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Abstract

We are all familiar with the shape of sound from our secondary school science

classes; the typical oscillatory form of a string under tension that decays over

time is widely know. At first sight, this representation of sound imparts to

the observer nothing more than its duration and amplitude. So how does the

brain separate different sounds given such a representation? Over millions of

years the Mammalian auditory cortex has evolved to effectively understand

the sounds of its natural environment. By learning the distinguishing features

of a sound, the brain can recognise and classify many different sounds. It has

long been desired to replicate this ability using a machine, which has been

the genesis for a topic of study known as source separation.

In this thesis we utilise two contrasting strategies for the Separation of

under-determined speech mixtures, i.e., the case where there are more sources

than mixtures. Furthermore, we impose a sparseness requirement on the

sources.

First, we introduce a blind source separation method called the LOST

algorithm, which is based on a Expectation-Maximisation procedure. The

LOST algorithm assumes an instantaneous mixing model, and estimates the

columns of the mixing matrix by identifying corresponding linear subspaces

in a scatter plot. This method combined with a transformation into a sparse

domain and an L1-norm minimisation, constitutes a blind source separation

algorithm for the under-determined case, where there are at least two mix-

tures.

Second, we investigate Convolutive Non-negative Matrix Factorisation,

viii



which is parts-based dimensionality reduction technique for the approximate

factorisation of non-negative data. We extend the algorithm by introducing a

sparseness constraint on the activations, and derive an algorithm that results

in multiplicative updates. We demonstrate how the algorithm can be used

to extract convolutive speaker phone sets, which exhibit sparse activations,

and utilise such phone sets in supervised separation scheme that separates

multiple speakers from a monophonic mixture.

Additionally, we present a perceptual evaluation of speech reconstructions

created by a Non-negative Matrix Factorisation algorithm that utilises the

beta divergence, and compare the results to a perceptually weighted NMF

algorithm.
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“Lord grant me the serenity to accept the things I cannot change,

the courage to change the things I can, and the wisdom to know

the difference.”

Saint Francis of Assisi
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CHAPTER 1

Introduction

We live in a world of superposition: When two quantities exist at the same

position, the laws of our universe reconcile this fact by calculating a new

quantity that is the sum of the two constituent quantities. The consequences

of this phenomenon are, that the existence of the constituent quantities is

not immediately evident, and all observations of the universe are a mixture

of many quantities. This is one of the most rudimentary principles of physics

and is continually encountered in our perceptible world. Over our lifetime,

the perceptual mixtures we experience are wide and varied. These range

from the chaotic cross-modal perception of the world we experience when

we are babies, in which the information from disparate senses are themselves

mixed, to the more orderly multi-modal view of the world we experience from

infancy onwards, in which the information we receive from our senses may

be a mixture of many underlying components.

In this context, the most obvious example of superposition is in the per-

ception of sound. The sound percept we experience is ultimately the result

of sound pressure waves that emanate from a vibrating object and cause the

ear drum to vibrate. Many objects may be the source for such pressure waves

at the same time, resulting in superposition of many different vibrations at

the ear drum. The ability of the brain to separate the different vibrations

that lead to the perception of individual sounds is truly remarkable, and has

1Some material in this chapter appeared in O’Grady et al. (2005)
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been the subject of study in many different areas of science. In the computer

science community, the ability of the brain to separate individual sounds is

described metaphorically as the cocktail party problem (Cherry, 1953); that

is, the separation of individual voices from a myriad of voices in an uncon-

trolled acoustic environment such as a cocktail party.

All but the most uninteresting of sounds are composed of many individual

components; these may include the individual speakers when engaged in con-

versation, or the individual instruments when listening to a piece of music.

The brain is capable of separating the individual components of a sound into

distinct auditory objects by exploiting cues such as timbre, location, rever-

beration and timing. It is obvious that without such cognitive processes our

perception of the world would be very limited. Furthermore, these processes

also lead to other experiences. Music, for example, is an organised mixture

of sound. The brain recognises the instruments present as distinct auditory

objects organised in time, from which emerges one of the most profound and

enjoyable human experiences.

From a technological viewpoint, the separation of sound into its con-

stituent components has many possible applications. Taking human-

computer interaction as an example, if humans are to interact with ma-

chines as efficiently as they do with each other, then the most obvious mode

of interaction is speech. A necessary pre-processing step for such a mode

of interaction would be to separate speech from the cacophony of unwanted

sound that exists in a natural environment. Furthermore, by developing tech-

nologies that effectively understand perceptual data, a more human-centred

system of interaction arises. Other possible applications of source separa-

tion include diagnostics and event detection, where speech is replaced as the

sound of interest by a sound that characterises some fault or event. Here

too, the sound of interest is combined with unwanted sounds, which need to

be separated, upon which the machine signals the fault or event.

Now that we have established the importance of unmixing speech, how is

it possible to replicate such behaviour using a machine? There are two com-

plementary approaches, these are auditory scene analysis (Bregman, 1990)

and Blind Source Separation (BSS). Auditory scene analysis has its roots in

psychoacoustics and endeavours to elucidate the cognitive processes within

the brain that enable hearing, which is achieved by observing the response of

a subject to specific sound stimuli. Such methods identify individual compo-

2



1.1 Statistics for Source Separation

nents by replicating the observed perceptual grouping mechanisms in the fre-

quency domain. Blind source separation defines a generative model for source

separation, whereby a set of linearly mixed sources are recovered solely from

their observed mixtures, without any knowledge about the mixing process.

BSS can be achieved by a number of methods including Independent Compo-

nent Analysis (ICA)(Comon, 1994) and Non-Negative Matrix Factorisation

(NMF) (Lee and Seung, 2001). ICA is an information-theoretic approach

that describes independent components in terms of random distributions,

where the statistics of these random processes are used to characterise each

individual component. In contrast, NMF is a parts-based approach that

makes no statistical assumption about the data. Instead, it achieves separa-

tion by the factorisation of non-negative data into matrices of an appropriate

dimension.

In this thesis, we utilise methods for the separation of mixtures where

there are more sources than observations, while focusing our attention on

speech data. Two contrasting separation strategies are studied. First, we

present an ICA type method for the blind source separation of an arbitrary

number of sources, where two or more observations are available. Second, we

investigate NMF, which can separate multiple sources from a single (mono-

phonic) mixture. In both methods we utilise a sparseness assumption, and for

NMF we investigate the perceptual properties of its reconstruction objective.

In this chapter, we provide some background to the methods that will

be used in the remainder of this thesis. In Section 1.1 we present the BSS

generative model and statistical preliminaries that are relevant to this thesis.

In Section 1.2 we introduce blind source separation and overview a selec-

tion of sparse and non-sparse source separation methods. In Section 1.3

non-negative matrix factorisation is discussed, with both conventional and

convolutive algorithms being presented. Finally, we conclude with comments

on the organisation of the thesis.

1.1 Statistics for Source Separation

In this section, we present the generative model for BSS, and discuss the sta-

tistical concepts that will be used by the methods presented in the following

chapters.

3



1.1 Statistics for Source Separation

1.1.1 BSS Generative Model

When presented with a set of observations from sensors such as microphones,

the process of extracting the underlying sources is called source separation.

Doing so without strong additional information about the individual sources,

or constraints on the mixing process, is called blind source separation. The

problem is stated as follows: Given M linear mixtures of N sources mixed

via an unknown M×N mixing matrix A, estimate the underlying sources, S,

from the mixtures, X. The dimensionality of A influences the complexity of

source separation. If M = N , then A is defined by an even-determined (i.e.,

square) matrix, and provided that it is non-singular, S can be estimated by

constructing an unmixing matrix, W = A−1. If M > N , then A is defined by

an over-determined (i.e., tall) matrix, and provided that it is full rank, S can

be estimated by least-squares optimisation or linear transformation involving

matrix pseudo-inversion. If M < N , A is defined by an under-determined

(i.e., fat) matrix. Consequently, source estimation becomes more involved

and is usually achieved by some non-linear technique.

Environmental assumptions about the surroundings in which the sensor

observations are made also influence the complexity of the problem. Sensor

observations in a natural environment are confounded by signal reverbera-

tions; consequently the estimated unmixing process needs to identify a source

arriving from multiple directions at different times as one individual source.

Generally, source separation techniques depart from this difficult real-world

scenario, and make less realistic assumptions about the environment in order

to make the problem more tractable. Three assumptions are typically made

about the environment: The most rudimentary of these is the instantaneous

case, where sources arrive instantly at the sensors but with differing signal

intensity. An extension of this case is the anechoic case, where arrival delays

between sensors are also considered. The anechoic case can be further ex-

tended by considering multiple paths between each source and each sensor,

resulting in the echoic case.
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1.1 Statistics for Source Separation

Generative Model

The generative model for BSS is presented as follows: A set of T observations

of M sensors

X =
[

x(1)| · · · |x(T )
]

=













x1(0) x1(p) · · · x1((T − 1)p)

x2(0) x2(p) · · · x2((T − 1)p)
...

