It
follows from this that there exists some real number r > 0 such that for 0 < |t| < 7,

A +tb(6¢)T is Hurwitz and the matrix L(A + tb(6¢c)”) is non-singular.

NOW, for any t, if ZA—bcT and EA-i—tb((Sc)T have a CQLF, then EA—bcT and ZA—tb((Sc)T
will definitely not have a CQLF. Thus, it must happen that either ¥, _,.r and

Y a4up(se)r have no CQLF or that X ,_p.r and X 44507 have no CQLEF.
It follows from the above argument that there exists a matrix A’ in R™*" arbitrarily
close to A such that:

(i) A’ is Hurwitz, in companion form, and L(A’) is invertible;

(ii) There is no CQLF for the systems ¥4 and X 4_.r.
But we can then apply Theorem 5.4.2 to deduce that A’(A — bc?) has a negative
eigenvalue. As such a matrix A’ can be found arbitrarily close to the original A,
it follows from the continuous dependence of the eigenvalues of a matrix upon its

entries that A(A — be) has a negative real eigenvalue also. This then establishes

that the conclusion of Theorem 5.4.2 also holds when the matrix L(A) is singular.

5.4.3 Extension to general systems differing by rank one

We have now given a proof based on Theorem 4.4.1 that A(A — bc) having no neg-

ative real eigenvalues is necessary and sufficient for CQLF existence for ¥ 4, ¥ 4_p.r
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when A, A — bc! are Hurwitz and in companion form, indicating the role played
by Theorem 4.4.1 in determining the simple conditions for CQLF existence in this
case. A key factor in our derivation was that the hypotheses of Theorem 4.4.1 were
satisfied by a significant class of pairs of matrices in companion form. To finish this
chapter, we show how to extend the above work to show that the condition is also
necessary and sufficient for CQLF existence in the case of a general pair of Hur-
witz matrices differing by rank one. To do this, we shall make use of the following

standard lemmas.

Lemma 5.4.3 Let A, B be Hurwitz matrices in R™"*™. Suppose that

Al A2 By By
A: y B:

0 As 0 Bsj
where Ay, By are in RP*P, and As, Bz are in ROP)X(=P) for some p, 1 < p < n.
If both pairs of systems (X4,, ¥p,) and (X4,,%B,) have a CQLF, then ¥4 and ¥p
have a CQLF.

Lemma 5.4.4 [8/] Let A € R™"™ be Hurwitz and let b be a vector in R™. Then

there exists a non-singular S in R™ "™ such that

A 4 by
SAS = y Sb = )

0 As 0

where Ay € RP*P| Ay € R"P*P Ay ¢ ROP)X(=D) b ¢ RP and the pair (Ay,b1) is

completely controllable ([118]).
As the pair Ay1,b; in Lemma 5.4.4 is completely controllable, it follows that for any

c1 € RP, it is possible to simultaneously transform A;, Ay —bic! simultaneously into

companion form ([51]). It therefore follows from Lemma 5.4.4 that given a pair of
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Hurwitz matrices A, A —bc! in R™ ™, it is possible to find a non-singular S in R?*"

such that

where A1, and B; are both in companion form.

Now suppose that A, A—bc! are Hurwitz matrices in R”*" such that A(A—bc’) has
no negative real eigenvalues. Choose some non-singular S such that SAS~! S(A —
bcT)S~! are in the form (5.15). Then it follows by direct computation that A; By has
no negative real eigenvalues. Thus, from the arguments of the last subsection, we can
conclude that there exist positive definite matrices P; € RP*P and P, € R(»=2)*(n=p)

such that

ATP + P4 < 0O
BIp+PB < 0

ATPy + PA3 < 0.

It now follows immediately from Lemma 5.4.3 that there is a CQLF for ¥ 4, ¥ 4_p.7.
This shows that A(A — bc’) having no negative real eigenvalues is a sufficient con-
dition for X4, ¥ 4_,.r to have a CQLF. The necessity of the condition is immediate

from Lemma 4.3.1.

5.5 Concluding remarks

In this chapter, we have demonstrated how the ideas and results of Chapter 4 can
be used to derive necessary and sufficient conditions for CQLF existence for certain
system classes. In addition, we have shown that the key result of Theorem 4.4.1

provides a unifying framework for the known conditions for CQLF existence for
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pairs of second order LTI systems and the classical SISO Circle Criterion. The main

contributions of the chapter are now listed.

e Insightful proofs were given for the known necessary and sufficient conditions
for CQLF existence for pairs of second order LTI systems in both continuous-
time and discrete-time. The proofs given here indicated why the conditions
take a simple form in the second order case, with the fact that Theorem 4.4.1

can be applied playing a crucial role.

o A recently obtained result [128] giving verifiable conditions for CQLF existence
for pairs of LTI systems in companion form was extended to the case of a pair
of exponentially stable LTI systems ¥ 4,, ¥4,, whose system matrices differ
by a general rank one matrix. Specifically, we have shown that for two such
systems, there is a CQLF if and only if the product A; Ao has no negative real

eigenvalues.

e The previous result was further extended to the case of a pair of LTI systems
Y 4,, X4, for which there is some positive constant ¢ with rank(A; —cAg) = 1.
A simple means of testing for the existence of such a constant ¢ was also

described.

e Based on these results, a class of switched linear systems for which CQLF
existence is not a conservative way of establishing exponential stability under

arbitrary switching was identified.

e A large part of the work of the chapter was taken up with highlighting the role
played by Theorem 4.4.1 in determining the simple matrix product conditions
for CQLF existence for pairs of LTI systems with system matrices differing by
rank one. This work illustrates how Theorem 4.4.1 unifies two of the major

results previously available on the CQLF existence problem in the literature,
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and indicates that Theorem 4.4.1 has a key role to play in determining system

classes for which simple conditions for CQLF existence can be found.
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Chapter 6

Positive switched linear systems

and their stability

We consider several problems related to the stability of positive switched
linear systems. First of all, a number of results on CQLF existence for
positive LTI systems are given, and a further class of switched linear
systems for which CQLF existence is equivalent to uniform exponential
stability 1s described. The problem of common diagonal Lyapunov func-
tion (CDLF) existence is then considered, and some simple sufficient
conditions for CDLF existence are presented. Using similar techniques
to those developed in Chapters 4 and 5, we derive a necessary and suffi-
cient condition for a generic pair of n-dimensional positive LTI systems
to have a CDLF. The final problem considered in the chapter is that
of copositive Lyapunov function existence. A simple result on common
quadratic copositive Lyapunov function existence is presented. We also
derive simple, verifiable necessary and sufficient conditions for a pair

of second order stable positive LTI systems to have a common linear
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copositive Lyapunov function, and derive a theoretical condition that is
necessary and sufficient for the existence of such a function for a general

pair of stable positive LTI systems (of arbitrary dimension,).

6.1 Introductory remarks

There are many examples of practically important dynamical systems where negative
values of their state variables are physically meaningless and for which, effectively,
the state vector of the system can only take on non-negative values. Systems of this
type arise in ecology, demographics, economics, hydrology, pharmaceutics, biology,
and in the study of communication systems [32, 134, 6, 39, 83]. In fact, in any
situation where the state measures such quantities as population sizes, chemical
concentrations, buffer or window sizes, or commodity prices, it is clear that only
non-negative values are meaningful. A similar, and very important, example of this
type is provided by stochastic dynamical systems, where the quantities that evolve
over time are probabilities. In each of these cases, the state dynamics are constrained,
in the sense that any trajectory originating in the non-negative orthant cannot leave
it.

A system of the above type, where any state trajectory starting from non-negative
initial conditions must remain non-negative for all subsequent times, is known as a
positive system. The theory of positive linear time-invariant systems is by now well-
developed [32, 72|, with close connections to the theory of non-negative matrices.
Unsurprisingly, given their close ties with non-negative matrices, positive LTI systems
have a number of properties that set them apart as a subclass of LTI systems worthy
of independent study, and a number of these properties have important implications
for the stability analysis of these systems. However, recent applications in areas such

as congestion control of the Internet [121], and formation flying [46], have highlighted
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the need to extend the theory of positive LTI systems to time-varying positive linear
systems and, in particular, to positive switched linear systems, where by a positive
switched linear system, we mean one all of whose constituent systems are positive LTI
systems. As with general switched linear systems, several basic questions relating
to positive switched linear systems and, in particular, their stability, are as yet
unresolved. In this chapter, we shall focus on several problems that arise in the
consideration of the stability issue for positive switched linear systems, and present

a number of initial results on the stability of these systems.

To begin with, we review the most relevant results from the theory of positive LTI
systems, and show that for systems constructed by switching between a number of
positive LTT systems, stability is once again a critical issue whose resolution appears
to be far from straightforward. As in previous chapters, our approach to the stability
analysis of these systems is based on the search for common Lyapunov functions.
Firstly, we present some results on the CQLF existence problem for positive LTI
systems, indicating where possible the precise link between CQLF existence and

exponential stability for positive switched linear systems.

While our analysis thus far has been almost exclusively based on CQLFs, some of
the properties of positive LTI systems naturally give rise to the consideration of
other types of common Lyapunov function when investigating the stability of pos-
itive switched linear systems. One such property is that a positive LTI system is
exponentially stable if and only if it has a quadratic Lyapunov function that is given
by a diagonal quadratic form. We shall refer to such a function as a diagonal Lya-
punov function from now on. In the light of this fact, it is possible to obtain stability
conditions for positive switched linear systems through investigating the existence of
common diagonal Lyapunov functions (CDLFs) for families of positive LTI systems.
Hence, the question of determining conditions for two or more exponentially stable

positive LTI systems to have a CDLF arises naturally in this context. Much of the
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work of the present chapter is concerned with this problem. In particular, we first
present results that give simple, verifiable sufficient conditions for CDLF existence
for families of positive LTI systems in both continuous-time and discrete-time. Fur-
thermore, we shall show how the ideas and techniques described in Chapters 4 and
5 can again be successfully applied to derive an algebraic condition that is necessary
and sufficient for CDLF existence for pairs of n-dimensional positive LTI systems.
To the best of this author’s knowledge, this is the first result giving necessary and
sufficient conditions for CDLF existence for n-dimensional positive systems. That
the same techniques can again be applied in this context is further evidence of their
power in gaining insights into the question of the existence of common Lyapunov

functions.

Another class of Lyapunov functions that arises when considering positive switched
linear systems is that of the so-called copositive Lyapunov functions, which we shall
discuss in the final section of the chapter. The main reason for considering these
functions is that, given that the trajectories of a positive system are constrained
to remain within the non-negative orthant, the global requirements of traditional
Lyapunov functions may be overly restrictive. For copositive Lyapunov functions, the
usual properties of a Lyapunov function are only imposed for values of the state vector
within the non-negative orthant. The existence of a common copositive Lyapunov
function for a family of exponentially stable positive LTI systems is sufficient for
the exponential stability of the associated positive switched linear system. In the
final section of this chapter, we present a number of results on the existence of
common copositive Lyapunov functions for positive LTI systems. In particular, we
shall consider both linear and quadratic copositive Lyapunov functions, and shall
derive a necessary and sufficient condition for a pair of exponentially stable positive
LTT systems to have a common linear copositive Lyapunov function. Once again,

the techniques previously applied to the CQLF existence problem shall be used to
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investigate this question.

6.2 Background on positive linear systems

Our main aim in this section is to describe those parts of the theory of positive
LTT systems and non-negative matrices that are most relevant to the work of the
remainder of the chapter. To begin with, we shall set some notation. For a vector
z € R", and a matrix A in R™", z; denotes the i** component of z and a;; is the

(i,7) entry of A. Throughout this chapter, the following notation is adopted:

(i) for z € R™, 2 = 0 (x = 0) means that z; > 0 (x; > 0) for 1 <i < n;
(i) for A e R™" A >0 (A > 0) means that a;; > 0 (a;; > 0) for 1 <i,j <mn;
(iii) for z,y € R", x >y (z = y) means that x —y > 0 (x —y > 0);

(iv) finally for A, B€ R™" A> B (A> B) means A—B>0(A— B> 0).

A matrix A € R™*" is said to be non-negative if A > 0, and positive if A > 0. It is
important to appreciate that when we say that a matrix is non-negative (positive),
this refers to the entries of the matrix, and that it is a different concept to the

property of non-negative (positive) definiteness for symmetric matrices.

Also, for a matrix A in R™*" p(A) denotes the spectral radius of A and p(A) denotes
the maximal real part of any eigenvalue of A. Note that A is Hurwitz if and only if

u(A) <0.

Positive LTI systems, non-negative and Metzler matrices:

We now introduce the mathematical definitions of continuous-time and discrete-time

positive LTI systems.
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Definition 6.2.1 The LTI system
Ya:i=Azx xz(ty) = xo

is positive if xo = 0 = z(t) = 0 for all t > ty.
Comments:

It is well-known [32, 72| that the LTI system X 4 is positive if and only if
all of the off-diagonal elements of the matrix A are non-negative. Such
matrices are known as Metzler matrices. Furthermore, the LTI system
¥4 is positive if and only if the matrix exponential e”* is non-negative
for all ¢ > 0 [49]. Thus we have that A is a Metzler matrix if and only
if €4 is non-negative for all ¢+ > 0. Note also that a matrix A is Metzler

if and only if its transpose is also Metzler.

It is important to realize that the property of positivity is co-ordinate
dependent and hence is not invariant under similarity transformations

of the system matrix A.
The corresponding definition of positive LTI systems in discrete-time is now given.

Definition 6.2.2 The discrete-time LTI system
Shca(i+1) = Az(j)  2(jo) = w9

is positive if xo = 0= z(j) = 0 for all j > jo.
Comments:

It is easy to see that the discrete-time LTI system 2‘114 is positive if and
only if the matrix A is non-negative. As with continuous-time systems,
it should be kept in mind that the property of a system being positive

is not co-ordinate independent.
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Before moving on, we note that there is a close connection between Metzler matrices
and non-negative matrices. Specifically, any Metzler matrix A in R™*"™ can be written
(non-uniquely of course) as A = N — al, where N = 0 and I is the identity matrix

in R™". Moreover, p(A) = p(N) — a, and A is Hurwitz if and only if a > p(N).

Irreducibility, Perron eigenvalues and eigenvectors:

Positive and non-negative matrices, and their generalizations, have been studied ex-
tensively within the mathematics literature for some time, and a number of textbooks
giving background on this area are now available [7, 119]. Perhaps the most funda-
mental, and classical, fact about matrices with non-negative entries is the result that
the spectral radius of a non-negative matrix is itself an eigenvalue of the matrix. In
fact it is possible to say slightly more than this for positive matrices and irreducible
non-negative matrices. This notion of irreducibility, which will play an important

role later in this chapter, will now be defined.

A permutation matrix P € R™*™ is a matrix with exactly one entry in each row and
column equal to one and all other entries zero. The reason for calling such matrices
permutation matrices is that the effect of multiplying a vector by such a matrix is to
permute the entries of the vector among themselves. Furthermore, for such matrices
PT = P~! and the effect of the similarity transformation A — PAPT is to permute
the rows and columns of the matrix A in the same manner. In particular, the diagonal
elements of A are permuted among themselves, and thus, for any diagonal matrix

D, and permutation matrix P, PDPT is also diagonal.

Now, a matrix A € R™*" is said to be reducible [42] if there exists a permutation

matrix P € R™™ and some r with 1 < r < n such that PAPT has the form

A Ai
(6.1)

0 Aa
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where Ay € R™%", Agy € R=X(0=71) A5 € R™ (") and 0 is the zero matrix in
RM=7)%7 " If a matrix is not reducible, then it is irreducible. It should be noted
that it often occurs in the theory of non-negative matrices that results established
for positive matrices can be extended to irreducible non-negative matrices also. The
following well-known result, which was originally derived for positive matrices, is an

example of this phenomenon [42].

Theorem 6.2.1 Suppose A € R™" is irreducible and non-negative. Then

(i) p(A) > 0 is an eigenvalue of A of algebraic multiplicity one;

(i) there is some vector x > 0 in R™ such that Az = p(A)z.

This theorem guarantees that the eigenspace of A corresponding to p(A) is one-
dimensional, and that there is an eigenvector x, corresponding to p(A), each compo-

nent of which is positive.

Given their close relationship with non-negative matrices, it is not surprising that
Metzler matrices have a number of properties analogous to those given by Theorem
6.2.1. Before stating the next result, note that the matrix A is irreducible if and

only if A — ol is irreducible for all o > 0.

Theorem 6.2.2 Let A= N — ol € R "™ be Metzler and irreducible. Then

(i) p(A) = p(N)—a is an eigenvalue of A of algebraic (and geometric) multiplicity

one;

(i) there is an eigenvector x = 0 with Ax = p(A)x.

Semi-positivity and diagonal Lyapunov functions:
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Ultimately, our goal is to derive stability criteria for switched linear systems that
arise as a result of switching between families of stable positive LTI systems. For
this reason, we shall mostly be concerned with positive LTI systems whose system
matrices are both Metzler and Hurwitz. Matrices of this form are intimately related
to the class of so-called M-matrices |7, 43]; in fact, a matrix A is Metzler and Hurwitz
if and only if — A is an M-matrix. Corresponding to similar conditions for M-matrices,
there are a large number of equivalent conditions for a Metzler matrix to be Hurwitz.
Some of the most relevant of these for our purposes are listed in the following theorem.

For details, see |7, 43].

Theorem 6.2.3 Let A € R™ "™ be Metzler. Then the following statements are equiv-

alent.

(i) A is Hurwitz.
(ii) There is some vector v = 0 in R™ such that —Av > 0.
(iii) —A~1 is non-negative.

(iv) There is some positive definite diagonal matriz D such that ATD + DA < 0.

Moreover, it has been shown in [139] that if v,w are vectors in R™ such that

(a) v,w >0
(b)) —Av = 0,—ATw = 0,
then the positive definite diagonal matriz,
D = diag{w1 /v, wa/va, ..., wy/vp},
satisfies

ATD+ DA <.

Comments:
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Item (ii) in Theorem 6.2.3 establishes that for any Metzler, Hurwitz ma-
trix A in R™*™, there is some vector v in the positive orthant of R™ such
that (—A)v is also in the positive orthant. Matrices with this property
are known as semi-positive matrices [7]. Thus, the above result shows
that a Metzler matrix A is Hurwitz if and only if —A is semi-positive.
Later in the chapter, when we come to consider common diagonal Lya-
punov functions and common linear copositive Lyapunov functions, the
question of determining when —Aj, ..., —Ay are jointly, or simultane-
ously, semi-positive, for Metzler, Hurwitz matrices Aq,..., A arises.
Formally, this problem amounts to asking whether there exists a single

vector v > 0 such that —A;v = 0 for 1 <37 <k.

The matrix pencil 0, «)[A1, A2J:

In several of the earlier chapters we have seen that the matrix pencil 09 o)[A1, A2]
often plays a key role in the question of CQLF existence for the LTI systems ¥ 4,,
Y 4,. Furthermore, the conditions for CQLF existence for pairs of second order
systems were simplified owing to the fact that, in that case, the non-singularity of
the pencil 0,9 o)[A1, A2] Was equivalent to its Hurwitz stability (provided Ay, A2
are both Hurwitz). The next lemma records the fact that a similar result holds for

Metzler Hurwitz matrices, and has been pointed out in [43].

Lemma 6.2.1 Let Ay, Ay be Hurwitz Metzler matrices in R™"*™. Then the ma-
triz pencil 040 00)[A1, A2] is Hurwitz if and only if it is non-singular. Equivalently

05[0,00)[A1, A2] is Hurwitz if and only if AlAgl has no negative real eigenvalues.

Proof: It is immediate that if 0,9 )[A1, A2] is Hurwitz, then it is non-singular
also. Conversely, suppose that for some v > 0, A; + vAs is not Hurwitz. Then

for this v, u(A; + vAs) > 0. By continuity, there must be some 5 > 0 for which
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(A +v9A2) =0, and thus, as A; + y9Az is Metzler, it has 0 as an eigenvalue, and

the pencil 0.9 o)[A1, A2] is singular. This completes the proof of the lemma.

Switched linear systems and stability:

Before proceeding to discuss a variety of Lyapunov-based techniques for establishing
the stability of positive switched linear systems, it should first be shown that sta-
bility is again an issue for such systems. Specifically, it is important to demonstrate
in the present context that it is possible for an unstable trajectory to result from
switching between stable positive LTI systems, given non-negative initial conditions.

The following example shows that this is indeed the case.

Example 6.2.1 Consider the two stable second order positive LTI systems ¥ 4,,% a,

where

—0.2472  0.0580 —0.4892  0.6525
A = ,As =

0.7983 —0.3354 0.4252 —0.7118

Now if we start from the initial state vector x(0) = (0.5608, 0.828)T, and apply the
switching rule that A(t) = Ag for2j <t <2j+1, A(t) = Ay for2j+1 <t <2(j+1)
for 7 =0,1,..., we obtain the divergent trajectory shown in Figure 6.1 below. (Here

we are switching every second.)
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1.05

Starting from non-negative
I initial conditions, we obtain N
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Figure 6.1: Switching and instability for positive switched linear systems

It is also possible to show analytically that this switching rule together with these
iitial conditions together lead to a trajectory that diverges to infinity. In fact, us-
ing MATLAB, it can be shown that (0.5608, 0.828)T is an eigenvector of the ma-

AreA2 with corresponding eigenvalue 1.0442. Thus, with the initial conditions

triz e
and switching sequence defined above, after two seconds the state of the system will
be (1.0442)x(0), and after 2k seconds (k switching periods) the state vector will be
(1.0442)%x(0). (Over each switching period the state is ‘stretched’ by a factor of

1.0442.) Hence the norm of the state vector diverges to infinity as claimed.
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6.3 Positive linear systems and CQLFs

In the example presented at the end of the previous section we have seen that it
is possible for a system constructed by switching between two exponentially stable
positive LTI systems to become unstable, even if we only consider initial conditions
that lie within the positive orthant. As with general switched linear systems, this
observation gives rise to the problem of determining conditions on a family of pos-
itive LTT systems that would guarantee the exponential stability of the associated
positive switched linear system for arbitrary switching signals. As is the case for
general switched linear systems, the existence of a CQLF for a family, ¥ 4,,...,X4,,
of positive LTI systems assures the uniform exponential stability of the associated
switched linear system. In this section, we begin our investigation of the stability
properties of positive switched linear systems by considering the problem of CQLF
existence for sets of exponentially stable positive LTI systems. In particular, we shall
present results on CQLF existence for pairs of second order and third order positive

LTT systems.

6.3.1 Second order systems

Experimentation with examples and numerical simulation often play key roles in
developing insights into a new theoretical problem that is being studied. In the case
of the CQLF existence problem for pairs of positive LTI systems, extensive numerical
testing, together with a number of preliminary results, had led us to conjecture that
a necessary and sufficient condition for a pair of exponentially stable n—dimensional
positive LTI systems, ¥4,, X4,, to have a CQLF is that A1A;1 has no negative
real eigenvalues. An equivalent condition would then be that the matrix pencil

04[0,00)[A1, A2] was non-singular, and hence, by Lemma 6.2.1, Hurwitz.
Initially this conjecture arose from considering the marginal situation of two positive

154



6.3 Positive linear systems and CQLFs

LTI systems ¥ 4,, X4, for which there is no CQLF but for which there exists a

simultaneous positive semi-definite solution P = PT > 0 to the inequalities
ATP+PA;=Q; <0 fori=1,2

Numerical testing had indicated that in this situation, the matrices Q); were of rank
n — 1, suggesting that Theorem 4.4.1 could again be applied to obtain necessary and
sufficient conditions for CQLF existence in this case. Had this conjecture been true,
it would have followed from Theorem 2.3.1 that CQLF existence for a pair of expo-
nentially stable positive LTI systems, > 4,, ¥ 4,, was equivalent to the exponential
stability of the associated positive switched linear system under arbitrary switching.
This conjecture, together with some preliminary results that we shall later discuss
was presented in [76]. While we shall prove in Theorem 6.3.1 below that the con-
jecture is true for pairs of second order positive LTI systems, unfortunately it is in

general untrue for higher order systems as is shown by the following counterexample.

Example 6.3.1 Consider the two Hurwitz Metzler matrices Ay, Ay € R3%3

~0.5302 0.0012  0.0873
A= 02185 —0.7494 0.5411

0.7370  0.1543 —0.3606

—0.5136  0.4419  0.3689

A2 =1 01840 —0.3951 0.0080

0.3163  0.6099 —1.0056
The eigenvalues of the product Ay Ay are given by {—0.8217 4 0.0835i, —0.8217 —
0.08357,2.2234}. However the systems X 4,, X4, have no CQLF. In fact, it can be

shown using the MATLAB LMI toolbox that there are positive semi-definite matrices

Py, Py satisfying AT Py + PLA; + AT Py + PyAy > 0. It then follows from (3.11) that
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there is no CQLF for ¥ 4,, ¥4, [12]. Thus the condition that A1A51 has no negative

eigenvalues is not sufficient for CQLF ezistence.

Note that it has recently been shown in [38] that the condition A;A;' having no
negative real eigenvalues also fails to be sufficient for the exponential stability of the

positive switched linear system

&= Az, A(t) € {Aq, As).

While the above example shows that the conjecture of [76] is not true for general
pairs of positive LTI systems, we shall see later in the chapter how the reasoning,
based on Theorem 4.4.1, that led us to the conjecture can be successfully applied to
the problem of determining necessary and sufficient conditions for CDLF existence
for pairs of general positive LTI systems. First of all, we show using Theorem 5.2.1

that the conjecture is indeed true for pairs of second order positive LTI systems.

Theorem 6.3.1 Let Ay, Ay in R**? be Metzler and Hurwitz. Then the following

statements are equivalent.

(i) The matriz product A1A2_1 has no negative real eigenvalues;
(ii) the systems X 4,, X4, have a CQLF;
(iii) the positive switched linear system
T =A(t)xr A(t) € {41, A}, (6.2)

1s uniformly exponentially stable for arbitrary switching signals.

Proof: We shall prove the theorem by showing that (i)=-(ii)=-(iii)=-(i).

(i)=(ii): The key point here is to show that A;As cannot have a negative real

eigenvalue and then apply Theorem 5.2.1. Now, as A1, Ay are Metzler, it follows by
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direct calculation that the matrix product A; As has the sign pattern

+ —
- -

That is, if we write B = Ay Ay, then b;; < 0 for i« # j and by > 0, for 4,5 = 1,2.

Furthermore as A; and A are Hurwitz and in R?*2, their determinants must both

be positive. In particular, it follows that:

(a) trace(A;Az) > 0;

(b) det(AlAQ) > 0.

Now if Aj Ay has a negative real eigenvalue, it would follow from (b) that both of its
eigenvalues were negative. However, this would then imply that the trace of AjAs

was negative, contradicting (a). Hence, A1 As cannot have a negative real eigenvalue.

So, assume that A; A5 ! has no negative real eigenvalues. Then it follows from the
above argument that A; Ay and A; A5 ! have no negative real eigenvalues. Theorem

5.2.1 now implies that there is a CQLF for ¥ 4,, ¥4, and that (ii) holds.
(ii)=-(iii): This is standard and follows from Theorem 2.3.3.

(iii)=(i): If the switched linear system (6.2) is uniformly exponentially stable, it
follows from Theorem 2.3.1 that the pencil 0, o)[A1, A2] must be Hurwitz. Hence,
from Lemma 6.2.1 the product A;A; ! has no real negative eigenvalues. This com-

pletes the proof.

Comments:

It follows from Theorem 6.3.1 that for switched linear systems con-
structed by switching between a pair of positive second order LTT sys-
tems, CQLF existence is not a conservative criterion for uniform expo-

nential stability under arbitrary switching. In fact, the theorem states

157



6.3 Positive linear systems and CQLFs

that for such systems, CQLF existence is equivalent to uniform expo-

nential stability for arbitrary switching signals.

In the proof of Theorem 6.3.1, we have shown that for two Metzler Hur-
witz matrices A, A in R?*2, the matrix product A; A cannot have any
negative real eigenvalues, or, equivalently, the pencil o oc)[A1, Ay 1
must be non-singular. One consequence of this is that any pair of expo-
nentially stable second order positive LTI systems, whose system matri-
ces differ by rank one, will have a CQLF. This is stated in the corollary
below. Later, we shall show that a similar result also holds for third

order systems.

Corollary 6.3.1 Let Ay, Ay be Hurwitz Metzler matrices in R?*? such that rank(Ag—

A1) = 1. Then the LTI systems ¥ 4,, ¥4, have a CQLF.

Proof: As rank(A; — A;) = 1, it follows from Lemma 5.4.1 that A;A;' has no
negative real eigenvalues. Theorem 6.3.1 now immediately implies that there is a

CQLF for X4,, Xa,.

Finally, for this subsection, we present a simple numerical example to illustrate the
use of Theorem 6.3.1.

Example 6.3.2 Consider the Metzler, Hurwitz matrices Ay, Ay in R?*2 where

—1.0655 0.4398 —0.4131 0.5915
A = ,Ag =

0.9943  —0.8963 0.3932  —0.6585

Then, the eigenvalues of the matriz product A1A2_1 are given by
o(A1A7Y) = {5.4941, 2.3907}.

It now follows immediately from Theorem 6.3.1 that the positive LTI systems ¥ 4,,
YA, have a CQLF.
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6.3.2 Third order systems

We have seen above in the proof of Theorem 6.3.1 that for Metzler Hurwitz matrices
Ay, Ay in R?*2 the product A; Ay cannot have any negative real eigenvalues. This
observation led to the simplified condition for CQLF existence for pairs of positive
second order LTT systems, given in Theorem 6.3.1, as well as to the fact that any pair
of stable positive second order LTT systems, whose system matrices differ by rank one,
has a CQLF. We shall now show that this same result about the eigenvalues of the
matrix product A;As holds also when Ay, Ay are Metzler and Hurwitz matrices in
R3*3. This fact has a similar consequence for pairs of third order positive LTI systems
with system matrices differing by rank one, and for the stability of the associated
positive switched linear systems. The main fact that is needed for proving the results
of this subsection is the following inequality. In the proof of Theorem 6.3.2, we use

the notation |A| to denote the determinant of the matrix A.

Theorem 6.3.2 Let A;, Ay € R3*3 be Metzler and Hurwitz, and let v > 0 be any

positive real number. Then det(Aj;As +~I) > det(A;As).

Proof: If we write B = AjAs, then the following facts can be easily verified.

(i) det(B) > 0;
(ii) bi;; > 0for 1 <i<3;

(iiiy B~ =Ay'A7! = 0.

From (i) and (iii), it follows that, if we write By; for the principal sub-matrix of B

obtained by removing its i** row and column, then det(By;) > 0 for 1 <i < 3.
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Now consider

det(B++1I) =

by

1+
bo1 bo

b31

bi2
2+

b32

b13
ba3

b3z +

(6.3)

As the determinant is a multi-linear function of the columns of a matrix, we can

expand (6.3) using the first column to see that

det(B+~1) =

b1
ba1

b31

b2
bao + v

b32

b3
bas

b3z + v

+

boa + 7y

b32

s (6.4)

b3z + 7y

Now, considering the first term on the right hand side of (6.4) and repeating the

above process using the second column this time, we find that

b11 b12 b13
bar b2+ ba3
b31 bso b3z +7y

b1 bi2 b3
= | bar boo ba3
b31 b3z b3z +y

+7

b1 b3

(6.5)

b3 b33+

Finally, if we expand the first term on the right hand side of (6.5) using its third

column we can see that

bao +7v b2 b11 b13 bi1 bi2

det(B +~I) = det(B) + v + + (6.6)

bsa b33+ b31 b33+ ba1 b2

Considering the second order determinants in (6.6) in turn, it follows from points

(i), (ii) and (iii) made at the beginning of the proof that

bao +v  bo3
> det(BH) >0,
bsa b3z +7y
and
b1 b3
> det(BQQ) > 0.
bsa b33+
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It is now immediate from (6.6) that det(A;As + ) > det(A;As2) as claimed.

Comments:

Theorem 6.3.2 establishes that for real v > 0, and Metzler Hurwitz ma-
trices Ay, A in R3*3, det(A; Ay +~1) is always greater than det(A; As).
In fact, by examining the proof more closely, we can see that the function
~v — det(A1 Ay + ~I) is an increasing function of v for v > 0. Formally,
if v9 > 91 > 0, then det(A1A4y + v2I) > det(A1As + v1I). The next
corollary about matrix pencils is an immediate consequence of Theorem

6.3.2, and the fact that for two Hurwitz matrices A, Ag, det(A;Az) > 0.

Corollary 6.3.2 Let Ay, Ay be Hurwitz Metzler matrices in R3%3. Then the matrix
product A1 Az has no real negative eigenvalues. Equivalently, the pencil 0. o)[A1, A;l]

18 non-singular.

It is now a simple matter to combine Corollary 6.3.2 with Theorem 5.3.3 to obtain

the following result on CQLF existence for pairs of third order positive LTI systems.

Theorem 6.3.3 Let Ay, Ay be Hurwitz Metzler matrices in R3*3 with rank(Ay —
A1) = 1. Then the LTI systems X 4,, Y4, have a CQLF, and the associated positive

switched linear system
T =A(t)xr A(t) € {41, A},

1s uniformly exponentially stable for arbitrary switching signals.

As a final point for this section, we present a simple numerical example to illustrate

the result of Theorem 6.3.3.

161



6.4 Common diagonal Lyapunov functions for positive switched
linear systems

Example 6.3.3 Consider the Metzler, Hurwitz matrices Ay, Ay = A;+be! in R3%3,

where
—1.9545 0.2644  0.2379 —0.2349 0.3340
A1 =1 08699 —2.2528 0.6458 b= —0.1873 | ¢=| 0.3444
0.9342  0.8729  —1.4462 0.1539 0.3089

Now, the rank of As — Ay is 1, so Theorem 6.3.3 guarantees the existence of a CQLF
for the positive LTI systems X4,, ¥a,, and thus the associated positive switched
linear system is exponentially stable. Also, Corollary 6.3.2 states that the product
A1(A1+bcT) has no negative real eigenvalues, and a calculation in MATLAB reveals

that

o(A1(A;y +bch)) = {0.5042, 4.9846, 7.6010}.

6.4 Common diagonal Lyapunov functions for

positive switched linear systems

So far in this thesis, we have mainly been concerned with establishing stability criteria
for switched linear systems based on the existence of CQLFs,; and with investigating
the theoretical aspects of the CQLF existence problem itself. In keeping with this
general pattern, in the last section we presented a number of CQLF existence results
for pairs of positive LTI systems, and established corresponding stability criteria
for positive switched linear systems. Due to the particular properties possessed by
positive linear systems, types of Lyapunov function other than CQLFs also arise
naturally when considering the stability of positive switched linear systems. For
instance, diagonal Lyapunov functions have historically played an important role
in the analysis of positive LTI systems [134, 32, 72, 138], and it may be possible

to take advantage of the fact that any exponentially stable positive LTI system
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has a diagonal Lyapunov function in analyzing the stability of positive switched
linear systems. Specifically, these considerations give rise to the problem of finding
conditions that guarantee the existence of common diagonal Lyapunov functions
(CDLFs) for families of exponentially stable positive LTT systems. Of course, such
conditions would also be sufficient for the exponential stability of the associated
positive switched linear systems. The problem of CDLF existence shall be the main
topic under consideration in this and the next section, and we shall see below that
it is possible to obtain verifiable sufficient conditions for the stability of positive
switched linear systems through investigating the existence of CDLFs for families of
positive LTI systems. In the final section of the chapter, we shall turn our attention
to another class of Lyapunov functions that are particularly suited to the analysis of

positive systems; namely copositive Lyapunov functions.

Diagonal Lyapunov functions for general systems:

While our interest in diagonal Lyapunov functions stems from a desire to derive
stability criteria for positive switched linear systems, it should be noted that these
functions, and the question of their existence, have been the subject of a considerable
amount of work in other contexts as well. In particular, diagonal Lyapunov functions
have arisen in areas such as decentralized control and the so-called ‘Large Scale
Systems’ approach [54, 134], in asynchronous computation [55], in the study of Lotka-
Volterra predator-prey models [139], and in the robust stability analysis of linear
systems subject to certain classes of non-linear perturbations [53|. In many of the
above applications, it is important to be able to determine whether or not a given
Hurwitz matrix A in R™*™ admits a diagonal solution to the Lyapunov inequality.

More formally, does there exist a positive definite diagonal D such that
ATD + DA <0. (6.7)

Any matrix A for which such a diagonal solution exists is said to be diagonally stable.

Of course if A is Metzler, this question is well understood as in this case it is known

163



6.4 Common diagonal Lyapunov functions for positive switched
linear systems

that there is a diagonal solution to (6.7) if and only if A is Hurwitz 7, 43].

However, the question of identifying diagonally stable matrices in general is far from
straightforward, and to date several papers have been written on this very subject
[98, 5, 26, 59, 115]. Some sufficient conditions for a matrix to be diagonally sta-
ble, as well as necessary and sufficient conditions for restricted classes of matrices
(such as so-called combinatorially symmetric matrices) are now known [115]. Fur-
thermore, other authors have obtained theoretical necessary and sufficient conditions
for a given Hurwitz matrix to be diagonally stable [5, 59]. Notwithstanding the work
that has been done on this problem, there is a marked shortage of algebraic, verifi-
able conditions that are necessary and sufficient for a general Hurwitz matrix to be
diagonally stable. In fact, to the best of the author’s knowledge such conditions are

only available for 2 x 2 and 3 x 3 matrices at the time of writing [98, 26, 59].

While the problem of characterizing diagonally stable matrices is of considerable
interest and importance, we shall not be concerned with it here. Instead, we shall be
focussing on determining conditions for the existence of a common diagonal Lyapunov
function for pairs of stable positive LTI systems, with the aim of obtaining stability
criteria for positive switched linear systems. In this context, Theorem 6.2.3 assures
us that each of the individual LTI systems has a diagonal Lyapunov function. At
this point, we state explicitly what is meant by the term common diagonal Lyapunov

function.

Common diagonal Lyapunov functions for positive systems:

Let Ay, ..., Ax be Metzler Hurwitz matrices in R™*". If there exists a single positive

definite diagonal matrix D in R™*™ such that
ATD4+DA; <0 for1<i<k, (6.8)

then V(z) = 27 Dz is said to be a common diagonal Lyapunov function (CDLF) for

the associated positive LTI systems X 4,,...,24,.
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In the following subsection we present a number of simple sufficient conditions for
pairs of stable positive LTI systems to have a CDLF. The approach that we adopt
closely follows that taken in [101] to the general CQLF existence problem, and in

[102] to investigate CDLF existence for discrete-time systems.

6.4.1 Sufficient conditions for CDLF existence

In this subsection we give a number of sufficient conditions for a pair of positive LTI
systems to have a CDLF. All of the conditions that are presented here are easily
checkable and are based on the following lemma, which uses point (iv) of Theorem
6.2.3 to provide a simple means of ensuring the existence of a CDLF for a pair of

stable positive LTT systems Y 4,, 2 4,.

Lemma 6.4.1 Let Ay, As,..., A be Metzler, Hurwitz matrices in R™ ™. Suppose

that there exist vectors v >= 0, w > 0 in R™ such that

(i) —Ajv>=0 for1<i<k,

(ii) —ATw =0, for 1 <i <k.

Then the positive definite diagonal matriz D given by
D = diag{w1 /v1,wa/va, ..., wy/vn},

satisfies AT D + DA; <0 for 1 <i < k.

Comments:

If we write R’} for the positive orthant of R", then the lemma states

that if we can find two vectors v, w in R"} such that A;v and AiTw are in
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—R% fori=1,2,...,k, then a CDLF exists for ¥ 4,, ..., 4,. Moreover,

given the vectors v, w the CDLF can be written down explicitly.

The condition for CDLF existence given in Lemma 6.4.1 naturally gives
rise to the following question. Given an arbitrary family of Metzler,
Hurwitz matrices, Ay, ..., Ag in R™*™, determine verifiable conditions
on the matrices that guarantee the existence of a single vector v = 0
such that —Ayv > 0,... — Agv > 0. If such conditions on Aq,..., Ag
were known, then Lemma 6.4.1 could be used to derive corresponding
conditions that are sufficient for CDLF existence. This is the approach
that underlies the work of the remainder of this subsection. Later in
the present chapter, we shall see that this same question also arises
when considering the existence of common linear co-positive Lyapunov

functions for positive LTI systems.

Theorem 3.6.1, due to Narendra and Balakrishnan, established that a
family of stable LTI systems with commuting system matrices has a
CQLF. Note that it follows from Lemma 6.4.1 that a corresponding
result also holds for CDLF existence for families of stable positive LTI
systems. Specifically, if Aj,..., Ay are Hurwitz, Metzler matrices in
R™" and A;A; = AjA; for 1 < 4,5 < k, then there is a CDLF for

the positive LTI systems ¥4,, ...,24,. The corresponding result for

ket

discrete-time systems has already been noted in [102].