...
. . .

...

xM(0) xM(p) · · · xM((T − 1)p)













consist of a linear mixture of N source signals

S =
[

s(1)| · · · |s(T )
]

=













s1(0) s1(p) · · · s1((T − 1)p)

s2(0) s2(p) · · · s2((T − 1)p)
...

...
. . .

...

sN(0) sN(p) · · · sN((T − 1)p)













by way of an unknown linear mixing process characterised by an M × N

mixing matrix A

A =
[

a1| · · · |aN

]

=













a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aM1 aM2 · · · aMN













yielding the equation

x(t) = A ⋆ s(t) + ǫ(t), t = 1, . . . , T,

where ǫ(t) is noise (usually white and Gaussian), p is the sample period and ⋆

denotes the model dependent linear operator. The form of the elements of the

mixing matrix, aij, and the linear operator in the above equation are mixing

model dependent, and define whether the mixing process is instantaneous,

anechoic or echoic. Table 1.1 presents the linear operators and mixing matrix

elements specific to the three cases of blind source separation, where the

operator δ(t− δij) is used to denote a delay between source j to sensor i, cij

is a scalar attenuation factor between source j to sensor i, δk
ij and ck

ij are the

delay and attenuation parameters for the k-th arrival path, L is the number

5



1.1 Statistics for Source Separation

Table 1.1: Mixing Model Specific Linear Operators and Mixing Parameters

Mixing Linear Operator Generative Model aij

Instantaneous Matrix Multiply x(t) = As(t) cij

Anechoic Delay x(t) = A ∗ s(t) cij δ(t− δij)

Echoic Convolution x(t) = A ∗ s(t) ∑L
k=1 ck

ij δ(t− δk
ij)

of paths the sources can take to the sensors.

For the purposes of this thesis, we will restrict ourselves to the instanta-

neous mixing model and generally assume that there is no additive noise,

x(t) = As(t), t = 1, . . . , T. (1.1)

For M = N the source estimates ŝ(t) are retrieved by,

ŝ(t) = Wx(t), t = 1, . . . , T. (1.2)

1.1.2 Principal Component Analysis

Principal Component Analysis (PCA) (Pearson, 1901)—also known as the

Karhunen-Loève transform or the Hotelling transform—is a technique for

the dimensionality reduction of data, which retains the features of the data

that contribute most to its variance. PCA is a linear transformation that

does not have a fixed set of basis vectors. Instead, PCA transforms the data

to a coordinate system that corresponds to the directions of the variance of

the data. The coordinate system is orthogonal, where the first coordinate

corresponds to the direction of greatest variance, the second corresponds to

the direction of second greatest variance and so on. The vectors that define

the directions of variance are known as the principal components of the data.

Reduction in the dimensionality of multi-dimensional data can be achieved

by projecting the data onto a subset of its principal components. This subset

may be arranged by selecting those principal components that have an associ-

ated variance above some threshold. Consequently, the projection conserves

the most interesting features of the data and provided that the threshold is

selected appropriately, the error introduced is low. If the data is projected

on to all its principal components, then the input data is decorrelated, i.e.,

the correlation matrix for the data is a diagonal matrix.

6
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Figure 1.1: Scatter plots of two linear mixtures of two Laplacian distributed
sources, before (left) and after (right) PCA. From the left scatter plot it is
evident that the principal components (sources) of the data are non-orthogonal
and therefore correlated. When PCA is performed the principal components
become orthogonal, indicating that the components are uncorrelated.

PCA is presented as follows: Given a set of zero-mean observations, 〈X〉 =

0, the covariance matrix of the data is

ΣX = 〈XXT〉. (1.3)

In order to decorrelate the data we need to perform a transformation on X

that will diagonalise ΣX. This is usually achieved by eigenvector decompo-

sition:

ΣX = UDU−1, U−1ΣXU = D, (1.4)

where the matrix U contains the eigenvectors of ΣX and the diagonal matrix

D contains its associated eigenvalues λi . . . λN . Since ΣX is positive semidef-

inite, its eigenvectors are orthogonal and U−1 = UT. Combining Eq. 1.3 and

Eq. 1.4 gives

D = UT〈XXT〉U = 〈(UTXU)(UTXU)T〉. (1.5)

Therefore, by projecting X on UT, we successfully decorrelate X. Addition-

ally, X can be normalised by D−1/2 resulting in ΣX = I, which is referred

to as whitening the data, i.e., the spectral energy (variance) associated with

each principal components is unity. By Assigning W = UD−1/2UT the data

is whitened, Y = WX.

The effect of PCA on two mixtures of two Laplacian-distributed sources is

7



1.1 Statistics for Source Separation

presented in Figure 1.1. In the first illustration a scatter plot of the mixtures

before PCA is presented. Here, the lines represent the sources contained

in the mixtures, which correspond to the principal components of the data.

After PCA is applied, the lines are orthogonal, indicating that the principal

components (sources) are uncorrelated. It is evident from the scatter plot

that PCA successfully decorrelated the sources in the mixtures but failed

to separate the sources, as the sources would be separated if the line ori-

entations corresponded to the axes of the scatter plot. This implies that

uncorrelatedness is not a sufficient criterion for achieving source separation.

1.1.3 Independent Component Analysis

As has been demonstrated, PCA is insufficient for source separation. Al-

though the variates of Y are decorrelated after PCA, they exhibit mutual

dependence and the sources remain mixed. This implies that in order to sep-

arate S, a stronger assumption of source independence needs to be consid-

ered; independent component analysis is a method that achieves separation

by making such an assumption. ICA (Comon, 1994) originated in the context

of blind source separation (Herault and Jutten, 1986) and assumes the same

instantaneous generative model presented in Eq. 1.1. The conditions that

must be satisfied to guarantee separation are given by Darmois’ Theorem

(Darmois, 1953), and are stated as follows:

1. The sources are assumed to be mutually independent, which can be

described in probabilistic terms as

P (s) = P (s1, · · · , sN) =
N
∏

i=1

P (si). (1.6)

2. At most one of the independent components can have a Gaussian dis-

tribution. This is a requirement because A cannot be identified for

more than one Gaussian source.

ICA provides a linear mapping that factors the joint probability distribution

of the sources into independent components. This may be achieved by iden-

tifying the rotation needed to separate S after PCA. Furthermore, there are

a number of ambiguities that characterise the ICA solution:

8



1.1 Statistics for Source Separation

1. The order of the elements within the rows of the estimated A cannot

be determined correctly. This is known as the permutation ambiguity.

2. The variances of the independent sources cannot be determined cor-

rectly, as both A and s(t) are unknown, and any scalar multiplication

on s(t) will be lost in the mixing. This is known as the scaling ambi-

guity.

Therefore, W = A−1 up to permutation and scaling of the rows.

ICA is generally solved as an optimisation problem, where W is dis-

covered by maximising some measure of independence. Such measures in-

clude mutual information (Comon, 1994), entropy (Bell and Sejnowski, 1995),

non-gaussianity (Hyvärinen and Oja, 1997), and sparseness (Zibulevsky and

Pearlmutter, 2001). An overview of some ICA methods is presented in Sec-

tion 1.2.

1.1.4 Sparseness Assumption

One increasingly popular and powerful assumption is that the sources have a

parsimonious representation in a given basis. This assumption has come to

be known as the sparseness assumption: A signal is said to be sparse when it

is zero, or nearly zero, more than might be expected from its variance. Such a

signal has a probability density function or distribution of values with a sharp

peak at zero and fat tails. This shape can be contrasted with a Gaussian

distribution, which has a smaller peak and tails that taper quite rapidly

(Figure 1.2). A standard sparse distribution is the Laplacian distribution

P (c) =
1√
2

e−
√

2|c|, (1.7)

which has led to the sparseness assumption being sometimes referred to as

a Laplacian prior. The sparseness of a distribution can be measured by a

variety of methods, such as those based on tanh-functions (Karvanen and

Cichoki, 2003) and the Gini index (Rickard and Fallon, 2004). However, the

most commonly used measure for unimodal symmetric sparse distributions

is kurtosis, which is the degree of peakedness of a distribution:

kurt(c) =
〈(c− µ)4〉

σ4
− 3, (1.8)
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Figure 1.2: A Plot of the probability densities of a selection of random distri-
butions. Solid line: Laplacian distribution; Dashed Line: Gaussian distribution;
Dotted Line: Sub-Gaussian distribution.

where a random variable, c, drawn from a super-Gaussian distribution such

as the Laplacian has a kurt(c) > 0.

A sparse representation of an acoustic signal can often be achieved by a

transformation into a Fourier, Gabor or Wavelet basis. For a set of indepen-

dent and identically distributed sparse variables, the probability of multiple

variables being non-zero simultaneously is low. Thus, sparse representations

lend themselves to good separability (Zibulevsky and Pearlmutter, 2001).