At this point, it is possible to use Lemma 6.4.1 to immediately write down one simple
condition on Metzler Hurwitz matrices Aq,..., A; in R™*" that is sufficient for the
existence of a CDLF for ¥4,,..., ,24,. To do so, we need the notions of row-wise
and column-wise diagonal dominance [43]. A matrix A € R™*" is said to be row-wise
diagonally dominant if for 1 < i <n, [a;| > 377, ., |ai|. For a Metzler matrix,

this means that all of the row sums of A must be negative. Column-wise diagonal
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dominance is defined in a similar manner. Formally, A € R™*" is said to be column-
wise diagonally dominant if for 1 < j < n, |aj;| > I, ;4 [aij|. As before, for A
Metzler, this means that all of the column sums of A (and hence the row sums of

AT are negative.

The following sufficient condition for CDLF existence is now an immediate conse-

quence of Lemma 6.4.1.

Corollary 6.4.1 Let Aq,...,Ax be Metzler, Hurwitz matrices in R™ ™. Suppose
that A; is row-wise and column-wise diagonally dominant for i = 1,...,k. Then
there is a CDLF for the associated LTI systems X 4,, ..., %4, . In fact, the square of

the usual Buclidean norm, V(x) = x"x, defines a CDLF for $4,, ..., %4

P

In Section 3.8, we noted that the existence of a CQLF for a pair of LTI systems > 4,,
3 4, was equivalent to a condition on the Lyapunov operators L4,, £4,. Specifically,
Y 4,, 24, have a CQLF if and only if there exists some positive definite P € P,, such
that £ A1£Z; (P) € Py,,. The next lemma records a similar fact about the existence

of a common v > 0 such that —A;v > 0, i = 1,2, for two Metzler Hurwitz matrices

Ay, As.

Lemma 6.4.2 Let A1, Ay be Metzler, Hurwitz matrices in R™*™, Then there exists
a vector v > 0 in R™ such that —A;v > 0 for i = 1,2 if and only if there is some

w = 0 such that A1A2_1w > 0.

Proof: Firstly suppose that there exists w > 0 such that A1A2_1w = 0. Let v =
—A;Mw. Then because —A;' > 0, it follows that v = 0. Moreover, —Ajv =

AlAglw = 0 and —Asv = w > 0.

Conversely, assume that there exists some v > 0 such that —Ajv > 0 and —Asv > 0,

and put w = —Asv > 0. Then A1A2_1w = —Ajv > 0. This completes the proof.
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In Section 3.8 we discussed a number of sufficient conditions for CQLF existence for
pairs of LTI systems due to Ooba and Funahashi [101, 99|. These conditions were
expressed in terms of the Lyapunov operators £ 4, and were based on the observation
that the existence of a CQLF for ¥ 4,, ¥ 4, is equivalent to the existence of a positive
definite P € P,, such that £ AILZX; (P) € P,,. A similar approach, based on Lemma
6.4.2 and Lemma 6.4.1, is taken in Theorem 6.4.1 below to derive a number of simple
sufficient conditions for a pair of stable positive LTI systems ¥ 4,, ¥4, to have a
CDLF. First of all, we state the following technical lemma which will be needed in

the proof of Theorem 6.4.1.

Lemma 6.4.3 Let A € R™ ™ be given. Suppose that A+ AT > 0. Then there exists

some v > 0 in R™ such that Av > 0

Proof: It follows from a standard so-called Theorem of the Alternative for convex

cones, [7], that exactly one of the following two possibilities must be true.

(i) There is some v > 0 such that Av > 0;

(ii) There is some w = 0, w # 0, such that —ATw > 0.
Thus, if there is no v > 0 with Av > 0, then there must be some non-zero w > 0
such that (ATw)Tv < 0 for all v = 0. In particular, it follows that w’” Aw < 0 which

contradicts A + AT > 0. Thus if A4+ AT > 0, then there exists some v = 0 with

Av = 0.

Theorem 6.4.1 Let Ay, Ay be Metzler, Hurwitz matrices in R™ ™. Then the fol-
lowing conditions are all sufficient for the existence of a CDLF for the LTI systems
YAy, DA,

(i) —A1ASY and —AS Ay are both Metzer and Hurwitz;
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(i) AjASY and A;Y Ay are both non-negative matrices;

(iii) there is some finite collection of columns c;,ci,,. .., c;, taken from A1A2_1,
and some finite collection of rows rt  rT rT taken from AS'A, such that
Ju g2t 2

Ci1+ci2+"'+cip>—07

Tj +Tjy 415 = 0;

(iv) A{Ag + AgAl > 0 and AlAg + AQA{ > 0.

Proof: It follow from Lemma 6.4.1 and Lemma 6.4.2, that it is enough to show
that if any of (i)-(iv) are satisfied, then there exist vectors v > 0, w = 0 such that

A1 Ay v = 0 and AT AT w > 0.

(i) If —A1A2_1 and —A2_1A1 are Metzler and Hurwitz then so are —A1A2_1 and
—A{AQ_T. It then follows from Theorem 6.2.3 that there are vectors v = 0, w = 0

such that 4450 = 0 and AT A; 7w = 0.

(ii) For any invertible non-negative matrix A € R"*" there exists a vector v > 0

such that Av > 0. The result now follows immediately.

(iii) If we consider the vector v = (vy,v2,...,v,)T defined by v; = 1if i € {i1,...,ip}
and v; = 0 otherwise, then it is easy to see that v = 0 and A1A2_1v = 0. It now
follows from continuity that by a suitably small perturbation of the zero components

of v, we can obtain a vector v/ = 0 such that A; Ay’ = 0.

Similarly, defining w = (wi,...w,)? by w; = 1if 5 € {j1,...,5} and w; = 0
otherwise, we find that w = 0 and AT A; Tw = 0. Again a continuity argument can

now be applied to show that there is some w’ > 0 such that AT A; 7w’ = 0.

(iv) By congruence, it follows that

A;T(AT Ay + AT AN AT = (A1 A7HT + (4,451 > 0.
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Hence, from Lemma 6.4.3 there is some v > 0 such that A;A; v = 0. A similar
argument shows that there is some w = 0 such that AT A; 7w = 0. This completes

the proof.

Comments:

While the conditions given in Theorem 6.4.1 are only sufficient for CDLF
existence for pairs of positive LTI systems, they are readily verifiable and
can be applied to positive systems of any dimension. Furthermore, if
any of the conditions in the theorem are satisfied, then we can of course

conclude that the positive switched linear system
T = A(t)l‘ A(t) € {Al, AQ}

is uniformly exponentially stable for arbitrary switching signals.

Conditions (i) and (ii) of Theorem 6.4.1 were previously reported in
[76]. It should also be noted that, following a similar approach, Ooba
and Funahashi have derived conditions for CDLF existence for pairs of
discrete-time positive LTI systems in [102] that are closely related to

condition (iv) above.

We now present a number of simple numerical examples to illustrate the conditions

for CDLF existence given in Theorem 6.4.1.
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Example 6.4.1 Consider the Hurwitz, Metzler matrices Ay, Ay in R3¥3, given by
—1.8907 0.7537  0.8447
Ar = | 00099 —1.4727 03678 |-

0.4199  0.9200 —1.6458

—1.8406 0.6501  0.4001

Ay = 0.0492  —1.1551 0.1988

0.6932  0.5527  —1.5129

Then, by straightforward calculation we have that;
0.8789  —0.3348 —0.3699
AtAy = | 00032 12340 —0.0818 |

0.1885 —0.1558 1.1172

1.1143 —-0.0016 —0.3352

AF'AT = | 00843 12486 —0.1834

0.2638 —0.1527 0.8673
Now the sum of the first two columns of A1A2_1 s entry-wise positive, as is the sum

of row two and three of A2_1A1. Thus, it follows from condition (iii) of Theorem

6.4.1 that the positive LTI systems ¥ 4,, ¥ 4, have a CDLF.

Example 6.4.2 Now consider the Metzler, Hurwitz matrices A1, A in R3*3, where

—1.8800 0.6318  0.9316
A = 0.9048  —1.8395 0.3352 ’

0.5692  0.5488  —1.4184

—1.6010 0.4136  0.3716

Ay = 0.6991  —1.5731 0.4253

0.3972  0.8376  —1.6336
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The eigenvalues of the symmetric matriz AT Ao+AT Ay are {0.4054, 8.8439, 11.3290},
and those of A1 AT + Ay AT are given by {0.3609, 8.9317, 11.2856}. Hence, con-
dition () of Theorem 6.4.1 implies that the positive LTI systems ¥ 4,, X4, have a
CDLF.

Discrete-time sufficient conditions:

Finally for this subsection, we note that it is possible to adapt the above techniques
to obtain corresponding sufficient conditions for CDLF existence for discrete-time
positive systems. In fact, identical arguments can be applied based on the following
discrete-time analogue of Lemma 6.4.1, which follows from the arguments presented

in [102].

Lemma 6.4.4 Let Ay, Ao, ..., A be non-negative, Schur matrices in R™*™. Sup-

pose that there exist vectors v = 0, w > 0 in R™ such that

(i) (I —A)v>=0 forl<i<k,

(ii) (I —A)Tw =0, for1 <i<k.

Then the positive definite diagonal matriz D given by
D = diag{w1/v1,wa/va, ..., wn/vpn},

satisfies ATDA; — D < 0 for 1 <i < k.

Comments:

Using Lemma 6.4.4 it is possible to obtain a discrete-time condition
corresponding to each of the sufficient conditions for CDLF existence
for continuous-time systems in Theorem 6.4.1. In fact by replacing A;

with (A; — I) in conditions (i)-(iv) of Theorem 6.4.1, we immediately
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obtain sufficient conditions for CDLF existence for pairs of discrete-time
positive LTI systems Efl41, Efl42. Note however, that a stronger version of
the discrete-time analogue of condition (iv) in Theorem 6.4.1 has already

been reported in [102].

6.5 Necessary and sufficient conditions for CDLFs

In the previous section, we introduced the common diagonal Lyapunov function
(CDLF) existence problem for positive LTI systems and presented some preliminary
results giving sufficient conditions for a pair of positive LTI systems to have a CDLF.
In this section, we continue our investigation of this question and, following similar
techniques to those applied to the general CQLF existence problem in Chapter 4
and Chapter 5, derive conditions that are necessary as well as sufficient for CDLF

existence for pairs of positive LTI systems.

The convex cones D 4:

The approach to the CQLF existence problem that was described in Chapter 4 and
Chapter 5 was based on studying the sets P4 introduced in Section 3.2. Our main
goal in the current section is to apply similar ideas to determine conditions for a
pair of positive LTI systems to have a CDLF. In doing so, we shall see that the
techniques developed in Chapters 4 and 5 can also provide insights in the context
of this problem, and that the same basic ideas can be used to derive necessary and
sufficient conditions for CDLF existence for generic pairs of positive LTI systems.
Interestingly, the "rank n — 1" condition of Theorem 4.4.1 shall play a key role once
more. In fact, this rank condition is generically satisfied when considering the CDLF

existence problem for pairs of positive LTI systems.

Now, for any Metzler Hurwitz matrix A in R"*™, define D4 to be the cone of diagonal
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solutions of the corresponding Lyapunov inequality. Formally,
Dy = {D € R"™": D is diagonal and ATD + DA < 0}. (6.9)

Then, in terms of these cones, the stable positive LTI systems ¥4,, ¥4, have a

CDLF if and only if D4, NDy, is non-empty. This is illustrated in Figure 6.2 below.

- ~ —_— T /\
.7 RN \ —— ( D \
/\ Da, K /) Da, 3 (/ \) f?//
\\\_ =< N Dy, s

Figure 6.2: CDLF exists for ¥4,, X4, -

Da, NDy, # 0

Figure 6.3: CDLF does not exist for X4, ,
EAQ - DA1 ﬂ'DA2 =0

As when we considered the general CQLF existence problem, the key aspect of our
approach to the problem of CDLF existence is to focus on the marginal situation

depicted in Figure 6.4 that divides the scenarios of Figures 6.2 and 6.3.

- ~ —
/ ~ -
|
\ DAI / DAZ
N - _ S N~— _—

Figure 6.4: Marginal situation for CDLF existence

Formally, in this situation there is no CDLF for ¥ 4,, ¥ 4,, but there does exist some
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positive semi-definite diagonal D such that A;TFD + DA; <0 for i = 1,2. We shall
show in the next two subsections that, under the mild assumption that the matrices
A; are irreducible, the rank of AZ-TD + DA; must be n — 1 for 4 = 1,2 under these
circumstances. Furthermore, this fact can then be used to derive necessary and

sufficient conditions for ¥ 4,, ¥ 4, to have a CDLF.

6.5.1 Preliminary results on Metzler matrices and diag-

onal Lyapunov functions

Before deriving a necessary and sufficient condition for a pair of stable positive
LTI systems to have a CDLF, in this subsection we present a number of technical
preliminaries related to diagonal Lyapunov functions and Metzler Hurwitz matrices.
To begin with, we state the following simple lemma that can easily be verified by

direct computation.

Lemma 6.5.1 Let A € R"™™ be a Metzler matriz. Then for any diagonal matriz D

in R™*™ with non-negative entries, ATD + DA is also Metzler.

Proof: The (i, ) entry of AT D+ DA is given by a;;d; +djaj;. If i # j, then a;; > 0,
aj; > 0 and hence a;;d; + djaj; > 0. Thus ATD 4+ DA has non-negative off-diagonal

entries and is Metzler as claimed.

The next result is concerned with diagonal matrices D on the boundary of the set
Dy, for irreducible Metzler Hurwitz matrices A. It establishes that, for such A, any

non-zero diagonal D > 0 such that ATD 4+ DA < 0 must in fact be positive definite.

Lemma 6.5.2 Let A in R™ "™ be Metzler, Hurwitz and irreducible. Suppose that

ATD 4+ DA <0 for some non-zero diagonal D in R™ ™. Then D > 0.
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Proof: The key fact in the proof of this result is that if () € R™*™ is positive semi-
definite, and for some i = 1,...,n, ¢;; = 0, then ¢;; = 0 for 1 < j < n. Basically, if
any element along the diagonal of a positive semi-definite matrix is zero, then every

entry in the corresponding row and column must also be zero [42].

We argue by contradiction. Suppose that D is not positive definite. Then we may

select a permutation matrix P in R™*" such that

D' = PDPT = diag{d,...,d.,},

T

with d} =0,...,d, =0and d,; > 0,...,d;, > 0, for some r with 1 < r < n. It

follows by congruence that writing A’ = PAPT, we have
ATD' + DA <.
The (i,7) entry of AT D'+ D' A’ is given by a;;d;+dsa;. Now fori=1,...,7r,d; =0
and hence the corresponding diagonal entry, 2d.al,, of A" D'+ D’A’ is zero. From the
remarks at the start of the proof, it now follows that for 1 < j <n, a;;d; +d}a’; =0
also, and in particular that for j =r +1,...,n, aj; = 0.
To summarize, we have shown that if D is not positive definite, then there is some
permutation matrix P, and some r with 1 < r < n such that for ¢ = 1,...r and
j=r+1,...,n,a} =0 where A’ = PAPT . But this then means that A’ is in the

form of (6.1) and hence that A is reducible which is a contradiction. Thus, D must

be positive definite as claimed.

The following result is crucial for much of what follows and is a relatively straight-

forward consequence of the previous lemma.

Lemma 6.5.3 Let A € R™™ be Metzler, Hurwitz and irreducible. Suppose that for

some non-zero diagonal D in R™*", ATD+ DA = Q < 0. Then Q is also irreducible.

Proof: Once again, we shall argue by contradiction. Suppose that @ is reducible.

Then there is some permutation matrix P in R™*" such that, if we write A’ = PAPT,
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D' = PDPT, Q' = PQPT, then
(i) A/TD/ 4 D/A/ — Q/ S 0;

(ii) there is some 7, with 1 < r < n, such that fori =r+1,...,n, j =1,...,r,

q;'j =0.

It follows from (ii) that aj;d; + aj;d; = 0 for i = r +1,...,n, j = 1,...,7. But
from Lemma 6.5.2, d; > 0 for 1 <4 < n, and hence (as A is Metzler) a}; = 0 for
i=r+1,...,n,7=1,...,7. This would mean that A’ was in the form of (6.1) and

hence that A was reducible which is a contradiction. Thus @ must be irreducible as

claimed.

Comments:

The previous technical results establish a number of facts about diagonal
matrices on the boundary of D4 where A is an irreducible Metzler,
Hurwitz matrix in R™*". In particular, we have shown that for any

non-zero D on the boundary of Dy:

(i) D must be positive definite;

(i) ATD + DA is Metzler and irreducible.

These two facts lead naturally to the following corollary which plays a

crucial role in the proof of the main result in the next subsection.

Corollary 6.5.1 Let A € R™ ™ be Metzler, Hurwitz and irreducible. Suppose that
D € R™ " js diagonal and that ATD + DA = Q < 0. Then rank(Q) = n — 1, and

there is some vector v = 0 such that Qu = 0.

Proof: It follows from Lemma 6.5.1 and Lemma 6.5.3 that Q is an irreducible Metzler
matrix. Furthermore, as @ < 0, u(A) = 0. The result now follows immediately from

Theorem 6.2.2.
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Comments:

Keeping in mind the ‘rank n — 1’ condition of Theorem 4.4.1, it should
be noted that Corollary 6.5.1 establishes that if A is Metzler, Hurwitz
and irreducible, then for any diagonal D on the boundary of Dy, the

rank of ATD + DA must be n — 1.

Necessary conditions:

To finish off this subsection, we present simple necessary conditions for a pair of
LTT systems to have a CDLF, and a corresponding necessary condition for a single
stable LTI system to have a diagonal Lyapunov function. Note how the condition of
the next lemma is related to the necessary conditions previously established for the

general CQLF problem in Lemma 4.3.1.

Lemma 6.5.4 Let A;, Az be Hurwitz matrices in R™*"™ such that X 4,, ¥4, have a
CDLF. Then for all non-singular diagonal matrices D in R™*"™ Ay + DAsD and

Al_l + DAsD are Hurwitz and hence non-singular.

Proof: Firstly, note that if V(z) = 27 Dz is a CDLF for X 4,, $4,, then it is also a

CDLF for ¥ ,-1,¥4,. Furthermore for any non-singular diagonal D in R™*",
1
(DAsD)'D + D(DA3D) = D(AYD + DAy)D < 0.

Thus, by congruence V(z) = 2’ Dz would also be a CDLF for X4,, ¥pa,p, and
a diagonal Lyapunov function for ¥4,4ypa,p. This implies that A; + DAsD is
Hurwitz and hence non-singular. The identical argument shows that Al_1 + DA>D

is also non-singular.

Finally for this section, as > 4 has a diagonal Lyapunov function if and only if 3 4,

3 4-1 have a CDLF, the preceding lemma can be used to derive the following simple
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necessary conditions for a single stable LTI system to have a diagonal Lyapunov

function.

Corollary 6.5.2 Let X4 be a stable LTI system with A € R™*™. Then a necessary
condition for Y4 to have a diagonal Lyapunov function is that A + DA™'D and

A+ DAD are Hurwitz for all non-singular diagonal matrices D € R™™.

6.5.2 The main result

We now consider a pair of stable positive LTI systems X 4,, ¥ 4,, where A;, Ay € R™*"
are Hurwitz, Metzler and irreducible. We shall derive below a necessary and sufficient
condition for ¥ 4,, X4, to have a CDLF that is related to the matrix pencil conditions
obtained for the general CQLF existence problem in Chapter 5, and in [129]. The
key step in the derivation of this condition is Theorem 6.5.1 below where we consider
the marginal situation depicted in Figure 6.4, of two systems ¥ 4,,% 4, for which

there is no CDLF but for which there is a non-zero diagonal D > 0 satisfying
ATD4+ DA < 0 (6.10)
AYD+ DAy, < 0.

This closely parallels the approach that we have taken to the general CQLF existence

problem in Chapter 4. We shall see that in this situation, the necessary conditions

of Lemma 6.5.4 are violated.

Theorem 6.5.1 Let Ay, Ay in R™ "™ be Hurwitz, Metzler and irreducible. Assume
that there is no CDLF' for the associated LTI systems, X4,, ¥a,. Furthermore,
suppose that there is some non-zero diagonal D > 0 satisfying (6.10). Then there

exists a positive definite diagonal matriz Do > 0 such that A1+ DoAsDy is singular.