Additionally, sparseness may be used in many instances to perform source

separation in the case when there are more sources than mixtures (Lewicki

and Sejnowski, 1998).

Sparse representations have an interpretation in information-theoretic

terms, where the representation of a signal using a small number of coef-

ficients corresponds to transmission of information using a code that utilises

a small number of bits. Such representations occur in the natural world; in

the brain neurons are thought to encode data in a sparse way if their firing

pattern is characterised by long periods of inactivity (Földiák and Young,

1995; Körding et al., 2002): Recent work indicates that such firing patterns

exist in the auditory cortex, suggesting that the brain encodes sound using

a sparse code (DeWeese et al., 2003).

10
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Figure 1.3: Scatter plot of two linear mixtures of three zero-mean sources, in both
the time domain (left) and the transform domain (right). The sparse transform
domain consists of the coefficients of 512-point windowed FFTs. The figures
axes are measured in arbitrary units of mixture coefficients.

Unmixing Sparse Sources

For the instantaneous case, A simply consists of scalars. Taking a simple

example where there are three sources and two mixtures, the generative

model takes the form

[

x1(t)

x2(t)

]

=

[

a11 a12 a13

a21 a22 a23

]







s1(t)

s2(t)

s3(t)






(1.9)

and can be described as a linear mixture of N linear subspaces in M -space.

This linear mixing imposes a structure on the resultant mixtures, which

becomes apparent when the mixtures have a sparse representation (see Fig-

ure 1.3). The existence of this structure can be explained as follows: From

Eq. 1.9 it is evident that if only one source is active, say s1, then the resultant

mixtures would be
[

x1(t)

x2(t)

]

=

[

a11

a21

]

s1(t),

therefore the points on the scatter plot of x1(t) versus x2(t) would lie on

the line through the origin whose direction is given by the vector [a11 a21]
T.

When the sources are sparse, making it unusual for more than one source

to be active at the same time, the scatter plot of coefficients constitute a

mixture of lines, with the lines broadened due to noise and occasional si-
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1.2 Blind Source Separation

multaneous activity. These line orientations correspond to the columns of

A. Therefore, the essence of the sparse approach is the identification of line

orientation vectors (also known as basis vectors) from the observed data.

In contrast, traditional non-sparse approaches exploit the statistics of the

sources as opposed to the structure of the mixtures.

1.2 Blind Source Separation

Blind source separation has received wide attention and has been a topic

of investigation for over two decades. The earliest approach traces back to

Herault and Jutten (1986) whose goal was to separate an instantaneous lin-

ear even-determined mixture of non-Gaussian independent sources. They

proposed a solution that used a recurrent artificial neural network to sepa-

rate the unknown sources, the crucial assumption being that the underlying

signals were independent. This early work led to the pioneering adaptive al-

gorithm of Jutten and Herault (1991). Linsker (1989) proposed unsupervised

learning rules based on information theory that maximise the average mutual

information between the inputs and outputs of an artificial neural network.

Comon (1994) proposed that mutual information was the most natural mea-

sure of independence and demonstrated that maximising the non-Gaussianity

of the source signals was equivalent to minimising the mutual information

between them. He also gave the concept of determining underlying sources

by maximising independence the name Independent Component Analysis.

Bell and Sejnowski (1995) developed a BSS algorithm called BS-Infomax,

which is similar in spirit to that of Linsker and uses an elegant stochastic

gradient learning rule that was proposed by Amari et al. (1996). The idea

of non-Gaussianity of sources was used by Hyvärinen and Oja (1997) to de-

velop their fICA algorithm. As an alternative approach to separation using

mutual information, Gaeta and Lacoume (1990) proposed maximum likeli-

hood estimation, an approach elaborated by Pham et al. (1992). However,

Pearlmutter and Parra (1996) and Cardoso (1997) later demonstrated that

the BS-Infomax algorithm and maximum likelihood estimation are essen-

tially equivalent. The early years of BSS research concentrated on solutions

for even-determined and over-determined mixing processes. It was not un-

til recent years that a solution for the under-determined case was proposed

when Belouchrani and Cardoso (1994) presented a Maximum A Posteriori

12



1.2 Blind Source Separation

(MAP) probability approach for discrete QAM sources. An approach for

sparse sources was later proposed by Lewicki and Sejnowski (1998). The

first practical algorithm for separation in an anechoic environment was the

DUET algorithm, which was initially proposed by Jourjine et al. (2000) and

further explored by Yilmaz and Rickard (2004). The first algorithms for

the anechoic separation of moving speakers were presented by Rickard et al.

(2001) and Anemüller and Kollmeier (2003). A selection of source separation

algorithms and their characteristics are presented in Table 2.1.

Blind source separation techniques are not confined to acoustic signals,

and have been applied to a wide variety of data types. BSS has been ap-

plied to the decomposition of functional brain imaging data such as elec-

troencephalography (Jung et al., 1999, 2000), functional magnetic resonance

imaging (McKeown et al., 1998) and magnetoencephalography (Vigário et al.,

2000; Tang et al., 2000; Ziehe et al., 2000; Wübbeler et al., 2000; Pearlmut-

ter and Jaramillo, 2003). BSS has also been applied to such diverse areas

as real time robot audition (Nakadai et al., 2002), digital watermark attacks

(Du et al., 2002) and financial time series analysis (Back and Weigend, 1997;

Roth and Baram, 1996). It has even been conjectured that blind source sep-

aration will have a role in the analysis of the cosmic microwave background

(Cardoso et al., 2003), potentially helping to elucidate the very origins of the

universe.

1.2.1 Mixing Parameters Estimation

In a staged algorithm approach the first step is to estimate A, the form of

which is dependent on the environment considerations and the dimensionality

of the problem. The following subsections explore the estimation of A using

sparse and non-sparse methods in the context of instantaneous mixing. For

an overview of sparse and non-sparse methods in anechoic and echoic mixing

see O’Grady et al. (2005).

Non-Sparse Methods

The following methods do not make the sparseness assumption and instead

estimate A by exploiting the statistics of the observations in the time do-

main. These methods are usually restricted to the over-determined and even-
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Table 1.2: A Comparison of Various Source Separation Techniques (†denotes sparse methods)

Algorithm #Sources (N) #Sensors (M) Mixing Model Representation Unmixing

M > M 1 2 > 2 Inst. Anechoic Echoic Time Freq. Signal Dict. Parameter. Est. Separation

Wiener (1949) Filter × × × × × × Power Spectrum
Reshaping

Linear Filtering

Herault and Jutten (1986) × × × × × Independence
Maximisation

Adaptive
Feedback Network

JADE (Cardoso and
Souloumiac, 1993)

× × × × × Joint Cumulant
Diagonalisation

Linear
Transformation

ICA (Comon, 1994) × × × × × Mutual Information
Minimisation

Linear
Transformation

BS-InfoMax (Bell and
Sejnowski, 1995)

× × × × × Entropy
Maximisation

Linear
Transformation

Lambert (1995) × × × × × Multichannel Blind
Deconvolution

Current Estimate
Feedback

Lin et al. (1997) † × × × × × Hough Transform Hard Assignment

SOBI (Belouchrani et al.,
1997)

× × × × × Joint Unitary
Diagonalisation

Linear
Transformation

fICA (Hyvärinen and Oja,
1997)

× × × × × Non-Gaussianity
Maximisation

Linear
Transformation

Lee et al. (1999) † × × × × × × Gradient Ascent
Learning

Maximum a
Posteriori

DUET (Jourjine et al.,
2000) †

× × × × × × 2D Histogram
Clustering

Binary Time-Freq
Masking

Bofill and Zibulevsky
(2000) †

× × × × × × Potential Function
Clustering

L1-norm
Minimisation

Zibulevsky and
Pearlmutter (2001) †

× × × × × × MAP with
Laplacian Prior

Joint
Optimisation

Roweis (2001) × × × × Hidden Markov
Models

Spectral Masking
and Filtering

Pearlmutter and Zador
(2004) †

× × × × Known HRTF and
Dictionary

L1-norm
Minimisation
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1.2 Blind Source Separation

determined case.