Comments:
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Theorem 6.5.1 is proven in more or less the same way as Theorem 4.4.1 above. For

convenience, the main points in the proof are listed below.

(a) We first show using the results of the previous section that the rank of A7 D +

DA;isn—1fori=1,2.

(b) Then it is shown that there exist vectors x1 > 0, x > 0 such that xlTDAlx =

—ngAﬂg for all diagonal matrices D in R™*"™,

(¢) The result then follows after some algebraic manipulation.

Proof: First of all, it follows from Corollary 6.5.1 that Q1 = AT D + DA;, and
Qo = AgD + DAs must both have rank n — 1, and that we can choose vectors

x1 = 0, o > 0 such that Q121 = 0,Qsz2 = 0.

The next stage in the proof is to show that there can be no diagonal matrix D’ with
T
] DAz < 0 (6.11)

eI D' Agzs < 0. (6.12)

We shall prove this by contradiction. First of all suppose that there is some D’
satisfying (6.11), (6.12). We shall show that by choosing 6; > 0 sufficiently small,
it is possible to guarantee that AT (D + ;D) + (D + 61 D")A; is negative definite.

Firstly, consider the set

Q ={zxeR": 2Tz =1and 2T D' Az > 0}.

Note that if the set 1 was empty, then any positive constant d; > 0 would make
AT(D + 6,D') + (D + 61 D") A1 negative definite. Hence, we assume that §); is non-

empty.

The function that takes z to 7 D’ Az is continuous. Thus € is closed and bounded,
hence compact. Furthermore z; (or any non-zero multiple of x7) is not in €; and

thus 27 DAz is strictly negative on .
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Let M; be the maximum value of 7 D’ A,z on ©, and let M, be the maximum value
of t' DAz on €. Then by the final remark in the previous paragraph, My < 0.

Choose any constant §; > 0 such that

| M|
o < =C
LS AL+ 1
and consider the diagonal matrix
D+ 6D

By separately considering the cases 2 € Q and = ¢ Qp, 27z = 1, it follows that for
all non-zero vectors x in R™ of Euclidean norm 1
zT(AT(D +6,D") + (D + 61D A1)z < 0

provided 0 < §; < ]\‘41\1/[_2%‘1. Since the above inequality is unchanged if we scale z by

any non-zero real number, it follows that AT (D + 6,D") + (D + §;D’) A; is negative
definite. As A; is Hurwitz, this implies that the diagonal matrix D + 01D’ is positive

definite.
The same argument can be used to show that there is some Cy > 0 such that
(AL (D +61D') + (D + 61 D) Ag)x < 0

for all non-zero x, provided 0 < §; < Ca. So, if we choose 9 less than the minimum

of C1, Yy, we would have a positive definite diagonal matrix
Dy =D +46D’
which defined a CDLF for ¥4, and ¥ 4,.
As there is no diagonal solution to (6.11), (6.12) it follows that
2T D' Az <0 <= 2T D' Agzy >0 (6.13)
for diagonal D'. Tt follows from this that
xlTD’Alxl =0 << a:gD/Ang =0.
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The expressions x1 D' Ajx1, x4 D' Ay, viewed as functions of D', define linear func-
tionals on the space of diagonal matrices in R"*™. Moreover, we have seen that the
null sets of these functionals are identical. So they must be scalar multiples of each
other. Furthermore, (6.13) implies that they are negative multiples of each other.

So there is some constant k > 0 such that
2T D' Ay = —kal D' Agao (6.14)

for all diagonal D’ in R™*™, In fact, we can take k = 1 as we may replace xs with

x2/Vk if necessary.

On expanding out equation (6.14) (with & = 1) and equating coefficients, it follows

that
210 A1x1 = —x9 0 As9, (6.15)

where z oy denotes the element-wise or Hadamard product of the vectors x, vy, given
by (z oy); = x;y;. Now as x1 > 0, xo > 0, there is some diagonal matrix Dy > 0
such that zo = Dox1. But then, it follows from (6.15) that Asxy = —DalAlxl and

hence that (DglAl + A2Dg)x1 = 0. This means that
det(A; + DoAgDy) = det(Dg)det(Dg Ay + A2Dg) = 0
as claimed.
We can now apply Lemma 6.5.4 and Theorem 6.5.1 to derive the main result of this

section.

Theorem 6.5.2 Let Aj, Ay in R™ ™ be Hurwitz, Metzler and irreducible. Then a
necessary and sufficient condition for the exponentially stable positive LTI systems,

Y 4,,2XA,, to have a CDLF is that A1+ DA>D is non-singular for all diagonal D > 0.

Proof: The necessity was proven in Lemma 6.5.4. Now suppose that there is no

CDLF for X4,, ¥ 4,. Then:
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(i) for a > 0 sufficiently large, ¥ 4, s, X4, will have a CDLF;

(ii) if we define ap = inf{ax > 0: 3 4, o1, X4, have a CDLF }, then ¥4, o1, X4,

satisfy the conditions of Theorem 6.5.1;

(iii) it follows that there is some diagonal D > 0 such that A; — agl + DA2D is

singular.

From item (iii), it follows that A; + DAy D is not Hurwitz. However both A; and
DAyD are Hurwitz Metzler matrices, and it therefore follows from Lemma 6.2.1
that there is some positive v > 0 such that A; +vyDAsD is singular. Hence, defining
D = VD, we have that Ay + DA5D is singular. This completes the proof of the

theorem.

Comments:

Theorem 6.5.2 establishes an algebraic condition that is necessary and
sufficient for a pair of exponentially stable positive LTI systems of any
dimension to have a CDLF, under the assumption that both of the sys-
tem matrices are irreducible. To the best of the author’s knowledge, it is
the first such general result available on CDLF existence for a significant
class of n-dimensional systems. Note also that the condition for CDLF
existence given in the theorem takes the form of a multi-variable matrix
pencil condition, and as such it is related to the matrix pencil conditions
for general CQLF existence discussed in previous chapters. Correspond-
ing to what we saw for second order systems and systems differing by
rank one in Chapter 5, the key factor in the proof of Theorem 6.5.2 is
the result of Theorem 6.5.1. In particular, once again the fact that the
rank of the matrices AZTD + DA; is n—1 for positive LTI systems in the

marginal situation depicted in Figure 6.4 is crucial.
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While the condition given in Theorem 6.5.2 is both general and com-
pact, it is far from straightforward to check. However, it does provide
insight into the question of CDLF existence for pairs of positive LTI
systems, and it is hoped that the insights it provides may lead to sim-
pler conditions that can be used in the design of positive switched linear
systems. As an initial step in this direction, in the next subsection two

straightforward applications of the theorem are described.

6.5.3 Two applications

We now present two simple applications of Theorem 6.5.2. First of all, note the

following easily verifiable facts.

(i) If Ay € R™*™ is Metzler and Hurwitz, then it follows from Corollary 6.5.2 that

DA D + Ay is also Hurwitz and Metzler for all diagonal D > 0.
(ii) If B is any Metzler matrix with A; = B, then B is also Hurwitz [43].

(iii) If Ay = B, then for any diagonal D > 0, DA1D + A, = DA1D + B.

Thus if A; = Ag, it follows from item (iii) that for all positive diagonal D, DA D +
A1 = DA1D + Ay. Hence from (i) and (ii) it follows that DA;D + Ay is Hurwitz
for all diagonal D > 0. Thus applying Theorem 6.5.2 we have the following known
result [76, 89].

Theorem 6.5.3 Let A1, Ay € R™™ be Metzler, Hurwitz and irreducible, and sup-

pose Ay = Ag. Then the positive LTI systems, ¥ a,,%4,, have a CDLF.

It is in fact possible to slightly strengthen Theorem 6.5.3 by noting that, for a

fixed diagonal D; > 0, as D ranges over all positive diagonal matrices, so too does
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DDy = D1D. So if we know that DD, A1 D1D 4 A, is non-singular for all positive
diagonal D, then DA1D + As is also non-singular for all positive diagonal D. This

gives us the following result.

Corollary 6.5.3 Let A1, Ay € R™ ™ be Metzler, Hurwitz and irreducible. Suppose
that for some diagonal D1 > 0, D1A1 Dy »= As. Then the positive LTI systems,

Y4, XAy, have a CDLF.

6.6 Copositive Lyapunov functions

Up to this point, we have been trying to find stability criteria for positive switched
linear systems that are based on the existence of common quadratic Lyapunov func-
tions or common diagonal Lyapunov functions. While this approach has yielded a
number of results, it is important to appreciate that it may lead to conservative
stability criteria for positive switched linear systems, as it fails to take into account
the most fundamental property of such systems: namely, that their trajectories are
constrained to remain within the non-negative orthant for all time. For example,
in order for V(z) = 27 Pz to be a CQLF in the usual sense for the n-dimensional
positive LTI systems, ¥ 4,, ...,%4,, the following conditions must be satisfied for

every non-zero x in R"”.

(i) 2T Pz > 0;

(ii) 2T (ATP+ PA)x <0for 1 <i<k.
Requiring that (i) and (ii) are satisfied globally is unnecessarily restrictive for positive
switched linear systems, as the state vector can only lie in the non-negative orthant

in this case. In view of this fact, it is enough to require the existence of a function

V(z) = 2T Px for which (i) and (ii) are satisfied for all non-zero = = 0 [8]. Such a
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function is then said to be a common quadratic copositive Lyapunov function for the

positive LTT systems > 4,, ...,%4,. More generally, V(z) is a common copositive

-
Lyapunov function for X 4,, 1 < i < k, if V(z) > 0 for all non-zero z = 0, and V(z) <
0 along all trajectories of ¥ 4, within the non-negative orthant for ¢ = 1,..., k. These
functions shall be the focus of the current section and we shall consider the two closely
related problems of determining conditions that can be used to test for the existence

of common quadratic copositive Lyapunov functions and common linear copositive

Lyapunov functions.

6.6.1 Quadratic copositive Lyapunov functions

We begin our discussion of copositive Lyapunov functions by considering quadratic
copositive Lyapunov functions. Formally, the function V(z) = 2 Pz is a common

quadratic copositive Lyapunov function for the positive LTI systems ¥ 4,,...,¥4,

if:

(i) P=PT 2TPx > 0forall x = 0, z # 0;

(ii) 2T (ATP+ PA)x <Oforall z = 0, z #0, for 1 <i <k.

If such a function exists for the positive LTI systems Y 4,,...,%4,, then the asso-
ciated positive switched linear system will be exponentially stable. Of course, any
CQLF will automatically define a common quadratic copositive Lyapunov function
also. However, by only requiring that the inequalities of (i) and (ii) are satisfied for z
in the non-negative orthant, it may sometimes be possible to find common quadratic
copositive Lyapunov functions for systems that do not have CQLFs. In this way, less

conservative stability criteria for positive switched linear systems may be obtained.

Incidentally, it should be mentioned that a symmetric matrix P that satisfies (i) is

often referred to as a copositive matrix in the mathematics literature [52], and that
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there has been a considerable amount of work done on finding ways of determining
whether or not a given symmetric matrix is copositive. While necessary and sufficient
conditions for copositivity have been recently derived in [52], these only provide a

practical means of testing for copositivity in low dimensions.

Copositivity and the Lyapunov equation:

Before proceeding, it is worth noting the following straightforward fact about the

existence of quadratic copositive Lyapunov functions for stable positive LTI systems.

Lemma 6.6.1 Let A be a Metzler, Hurwitz matriz in R™*™. Then for any copositive

matriz Q in R™™ ™, the unique symmetric solution P to the Lyapunov equation
ATP+PA=—-Q,

(guaranteed by Theorem 3.2.1) is also copositive.

Proof: Recall that the solution P is given by

o0
T
P:/ ed thAtdt.
0
T
At eAt

The result now follows immediately from the facts that () is copositive and e *,

are both non-negative for all ¢ > 0, as A and AT are both Metzler.

Necessary and sufficient conditions for second order systems:

In Theorem 6.3.1, we established that a necessary and sufficient condition for a pair
of stable second order positive LTI systems ¥ 4,, ¥4, to have a CQLF was that
A1Ay ! had no negative real eigenvalues. In the following theorem, we show that
the same condition is also necessary and sufficient for the existence of a common

quadratic copositive Lyapunov function in this case.

Theorem 6.6.1 Let A, Ay be Metzler, Hurwitz matrices in R2*2. Then there exists
a common quadratic copositive Lyapunov function for the systems X 4,, ¥4, if and

only if A1A2_1 has no negative real eigenvalues.
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Proof: First of all assume that the product A; Ay ! has no negative real eigenvalues.
Then it follows immediately from Theorem 6.3.1 that 3 4,, ¥ 4, have a CQLF, V(z) =
2T Pz. But V() is then also a common quadratic copositive Lyapunov function for

ZAl ) ZAQ -

To see that the converse is also true, suppose that A1 A5 ! has a negative real eigen-
value. Then for some v > 0, the Metzler matrix A; + vAs has an eigenvalue in the
closed right half plane. Thus, for this v, the Perron eigenvalue of A; + yAs must
be non-negative. That is, u(A; + vA2) > 0, and there is some z = 0, = # 0, with

(A1 +vA2)x = p(Ay + vAz)z. It now follows that for any copositive matrix P,
xTP(Al + vAs)x = p(Ar + ’yAg)xTPx > 0.

This implies that ¥ 4,, ¥4, cannot have a quadratic common copositive Lyapunov

function as claimed.

Comments:

Theorem 6.6.1 shows that for pairs of second order positive LTI systems,
the existence of a CQLF is equivalent to the existence of a common
quadratic copositive Lyapunov function. Also, it is important to point
out that if the product A;A; ! has a negative real eigenvalue, then it
follows from the proof of Theorem 2.3.1 in [130] that the corresponding
switched linear system will fail to be exponentially stable, even if we
restrict ourselves to only considering initial conditions that lie in the
non-negative orthant. Thus CQLF existence, and common quadratic
copositive Lyapunov function existence, are not conservative criteria for

the stability of second order positive switched linear systems.
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6.6.2 Linear copositive Lyapunov function

Another possible approach to establishing the stability of positive switched linear
systems is to look for a common copositive Lyapunov function of the form, V(z) =
vlz, for its constituent systems, where v is some fixed vector in R”. We shall refer
to these functions as common linear copositive Lyapunov functions from now on.
Before discussing conditions for the existence of such functions, we note that the
linear function, V(x) = vTx, will be positive for all non-zero x = 0 if and only
if v = 0, and that the derivative of V(z) = vTx along any trajectory of a given

positive LTT system, ¥ 4, will be negative in the non-negative orthant if and only if

—ATy = 0.

The above remarks show that V(z) = vz will define a linear copositive Lyapunov
function for the positive LTI system ¥4 if and only if v = 0 and —ATv = 0. Given
that a matrix A in R™ " is Metzler and Hurwitz if and only if it transpose A7
is also Metzler and Hurwitz, it follows from Theorem 6.2.3 that, for any Hurwitz
Metzler matrix A in R™ ", there is some vector v > 0 with —A7v = 0. Thus, any
exponentially stable positive LTI system has a linear copositive Lyapunov function
and the problem of determining when a family of such systems has a common linear

copositive Lyapunov function amounts to answering the following question.

Given Metzler, Hurwitz matrices A1, ..., A; in R™ ™ when does there

exist a single vector v > 0 such that —A;fpv =0forl1<i<k?

A similar question arose earlier in Section 6.4 when we were interested in obtaining
sufficient conditions for the existence of CDLFs for families of positive LTI systems.
In fact, the sufficient conditions for CDLF existence presented in Theorem 6.4.1 were

based on related conditions for the existence of vectors v > 0, w > 0 in R™ such that:

(i) —Av>=0for1<i<k;
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(ii) —ATw = 0for 1 <i<k.

Hence, the following sufficient conditions for the existence of common linear copos-
itive Lyapunov functions for pairs of n-dimensional positive LTI systems follow im-

mediately from the arguments presented in Theorem 6.4.1.

Theorem 6.6.2 Let Ay, Ay be Metzler, Hurwitz matrices in R"*™. Then the fol-
lowing conditions are all sufficient for the existence of a common linear copositive

Lyapunov function for the exponentially stable positive LTI systems ¥ 4,, X a,-

(i) —Ay' Ay is Metzler and Hurwitz;
(i) Ay1Aq is a non-negative matriz;

- - - T T T -1
(iii) there is some finite collection of rows i Tigr T3, taken from A" Ay such

that
Tj + Tjp + o+ 1Ty, = 0;

(M)) AlAg + 14214%1 > 0.

Linear copositive Lyapunov functions and LMIs:

At this point, it should be mentioned that it is possible to cast the question of
common linear copositive Lyapunov function existence as a linear matrix inequality
(LMI) feasibility problem. To see this, recall that v” z is a linear copositive Lyapunov
function for the exponentially stable positive LTI system X 4 if and only if v > 0 and
all of the entries of the row vector v’ A are negative. This is equivalent to requiring

that v = 0 and that the matrix
vidiag{aii, ..., a1, } + vediag{aai,...,a2,} ... + vpdiag{ani,...,ann}  (6.16)

is negative definite. Here for a row vector w, diag{w} denotes the diagonal matrix

whose diagonal entries are the components of w.
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Thus, if we write Al(j ) for the 4% row of the matrix A;, there is a common linear

copositive Lyapunov function for the positive LTI systems Y 4,, ..., X4, , if and only

if the system of LMIs (6.17) in the decision variables vy, ..., v, is feasible.

diag{vy,...,vp} > 0 (6.17)

S widiagA? < 0for1<i<k
j=1

Hence, it is possible to use numerical tools such as the MATLAB LMI toolbox to

test for the existence of common linear copositive Lyapunov functions.

Necessary and sufficient conditions - general systems:

While LMIs provide a numerical means of testing for the existence of common linear
copositive Lyapunov functions, the reservations that were raised about their use in
investigating the existence of CQLFs are again pertinent in this context. In par-
ticular, the fact that the numerical LMI-based approach provides little real insight
into the problem of common linear copositive Lyapunov function existence and its
precise relationship with the stability of positive switched linear systems means that
a fuller theoretical understanding of the problem is both desirable and important.
For this reason, we now turn our attention to the question of determining necessary
and sufficient conditions for common linear copositive Lyapunov function existence
for pairs of stable positive LTI systems. The approach that we take to this problem
is based on the analysis of convex sets, and mirrors that previously taken to the
general CQLF existence problem in Chapters 4 and 5, and to the CDLF existence
problem for pairs of positive LTI systems earlier in this chapter. As before, we shall
see that this approach can give insight into the problem, and that it can lead to
verifiable necessary and sufficient conditions for common linear copositive Lyapunov

function existence for certain system classes.

In analogy with the approaches taken before to the CDLF and CQLF existence

problems, in Theorem 6.6.3 below we consider the marginal situation of two n-
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dimensional exponentially stable positive LTI systems ¥4,, ¥4, that do not have
a common linear copositive Lyapunov function, but for which there is some vector

v = 0, v # 0, with —A,LT’U = 0 for i = 1,2. Thus, if we define the convex cones
Sy, ={v>=0:-ATv -0},

for ¢ = 1,2, then we are considering the situation where the open cones S4, and Sa,
are disjoint, but there is some non-zero vector v common to the closures of S4, and
Sa,. Notice that, for any Metzler Hurwitz matrix A in R™*", the cone S4 is given

by

Sy={y=—-ATz:zeR", z >0} (6.18)

In the proof of Theorem 6.6.3 we shall make use of the standard fact from convex
analysis [116] that two non-intersecting open convex cones, Cy, Cy in R"™, can be
separated by a hyperplane through the origin. Formally, this means that there must
exist some vector z in R™ (parameterizing the hyperplane) such that 27z < 0 for all

xin Cq, and 272z > 0 for all z in Cs.

Theorem 6.6.3 Let Ay, Ay be Metzler, Hurwitz matrices in R™ ™. Suppose that
there is no common linear copositive Lyapunov function for the systems ¥4,, X a,,
but that there is some non-zero vector v = 0 with —A;TF’U =0 fori=1,2. Then there
exist non-zero vectors wy = 0, we = 0, such that Aywi + Asws = 0. Moreover, both

wy and wo have at least one component equal to zero.

Outline of Proof:

For convenience, we now list the main steps that are involved in proving Theorem

6.6.3.