Entropy Maximisation

The BS-Infomax algorithm (Bell and Sejnowski, 1995) demonstrated that

for signals with a positive kurtosis, such as speech, minimising the mutual

information between the source estimates, and maximising the joint entropy

of the source estimates are essentially the same: Given the entropy,

H(s) = −
∫

P (s) log P (s)ds, (1.10)

the mutual information between the sources is

I(s1, s2, . . . , sN) =
N
∑

i=1

H(si)−H(s), (1.11)

which is zero if the variables s1, s2, . . . , sN are independent. For the ICA gen-

erative model, the mutual information between the variates of the estimated

sources, ŝ, is given by

I(ŝ1, ŝ2, . . . , ŝN) = −
N
∑

i=1

H(ŝi)−H(x)− log|detW|. (1.12)

For BS-Infomax, Wx is operated on by a transforming function, ŝ = φ(Wx),

which is monotonic, invertible and bounded—this function ensures that H(ŝ)

is bounded. Separation is achieved by optimising W such that it minimises

the mutual information in Eq. 1.12, which effectively maximises the joint

entropy, H(ŝ1, ŝ2, . . . , ŝN). Minimisation of Eq. 1.12 can be implemented

using stochastic gradient ascent, which results in the following update rule,

W←W + η∆W, (1.13)

∆W ∝ (WT)−1 + φ(Wx)xT, (1.14)

where η is the learning rate, ∆W is the update of W and φ(·) is defined as

φ(Wx) = φ(u) = [φ1(u1), φ2(u2), . . . , φ2(uN)]T (1.15)

15



1.2 Blind Source Separation

φi(ui) = − 1

P (ui)

∂P (ui)

∂ui

. (1.16)

For super-Gaussian sources, i.e., signals with a high kurtosis, φi(u) =

−2 tanh(u). BS-Infomax was subsequently improved by Amari et al. (1996),

who realised that the parameter space is not Euclidean but has a Rieman-

nian metric structure. They proposed a gradient update that better reflected

this fact, which resulted in better convergence characteristics and improved

adaptation speed. The new rule multiplied Eq. 1.14 by WTW,

∆W ∝ (I + φ(u)uT)W. (1.17)

The Infomax principal has also been extended to the anechoic case (Torkkola,

1996).

Cross-Statistics

In addition to the assumption of independence of sources, Parra and Sajda

(2003) also consider statistical assumptions related to the structure of neigh-

bouring source samples. The approach taken formalises the problem of find-

ing the unmixing matrix, W, as a generalised eigenvector decomposition of

two matrices, which include the covariance matrix of X, ΣX, and an addi-

tional symmetric matrix, ΓX. The matrix ΣX can be described in terms of

both A and the covariance matrix of S, ΣS,

ΣX = 〈XXT〉, ΣX = AΣSA
T, (1.18)

where ΣS is diagonal if the variates of S are independent or decorrelated. For

non-Gaussian, non-stationary, and non-white sources there exists, in addition

to the covariance matrix, other cross-statistics, ΓX, which have the same

diagonalisation property,

ΓX = AΓSA
T. (1.19)

Both these conditions together are sufficient for source separation. In order

to determine W, some algebraic manipulation needs to be performed on

Eq. 1.18 and Eq. 1.19; by multiplying both by W, and Eq. 1.19 by Γ−1
S , the

following generalised eigenvalue equation emerges:

ΣXW = ΓXW(ΣSΓ
−1
S ). (1.20)
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1.2 Blind Source Separation

The solution provides W for different statistical assumptions on the sources.

This formulation combines subspace analysis and mixing matrix construction

into a single computation, making for simple implementation. The form of

ΓX is signal dependant, and is selected appropriately to give the diagonal

cross-statistics required to solve Eq. 1.20. For example, if the sources are non-

stationary and decorrelated, ΓX = ΣX for different periods of stationarity,

which results in W that performs simultaneous decorrelation. If the sources

are non-Gaussian and independent, the cross-statistic used is the 4-th order

moment, which corresponds to Cardoso’s ICA method which also exploits

4-th order moments (Cardoso, 1990).

Second Order Statistics

The SOBI algorithm (Belouchrani et al., 1997) exploits the time coherence

of the sources and achieves separation by using only second order statis-

tics. The algorithm is based on the unitary diagonalisation of the whitened

data covariance matrix, where the time coherence of the original sources

is exploited by creating a set of such matrices from observations taken at

different time delays, these matrices are then jointly diagonalised. Unitary

diagonalisation can be explained as follows: Given a whitening matrix B

and the observations X, which may be complex, the covariance matrix of the

whitened observations is

〈BXXHBH〉 = BΣXBH, (1.21)

by using Eq. 1.18 this becomes

VAΣSA
HBH = I, (1.22)

where superscript H denotes the complex conjugate transpose of a matrix.

The source signals are assumed to have unit variance and are uncorrelated,

so ΣS = I. Eq. 1.22 now states that if B is a whitening matrix, VA is an

M ×M unitary matrix. It follows that for any whitening matrix B, there

exists a unitary matrix U such that VA = U. Consequently, A can be

factored as

A = B−1U. (1.23)
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1.2 Blind Source Separation

The problem of unmixing is to find a unitary matrix which jointly diago-

nalises all the covariance matrices generated from the different time delays.

In order to achieve diagonalisation, we need a matrix operation that provides

a measure of the distance from diagonality. Such a measure is the off matrix

operator: Given a matrix M with entries mij, the off operator is defined as

off(M) =
∑

1≤i6=j≤M

|mij|2. (1.24)

Subsequently, the unitary diagonalisation of M is equivalent to reducing

off(QMQ) to zero by some unitary matrix Q. In addition, if the matrix

M is of the form UHDU, where U is unitary and D is diagonal, then it

may be unitary diagonalised only by unitary matrices that are essentially

equal to U, that is if off(QMQ) = 0, then Q = U. For the case where

M = ΣX, Q will contain the principal components of the covariance matrix,

which is effectively an eigenvector decomposition of ΣX. Consider a set of K

covariance matrices, Σ = {ΣX(τ1), . . . ,ΣX(τK)}, calculated at different time

delays, τj for τ1, . . . , τK , the joint diagonality criterion for such a set is

D(Σ,Q) =
K
∑

k=1

off(QHΣX(τk)Q). (1.25)

A unitary matrix is said to be a joint diagonaliser of the set Σ if it minimises

Eq. 1.25 over the set of all unitary matrices. This joint diagonalisation opera-

tion can be computed efficiently using a generalisation of the Jacobi technique

for the exact diagonalisation of a single Hermitian matrix.

Non-Gaussianity Maximisation

The Fast-ICA algorithm of Hyvärinen and Oja (1997) maximises non-

Gaussianity as a measure of statistical independence. The utility of the

non-Gaussianity criterion as a measure of statistical independence can be

explained by the central limit theorem, which states that the addition of two

or more independent random variables produces a distribution that is more

Gaussian than any of the independent variables alone. The algorithm uses

negentropy, J , to measure the non-Gaussianity of the estimated sources

kurt(ŝ) = 〈ŝ4〉 − 3〈ŝ2〉2, (1.26)
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1.2 Blind Source Separation

J(ŝ) ≈ 1

12
〈ŝ3〉2 +

1

48
kurt(ŝ)2, (1.27)

where kurt calculates normalised kurtosis of a random variable. Due to the

non-robustness encountered with kurtosis, negentropy is usually calculated

using the following approximation, which is based on the maximum entropy

principle,

J(ŝ) ∝ 〈G(ŝ)〉 − 〈G(v)〉, (1.28)

where v is a Gaussian random variable of zero-mean and unit variance, and

G is a non-quadratic function. Fast-ICA uses a hierarchal decorrelation to

discover the unmixing matrix: The algorithm discovers the first column,

w1, of W by maximising the non-Gaussianity of the projection wT
1 x for

the data x, and proceeds to calculate the remaining columns, ensuring that

the newly estimated column is orthogonal to those previously estimated.

Therefore, a necessary step in the fast-ICA procedure is the pre-whitening of

the data. Fast-ICA is typically implemented using a fixed point algorithm.

For whitened data the algorithm is derived as follows: The maxima of the

approximation of the negentropy of wTx are obtained at certain optima of

〈G(wTx)〉. According to Kuhn-Tucker conditions, the optima of 〈G(wTx)〉
under the constraint 〈G(wTx)〉 = ‖w‖2 = 1 are obtained at the points where

F (x,w) = 〈xg(wTx)〉 − βw = 0, (1.29)

where β is a constant and g(ŝ) = dG(ŝ)/dŝ. A common choice for g(·) is

g(ŝ) = tanh(cŝ), where 1 ≤ c ≤ 2. (1.30)

Applying Newton’s method to solve Eq. 1.29 results in the Jacobian,

∂F

∂w
= 〈xxTg′(wTx)〉 − βI ≈ Σx〈g′(wTx)〉 − βI = (〈g′(wTx)〉 − β)I. (1.31)

Since the data is pre-whitened, Σx = I. The Newton’s method update rule

is given by

w+ ← w −
[

∂F

∂w

]−1

F

w+ ← w − [〈xg(wTx)〉 − βw]/[〈g′(wTx)〉 − β]. (1.32)
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1.2 Blind Source Separation

Multiplying both sides of Eq. 1.32 by β−〈g′(wTx)〉 gives the following fixed

point algorithm

w+ ← 〈xg(wTx)〉 − 〈g′(wTx)〉w, (1.33)

w = w+/‖w+‖, (1.34)

where normalisation has been introduced for stability. The above algorithm

will discover only a single column of W. In order to estimate all the compo-

nents the algorithm is run N times, ensuring that the new components are

orthogonal to those previously estimated.