(i) First, we show that there must exist a vector z in R™ such that the hyperplane
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given by
H={zecR": 'z =0}

separates the sets S4,, Sa,, and that the vector v is contained in H.

(ii) We then make use of the fact that H is tangential to both S4, and Sa, to

obtain two different parameterizations of H.

(iii) The result then follows from equating these parameterizations.

Proof: As the open convex cones S4, and S4, do not intersect, there exists some
hyperplane through the origin that separates them. Formally, this means that there
is some vector z in R™ such that 27z < 0 for all z in S4,, and 272z > 0 for all z in

S,

We now show that because the vector v is common to the closures of S4, and S4,,
it must satisfy z7v = 0. To see this, first note that as v lies in the closure of Sy,
there exists a sequence of vectors v, in S4, that converges to v as n tends to infinity.
But then, for each n, z7v, < 0 and, by continuity, in the limit we must have that
zTv < 0. Similarly, as v is in the closure of S4,, there exists some sequence w;, in
Sa,, with zTw, > 0 for all n, that converges to v as n tends to infinity. This then
implies that 2Ty > 0. Hence, 2Ty <0 and 270 > 0 and we must have that z7v = 0

as claimed.

We next obtain two different representations of the vector z. First of all, as 272 < 0
for all z € S4,, it follows that ZTAny > ( for all y > 0. This implies that Aflz >0

or, equivalently, that z = Ajw; for some wy = 0, wy # 0.

Similarly, it follows from 27z > 0 for all z € Sy,, that 2T A5 Ty <0 for all y > 0.
Thus, we also have that z = —Aswsy for some non-zero wy = 0. Equating the two

expressions for z, we have that Ajw; + Asws = 0.
Finally, from 2Tv = 0 it follows that w{ ATv = 0. But —ATv = 0 by assumption,
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so if wy = 0, then w{ ATv < 0. Thus, at least one component of w; must be zero.
Similarly, it also follows that at least one component of ws is zero. This completes

the proof of Theorem 6.6.3.

Comments:

Theorem 6.6.3 provides a characterization of pairs of exponentially stable
positive LTI systems that are on the ‘boundary’ of having a common
linear copositive Lyapunov functions, and in this sense it is intimately
related to the results presented above in Theorem 4.4.1 and Theorem
6.5.1. Furthermore, we shall now use Theorem 6.6.3 to derive necessary
and sufficient conditions for a pair of exponentially stable positive LTI
systems to have a common linear copositive Lyapunov function in much
the same way as the earlier results were used to obtain necessary and
sufficient conditions for CQLF and CDLF existence. First of all, we note
the following simple necessary condition for the existence of a common

linear copositive Lyapunov function.

Lemma 6.6.2 Let Ay, Ay be Metzler, Hurwitz matrices in R™™. Suppose that the
systems X 4,, X 4, have a common linear copositive Lyapunov function. Then there

cannot exist non-zero vectors w1 = 0, wo = 0, with Ajwi + Asws = 0.

Proof: Let v'x be a common linear copositive Lyapunov function for ¥4,, $a,.
Then —A;frv > (0 for ¢ = 1,2. Now suppose that there are two vectors wy >~ 0, wy > 0

such that Ajw; + Asweg = 0. Then
—(vTA1w1 + UTAQU)Q) =0 (619)

also. However, the expression (6.19) will be strictly positive unless w; = 0 and wy =
0, and thus there can be no non-zero vectors wy = 0, wg = 0, with Ajw; + Asws =0

as claimed.
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We can now combine the above lemma with Theorem 6.6.3 to obtain the following

general result.

Theorem 6.6.4 Let Ay, As be Metzler, Hurwitz matrices in R™"*™. Then a nec-
essary and sufficient condition for the systems X4,, X 4,, to have a common linear
copositive Lyapunov function is that there are no non-zero vectors wy = 0, wy = 0

such that Aqwy + Aswsy = 0.

Proof: The necessity has already been shown in Lemma 6.6.2. To see the converse,
suppose that X 4,, ¥ 4, have no common linear copositive Lyapunov function. Then,
for large enough values of a > 0, ¥ 4,, ¥ 4,—or Will have a common linear copositive

Lyapunov function (LCLF). If we now define
ap = inf{a : ¥4,,¥4,_or have a common LCLF },

then oy > 0, and by continuity, the systems X 4,, £ 4,—q,7 Will satisfy Theorem 6.6.3.

Thus, there exist non-zero vectors wy > 0, wo = 0 with
Arwy + (Ag — apl)wa = 0.
But then,
Aqwy + Agwy = 0,

where Wy = wo — ag Ay Ly = 0, and w9y # 0. Hence, if there are no non-zero vectors
wy >~ 0, wy >~ 0 such that Ajw; + Aswy = 0, then X 4,, ¥4, must have a common

linear copositive Lyapunov function. This completes the proof.
Comments:
The existence of a common linear copositive Lyapunov function for the

positive LTI systems ¥ 4,, ¥ 4, is equivalent to the existence of a vector

v = 0 in R" with AT A;7v = 0. It is possible to combine this fact with
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a Theorem of the Alternative for convex cones [7] to obtain a differ-
ent derivation of the conditions for common linear copositive Lyapunov
function existence given in Theorem 6.6.4. However, the proof that we
have presented here further illustrates how the methods introduced in
Chapter 4 for the CQLF existence problem can also be used to derive
results on the existence of other types of common Lyapunov functions.
Furthermore, in Theorem 6.6.5 below we shall see how to use the re-
sult of Theorem 6.6.3 to derive simple conditions for a pair of second
order stable positive LTI systems to have a common linear copositive

Lyapunov function.

Note that it is also possible to derive a slightly different version of Theorem 6.6.4.
Specifically, if A7 and Ay are Metzler, Hurwitz matrices in R™*™ and there exist
non-zero vectors wy >~ 0 and wy > 0 in R™ such that Ajwy + Aswe = v = 0, then

defining wy = wy — Ay Ly we have that
wy = 0,w9 # 0 and Ajwy + Asws = 0.

This simple observation leads to the following alternative version of Theorem 6.6.4.
Corollary 6.6.1 Let Ay, Ay be Metzler, Hurwitz matrices in R™*", Then a nec-
essary and sufficient condition for the systems X4,, X a,, to have a common linear

copositive Lyapunov function is that there are no non-zero vectors wy = 0, wg = 0

such that Ajwi + Aswy = 0.

Necessary and sufficient conditions - Second order systems:

Finally for this chapter, we present the following application of Theorem 6.6.3 giving
verifiable conditions that are necessary and sufficient for the existence of a common
linear copositive Lyapunov function for a pair of second order exponentially stable

positive LTI systems.
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Theorem 6.6.5 Let Ay, Ay be Metzler, Hurwitz matrices in R**2. Then, writing
az(»f) for the (i,7) entry of Ak, a necessary and sufficient condition for the positive
LTI systems ¥ 4,, ¥4, to have a common linear copositive Lyapunov function is that

both of the determinants

1 2 2 1
agl) agQ) ag1) agQ)

1 9 | 2 |
a;1) agQ) ag1) aéz)

are positive.
Comments:

Theorem 6.6.5 provides the following simple test for the existence of a
common linear copositive Lyapunov function for second order positive
LTI systems. Firstly construct the matrices 717, T, where the first and
second columns of 77 are the first column of A; and the second column
of A, respectively, and the first and second columns of T5 are the first
column of A, and the second column of A; respectively. Then the sys-
tems X 4,, 24, have a common linear copositive Lyapunov function if

and only if the determinants of 77 and 75 are both positive.

Proof: To begin with, we shall demonstrate the necessity of the above conditions by
showing that if either one is violated, then ¥ 4,, ¥4, cannot have a common linear

copositive Lyapunov function. Firstly, suppose that

1) (2 1) (2
agl)aéz) agl)agg().

Because A; and Ay are both Metzler and Hurwitz, their diagonal entries must be

negative and thus ag) cannot be zero. In fact, a%) > 0. Dividing across by —ag), it

follows that
ayy — (a{} /ai3)aly = a > 0. (6.20)
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Now, if we define w; = (1 0)7 and wy = (0 — (agll)/a%)))T, then wy = 0, wg = 0,

and (6.20) implies that
Ajwy + Aswy = (0 Oé)T > 0.

Thus, by Corollary 6.6.1, the systems ¥ 4,, ¥4, cannot have a common linear coposi-
tive Lyapunov function. The necessity of the second condition follows by an identical

argument, or by symmetry.

Conversely, suppose that ¥ 4,, ¥ 4, do not have a common linear copositive Lyapunov
function. Then, by the same arguments used in Theorem 6.6.4, there exists some
constant o > 0 such that X4, and ¥ 4,7 satisfy the hypotheses of Theorem 6.6.3.
Applying Theorem 6.6.3, we then have that, for this «, there exist two vectors
wy = 0, we > 0, such that w; and wy both have one positive component and one

zero component, and
Ajwi + (A2 — a[)w2 =0. (6.21)

Without loss of generality, we can assume that the non-zero component of w; is equal

to one.

Given that A; and Az — ol are both Metzler and Hurwitz, it follows from (6.21)

that one of the two following possibilities must be true.

(i) wi = (1 0)T, wy = (0 A\)7 for some A > 0,

(ii) w1 = (0 1)T, we = (A 0)T for some A > 0.

In the first case, (6.21) implies that

M 2) 0

a a
laeal | = : (6.22)
agll) ag) Ao

and hence,
1, (2
A= _(agl)/agQ))v
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and

1) 2
‘121 (a11 /a§2)>a22 =a > 0.

It now follows easily that

1) (2 1) (2
a(ll)GéQ) - aél)a(m) <0. (6.23)

An identical argument will show that in the second case (ii) above, we have that

affay —agiay) <. (6.24)

This completes the proof.

Comments:

From the point of view of the exponential stability of positive switched
linear systems, it should be noted that it has already been established
in Theorem 6.6.1 that the existence of a common quadratic copositive
Lyapunov function for a pair of exponentially stable positive LTI systems
is necessary and sufficient for the exponential stability of the associated
positive switched linear system. However, the conditions for common
linear copositive Lyapunov function existence given in Theorem 6.6.5 are
extremely simple to check, and moreover it may be possible to extend
the above analysis to obtain corresponding conditions for higher order

Systems.

Finally for this chapter, we give a numerical example to illustrate the result of The-

orem 6.6.5.

Example 6.6.1 Consider the Metzler, Hurwitz matrices Ay, Ay in R**? given by

—0.7125 0.7764 —1.3768 0.8066
A= , Ao

0.5113  —0.9397 0.9827  —1.3738
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Then

—0.7125 0.8066 —1.3768 0.7764
= 0.5664, = 0.5308.

0.56113  —1.3738 0.9827  —0.9397
Thus, Theorem 6.6.5 implies that the systems X 4,, X 4, have a common linear copos-
itive Lyapunov function. In fact, it can easily be verified that —A;?FU =0 fori=1,2,

where v = (1.1499, 1.1636)7.

6.7 Concluding remarks

In this chapter, we have considered a number of problems in the stability analy-
sis of positive switched linear systems. Specifically, we have concentrated on three
problems: namely, the CQLF existence problem for families of positive LTI systems,
the common diagonal Lyapunov function (CDLF) existence problem for families of
positive LTI systems, and the problem of common copositive Lyapunov function ex-
istence for families of positive LTI systems. The major contributions made in the

chapter are listed below.

e We provided a brief review of the most relevant aspects of the theory of positive

LTI systems and non-negative matrices.

e We proved that, for two second order exponentially stable positive LTI systems,
Y 4,, X 4,, the matrix product A;As cannot have any negative real eigenvalues.

We also pointed out the following consequences of this fact.

(a) For a pair of exponentially stable second order positive LTI systems ¥ 4,
¥ A,, a necessary and sufficient condition for the existence of a CQLF is

that A1 Ay ! has no negative real eigenvalues;

(b) CQLF existence is not a conservative criterion for the exponential sta-

bility of switched systems constructed by switching between a pair of
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exponentially stable second order positive LTI systems;

(c) any two exponentially stable second order positive LTT systems, whose

system matrices differ by rank one have a CQLF.

e We showed that the previous result on the eigenvalues of the product A;As
is also true for third order positive LTI systems. Consequently, any two ex-
ponentially stable third order positive LTI systems, whose system matrices
differ by rank one have a CQLF, and the associated switched linear system is

guaranteed to be exponentially stable under arbitrary switching.

e We presented a number of verifiable sufficient conditions for CDLF existence

for families of positive LTI systems.

e Using a similar approach to that taken to the CQLF existence problem in
Chapter 4, we derived an algebraic condition that is necessary and sufficient
for a generic pair of exponentially stable positive LTI systems, of any order,

to have a CDLF.

e The problem of common copositive Lyapunov function existence was consid-

ered and the following results were derived.

(a) Verifiable necessary and sufficient conditions for a pair of exponentially
stable second order positive LTI systems to have a common quadratic

copositive Lyapunov function.

(b) Verifiable necessary and sufficient conditions for a pair of exponentially
stable second order positive LTI systems to have a common linear copos-

itive Lyapunov function.

(c) Necessary and sufficient conditions for a general pair of exponentially sta-
ble positive LTI systems (of any order) to have a common linear coposi-

tive Lyapunov function.
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e We also presented some simple sufficient conditions for a pair of exponentially
stable positive LTI systems to have a common linear copositive Lyapunov func-
tion, and described how the problem of common linear copositive Lyapunov

function existence can be cast as a feasibility problem in LMIs.
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Chapter 7

The geometry of the sets P4 and

some open questions

In this chapter, we first describe some technical facts about the geometry
of the boundary of the convexr cones P4 for a given Hurwitz A, and show
how these facts give a novel geometrical perspective on some of our ear-
lier results. We also discuss ways of extending the analysis of Chapters
4 and 5, and explain why we have concentrated on finding applications of
Theorem 4.4.1 rather than on trying to generalize this result. A number
of preliminary results on the possibility of extending the work of ear-
lier chapters to non-linear systems are also presented, and several open

problems that arise out of the work of the thesis are described.

7.1 Introductory remarks

Throughout our discussions on the CQLF existence problem and the CDLF existence

problem for positive systems, certain convex cones of matrices have played a key role.
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In particular, the approach to the CQLF existence problem described in Chapters 4

and 5 was based on a study of the open convex cones P4 defined by
Ps={P=P' >0:ATP+ PA<0}.

In terms of these cones, the problem of CQLF existence for a pair of exponentially
stable LTI systems ¥ 4,, £ 4,, amounts to determining whether or not the intersection
Pa, NP4, is empty. It is important to appreciate that in the specific approach that
we adopted to this question, the boundary structure of the cones P4 has played a
pivotal role. To see this, recall that a key aspect of our approach was to focus on
the marginal situation of a pair of exponentially stable LTI systems ¥ 4,, ¥4,, for
which the open cones P4,, Pa,, are disjoint, while their boundaries have a non-
trivial intersection. Through the consideration of this situation, we were led to the
key result of Theorem 4.4.1 which we were later able to use to obtain insights into the
CQLF existence problem, and to derive verifiable necessary and sufficient conditions

for CQLF existence for certain system classes.

The importance of Theorem 4.4.1, together with the fact that it is essentially a result
about a type of intersection between the boundaries of P4, and P4, where A;, Ag are
Hurwitz, suggests that a thorough understanding of the boundary structure of the
cones P4 may well lead to further insights into the general CQLF existence problem,
and to other results similar to Theorem 4.4.1. In view of this, in this chapter we
begin to study the properties of the boundary of the cones P4 where A is a given
Hurwitz matrix. In particular, we shall describe a number of technical facts that
provide a more geometric perspective on some of our earlier results; showing that
Theorem 4.4.1 is actually a natural consequence of a geometrical property of the
boundary of the cones P4. We shall also devote some time to discussing how the
work of earlier chapters may be extended to more general cases, highlighting some
of the complications that arise, and explaining why we have focussed on finding

applications of Theorem 4.4.1 rather than seeking to obtain more general versions of
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that result.

As we are nearing the end of the thesis at this point, we shall also discuss a number
of open problems suggested by the work of earlier chapters that may form the basis

of future research. In particular, we shall discuss:

(i) the possibility of extending some of the results that we have obtained for
switched linear systems to systems obtained by switching between non-linear

constituent systems;

(ii) some open questions relating to the CQLF existence problem for families of

LTT systems;

(iii) some problems in the stability of positive switched linear systems that arise

out of the work discussed in Chapter 6.

Thus in the present chapter, we have two objectives. Firstly, to provide an alternative
perspective on some of the earlier work of the thesis, and secondly, to highlight a
number of questions raised by that work that may be used to direct future research

efforts.

7.2 A geometric perspective on some earlier re-

sults

In this section, we shall present a number of technical results about the boundary
structure of the cones P4, where A is a Hurwitz matrix in R™”*" and indicate the
relevance of these to some of the work of earlier chapters. In particular, we shall
show how the facts described here provide a more geometric perspective on the key
result of Theorem 4.4.1. We shall also briefly discuss some ways of extending our

earlier analysis, in the hope of obtaining further results similar to Theorem 4.4.1.
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To begin with, recall that, for a Hurwitz A in R™*™ the set P4 is defined to be the
open convex cone

Ps={P=P' >0:ATP+ PA <0},

with its closure being given by
Pi={P=P'>0:A"P+PA<O}.

Thus the boundary of P4 consists of positive semi-definite matrices P = PT > 0

such that AT P+ PA <0, and (AT P + PA)x = 0 for at least one non-zero x € R™.

The next lemma notes that those matrices P on the boundary of P4 for which the
rank of ATP + PAis n — 1 are dense in the boundary. This means that arbitrarily
close to any P on the boundary of P4 for which the rank of AT P + PA is less than
n — 1, there is some Py, also on the boundary, such that rank(A” Py + PyA) = n — 1.
The proof of Lemma 7.2.1 is given in the appendices. In the statement of the lemma,

||.|| denotes the matrix norm on R™*™ induced from the usual Euclidean norm on R"

[42).

Lemma 7.2.1 Let A € R™*" be Hurwitz, and suppose that P = PT > 0 is such that
ATP 4+ PA <0 and rank(AT P+ PA) = n— k for some k with 1 < k < n. Then for
any € > 0, there exists some Py = P(;f > 0 such that:

(i) ||IP =Pl <e

(ii) ATPy+ PyA=Qy < 0;

(#i) rank(Qo) =n — 1.
Comments:

It should be noted that Lemma 7.2.1 indicates that the ‘rank n — 1’

assumption of Theorem 4.4.1 is not overly restrictive. This lemma also
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partially explains why the conditions of Theorem 4.4.1 have been so

often satisfied in numerically generated examples.

Tangent hyperplanes to Py:

We next turn our attention to hyperplanes in Sym(n,R) that are tangential to the
cone Py at various points on its boundary. We shall see below that the result of
Theorem 4.4.1 follows in a natural way from certain properties of such hyperplanes.
First of all, note that any hyperplane through the origin in Sym(n,R) can be written
as

Hy={H € Sym(n,R) : f(H) = 0},

for some fixed linear functional f : Sym(n,R) — R. We say that the hyperplane H

is tangential to the set P4 at a point P on its boundary if:

(i) f(H) #0 for all H € Pg.

Now consider a point Py on the boundary of P4 for which AT Py + PyA has rank
n—1. In this case, there is a unique hyperplane tangential to P4 that passes through
Py, and moreover this hyperplane can be parameterized in a natural way. Formally,

we have the following result.

Theorem 7.2.1 Let A € R™™™ be Hurwitz. Suppose that Py lies on the boundary of
Pa, and that the rank of AT Py + PyA isn — 1, with (AT Py + PyA)xg = 0, xg # 0.
Then:

(i) there is a unique hyperplane tangential to Pa at Py;

(ii) this plane is given by

{H € Sym(n,R) : 2l HAzq = 0}.
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A geometric perspective on Theorem 4.4.1:

We now describe how Theorem 7.2.1 can be used to give a more geometric proof
of Theorem 4.4.1, highlighting the critical part played by the geometry of the cones
P4 in establishing that result. So, as in Theorem 4.4.1, suppose that we have two
n-dimensional exponentially stable LTI systems X4,, ¥4,, which do not have a
CQLF, but for which there does exist a positive semi-definite P = P” > 0 such that

ATP + PA; = Q; <0, with rank(Q;) =n — 1 for i = 1,2. Then:
(i) there exists a hyperplane, H, through the origin in Sym(n,R) that separates
the disjoint open convex cones Py4,, Pa, [116];

(ii) any hyperplane separating Py4,, P4, must contain the matrix P, and be tan-

gential to both P4, and Py, at P;

(iii) there exist non-zero vectors x1,xs in R™ such that Q;z; = 0 for i = 1,2.

Now on combining (i) and (ii) with Theorem 7.2.1, we can see that in fact there
is a unique hyperplane H separating Pa,, Pa,. Furthermore, we can use (iii) and

Theorem 7.2.1 to parameterize H in two different ways. Namely:

H = {H e Sym(n,R): 2] HAyz; = 0} (7.1)

= {H e Sym(n,R) : 2l HAyz9 = 0}.
It now follows that there must be some constant & > 0 such that
xipHAlxl = —kxgHAQ.TJQ,

for all H in Sym(n,R). The result of Theorem 4.4.1 now follows on applying Lemma

4.3.6.
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Figure 7.1: Under the hypotheses of Theorem 4.4.1, there is a unique separating hyperplane
through P

Comments:

The above argument highlights those properties of the boundary of P4
that play a role in determining the result of Theorem 4.4.1. A key idea
in the argument is that under the hypotheses of the theorem, any hy-
perplane that separates P4, and P4, must be tangential to both cones.
The fact that it is tangential to both cones at a point P for which
rank(AT P + PA;) = n — 1, i = 1,2 means that we can use Theorem
7.2.1 to parameterize this hyperplane in two different ways. The result

then follows by equating these two parameterizations.

Possible extensions of earlier results:

One natural way of extending the work of Chapters 4 and 5 is to attempt to derive
results similar to Theorem 4.4.1 for cases where the ranks of the matrices @Q; appear-

ing in the statement of that theorem take values other than n — 1. For instance, we
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could consider a pair of exponentially stable LTI systems > 4,, ¥ 4, that do not have

a CQLF, but for which there is some P = PT > 0 with
ATP+ PA; = Q; <0, rank(Q;) € {n—1,n—2} fori=1,2. (7.2)

If it were possible to prove a result similar to Theorem 4.4.1 for this situation, then
it could be used to derive necessary and sufficient conditions for CQLF existence
for pairs of third order systems following similar arguments to those that led to the

result of Theorem 5.2.1 for pairs of second order LTI systems.

Geometric arguments such as those employed above to re-derive Theorem 4.4.1 could
again be used to obtain a corresponding result for the situation (7.2) if a parametriza-
tion of the hyperplanes that are tangential to the cone P4 at a point P on its
boundary for which rank(A” P + PA) = n — 2 was known. Unfortunately, param-
eterizing these hyperplanes is not nearly as straightforward as it was in the ‘rank
n — 1’ case. For instance, consider a point P on the boundary of P4 for which the
rank of ATP + PA is n — 2. Then, for any linearly independent vectors, z,y in the
kernel of Q = AT P + PA, and any non-negative constants «, 3 (not both zero), the

hyperplane
H={H € Sym(n,R) : axT HAz + By HAy = 0} (7.3)

is tangential to the set P4 at P. Hence, there are many more possible parameter-
izations for hyperplanes tangential to P4 at such points P than was the case for
the ‘rank n — 1’ case. Furthermore, the more complicated nature of the parameteri-
zations (7.3) makes the task of extending Theorem 4.4.1 difficult and suggests that
the conditions that would result from an analysis of situations where Theorem 4.4.1
cannot be applied would be too complicated to be of practical use. In fact, recently
published work [58] indicates that necessary and sufficient conditions for CQLF exis-
tence for general systems, while interesting, will be overly complex and impossible to

check. It is for this reason that we have mainly focussed on identifying system classes
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to which Theorem 4.4.1 applies, as we have seen that for such systems, it is possible
to obtain conditions for CQLF existence that are easily verifiable and that relate the

existence of CQLFs to the dynamics of the associated switched linear systems.

To emphasize some of the difficulties involved in extending Theorem 4.4.1 that were
outlined in the last paragraph, consider two LTI systems 3 4,, X 4, which do not have
a CQLF but for which there is a positive semi-definite P satisfying (7.2). Then, as
before, there is a hyperplane that separates the two open convex cones P4, and Pa,,
and this hyperplane must be tangential to both cones at P. Now, in the scenario
considered in Theorem 4.4.1, we were able to conclude that there was some pair of

vectors x1, x2 in R™, and a positive constant £ > 0 such that
IL’{HAl.IJl = —kxgHAng

for all H € Sym(n,R). However, in the case (7.2) the more complex boundary
structure of P4 means that several other possibilities could also arise. For instance,
one possibility that would have to be considered is where there exist vectors x1, x2, yo

in R™ and constants k£ > 0, 8 > 0 such that
xlTHAlxl = —k(xgHAgxz + ﬂngAgyg)

for all H € Sym(n,R). Another case that would have to be dealt with is where there

are vectors x1,y1,x2,y2 in R™ and constants 81 > 0, B2 > 0, k£ > 0 such that
(a1 HAvzy + Bryi HAvyr) = —k(xg HAsws + Bays H Asys)
for all H € Sym(n,R).

The above observations show that extending Theorem 4.4.1 to situations such as
that described by (7.2) is far from straightforward and, more significantly, that an
analysis of such situations would result in conditions on the matrices Ay, Ao which
are too complex to be verifiable or useful in any real sense. This provides further

motivation for the problem of finding system classes to which Theorem 4.4.1 can
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be applied as we have seen before that it is possible to obtain conditions for CQLF

existence for such systems that are practically useful and dynamically meaningful.

The final two results considered in this section concern pairs of Hurwitz matrices
A1, Ay with rank(Ay — Ay) = 1. First of all, we note the following fact about the
types of simultaneous solutions that can exist to a pair of Lyapunov inequalities

corresponding to two Hurwitz matrices Aj, Ao with rank(As — A;) = 1.

Lemma 7.2.2 Let A1 € R™™"™ be Hurwitz and suppose that P lies on the boundary
of Pa, with

A[P+PA =Q1<0

Then if P € Pa, for some Hurwitz matriz Ay € R™™ with rank (A — A1) = 1, the

rank of Q1 must be n — 1.

Comments:

An immediate consequence of Lemma 7.2.2 is that for two Hurwitz ma-
trices Ay, Ag in R™*™ with rank(As— A;) = 1, there can exist no positive

definite matrix P such that

ATP+PA =Q; < 0O

ATP+PA=Qy < O

with rank (Q1) <n — 2.

The result of Lemma 7.2.2 is illustrated in Figure 7.2 below.
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\\ PAl ( // PA2 /
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The rank of AT P + PA; must be n — 1

Figure 7.2: P on the boundary of P4,, and in the interior of P4, with rank(A; — A;) =1
implies rank(AY P+ PA;) =n—1

Finally for this section, we note a curious technical fact about the left and right
eigenvectors of singular matrix pencils, which is a consequence of our earlier work on

the CQLF existence problem for systems whose system matrices differ by rank one.

Theorem 7.2.2 Let Ay, Ay be Hurwitz matrices in R™*™ with rank(As — A;) = 1.
Suppose that there is exactly one value of v9 > 0 for which A1_1 + YAz is singular.

Then for this vo:

(i) Up to scalar multiples, there exist unique vectors xg € R™, yo € R™ such that
(AT' +7042)10 =0, yg (A7 +7042) =0
(the left and right eigenspaces are one dimensional)

(ii) for this xo and yo, it follows that

Yo AT o0 =0,y Ay = 0.
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7.3 Open questions

In this section, we shall discuss a number of open questions related to the work of
earlier chapters. First of all, we shall consider the problem of extending the analysis
of the CQLF existence problem for linear systems presented in Chapters 4 and 5 to
switched non-linear systems, and point out some aspects of the earlier analysis that
can be carried over to the non-linear case. Subsequently, we shall also describe several

open problems on CQLF existence for families of linear time-invariant systems.

7.3.1 CQLFs and switched non-linear systems

While thus far we have only dealt with linear systems, the problem of CQLF existence

can also arise in the stability analysis of switched non-linear systems of the form

j;:f(l‘,t), f(li’t)e{fl(‘r)"'wfk(x)}v (74)

which are constructed by switching between the associated family of non-linear sys-

tems
Zfi l‘:fz(l‘) 1 S’Lgk‘, (75)

where f1,..., fx are globally Lipschitz [141] non-linear mappings from R" to R,
with f;(0) = 0 for 1 < i < k. ! Specifically, if each individual system ¥y, has a
quadratic Lyapunov function, V(z) = 27 Pz, then we may ask under what conditions
the family of systems X, ..., Xy has a CQLF. Formally, this amounts to asking if

there exists some positive definite matrix P = PT > 0 such that

2T Pf;(z) < 0 for all non-zero = € R", (7.6)

'For the remainder of this section, all vector fields being considered shall be assumed to
be globally Lipschitz and to satisfy f(0) = 0. This is to ensure the existence of solutions,

and that the origin is an equilibrium point of each of the systems.

214



7.3 Open questions

for 1 <i<k.

Unsurprisingly, there are a number of complications that arise when we attempt to
apply our earlier methods to non-linear systems, and several simplifying assumptions
are necessary in order to make any progress. For instance, for the CQLF existence
problem to make sense, it is necessary to assume that each of the constituent non-
linear systems, X ¢,, has a quadratic Lyapunov function. While for linear systems this
merely amounts to assuming the exponential stability of the constituent systems,
this is not necessarily the case for non-linear systems and it may be a restrictive
condition to impose on the systems Xf,. Moreover in the linear case, as we assume
that the constituent systems are exponentially stable, it follows that the system
matrices are all invertible (Hurwitz in fact). Once again, the situation for non-linear
systems may be more complicated, and we shall need to assume that the mappings
fi being considered are invertible. In this subsection, we shall consider the CQLF
existence problem for a pair of non-linear systems, ¥y, Xy,, and look at ways of
applying the techniques previously described for linear systems to the non-linear

case. Throughout, we shall make the following simplifying assumptions:

(i) each individual system Xy, for 1 <14 < k has a quadratic Lyapunov function;
(ii) each f; is invertible.
We shall now show that under these assumptions, it is possible to extend some of

the techniques developed earlier for linear systems to the CQLF existence problem

for a pair of non-linear systems Xy, Xp,.

The convex cones Py:

First of all, recall that our analysis of the CQLF existence problem for families of LTI

systems was based on studying the convex cones P4, for A Hurwitz. Analogously,
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for a globally Lipschitz, non-linear mapping, f : R — R™, we can define the set
P ={P =P >0:27Pf(x) <0 for all non-zero z € R"}. (7.7)
Then, as with LTI systems, Py is an open convex cone in Sym(n,R).

Furthermore, the fundamental result of Theorem 3.2.2 has the following analogue for

the non-linear case.

Lemma 7.3.1 Let f : R™ — R" be globally Lipschitz and invertible, with inverse

f~1. Then for any positive definite matriz P = PT > 0,
xT Pf(x) <0 for all non-zero x € R"
if and only if
eI Pf~Y(x) <0 for all non-zero x € R™.

Lemma 7.3.1 means that the cones Py and Py-1 coincide, as was the case for LTI

systems.

Necessary conditions for CQLF existence:

Lemma 4.3.1 described two simple matrix pencil conditions that were necessary for
a pair of exponentially stable LTI systems ¥ 4,, X4, to have a CQLF. We shall now
derive corresponding necessary conditions for CQLF existence for a pair of non-linear

systems X, Xp,.

Lemma 7.3.2 Let fi : R® — R", fo: R™ — R" be globally Lipschitz and invertible,
and suppose that there exists a CQLF for the associated systems Xy, Xg,. Then for

all v > 0, and all non-zero x € R™:

fi(z) +~vfa(x) # 0
fit@) +vfa(z) # 0.
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Comments:

The above result states that if there exists a CQLF for the systems
X, Xy, then there can be no non-zero vector z in R™ for which
il (falx)) = =X, or fi(f2(2z)) = —Az with A > 0. Thus Lemma
7.3.2 is a non-linear extension of the fact that a necessary condition for
the exponentially stable LTI systems, ¥ 4,, ¥4,, to have a CQLF is that

the matrix products A1_1A2 and A1 As have no negative real eigenvalues.

Thus far, we have assumed the non-linear vector fields f; being considered are glob-
ally Lipschitz and invertible, and that the associated non-linear systems Xy, have
quadratic Lyapunov functions. In the following results, we make the additional as-
sumption that the individual vector fields are homogeneous of degree one, where a
mapping f : R™ — R" is said to be homogeneous of degree one if f(Az) = Af(z) for
all A € R, x € R™. Under these conditions, we then have the following non-linear

version of Lemma 4.3.2.

Lemma 7.3.3 Let fi : R" — R", fo : R® — R"™ be globally Lipschitz, invertible,
and homogeneous of degree one. Suppose that the systems Xy, X, have no CQLF,

and write g = fo — f1. Then:

(i) for sufficiently large values of o > 0, the systems
z = fi(x)
t = folx) —ax
have a CQLF;

(ii) for sufficiently small values of k > 0, the systems
& = fiz)
z = fi(z)+kg(z)
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have a CQLF.

Non-linear version of Theorem 4.4.1:

The final point that we wish to make in this brief discussion of possible non-linear
extensions of our earlier work, is that it is possible to adapt the arguments used in

Theorem 4.4.1 to derive the following corresponding result for non-linear systems.

Theorem 7.3.1 Let f; : R" — R", fo : R™ — R"™ be globally Lipschitz, invertible,
and homogeneous of degree one, and suppose that the systems Xy, Xy, have no
CQLF. Furthermore, suppose that there is some positive definite P = PT > 0 such
that, for i =1,2:

(i) 2T Pfi(z) <0 for all x in R™;

(ii) there is a non-zero vector x; € R™ such that

{z eR": 2T Pfi(x) =0} = {x € R" : & = \z; for A € R}.

Then either
(i) there exists some non-zero x in R™ and some vy > 0 such that fi(x)+ v fa(z) =0
or

(i) there exists some non-zero x in R™ and some y > 0 such that f;(z)+vfa(z) = 0.

Comments:

In Theorem 7.3.1, we assume the existence of a positive definite P such
that for i = 1,2, 2T Pf;(z) is negative for all values of x except for
scalar multiples of some non-zero vector x;. This mirrors the ‘rank

n — 1’ assumption of Theorem 4.4.1. Note that under the hypotheses
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of Theorem 7.3.1, the necessary conditions for CQLF existence given in

Lemma 7.3.2 are violated.

In this subsection we have seen that it is possible, under appropriate assumptions,
to extend some of our earlier methods to non-linear systems. While the results
presented here only represent an initial step along the road to deriving practically
useful conditions for CQLF existence for non-linear systems, they raise the hope that
it may be possible to derive results similar to Theorem 5.2.1 or Theorem 5.3.3 for
nonlinear systems, following arguments like those developed in Chapter 5, and using

some of the preliminary ideas discussed here.

7.3.2 Some open problems on linear systems

In the previous subsection, we discussed the substantial issue of extending the work
of earlier chapters to the case of non-linear systems. We shall now describe several
open problems concerning linear systems suggested by the work of earlier chapters.
First of all, we shall consider a number of questions related to the results presented in
Chapters 4 and 5 on the CQLF existence problem. We shall then turn our attention
to the stability question for positive switched linear systems dealt with in Chapter

6, highlighting several open problems in this area also.

CQLF existence for systems whose system matrices differ by rank two:

Throughout the work on the CQLF existence problem presented in Chapters 4 and
5, our primary interest was in obtaining necessary and sufficient conditions for CQLF
existence that were dynamically meaningful, and at the same time simple enough to
be practically useful. For this reason, we have focussed on specific system classes for
which it is possible to obtain such conditions, such as pairs of second order systems,
and pairs of systems whose system matrices differ by rank one. Furthermore, it should

be noted that recent work on the CQLF existence problem for general LTI systems
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[58] has illustrated that any necessary and sufficient conditions for CQLF existence
derived for general pairs of LTI systems would be too complex to be verifiable in

practice.

Initial numerical investigations have indicated that it may also be possible to derive
simple conditions that are necessary and sufficient for CQLF existence for pairs of
LTI systems whose system matrices differ by rank two. In view of this, we suggest

the following open problem.

Determine necessary and sufficient conditions for a pair of exponentially

stable LTI systems ¥ 4,, Y. 4,, to have a CQLF, where rank(As— A1) = 2.

Identification of system classes to which Theorem 4.4.1 applies:

We have seen in Chapter 5 that for system classes to which the result of Theorem 4.4.1
can be applied, it is possible to obtain necessary and sufficient conditions for CQLF
existence that are both easily verifiable and dynamically meaningful. Moreover, in
view of the discussion about possible extensions of Theorem 4.4.1 in Section 7.2, it
seems likely that in situations where this theorem cannot be applied, it will not be
possible to obtain such simple conditions for CQLF existence. These considerations,

naturally motivate the following very important problem.

Identify further classes of LTI systems (in addition to second order sys-
tems and systems whose system matrices differ by rank one) to which

Theorem 4.4.1 can be successfully applied.

CQLFs and conservatism:

The necessary and sufficient conditions for CQLF existence for pairs of second or-
der LTT systems, given in Theorem 5.2.1, provided insights into the conservatism of

CQLF existence as a criterion for the exponential stability for second order switched
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linear systems. Further, in Corollary 5.3.1 on pairs of exponentially stable LTI sys-
tems X 4,, ¥ 4, with rank(Ag—Afl) = 1, and Theorem 6.3.1 on pairs of exponentially
stable second order positive LTI systems, we have identified classes of switched lin-
ear systems for which CQLF existence is equivalent to exponential stability under

arbitrary switching.

In this regard, consider a switched linear system that becomes unstable through a

‘chattering’ like motion, such as is depicted in Figure 7.3 below.

A21' Ale

Figure 7.3: Instability and ‘chattering’

Loosely speaking, this indicates that in the marginal situation between the existence
and non-existence of such a chattering instability, the vector fields of the two systems

Y 4,, 24, would be similar to those shown in Figure 7.4.
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Figure 7.4: CQLF existence and ‘chattering’

This simple observation suggests that for a switched linear system that can only
become unstable through chattering, the limit of CQLF existence may well coincide
with the limit of exponential stability under arbitrary switching and hence that
CQLF existence may not be a conservative way of establishing exponential stability

under arbitrary switching for such systems.

In the light of the above points and the need for a greater understanding of the precise
relationship between CQLF existence and the exponential stability of switched linear

systems, we suggest the following general problem.

Identify classes of switched linear systems for which the existence of a
CQLF for their constituent systems is equivalent to exponential stability

under arbitrary switching.

CQLF existence for positive LTI systems:

While the conjecture of |76], that A;A; ! having no negative real eigenvalues was

necessary and sufficient for the stable positive LTI systems X 4,, ¥ 4, to have a CQLF
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has been shown to be untrue, numerical simulations indicate that counterexamples to
the conjecture are quite rare. This observation raises the hope that it may be possible
to derive related necessary and sufficient conditions for a pair of exponentially stable

positive LTI systems to have a CQLF. Thus, we have the following problem.

Determine necessary and sufficient conditions for a pair of exponentially

stable positive LTI systems X 4,, X4, to have a CQLF.

Positive systems whose system matrices differ by rank one:

In Theorem 6.3.1 and Theorem 6.3.2, we have seen that for Metzler, Hurwitz ma-
trices, A1, Ay in R?*2 or R3*3 the product A;As cannot have any negative real
eigenvalues. These facts meant that there exists a CQLF for any pair of exponen-
tially stable positive LTI systems ¥ 4,, Y 4,, where A1, Ay € R?*2 or Ay, Ay € R3*3,
and rank(Ay — A;) = 1. These results lead to the problem of either proving or

refuting the following conjecture.

Given any Metzler, Hurwitz matrices Ay, Ao in R™* ™ the product A1 A

cannot have any negative real eigenvalues.

Conditions for CDLF existence for positive systems:

Theorem 6.5.2 described a compact algebraic condition that was necessary and suf-
ficient for a generic pair of exponentially stable positive LTI systems of any order to
have a CDLF. However, the condition given in the theorem is not readily verifiable
in its current form. In view of this, it is natural to ask whether it is possible to derive
alternative conditions that are simpler to check, or to use the result of Theorem 6.5.2
to obtain verifiable conditions for CDLF existence for significant classes of positive

LTI systems. Hence, we have the following problem.

Derive necessary and sufficient conditions for CDLF existence for pairs
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of positive LTI systems that are simpler than the condition given in The-
orem 6.5.2. In particular, determine necessary and sufficient conditions

for CDLF existence for pairs of third order positive LTI systems.