Sparse Methods

The following methods provide a solution for under-determined blind source

separation. For this case, A is defined by an over-complete set of basis

functions, resulting in a matrix that has no inverse. Consequently, ICA

methods that have a constraint of orthogonality on W after whitening, such

as those previously discussed, cannot be used for the under-determined case

and an alternative approach is needed.

Clustering Approach

Zibulevsky et al. (2002) use a fuzzy-c-means clustering method to identify

the lines in a scatter plot. The approach exploits the sparseness of speech

in the wavelet domain; the multi-scale nature of which provides a number of

different classes of coefficients that represent the same signal. Furthermore,

each class can be used to create a scatter plot. The selection of the most

appropriate class is determined by the sparsity of the coefficients in that

class. The clustering procedure is as follows:

1. Normalise the observation vectors to the unit sphere

x = x/‖x‖, (1.35)

data points where ‖x‖ ≈ 0 may be removed.

2. Map all data points to the unit half sphere; this mapping is required

because the line orientation for each source exists in both hemispheres,

producing two clusters for each source. Each cluster pair is consolidated
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1.2 Blind Source Separation

by this mapping, and line orientations are represented as clusters of

data points on the unit hemisphere.2

3. A fuzzy-c-Means algorithm is used to identify the cluster centres, which

are adjoined to create Â.

A similar approach is presented by Theis et al. (2004)

Bayesian Approach

Lewicki and Sejnowski (1998) formed a Bayesian approach to under-

determined BSS. They consider the general case with additive noise,

x = As + ǫ.

Assuming that the noise, ǫ, is Gaussian, the data likelihood is

log P (x|A, s) ∝

1

2σ2
(x−As)2, (1.36)

where σ2 is noise variance. Contrary to other ICA methods, Lewicki and

Sejnowski’s approach estimates A, given an estimate of s. The sources can

be estimated by maximising the a posteriori value of s:

ŝ = max
s

P (s|x,A)

= max
s

P (x|A, s)P (s). (1.37)

Given A and x, Eq. 1.37 can be optimised by gradient ascent on the log

posterior distribution under a Laplacian prior, which is equivalent to L1-

norm Minimisation (will be explained later in Section 1.2.2). The source

estimates can then be used to estimate A by maximising the probability of

the data,

max
A

P (x(1), . . . ,x(T )|A) = max
A

T
∏

t=1

P (x(t)|A), (1.38)

2Except when line orientation lies on the equator, in which case the mapping can fail
to consolidate its two halves.
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1.2 Blind Source Separation

which assumes temporal independence. Computation of this likelihood re-

quires marginalising over all possible sources,

max
A

P (x(t)|A) = max
A

∫

P (ŝ)P (x(t)|A, ŝ)dŝ. (1.39)

For an under-determined mixing process, this integral is intractable. How-

ever, an approximation can be made by fitting a multivariate Gaussian

around ŝ. The update for A can then be derived by performing gradient

ascent on the log of Eq. 1.38. The resulting update is

∆A ∝ AAT ∂

∂A
log P (x|A) ≈ −A(φ(ŝ)ŝT + I), (1.40)

where φ(·) represents the activation function, which is typically chosen to be

tanh(·) assuming a sparse prior. It is worth noting that the update resembles

the BS-Infomax update of Eq. 1.14. The algorithm can be summarised as

follows:

1. Randomly initialise A.

2. Initialise source estimates ŝ with the pseudo-inverse, A+.

3. Use the estimated ŝ to calculate a new estimate for A,

A← A− ηA(φ(ŝ)ŝT + I), (1.41)

where η is the learning rate.

4. Given the estimate for A, recalculate the source estimates using L1-

norm Minimisation.

5. Repeat steps 3 & 4 until convergence.

2D Techniques

Feature detection techniques from image processing have also been used to

locate line orientations. Lin et al. (1997) present an algorithm that uses a

Hough transform to identify lines. In contrast to the clustering approach used

in under-determined BSS, edge features are used to identify line orientations:

1. The mixture domain data is partitioned into bins, creating an image

representation of a scatter plot.
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1.2 Blind Source Separation

2. The image is convolved with an edge detection operator, and the re-

sultant image is normalised and thresholded to form a binary image,

which now contains only edge information.

3. This image is Hough transformed using line orientations as the fea-

ture of interest, and the line orientation vectors of the scatter plot are

identified as peaks in the Hough transform space. The line orientation

parameters associated with each peak in Hough space are combined to

form Â.

Monaural Separation

For the convolutive case, a biologically inspired technique that exploits spec-

tral cues is presented in Pearlmutter and Zador (2004). When sound reaches

an organism’s inner ear, the sound’s spectrum is coloured by the head and

the shape of the ears. This spectral colouring or filtering is know as the

Head-Related Transfer Function (HRTF), and is defined by the direction of

the sound and the acoustic properties of the ear. When using the HRTF it

is assumed that each source has a unique position in space. The auditory

scene is segregated into a number of different locations, with each having a

different HRTF filter. Sources coming from these locations will be coloured

by its associated filter, which indicates the source’s position. Thus, iden-

tification of the HRTF filter applied to each source will lead to separation

of sources. This can be achieved by sparsely representing the sources in an

over-complete (under-determined) dictionary which is performed as follows:

1. A monaural recording is made using a microphone setup that includes

a moulding of a Pinna around the microphone—this is required to

perform the necessary spectral filtering of the signal.

2. A known HRTF is used with a given N element signal dictionary, where

each dictionary element is filtered by the HRTF filter. This procedure

is repeated for F HRTFs, one for each location in the auditory scene,

resulting in an over-complete signal dictionary containing N × F ele-

ments.

3. The monaural mixture signal is decomposed into the dictionary ele-

ments by L1-norm Minimisation. The energy of the resultant coeffi-

cients indicate the location of the sources in the signal; the dictionary
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1.2 Blind Source Separation

elements of the locations identified are then scaled by their coefficients

and linearly combined to create the estimated sources.

By estimating the coefficients using a post-HRTF (sensor space) dictionary

and reconstructing using a pre-HRTF (source space) dictionary, separation

and deconvolution can be simultaneously achieved.

1.2.2 Separation Techniques

Subsequent to the estimation of the A, separation of the underlying sources

can be performed. The complexity of the separation process is influenced by

the mixing model used, and the relative number of sources and sensors. This

section presents a number of techniques used in the separation stage of blind

source separation algorithms.

Linear Unmixing

Separation in the even-determined case can be achieved by a linear transfor-

mation using W,

ŝ(t) = Wx(t), t = 1, . . . , T, (1.42)

where ŝ(t) holds the estimated sources at time t, Â is the estimated mixing

matrix and W = Â−1 up to permutation and scaling of the rows. For over-

determined mixing, where M > N , the pseudo-inverse can be used,

ŝ(t) = A+x(t), (1.43)

where A+ = (ÂTÂ)−1ÂT is the Moore-Penrose pseudo-inverse.

L1-norm Minimisation

For the under-determined case, which is usually restricted to sparse meth-

ods, a linear transformation is not possible since Âŝ(t) = x(t) has more

unknowns in s than knowns in x, and is therefore non-invertible. Further-

more, the Moore-Penrose pseudo-inverse, which corresponds to the minimum

L2-norm solution, cannot be used as it is unable to remove the correlation

between samples, and separate the mixtures. Consequently, some non-linear

technique is needed to estimate the sources. These techniques usually involve
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1.2 Blind Source Separation

assigning observed data x(t) to the columns of Â, which characterise each

source. The most rudimentary technique is to hard assign each data point to

only one source based on some measure of proximity to columns of Â (Vielva

et al., 2000, 2002; Jourjine et al., 2000; Lin et al., 1997). A logical extension

of this is the partial assignment of each data point to multiple sources. If the

sources are sparse, it is desirable that the data point assignment results in

one significantly non-zero coefficient, with the other coefficient values being

close to zero. Such assignment schemes are usually formulated as optimi-

sation problems, where the required behaviour is specified by enforcing a

constraint on the norm, ‖c‖p = (
∑n

i=1|ci|p)
1

p , of the solution. The effect of

using different norms is illustrated in Figure 1.4. Here, we can see three

non-orthogonal vectors in 2D space, each black dot is generated by one sig-

nificantly non-zero coefficient, which results in linear clouds of data points

around each vector. Taking the red dot (farthest point along the centre vec-

tor) as the data point under consideration, a minimum solution using a L2,

L1 and L0 constraint is illustrated using red arrows. For the L2 case it is

evident that three significantly non-zero vectors are present, this solution

does not reflect the structure of the data and is not sparse. Ideally, a sparse

representation will have only one active coefficient; the L0-norm can be used

to measure the active coefficients in a vector. For the L0 case the minimum

solution is represented by a significantly non-zero and a close to zero vector,

which produces a sparse representation. Unfortunately, minimisation of the

L0-norm is NP-complete and cannot be computed in polynomial time. A

computationally tractable alternative is to use L1-norm minimisation, which

produces similarly sparse solutions.