Necessary and sufficient conditions for common copositive Lyapunov function existence:

In Chapter 6, we presented verifiable necessary and sufficient conditions for the
existence of common quadratic and linear copositive Lyapunov functions for pairs of
second order positive LTT systems. While the general conditions for common linear
copositive Lyapunov function existence given in Theorem 6.6.4 apply to systems of
any order, they are not in a form that may be readily checked. Hence, it is of interest
to determine simple conditions, similar to those obtained for second order systems,
for common copositive Lyapunov function existence for higher order systems. This

leads us to the following problem which is the final one that we shall list here.

Determine verifiable necessary and sufficient conditions for the existence
of a common quadratic (or linear) copositive Lyapunov function for a
pair of exponentially stable positive LTI systems, X 4,, Xa,, where Ay €

R™M Ay € R with n > 2.

7.4 Concluding remarks

In this chapter, we presented some preliminary results on the boundary structure
of the convex cones P4 for a given Hurwitz matrix A, and described a variety of
open questions related to the work of this thesis. The most important points in the

chapter are now listed.

o We derived some technical results that provide a more geometric perspective

on the key result of Theorem 4.4.1, and have highlighted the role played by
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the geometry of the cones P4 in the proof of that result.

We have explained why we concentrated on finding systems to which Theorem
4.4.1 can be applied rather than on attempting to generalize that result. In
particular, we have shown why necessary and sufficient conditions for CQLF

existence for general systems would be too complicated to be of practical use.

We have also presented two facts about simultaneous solutions of pairs of

Lyapunov inequalities, and singular matrix pencils.

We discussed the possibility of extending our methods and results to non-linear
switched systems, and have shown that some of our earlier results can be thus

extended.

Several open problems arising from the work of earlier chapters have been

described.
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Chapter 8

Conclusions and some final

remarks

In this final chapter, we present some brief concluding remarks, summa-
rizing the work of earlier chapters, and highlighting the main contribu-

tions made in the course of the thesis.

8.1 Conclusions and discussion

The recent increase in the number of switched systems occurring in engineering
applications, and the fact that the critical issue of stability is still unresolved for
such systems, have been the major motivations for the work described in this thesis.
With the aim of adding to the current understanding of the stability issues associated
with switched linear systems, we have considered the question of common Lyapunov
function existence for families of exponentially stable LTI systems; concentrating on
deriving simple, verifiable conditions for common Lyapunov function existence that

can be used to establish the exponential stability of switched linear systems, and on
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gaining insights into the relationship between common Lyapunov function existence
and the dynamics of switched linear systems. We shall now review the contents of

the thesis, discussing the major points made throughout the work.

The motivation and background for the work of the thesis were presented in the
opening two chapters. In particular, in the first chapter we discussed the practical
importance of switched systems, pointed out some of the problems that can arise
as a result of switching, and highlighted the need for conditions that can be used
to establish stability for switched systems. In the second chapter we then formally
defined the class of switched linear systems and illustrated the difficulties that can
arise in analyzing the stability of such systems; thus motivating the work of the
remainder of the thesis. We also described some of the general work done on the

stability theory of switched linear systems in the recent past.

Most of the original results presented in the thesis are concerned with the CQLF
existence problem for families of exponentially stable LTI systems, and in Chapter
3, we formally introduced this problem and provided a survey of the literature avail-
able on it, presenting results from both the mathematics and engineering literatures.
In the same chapter, we pointed out the need to understand the precise connection
between CQLF existence and the exponential stability of switched linear systems.
In particular, the issue of identifying classes of switched linear systems for which the
existence of a CQLF for their constituent systems is not a conservative way of estab-
lishing stability was raised. It is my view that this is a highly important problem, as
the knowledge that CQLF existence is equivalent to exponential stability for a class
of switched linear systems would considerably simplify the stability analysis of this

class of systems.

One of the main contributions of the thesis appeared in Chapter 4, where we pre-
sented a novel framework within which to tackle the CQLF existence problem for

a pair of stable LTT systems, and derived the key result of Theorem 4.4.1. Several
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points about this result should be emphasized. Firstly, it provides insight into the
relationship between CQLF existence and the exponential stability of switched linear
systems, and has implications for the conservatism of CQLF existence as a criterion
for the exponential stability of switched linear systems. In fact, suppose that we
have a pair of exponentially stable LTI systems, ¥ 4,, X 4,, satisfying the hypotheses
of Theorem 4.4.1. Then on the one hand, ¥4,, ¥4, are right on the ‘boundary’ of
those pairs of systems that have a CQLF, while at the same time, it follows from

Theorem 2.3.1 that at least one of the associated switched linear systems

T = A(t)x, A(t) E{Al,AQ}

i o= Az, A(t) € {A1, A7}

is mot exponentially stable. Thus, loosely, Theorem 4.4.1 describes situations in
which the boundary of CQLF existence and the boundary of exponential stability

coincide.

As well as giving insights into the nature of the conservatism of CQLF existence as
a criterion for the exponential stability of switched linear systems, Theorem 4.4.1
provides a scheme for obtaining simple, meaningful conditions for CQLF existence
for classes of switched linear systems. A key aspect of the result is that its conclusion
describes conditions on the system matrices Ay, As that are not only simple to check,
but, in the light of Theorem 2.3.1, also have a clear meaning in terms of the dynamics
of switched linear systems. In fact, the simple form of these conditions suggests that
if we can identify classes of systems to which the theorem applies, then it will be
possible to derive conditions for CQLF existence for these system classes that are
both easily verifiable and have direct implications for the exponential stability of
the associated switched linear systems. Two examples illustrating this point were
provided in Chapter 5, where we saw how Theorem 4.4.1 unifies two of the most
powerful results giving necessary and sufficient conditions for CQLF existence that

have previously appeared in the literature. The work of Chapter 5 demonstrated
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the crucial role played by Theorem 4.4.1 in determining the simple conditions for
CQLF existence for pairs of second order systems, and pairs of systems of arbitrary
dimension whose system matrices differ by rank one. In discussing Theorem 4.4.1,
it should also be noted that the same underlying ideas that were used to derive this
result for continuous-time LTI systems could also be successfully applied to obtain

a corresponding result for pairs of discrete-time LTT systems in Theorem 4.4.2.

In Chapter 5, in addition to showing how to use the results of Chapter 4 to obtain
verifiable necessary and sufficient conditions for CQLF existence, and demonstrating
the role that these results play in determining simple conditions for CQLF existence,
we also extended the result of Theorem 3.5.4 (derived in [128|) on CQLF existence
for pairs of LTI systems with system matrices in companion form to the case of a
pair of exponentially stable LTI systems whose system matrices differ by a general
rank one matrix. Further extensions of this result were also given in Corollary 5.3.1
(to systems Y4, Y4, with rank(As — A7') = 1) and Corollary 5.3.2 (to systems
Y 4,, X4, for which there is some ¢ > 0 with rank(Ay — cA;) = 1). It should also be
noted that in Corollary 5.3.1 we described an entire class of switched linear systems
for which CQLF existence was equivalent to uniform exponential stability under

arbitrary switching.

The work of Chapter 6 on the stability of positive switched linear systems arose out
of an attempt to identify further system classes to which Theorem 4.4.1 could be
applied. In fact, numerical investigations had initially led us to conjecture that ex-
ponentially stable positive LTI systems would provide another example of a system
class which could be treated within the framework of that theorem. Based on these
numerical observations and some preliminary results, we formed the conjecture (re-
ported in [76]) that the matrix product A;A;' having no negative real eigenvalues
was equivalent to the existence of a CQLF for a pair of exponentially stable positive

LTI systems ¥ 4,, £ 4,. While this conjecture is false in general, we have shown it
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to be true for second order systems in Theorem 6.3.1. This result then furnished us
with another class of switched linear systems for which CQLF existence is equiva-
lent to exponential stability. Furthermore, our investigation of the CQLF existence
problem for positive LTI systems has led to the facts, expressed in Corollary 6.3.1
and Theorem 6.3.3, that for second and third order systems, any pair of exponen-
tially stable positive LTI systems whose system matrices differ by rank one must
have a CQLF, and that the associated switched linear systems must be uniformly

exponentially stable under arbitrary switching.

While the conjecture of [76] turned out to be false, it has led to the results discussed
in the previous paragraph. Moreover, the rationale behind this conjecture was suc-
cessfully used to derive the necessary and sufficient condition for CDLF existence
presented in Theorem 6.5.2. In this context, the result of Corollary 6.5.1 is partic-
ularly noteworthy as it shows that the ‘rank n — 1’ conditions required in Theorem
4.4.1, are guaranteed to be satisfied when considering the CDLF existence problem
for pairs of exponentially stable positive LTI systems with irreducible system matri-
ces. It is also of interest that the form of the condition for CDLF existence given in
Theorem 6.5.2 is related to that of the matrix pencil conditions for CQLF existence
derived for second order systems and systems with system matrices differing by rank
one, and that the techniques developed in Chapter 4 for the CQLF existence problem

can be fruitfully applied to the CDLF existence problem as well.

When investigating the stability of positive switched linear systems, copositive Lya-
punov functions arise naturally. In the final sections of Chapter 6, we considered the
problems of common quadratic, and common linear, copositive Lyapunov function
existence for pairs of exponentially stable positive LTI systems, and derived simple
necessary and sufficient conditions for the existence of such functions (in both the
linear and quadratic cases) for pairs of positive second order LTI systems. Further-

more, in Theorem 6.6.4, the ideas that were developed in Chapter 4 in the context
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of the CQLF existence problem were used to derive a necessary and sufficient condi-
tion for the existence of a common linear copositive Lyapunov function for a general
pair of exponentially stable positive LTI systems. Once again, this further illustrates
the adaptability of these techniques. Other minor contributions made in Chapter
6 include the simple sufficient conditions for CDLF existence and common linear
copositive Lyapunov function existence for pairs of positive LTI systems given in
Theorem 6.4.1 and Theorem 6.6.2 respectively, and the description of how to cast
the common linear copositive Lyapunov function existence problem as a feasibility

problem in LMIs.

The convex cones,
Pa={P=P' >0:ATP+ PA <0},

for a given Hurwitz A, and their boundary structure in particular, played a crucial
role in much of the analysis of the CQLF existence problem presented in Chapters
4 and 5. In Chapter 7, we described a number of technical results on the boundary
structure of these cones that provided new geometrical insights into the work and
results of earlier chapters. In particular, we showed that those matrices P on the
boundary of P4 for which the rank of ATP + PA is n — 1 are dense within the
boundary. This explains why the conditions of Theorem 4.4.1 are so often satisfied
in numerical simulations, and indicates that it may well be possible to find further
system classes to which Theorem 4.4.1 may be applied to obtain simple necessary and
sufficient conditions for CQLF existence. Another fact established in Chapter 7 was
that through any matrix P on the boundary of P4 for which the rank of ATP 4 PA
is n — 1, there exists one and only one hyperplane that is tangential to the cone at
that point. The extremely simple structure of the boundary of P4 at such points

provides a straightforward geometrical explanation of why Theorem 4.4.1 is true.

In Chapter 7, we also explained our reasons for concentrating on identifying system

classes to which Theorem 4.4.1 could be applied rather than attempting to derive
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more general versions of that theorem. Essentially, in situations where the theorem
does not apply, necessary and sufficient conditions for CQLF existence are likely to
be too complicated to be of genuine practical use. This is also indicated by the
results recently published in [58]. In the light of this observation, the question of
identifying system classes to which Theorem 4.4.1 can be applied takes on added
importance, as we have seen that it is likely that simple, dynamically meaningful

conditions for CQLF existence can be derived for such system classes.

In the final section of Chapter 7, we listed a number of problems suggested by the
work of this thesis, and presented some preliminary results indicating that it may
be possible to extend the techniques that we have developed for the CQLF existence
problem for linear systems to non-linear systems. Two other results of Chapter 7
that should be noted are Lemma 7.2.2 and Theorem 7.2.2 on simultaneous solutions
of the Lyapunov inequality and the right and left eigenvectors of singular matrix

pencils respectively.

8.2 Future work

As we have already described a number of open problems relating to the work of this
thesis in Chapter 7, here we merely present a brief discussion of some of the major

topics for future work suggested by the results of earlier chapters.

In the context of the CQLF existence problem and its relation to the exponential
stability of switched linear systems, arguably the most important question that needs
to be addressed is the problem of identifying classes of systems to which Theorem
4.4.1 can be applied. The point has been made earlier that for such system classes it
should be possible to derive conditions for CQLF existence, using techniques similar
to those developed in Chapters 4 and 5, that are both easy to verify and interpretable

in terms of the dynamics of switched linear systems. On the other hand, the work
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of Chapter 7 indicates that for more general system classes where Theorem 4.4.1
cannot be applied, necessary and sufficient conditions for CQLF existence will be
overly complicated, and difficult both to verify and interpret. Hence, the problem of
finding further system classes to which the theorem can be applied is of paramount

importance and great practical interest.

Of the other problems relating to CQLF existence that were listed in Chapter 7,
perhaps the next most natural to ask is whether or not conditions for CQLF existence
can be derived for pairs of LTI systems with system matrices differing by a rank two
matrix. The fact that the conditions for the case of a pair of systems whose system
matrices differ by a rank one matrix take so simple a form, together with the results
of some initial numerical investigations indicate that it may be possible to obtain
useful conditions for CQLF existence in this case also. Of course, a natural approach
to the problem would be to investigate whether or not Theorem 4.4.1 can be applied

in this situation.

There are also a number of open questions related to the work on positive switched
linear systems described in Chapter 6. We have remarked above that while the
conjecture on CQLF existence for pairs of positive LTI systems made in [76] is
false, the rationale behind it has led to a number of novel results. In addition to
this, numerical testing indicates that counterexamples to the conjecture are quite
rare. This suggest that it may well be possible to derive some related conditions for
CQLF existence for pairs of positive LTI systems, or to identify some large subclass
of positive LTI systems for which the original conjecture is in fact true. Another
issue that needs to be addressed is the question of whether or not the results of
Corollary 6.3.1 and Theorem 6.3.3 on CQLF existence for pairs of second and third
order positive LTI systems with system matrices differing by rank one, extend to
higher dimensions. If so, this would mean that any positive switched linear system (of

arbitrary dimension) constructed by switching between a pair of exponentially stable
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positive LTI systems whose system matrices differ by rank one must be uniformly

exponentially stable under arbitrary switching.

A drawback of the general condition for CDLF existence for pairs of positive LTI
systems given in Theorem 6.5.2 is that it is not verifiable in its current form. While
some simple applications of the theorem were described in the text, it is natural to
ask if this result can be used to obtain simplified conditions for CDLF existence for
certain system classes. In this context, the problem of deriving verifiable necessary
and sufficient conditions for a pair of third order positive LTI systems to have a CDLF
was raised in the last chapter. Finally, it would also be of interest to investigate
further the linear and quadratic copositive Lyapunov functions discussed in Chapter
6, and to determine whether simple, verifiable conditions, such as those given in
Theorem 6.6.5 for second order systems, can be obtained for higher order systems

also.

8.3 Final remarks

In the opening pages of this thesis, we presented a broad mission statement for the
work as a whole; that being to add to the current understanding of the stability
issues associated with switched linear systems, and, where possible, to derive verifi-
able conditions for the stability of such systems based on the existence of common
Lyapunov functions for families of LTI systems. Looking back at the thesis at this

point in the light of these goals, the following brief points should be noted.

(a) We have derived a number of results that give simple, useful conditions for
CQLF existence for pairs of LTI systems. For instance, in Theorem 5.3.3
a simple condition for CQLF existence for pairs of LTI systems with system

matrices differing by rank one was described, and this result was then extended
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in Corollary 5.3.2 to the case of a pair of LTI systems ¥ 4,, ¥4, for which there
is some ¢ > 0 with rank(As —cA;) = 1. Similarly, the results of Theorem 6.3.1
and Theorem 6.3.3 on pairs of second and third order positive LTI systems are

in a form that renders them readily usable.

We have identified classes of switched linear systems for which CQLF existence
is not a conservative criterion for exponential stability under arbitrary switch-
ing, and thereby gained insights into the relationship between CQLF existence

and the dynamics of switched linear systems.

The key result of Theorem 4.4.1 provides a general scheme for deriving sim-
ple, dynamically meaningful conditions for CQLF existence for certain system
classes, and unifies two of the most important results on CQLF existence pre-

viously obtained in the literature.

We have derived simple, verifiable sufficient conditions for CDLF existence and
common linear copositive Lyapunov function existence for pairs of positive LTI

systems.

The same techniques used to tackle the CQLF existence problem led us to an
algebraic condition that is necessary and sufficient for CDLF existence for a

generic pair of n-dimensional positive LTI systems.

Similar techniques were again used to derive necessary and sufficient conditions
for a common linear copositive Lyapunov function to exist for a pair of positive

LTT systems.

Finally, it is clear that there are many challenging problems relating to the stability

of switched systems and the question of common Lyapunov function existence that

are of considerable practical importance. While we have addressed a number of these

in the course of this thesis, the remarks made in the previous section and the open
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problems listed in Chapter 7 demonstrate that the well is far from dry, and that
there is still ample scope for further research within this interesting and important

area.
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Appendix A

Technical proofs for Chapter 4

Proof of Lemma 4.3.5:

Consider the norm ||A|lec = sup{|ai;| : 1 < 4,5 < n} on R™*™, and let z be any
non-zero vector in R™. Then it is easy to see that the set {T'" € R™*" : det(T") #
0,(Tz); # 0,1 < i < n} is open. On the other hand, if 7" € R™*" is such that
(T'z); = 0 for some i, an arbitrarily small change in an appropriate element of the
i" row of T will result in a matrix 7" such that (7"z); # 0. From this it follows that
arbitrarily close to the original matrix T, there is some T7; € R™*™ such that T}z is

non-zero component-wise.

Now to prove the lemma, simply select a non-singular 7Ty such that Tyx is non-zero
component-wise. Suppose that some component of Tyy is zero. By the arguments
in the previous paragraph, it is clear that we can select a non-singular T3 € R"*"
such that each component of Tix and Tyy is non-zero. Now it is simply a matter of
repeating this step for the remaining vectors v and v to complete the proof of the

lemma.

Proof of Lemma 4.3.6:
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We can assume that all components of z,y,u,v are non-zero. To see why this is
so, suppose that the result was proven for this case and that we are given four
arbitrary non-zero vectors x,y,u,v. We could transform them via a single non-
singular transformation 7" such that each component of Tz, Ty, T'u, T'v was non-zero
(Lemma 4.3.5). Then for all symmetric matrices P we would have (Tz)T P(Ty) =
2T(TT PT)y, and hence, that (Tz)T P(Ty) = —k(Tu)? P(Tv). Then Tx = oTu and
thus x = au or Tx = Tv and x = Pv. So we shall assume that all components of
x,Yy,u,v are non-zero. Suppose that x is not a scalar multiple of u to begin with.
Then for any index ¢ with 1 < ¢ < n, there is some other index j and two non-zero

real numbers ¢;, ¢; such that
T; = CiUg, l’j = C]'Uj, C; 75 Cj (Al)

Choose one such pair of indices ¢,j. Equating the coefficients of p;;, pj; and p;;

respectively in the identity 7 Py = —ku” Pv yields the following equations.

iy = —kuv; (A2)
.’L’jyj = —kujvj (A3)
(:L'iyj + :iji) = —k(uivj + Uj’UZ') (A4)

If we combine (A.1) with (A.2) and (A.3), we find
k

;= ——; A.

Y v (A.5)
k

yi = ——vj (A.6)
Cj

Using (A.2)-(A.6) we find that c;u;y;+cjujy; = —k(uv;+u;v;). Hence, ujvj(=2) =

Cj

ujv;(“==). Recall that ¢; # ¢; so we can divide by ¢; — ¢; and rearrange terms to
get

C; Vi Uj

(22 AT

Al (A7)
But using (A.1) we find

C; Tg\  Uj

(2 A8

Gl (A8)



Combining (A.7) and (A.8) yields

Thus x; = cv;, x; = cv; for some constant c. Now if we select any other index k with
1 <k < n, and write z; = cpuy then ¢ must be different to at least one of ¢;, ¢;.
Without loss of generality, we may take it that ¢ # ¢;. Then the above argument

can be repeated with the indices ¢ and k in place of ¢ and j to yield
Ti = cvj, T, = CU. (A.10)

But this can be done for any index k£ so we conclude that = = cv for a scalar c¢. So

we have shown that if x is not a scalar multiple of u, then it is a scalar multiple of v.

To complete the proof, note that if z = fBv for a scalar § then by (A.2), Buvy; =
—ku;v; for all i. Thus y = —(%)u as claimed. The same argument will show that if

x = au for a scalar a, then y = —(g)v.
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Appendix B

Technical proofs for Chapter 5

Proof of Lemma 5.4.2:

Without loss of generality, we may assume that the rank one matrix be! is in one

the Jordan canonical forms given by:

w0 0
0 0
bel =
0 .0
or
0 0
1 0
bel =
0 . 0
, where u € R.

Suppose that \g > 0 is such that A(A — \gbc?) has a real negative eigenvalue. It

follows that for this Ag there is some g > 0 such that A=!++0(A—\gbc!) is singular.
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Thus
det(A™! + 70(A — AobeT)) = det((A™" +79A4) — Aoyobe’) = 0.

For any v > 0, it follows from considering the form of the matrix (A~ +yA)—X\gybe

that we may write
det((A™" +74) = Aovbe!) = M(7) + AN (7)

where M and N are polynomials in ~.
We now note the following facts about the polynomials M and N.

(i) M(y) = det(A~! +~A) is non-zero and of the same sign for all v > 0 (A~ +

~vA) is always Hurwitz).

(ii) M(0) + AN(0) = M(0) for any A > 0.
For convenience, assume that M (vy) > 0 for all v > 0. Now, M (o) + MNoN(y0) =0
and as M (o) > 0, we must have N(7y) < 0. Then for any A > Ao

M (70) + AN (70) < M(70) + AoN(70) = 0.

But M (0)+AN(0) = M(0) > 0, so by the intermediate value theorem, there is some

~v1 with 0 < 1 < 79 such that
det(A™" + A(A — mbc")) = M(y1) + AN(y1) =0
and hence the matrix product A(A—Abc!) has a real negative eigenvalue as claimed.

Proof of Theorem 5.4.1:

Under the hypotheses of the theorem, we know that
I'(w) =1+ Re{c (jwl —A)~1b} >0

for all w € R and that there is definitely some value of w for which this expression is

zero. The proof is broken into a number of steps.
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Step 1:
First of all, recall from Section 5.4.2 that we can write

__ pw)
Tlw) = det(w?I + A2?)’

where p is a monic even polynomial of degree 2n. We shall first show that there

exists a vector ¢’ arbitrarily close to ¢ such that if we define

P'(w)

D . T 1 oAyl
det (w2l + A7) 1+ Re{c" (jwl — A)” b} for w € R, (B.1)

then the monic even polynomial p’ satisfies
p'(w) >0 for all w € R,

and has a unique positive real zero of multiplicity 2 at some w, > 0 in R.

By assumption, the mapping 7" defined in (5.13) is invertible with continuous inverse
T—!. Throughout the proof we shall identify a monic even polynomial in w of degree
2n with the vector in R™ given by the coefficients of w®, w?,...,w?" 2. Write p =
T(c). Then the continuity of 7~! means that for any € > 0 there is some § > 0 such

that ||p — p'|| < & implies |lc — T~1(p")|| < e.

Now p(w) > 0 for all w € R, so the zeroes of p occur as complex conjugate pairs or
as real zeroes of even multiplicity. If p has more than a single positive real zero of
multiplicity 2, then by replacing terms like (w—w1)(w—w1) in the linear factorization
of p by the terms (w — (w1 + j01))(w — (w1 — jd1)), we can construct a monic even
polynomial p’ of degree 2n, whose coefficients are arbitrarily close to those of the

original p such that:

(i) p'(w) >0 for all w € R;

(ii) p’ has a single positive real zero of multiplicity two at some w, > 0 in R.
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In particular, we can choose such a p’ with ||p’—p|| < & and thus defining ¢/ = T~1(p’),

we have || — ¢|| < e and
14 Re{cT (jwl — A)~'b} >0

with a single positive real zero of multiplicity 2 at w. > 0 as required. We can
actually say slightly more than this. In fact, it is possible to combine the above
argument with the fact that the real and imaginary parts of the vector (jwl — A)~'b
cannot be co-linear to show that we can select a vector ¢ arbitrarily close to the
original ¢ with the above properties such that the imaginary part of ¢'7 (jwI — A)~'b

is non-zero. We shall show that this ¢’ is the vector required in the theorem.
Step 2:

For the rest of the proof, we shall write S(w) for the expression jwI — A. The next
stage is to show that for the matrices A and A — bc¢/T, it is possible to find a positive

semi-definite matrix R > 0 of rank n — 2 such that

14+ Re{()TS(w)™1b} > b7 (S(w)*) 'RS(w) b (B.2)

To begin with, choose any positive semi-definite matrix R’ in R"*" of rank n—2 such
that R'S(w.)~'b = 0 where w, is the only positive real zero of 1+ Re{(c/)? S(w)~'b}.
We shall show that it is possible to scale this R’ so that it satisfies the condition

(B.2). First of all note that

DS RS (W) T = det(c]j;(lw—i)— A2)

where po is an even polynomial of degree 2n — 2 in w. Similarly, write

L+ Re{(¢)7S(w) 70} = —— 1= (Zj;g“"i )

where p; is a monic even polynomial of degree 2n in w. As both p; and py are even, it

is enough to consider values of w in [0, 00). Now as w tends to infinity, the expression
14 Re{()TS(w)™1b} — b7 (S(w)*) 'R S(w) b
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tends to 1. Thus, by continuity there is some constant K > 0 such that 1 +
Re{(c)TS(w)~tb} — b7 (S(w)*)"'R'S(w)™'b > 0 for all w with w > K. Further-

more

1+ Re{(¢)TS(w) 10} — BT (S(w)) I RS@) 1y = ) ()

det(w?l + A?)
) )
“det(w?I + A?)

with p}(w) > 0 for all positive real w. Thus there is some constant M7 > 0 such that
py(w) > M; for w in the compact interval [0, K]. Furthermore there is some My > 0
such that p)(w) < Ms for all w € [0, K]. If we now choose some constant C' > 0 such
that C' < min{M;/Ma,1}, then by separately considering the cases of w € [0, K]

and w > K we see that
14 Re{cdTS(w)71b} > b7 (S(w)*)"H(CR)S(w)™tb

for all real w > 0. Hence, because the expressions on either side of the above
inequality are even functions of w, it follows that R = C'R’ is a positive semi-definite

matrix of rank n — 2 satisfying condition (B.2) as claimed.
Now the numerator of the rational function
14 Re{cTS(w)71b} — bT(S(w)*)'RS(w)~'b

is a monic even polynomial of degree 2n with real coefficients, and is non-negative
for all w in R. By arguments identical to those presented in [51], it follows that there

is some monic polynomial 6 of degree n with real coefficients such that

T —13v 3T *\—1 —13 ‘9(]’“}”2
1+ Re{c” S(w) b} = b" (S(w)*)""RS(w) b_—det(w2I+A2)'

As the leading coefficient of 6 is one, the polynomial —0(s) + det(sI — A) has degree
n — 1, and thus by (5.11), there is some real vector ¢ (the vector formed with the

coefficients of —6(s) + det(sI — A)) such that

—0(jw)

dotsy L= S@
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and hence

0wl

m = 1+ Re{c/TS(w)flb} — bT(S(w)*)flRS(w)*lb

= l¢"S(w)" b1 (B.3)

Step 3:

We now show that (B.3) means that there is a positive semi-definite matrix P such

that
ATP+PA = —q¢¢' - R
Pb = q+)/2 (B.4)

As A is Hurwitz, we can certainly find a positive semi-definite matrix P such that

ATP + PA = —qq¢" — R. This P then satisfies
S(w)*P+ PS(w) = q¢" + R. (B.5)
Next expand the identity (B.3) to get
1 + Re{cdTS(w) b} — b7 (S(w)*) H(R)S(w) b
= (O"(SW)") e 1(¢"Sw) b - 1)
= 1—2Re{¢"S(w) 710} + b7 (S(w)*) tqqt S(w) b (B.6)
Collecting the terms in (B.6) and using (B.5) to substitute for g’ + R we find that
Re{(//2+ q — Pb)TS(w)"'b} = 0 for all w € R. (B.7)

But this implies that ¢//24 ¢ — Pb =0 or Pb—¢'/2 = q. (This follows from the fact

that the matrix L(A) in (5.14) is assumed to be invertible.)
Step 4:
The final step in this proof is to show that the matrix P in (B.4) satisfies

ATP4+PA=Q, < 0,

(A=bTYI'P+PA-bT)=Qy < 0O (B.8)
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where Q1 and )2 are both of rank n — 1.

Obviously, ATP + PA = —qq” — R = Q1 < 0. We shall show later that the rank of

Q1 is n — 1. First of all consider

(A=bYTP+PA-bT) = —q¢8 —R—-bTP - Pb/T
= —q¢" ~R—C(/2+q)" —(/2+q)cT

= “R—({+q(d+g" <0 (B.9)

Next as R is of rank n —2, we can write R = E?;fviviT for n— 2 linearly independent
vectors vy, . ..v,_2. Also recall that S(w.)~!bis a zero eigenvector of R. If the rank
of g¢7 + R was less than n — 1, then ¢ would lie in the span of v1,...,v,_9, and
thus ¢7'S(w.)~'b = 0. But (B.3) implies that ¢7 S(w.)"'b = 1. This contradiction
shows that the rank of g¢” 4+ R must be n — 1. A similar argument also shows that

R+ (c +q)(c 4+ q)T is of rank n — 1. This completes the proof of Theorem 5.4.1.
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Appendix C

Technical proofs for Chapter 7

Proof of Lemma 7.2.1:

Let Q = ATP + PA, and note that as the inverse, E;ll, of the Lyapunov operator
L is continuous, there is some § > 0 such that if |Q' — Q| < 4§, then [|£,'(Q’) —
L1Q)|| < e. Now, as Q is symmetric and has rank n — k, there exists some

orthogonal matrix 7" in R™*"™ such that
Q =T7QT = diag{\1,..., \p_p,0,...,0},
where A1 <0,...,\,_r < 0. Now, define

Qo = diag{A1, ..., Ak, —6/2,...,—6/2,0},

and let Qp = TQoT”T. Then we have that:
(i) Qo <0, and rank(Qo) =n — 1;
(ii) @ — Qoll <.
It now follows that the matrix Py = EZI (Qo) lies on the boundary of P4 and satisfies:

(@) [[Po =PIl <
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(ii) rank(AT Py + PyA) =n — 1,

as required

Proof of Theorem 7.2.1:

First of all, note that any hyperplane that is tangential to the cone P4 must pass

through the origin. Now, let
Hy ={H € Sym(n,R) : f(H) = 0}

be a hyperplane that is tangential to P4 at Py, where f is a linear functional defined

on Sym(n,R). We shall show that H; must coincide with the hyperplane
H = {H € Sym(n,R) : 2l HAzo = 0}.

We shall argue by contradiction so suppose that this was not true. This would mean

that there was some P in Sym(n,R) such that f(P) = 0 but 2 PAzy < 0.
Now, consider the set
Q={zeR": 27z =1and 27 PAz > 0},

and note that if Q was empty, this would mean that P was in P4, contradicting the

fact that Hy is tangential to P4. Thus, we can assume that {2 is non-empty.

Note that the set €2 is closed and bounded, hence compact. Furthermore zg is not

in Q and thus 27 PyAz < 0 for all z in Q.

Let M; be the maximum value of 7 PAx on €, and let Ms be the maximum value
of T PyAz on Q. Then by the final remark in the previous paragraph, My < 0.

Choose any constant ¢ > 0 such that

| M|
o< =C
M1 !
and consider the symmetric matrix
P+ 51?.
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By separately considering the cases z € Q and x ¢ Q, 72 = 1, it follows that for

all non-zero vectors x of Euclidean norm 1

2T (AT(Py 4+ 0P) + (Po + 6P)A)z < 0

| Ma]

provided 0 <6 < 37737

Since the above inequality is unchanged if we scale x by any

non-zero real number, it follows that AT (Py+ 6 P) + (Py+ 6 P) A is negative definite.
Thus, Py + 6P is in P4. However,
f(Py+6P) = f(Po) +0f(P) =0,

which implies that H intersects the interior of the cone P4 which is a contradiction.

Thus, there can be only one hyperplane tangential to P4 at Py, and this is given by
{H € Sym(n,R) : 2l HAzy = 0},
as claimed.

Proof of Lemma 7.2.2:

Let B = Ay — A;. To begin with, we assume that B is in Jordan canonical form so

that (as B is of rank 1) either

A0 0

o ... ... 0
B=

0 . ... 0

or

o ... ... 0

1 0
B =

o ... ... 0
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Now partition Q1 = AT P + PA; as

T
1 q
Q=
@ Q

where ¢; € R, ¢ € R"! and Q is a symmetric matrix in R~D*(=1) Then it is a

simple calculation to verify that Qy = AT P + P A, takes the form

T
C2 45

@ Q

Q2 =

with the same @) as before.

From the interlacing theorem for bordered matrices [42], it follows that the eigenval-
ues of ); for ¢ = 1,2 must interlace with the eigenvalues of ). However as P € Pg,,
Q2 < 0 and thus Q must be non-singular in R(~D*(=1 " Therefore, as the eigen-
values of ()1 must also interlace with the eigenvalues of @, it follows that )1 cannot

have rank less than n — 1.

Now suppose that B is not in Jordan canonical form and write A = T~'BT where
A is the Jordan form for B (one of the two possible forms given above). Consider

Ay, Ay and P given by
A =T YA T, Ay =T ' A,T, P =TT PT.
Then it is a straightforward exercise in congruences to verify that
Ay P+ PAy = TTQoT < 0

and that

Furthermore rank(fil —fig) = 1and A;, A, are both Hurwitz. Hence by the previous
argument, T7QT must have rank n — 1, and thus by congruence the rank of @

must also be n — 1.
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Proof of Theorem 7.2.2:

Write B = Ay — A;. First note that the hypotheses of the theorem mean that
det(A7 4+ vAs) = det(A]' +~vA; ++B) never changes sign for v > 0, as A7 " and Ay

are both Hurwitz. So we may assume that det(A;" 4 ~vA; +~vB) > 0 for all v > 0.

By examining the proof of Lemma 5.4.2, it can be seen that this implies that for
all k, with 0 < k < 1, det(A;' +~v(A1 + kB)) > 0 for all v > 0. It now follows
from Theorem 5.3.3, and the results of Meyer in [84], that there must exist some

P = PT > 0 such that

ATTP+PATY < 0

AP+ PA, < 0.
Furthermore, we must then have that
(AT + 40 A Prg + P(AT + y0A2)20 = 0. (C.1)
Thus, as (A7' + y042)z0 = 0,
(A7" +70A43) Pz =0,
and Pxg = Ayg for some real X # 0. Now,
yo A7 'm0 + v0yg Agzo = 0
implies that
ngAl_lxo + VongAgxo =0,
from which we can conclude the result of the theorem.

Proof of Lemma 7.3.1:

Let P be a positive definite matrix in R™ such that

T Pf(x) <0 for all non-zero = € R". (C.2)
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Now let y be any non-zero vector in R™. Then, f~!(y) will also be non-zero and it
follows from (C.2) that (f~!(y))? Py < 0, and thus that y” Pf~!(y) < 0. Hence, we
have shown that

zTPf(z) <0 for all non-zero x € R"

implies that

eTPf~Y(z) <0 for all non-zero = € R".

The converse follows by interchanging the roles of f and f~! in the previous argu-

ment.

Proof of Lemma 7.3.2:

Let V(z) = 27 Pz be a CQLF for £y,, ¥y,. Then it follows using Lemma 7.3.1 that

for all non-zero x € R"™,
eTPfi(z) <0, 2T Pfa(x) <0, ' PfH(x) < 0.
Thus, for any non-zero x in R™ and any ~ > 0,

' P(fi(z) +7f2(z)) < O

TP (2) +vf2(x) < 0.
The result now follows immediately.

Proof of Lemma 7.3.3:

(i) Take any positive definite P such that 27 Pfi(z) < 0 for all non-zero z in R™.
Then, as the functions 27 Pfy(x) and o7 Px are continuous, and P > 0, there must

be some constants My > 0, My > 0 such that

2T Pfy(x) < My forall z with 27z =1,

' Px > M, forall z with 27z = 1.
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Now, if we choose any a > M1/M?2, then for all vectors x of Euclidean norm one,

we have that

T P(fo(x) — az) < 0.

The homogeneity of fo now implies that this inequality is valid for all non-zero x in

R™ and that V(x) is a CQLF for the systems

z = fi(x)

z = fao(x) — az.

(ii) As in (i), take any positive definite P such that 27 Pfi(z) < 0 for all non-zero
x in R™. Once again, as the functions 27 Pf(x) and 27 Pg(x) are continuous, there

must be some constants My > 0, My > 0 such that

T Pf (x) < —=M; for all z with e =1,
zTPg(z) < My for all z with 27z = 1.

If we now choose any k with 0 < k < M;/(Ma+1), then for all vectors x of Euclidean

norm one, we have that

xTP(fl(x) + kg(x)) < 0.

As above, the homogeneity of f; and g imply that this inequality is valid for all

non-zero x in R™ and that V(z) is a CQLF for the systems

& = fi(o)

T = fi(x)+ kg(x).

Proof of Theorem 7.3.1:

The arguments used are practically identical to those used to derive Theorem 4.4.1.

As before the proof is split into two main stages.
Stage 1:
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First of all, we shall show that if there exists some P in Sym(n,R) satisfying
T Pfi(x1) <0, 22 Pfo(az) <0 (C.3)
then the systems ¥ and Xy, would have a CQLF.

So, suppose that there is some P satisfying (C.3)and consider the set
O ={zeR": 27z =1and 2T Pf(z) > 0}.

Note that if Q; was empty, then any positive constant §; > 0 would make = (P +

61P) f1(z) < 0 for all z € R™. Now assume that §); is non-empty.

The function that takes = to 27 P f1(z) is continuous. Thus € is closed and bounded,
hence compact. Furthermore z1 (or any non-zero multiple of x1) is not in €; and

thus 27 Pfi(z) < 0 for all o in Q.

Let M; be the maximum value of 27 P fi(x) on Qy, and let M be the maximum value
of 2T Pf(x) on €. Then by the final remark in the previous paragraph, M < 0.

Choose any constant §; > 0 such that

and consider the symmetric matrix
P+ 6, P.

By separately considering the cases x € Q; and = ¢ Q1, 72 = 1, it follows that for

all non-zero vectors x of Euclidean norm 1

IL’T(P + (51?)‘]"1(1’) <0

| Ma|

provided 0 < §; < R

In fact, as f; is homogeneous of degree one, it follows that

IL’T(P + 51?)‘}01(1’) <0

| M|
Myi+1°

for all z € R™, provided 0 < §; <
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The identical argument can now be used to show that there is some positive constant
C5 > 0 such that

.’L‘T(P + 51?)‘]"2(%) <0

for all non-zero x in R”, provided 0 < d; < Cy. Furthermore, as P is positive
definite, there exists some € > 0 such that P 4 6; P will be positive definite provided
0 < 01 < e. Now choose any & > 0 such that § < min{C}, Cs, €} and consider the
positive definite matrix

P, =P+ 6P.
Then V(z) = 27 Py will be a CQLF for ¥y, and .
Stage 2:

Thus, there is no P in Sym(n,R) satisfying the conditions (C.3). We next show that

this implies the conclusion of the theorem.

As there is no P satisfying (C.3), any P in Sym(n,R) that makes the expression

TP f1(z1) negative will make the expression z1 P fy(z2) positive. More formally,
2T Pfi(x1) <0 <= 2l Pfa(zs) >0 (C4)
for P € Sym(n,R). This implies that
5 _ 5 _
T3 Pfl(arl) =0 <= x5 PfQ(l’Q) =0.

The mappings P — a7 Pfi(x1) and P — i Pfo(x3) define linear functionals on
the space Sym(n,R). Moreover, we have seen that the null sets of these functionals
are identical. Thus, they must be scalar multiples of each other. Furthermore,
(C.4) implies that they are negative multiples of each other. Therefore there is some

constant k > 0 such that
xlTﬁfl (x1) = —k$§ﬁf2($2) (C.5)
for all P € Sym(n,R).
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Now Lemma 4.3.6 implies that either x; = axy with fi(z1) = —(%)fg(xg) for some
real a, or 1 = Bf2(x2) and fi(x1) = —(%)332 for some real 3. The result now follows
easily using the facts that both of the functions fi, fs are invertible and homogeneous

of degree one.
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