L1-norm minimisation—sometimes referred to as basis pursuit (Chen

et al., 1998) or the shortest-path algorithm (Bofill and Zibulevsky, 2000)—

is a piecewise linear operation that partially assigns the energy of x(t) to

the M columns of Â that form a cone around x(t) in R
M space, with the

remaining N −M columns assigned zero coefficients. When the number of

sources active at any one time is less than or equal to M , more accurate

source estimates are produced. L1-norm minimisation can be accomplished

by formulating the problem as a linear program,

arg min
ŝ(t)∈RN

‖ŝ(t)‖1 subject to Âŝ(t) = x(t), t = 1, . . . , T, (1.44)
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L0L1L2

Figure 1.4: L1-norm minimisation: Computationally tractable way to find a
sparse representation. Example: 3 non-orthogonal basis vectors (thin black ar-
rows), each black dot generated by one significantly non-zero coefficient ci. 3
basis vectors in 2D therefore many possible solutions. Red vectors: solution found
for red point. Constraints minimise norm of c: Right: L0-norm (NP-complete);
Left: L2-norm (not sparse). Centre: L1-norm (efficient and sparse).

where the observations x(t) are in a sparse domain and the coefficients ŝ(t),

properly arranged, constitute the estimated sources, Ŝ = [ŝ(1) | · · · | ŝ(T )].

An illustration of the L1-norm minimisation of speech mixtures in both

the sparse STFT (real coefficients) and non-sparse time domain is presented

in Figure 1.5. In this example there are 2 mixtures of 3 sources (see Ap-

pendix A). The sources are plotted in 3D space, and sparse and non-sparse

scatter plots of the mixtures are presented. Each datapoint is partially as-

signed to the two column vectors that create a cone around that data point.

In the non-sparse scatter plot it is evident that much of the data has no spe-

cific bias towards its encompassing column vectors, whereas in the sparse do-

main the data is clustered around those vectors. The effect of the sparseness

of the mixtures can be observed from the plots of their minimum L1-norm

solutions. For the non-sparse mixtures, it is evident that L1-norm minimisa-

tion results in a linear embedding of an M -dimensional space into the higher

N -dimensional space. For the sparse mixtures, there is an embedding of a

1-dimensional space into the higher N -dimensional space, where the embed-

ding is along the direction of the non-orthogonal column vectors of A. In

this case each linear subspace represents the coefficients for each individual

source, which results in better estimates as can be seen from Figure 1.6. For

complex data, such as FFT coefficients, the real and imaginary parts are

treated separately, thus doubling the number of coefficients. Alternatively,

L1-norm minimisation of complex data can be solved using second order conic

programming.
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a3

a2

a1

Sources (Time)

Mixtures (Time) Mixtures (Sparse)

Min. L1-norm Soln (Time) Min. L1-norm Soln (Sparse)

Figure 1.5: Illustration of L1-norm minimisation for sparse and non-sparse mix-
tures. Top: 3D plot of 3 sources in the time domain; Centre: Scatter plots of
the 2 mixtures in both a non-sparse and sparse domain, the column vectors of
A intersect to form 6 distinct regions; Bottom: L1-norm minimisation performs
a linear embedding of each region into N -dimensional space. For the sparsely
represented mixtures, the minimum L1-norm solutions form a linear subspace
along the direction of the non-orthogonal column vectors of A, which results in
better source estimates.
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Figure 1.6: Source estimates using L1-norm minimisation and the original mixing
matrix for 2 mixtures of 3 speech sources. The estimated sources produced by
L1-norm minimisation on the mixtures in the time domain are presented in the
third row, while the estimates produced in the sparse domain are presented in the
fourth row. The quality of the estimates are measured using the signal-to-noise
ratio and are as follows: Non-sparse; 4.86 dB, 10.18 dB, & 4.60 dB. Sparse:
9.90 dB, 15.10 dB & 9.49 dB. It is evident that the estimates calculated in the
sparse domain provide better results

1.3 Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) is a technique for the decomposi-

tion of multivariate data (Paatero and Tapper, 1994; Lee and Seung, 2001).

The NMF algorithm has a generative model that is similar to instantaneous

BSS, the difference being an additional non-negativity constraint on the data.

NMF is a parts-based approach that makes no statistical assumption about

the data. Instead, it assumes that for the domain at hand—for example

grey-scale images—negative numbers are physically meaningless. The ICA

decomposition of a grey-scale image may result in basis vectors that have

both positive and negative components. The image is represented by a lin-

ear combination of these ICA basis vectors weighted by both positive and

negative coefficients, with some basis vectors being cancelled out by others.
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Negative basis components have no real-world representation in a grey-scale

image context, which has led researchers to argue that the search for a ba-

sis should be confined to a non-negative basis. Formally, this idea can be

interpreted as decomposing a non-negative matrix V into two non-negative

factors W and H. The lack of statistical assumptions makes it difficult

to prove that NMF will give correct decompositions. However, it has been

shown geometrically that NMF provides a correct decomposition for some

classes of images (Donoho and Stodden, 2004).

Data that contains negative components, e.g. audio, must be transformed

into a non-negative form before NMF can be applied. Here, we use the

magnitude spectrogram. Spectrograms have been used in audio analysis for

many years (Potter et al., 1947) and in combination with NMF have been

applied to a variety of problems such as speech separation (Virtanen, 2003;

FitzGerald et al., 2006; Smaragdis, 2004) and automatic transcription of

music (Abdallah and Plumbley, 2004).

1.3.1 Conventional NMF

Given a non-negative matrix V ∈ R
≥0,M×T , the goal is to approximate V as

a product of two non-negative matrices W ∈ R
≥0,M×R and H ∈ R

≥0,R×T ,

V ≈WH, vik ≈
R
∑

j=1

wijhjk, (1.45)

where R ≤ M , such that the reconstruction error is minimised. Two NMF

algorithms were introduced by Lee and Seung (2001), each optimising its own

measure of reconstruction quality: These quality measures are the Euclidean

distance,

D(V,W,H) =
1

2
‖V −WH‖2, (1.46)

and a generalised version of the Kullback-Leibler divergence,

D(V‖W,H) =
∑

ik

(

vik log
vik

[WH]ik
− vik + [WH]ik

)

. (1.47)

NMF is formulated as an optimisation problem that minimises the proceeding

objectives,

min
W,H

D(V‖W,H) W,H ≥ 0,
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NMF with Euclidean distance

Obj=0.5*sum(sum((V-W*H).^2));

W=W.*(V*H’)./(W*H*H’+1e-9);

H=H.*(W’*V)./(W’*W*H+1e-9);

NMF with Kullback-Leibler divergence

Obj=sum(sum((V.*log((V./(W*H+1e-9))+1e-9))-V+W*H));

W=W.*((V./(W*H+1e-9))*H’)./(ones(M,1)*sum(H’));

H=H.*(W’*(V./(W*H+1e-9)))./(sum(W)’*ones(1,T));

Figure 1.7: Matlab notations for NMF algorithms.

both are convex in W and H individually but not together. Therefore al-

gorithms usually alternate updates of W and H. The objectives can be

minimised using a diagonally rescaled gradient descent algorithm (Lee and

Seung, 2001), which leads to the following multiplicative updates for the

Euclidean distance objective,

wij ← wij
[VHT]ij

[WHHT]ij
, hjk ← hjk

[WTV]jk
[WTWH]jk

, (1.48)

and Kullback-Leibler divergence,

wij ← wij

∑T
k=1(vik/[WH]ik)hjk

∑T
k=1 hjk

, hjk ← hjk

∑M
i=1 wij(vik/[WH]ik)

∑M
i=1 wij

, (1.49)

where Matlab notations for the update rules are presented in Figure 1.7. Al-

ternatively, optimisation methods such as multiplicative exponentiated gra-

dient descent can also been used (Cichocki et al., 2006). As each algorithm

iterates, their factors converge to a local optimum of Eq. 1.46 and Eq. 1.47.

The parameter R, which is the number of columns in W and rows in H,

specifies the rank of the approximation. If R < M then W is over-determined

and NMF reveals low-rank features of the data. The columns of W contain

the basis for the data while the rows of H contain activation patterns for

each basis. The selection of an appropriate value for R usually requires prior

knowledge, and is important to obtaining a satisfactory decomposition.
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Figure 1.8: Spectrogram of a signal composed of band-limited noise bursts, and
its factors obtained by NMF using the KLD objective.

NMF Applied to Audio Spectra

To illustrate the application of NMF to audio data, consider the example

shown in Figure 1.8. The signal under consideration is composed of two band-

limited noise bursts with magnitude spectra constant over time. The first

burst is centred around 2 kHz and occurs four times, while the second burst is

centred around 6 kHz and occurs three times. The signal’s spectrogram is an

M×T matrix V with magnitude information for M frequency bins at T time

intervals. NMF is applied to V with R = 2 and the resultant factors shown.

In this example, both the frequency spectra of the bursts (columns of W)

and their activations in time (rows of H) have been identified. Therefore,

this decomposition has successfully revealed the structure of V by correctly

describing its constituent elements in both the frequency and time domains.

Now consider the example presented in Figure 1.9. Here, the signal un-

der consideration is composed of two auditory objects that have different

frequency sweeps over time. The first object is centred around 2 kHz and
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Figure 1.9: Spectrogram of a signal composed of auditory objects with time-
varying spectra, and its factors obtained by NMF.

the second object is centred around 6 kHz, each occurring four times. NMF

is applied to the data with the same parameters as above, and the resultant

factors are shown. It is evident from the columns of W that the identified

spectra contain frequency components that are centred around both 2 kHz

and 6 kHz. Thus, NMF fails to identify the spectrum of each object, and

instead discovers objects that are a combination of both. The reason for this

is that NMF is not expressive enough to reveal the temporal structure of

auditory objects that evolve over time. Therefore, in order to reveal a cor-

rect decomposition, the expressive properties of NMF need to be extended

to consider the evolution of each object’s spectrum.

1.3.2 Convolutive NMF

Typically, the temporal relationship between multiple observations over

nearby intervals of time are discovered using a convolutive generative model.

Such a model has previously been used to extend ICA (Lambert, 1996) and
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NMF (Smaragdis, 2004), the latter constituting the algorithm we review in

this section. For conventional NMF each object is described by its spectrum

and corresponding activation in time, while for convolutive NMF (also known

as Non-Negative Matrix Deconvolution (NMD)) each object has a sequence

of successive spectra and corresponding activation pattern across time. The

model of Eq. 1.45 is extended to the convolutive case

V ≈
To−1
∑

t=0

Wt

t→
H, vik ≈

To−1
∑

t=0

R
∑

j=1

wijt(
t→
hjk), (1.50)

where V ∈ R
≥0,M×T is the input to be decomposed, Wt ∈ R

≥0,M×R and

H ∈ R
≥0,R×T are its two factors, and To is the length of each spectrum

sequence; the j-th column of Wt describes the spectrum of the j-th object

t time steps after the object has begun. The function
i→
(·) denotes a column

shift operator that moves its argument i places to the right; as each column

is shifted off to the right the leftmost columns are zero filled. Conversely, the
←i

(·) operator shifts columns off to the left, with zero filling on the right:

D =

[

1 2 3 4

5 6 7 8

]

0→
D =

[

1 2 3 4

5 6 7 8

]

1→
D =

[

0 1 2 3

0 5 6 7

]

3→
D =

[

0 0 0 1

0 0 0 2

]

←2

D =

[

3 4 0 0

7 8 0 0

]

←3

D =

[

4 0 0 0

8 0 0 0

]

,etc...

Using the Kullback-Leibler divergence, the new objective function for the

convolutive generative model is

D(V‖Λ) =
∑

ik

(

vik log
vik

[Λ]ik
− vik + [Λ]ik

)

(1.51)

where Λ is the approximation to V and is defined as

Λ =
To−1
∑

t=0

Wt

t→
H.

This new objective can be viewed as a set of To conventional NMF operations

that are summed to produce the final result. Consequently, as opposed to

updating two matrices (W and H) as in conventional NMF, To + 1 matrices

require an update (W0, . . . , WTo−1 and H). The resultant convolutive NMF
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1.3 Non-negative Matrix Factorisation

Convolutive NMF

Obj=sum(sum((V.*log((V./(lambda+1e-9))+1e-9))-V+lambda));

for t=1:To

Vt(:,:,t)=(W(:,:,t)*padshift(H,t-1));

end

lambda=sum(Vt,3);

for t=1:To

Hs=padshift(H,t-1);

W(:,:,t)=W(:,:,t).*((V./(lambda+1e-9))*Hs’)./(ones(size(V))*Hs’);

end

for t=1:To

Qs=padshift(V./lambda,-(t-1));

Ht(:,:,t)=H.*(W(:,:,t)’*Qs)./(W(:,:,t)’*ones(size(V)));

end

H=mean(Ht,3);

Figure 1.10: Matlab notations for convolutive NMF.

update equations are

wijt ← wijt

∑T
k=1(vik/[Λ]ik)

t→
hjk

∑T
k=1

t→
hjk

, hjk ← hjk

∑M
i=1 wijt

←−t

(vik/[Λ]ik)
∑M

i=1 wijt

, (1.52)

with Matlab notations presented in Figure 1.10. At every iteration, both H

and Wt are updated for each t. It is worth noting that Wt for t = 0, . . . , To

is a tensor and contains a separate W for each t, while a shifted version

of H is shared across all t. It is possible to update Wt and H at each t,

however this is not advisable as it results in a biased estimate of H, with the

t = To − 1 update dominating over the others (Smaragdis, 2004). A more

correct scheme is to update H to the average result of its updates for all t,

hjk ←
〈

hjk

∑M
i=1 wijt

←−t

(vik/[Λ]ik)
∑M

i=1 wijt

〉

,∀t. (1.53)

Convolutive NMF Applied on Audio Spectra

We have shown that conventional NMF reveals a correct decomposition for

auditory objects with constant spectra, but fails for objects that exhibit
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1.3 Non-negative Matrix Factorisation
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Figure 1.11: Spectrogram of a signal composed of auditory objects with time-
varying spectra, and its factors obtained by convolutive NMF.

time-varying spectra. Let us now consider the application of convolutive

NMF to this example. The performance of the algorithm now depends on

two parameters R and To, where To must be larger than the temporal ex-

tent of each object. Convolutive NMF is applied to the data with R = 2

and To = 2 seconds, and the resultant factors are presented in Figure 1.11.

It is evident from the spectral sequences obtained (j-th column of Wt, for

t = 0, 1, . . . , To − 1) that the time-varying spectrum of each object is re-

vealed, and that the rows of H identify the start of each object. Therefore,

the decomposition has successfully revealed the structure of V by correctly

describing the spectral evolution of each object and its position in time.

1.3.3 NMF Extensions

The previously discussed NMF algorithms can be extended to enforce addi-

tional constraints on either the discovered basis or activations patterns. This

may be achieved by combining the NMF reconstruction objective with ad-
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1.4 Organisation and Overview

ditional cost functions that characterise the required constraints. The most

widely used method for such multi-objective optimisation is the weighted

sum method. This method creates an aggregate objective function by mul-

tiplying each constituent cost function by a weighting factor and summing

the weighted costs,

J = w1J1 + w2J2 + · · ·+ wKJK ,

where wi (i = 1, · · · , k) is a weighting factor for the i-th cost function Ji, and

J is the sum of weighted costs. Combining the NMF reconstruction objective

with a constraint on both H and W results in an objective of the following

form,

J(V‖W,H) = D(V‖W,H) + wWfW(W) + wHfH(H), (1.54)

where fW(·) and fH(·) are functions that enforce the required constraints,

and wW and wH specify the weighting of each cost function. Additional

constraints that have been introduced to NMF include sparseness (Hoyer,

2002) and temporal continuity (Virtanen, 2003).

1.4 Organisation and Overview

The focus of this thesis is the separation of under-determined speech mix-

tures by utilising sparseness. Additionally, we also investigate the perceptual

properties of the NMF reconstruction objective. We employ two contrasting

approaches to separation: First, we introduce a modified Expectation Max-

imisation (EM) procedure that separates under-determined speech mixtures,

in the case when there are two or more mixtures. Second, we apply convo-

lutive non-negative matrix factorisation with a sparseness constraint, to the

problem of speaker separation from a monophonic mixture. An overview of

the remaining chapters in this thesis are presented as follows:

Chapter 2: We present a blind source separation algorithm that estimates the

mixing matrix for an under-determined mixing process. The algorithm

exploits the sparseness of speech in the short time Fourier transform

domain, in which a scatter plot of the mixtures reveals linear subspaces

that cross the origin, such subspaces characterise the columns of the
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1.4 Organisation and Overview

mixing matrix. The mixture of lines is expressed as a Laplacian mixture

model and the model parameters are estimated using an expectation-

maximisation procedure. Furthermore, the sparseness of the sources

are exploited when estimating the source estimates, by using L1-norm

minimisation.

Chapter 3: We investigate the perceptual quality of the NMF algorithm’s re-

constructions when applied to speech data. Here, we investigate the

properties of the beta divergence reconstruction objective. The algo-

rithm is tested for a range of β values, and the perceptual quality of

the reconstructions are measured using the noise-to-mask ratio. In or-

der to indicate the usefulness of our results, we also present an NMF

algorithm that uses the noise-to-mask ratio as its objective.

Chapter 4: We introduce a convolutive NMF algorithm that includes a

sparseness constraint on the activations. In contrast to previous meth-

ods, multiplicative updates are achieved for both H and W. The

algorithm is used to extract sparse phone sets from speech, which

demonstrate superior performance over convolutive NMF when used

in a monophonic speaker separation task. Furthermore, the extracted

phones also exhibit superior coding efficiency.

Chapter 5: We conclude this thesis with an overview of the work presented

and propose future directions.
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CHAPTER 2

The LOST Algorithm

The ubiquity of stereophonic recordings, for example CD recordings, and

the separation of such into constituent speakers or instruments, provides

the most obvious example of how Blind Source Separation methods can be

applied to the modern world. Such recordings are usually under-determined,

where there are more than two sources in the recording. The separation of

audio mixtures requires that some sort of implicit or explicit assumption be

made about the sources and/or mixing process. For the under-determined

case, the structure imposed by the mixing process is typically exploited in

separation.

Here, we focus our attention on the blind source separation of under-

determined instantaneous speech mixtures, where we encounter a mixture of

oriented lines. BSS is described as follows: A set of M sensor observations,

X = [x(1)| · · · |x(T )], consist of a linear mixture of N source signals, S =

[s(1)| · · · |s(T )], by way of an unknown linear mixing process characterised by

an M ×N mixing matrix A, i.e. x(t) = As(t). When M = N the underlying

sources, S, can be separated if one can find an unmixing matrix W such

that ŝ(t) = Wx(t), where ŝ(t) holds the estimated sources at time t and

W = A−1 up to permutation and scaling of the rows.

When the sources are sparse, a scatter plot of the mixtures reveals a

structure composed of linear subspaces that cross the origin; these linear

3Some material in this chapter appeared in O’Grady and Pearlmutter (2004a)
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Figure 2.1: Scatter plot of two linear mixtures of three zero-mean speech sources,
in both the time domain (left) and the transform domain (right). The sparse

transform domain consists of the real coefficients of a 512-point windowed STFT.
The figures axis are measured in arbitrary units of mixture coefficients.

subspaces correspond to the columns of A. Therefore, if these lines can be

estimated from the data, an estimate of the mixing matrix, Â, can be trivially

constructed. Furthermore, such a structure is evident for under-determined

mixtures, which makes identification of A possible for this difficult case. For

speech, a sparse representation can often be achieved by a transformation

into a suitable domain such as the Short Time Fourier Transform (STFT)

domain.

We introduce the LOST (Line Orientation Separation Technique) algo-

rithm, which separates under-determined speech mixtures by identifying lines

in a scatter plot using a Laplacian Mixture Model (LMM). The parameters of

the LMM are estimated using an Expectation-Maximisation (EM) procedure,

and the sources are estimated using L1-norm minimisation. Furthermore, the

LOST algorithm also separates even-determined and over-determined mix-

tures.

This chapter is organised as follows: In Section 2.1 we discuss the identifi-

cation of overlapping linear subspaces in a scatter plot and present the LOST

algorithm. In Section 2.2 we investigate the general separation performance

of the algorithm, and provide an empirical assessment of the algorithms ro-

bustness to noise. Furthermore, we compare the performance of the LOST

algorithm to that of the geoICA algorithm. We complete the chapter with a

discussion and conclusion.
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2.1 Oriented Lines Separation

2.1 Oriented Lines Separation

It can be seen from the scatter plot of Figure 2.1 that the columns of A, which

represent the sources, manifest as linear subspaces that cross the origin in

a sparse domain. Furthermore, it is evident that the points in each linear

subspace are drawn from a distribution that is concentrated around the line.

Such a distribution resembles a multivariate Laplacian density that is centred

along the line. Since there are N sources, si, . . . , sN , each characterised by

a different Laplacian density, the observations x(t) are generated by a linear

combination of these Laplacian densities, which is known a Laplacian Mixture

Model (LMM). By fitting an LMM to the observed density P (x), the linear

subspaces are identified by the Laplacian density centres.

2.1.1 Laplacian Mixture Model

The Laplacian density may be expressed by

L(v|γ, x) = γe−2γ|x−v| ∝ e−γ|x−v|, (2.1)

where v represents the centre of the Laplacian and γ controls the boundary

of the density. The Laplacian density is expressed in terms of the absolute

difference from the centre. For our purposes, the centre of the Laplacian,

v, and the observation x(t), are vectors that represent lines that cross the

origin. Therefore, a metric that measures the distance between such lines is

required; this is achieved by calculating the difference between x(t) and the

projection of x(t) onto v:

qit = ‖x(t)− (vi · x(t))vi‖, (2.2)

where · denotes the dot product. When the Laplacian centre and observation

are coincident, qit is at its minimum. We characterised each linear subspace

by the following distribution,

L(qit, γ) = e−γqit , (2.3)
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2.1 Oriented Lines Separation

and define the LMM as

P (x(t)) =
N
∑

i

L(qit, γ) =
N
∑

i

e−γqit , (2.4)

where γ is the same for each distribution.

2.1.2 LMM Parameter Estimation

Here, we describe the procedure used to estimate the parameters of the spec-

ified LMM: Since there are N lines, each with a different orientation vector

vi, the observations are segregated into sets associated with each line. Segre-

gation is achieved by estimating the probability of an observation belonging

to a line,

q̃it = P (x(t)|vi) =
e−γqit

∑

i′

e−γqi′t

, (2.5)

where q̃it indicates the membership of the observation x(t) to the line vi.

Calculating the probability of x(t) for all vi, represents a partial or soft

assignment of the observation to each line, which can be contrasted with a

hard (winner-takes-all) assignment where each observation is assigned to just

one line. The data set associated with each line can be calculated using the

observations, X, and their soft assignments q̃it,∀ i, t.

The orientation of a linear subspace can be thought of as the direction

of its greatest variance. One method that can be used to determine the

variance of a data set, and its direction, is Principal Component Analysis

(Pearson, 1901). PCA is a dimensionality reduction technique that represents

a data set by the variance of the data in orthogonal directions. The principal

component with the largest variance, λmax, which corresponds to the principal

eigenvector, umax, of the covariance matrix for the weighted observations

Σi = UiΛiU
−1
i , (2.6)

identifies the centre of the line,

vi = umax, (2.7)

where the columns of the matrix Ui contain the eigenvectors of Σi and the
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Figure 2.2: Illustration of the LOST algorithm’s line estimation procedure: The
E-step calculates posterior probabilities partially assigning data points to line
orientation estimates, and the M-step repositions the line orientation estimates
to the points assigned to them. After convergence the estimated line orientations
coincide with the linear subspace directions in the scatter plot.

diagonal matrix Λi contains its associated eigenvalues λi, . . . , λM . A similar

approach to cluster centre re-estimation using Singular Value Decomposition

is presented in Aharon et al. (2006), while an alternative approach that fits

a straight line to the data points in a linear subspace is presented in Babaie-

Zadeh et al. (2004).

The density boundary parameter γ represents the spread of the densities

centred on each line. It is obvious from Figure 2.1 that such a spread may

be represented by the variance of the linear subspace that is orthogonal to

the line, i.e., the second largest eigenvalue of Λi. We estimate the value of
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2.1 Oriented Lines Separation

γ using a scheme that creates a set of second largest eigenvalues for all Σi,

and update γ to the reciprocal of the largest value in this set.

The procedure of soft assignment and line centre repositioning using PCA

is repeated until vi converge, at which point Â is constructed by adjoining

the estimated line orientations to form the columns of the matrix

Â =
[

v1

∣

∣· · ·
∣

∣vN

]

.

Such a procedure is an Expectation-Maximisation algorithm (Dempster

et al., 1976), which finds maximum likelihood estimates of parameters in

probabilistic models, where the model depends on unobserved latent vari-

ables. The EM algorithm alternates between an expectation (E) step, which

calculates an expectation of the latent variables, and a maximisation (M)

step, which calculates the maximum likelihood estimates of the parameters

by maximising the expected likelihood found on the E-step. The parameters

found on the M-step are then used to begin another E-step, and the process is

repeated. In our case, the E-step calculates posterior probabilities assigning

observations to lines and the M-step repositions the lines to match the points

assigned to them. This EM procedure comprises the line estimation stage of

the LOST algorithm (O’Grady and Pearlmutter, 2004b), and is illustrated

in Figure 2.2.

Alternatively, the line estimation stage of the LOST algorithm can be

thought of as a piecewise linear operation, where observations are soft as-

signed to lines, and PCA is performed for the data partially assigned to each

line.

2.1.3 Sparse Transformation

In order for the linear subspaces in the scatter plot to be well defined, an

appropriate sparse transformation is required. For the LOST algorithm,

we exploit the sparseness of speech in the Short Time Fourier Transform

(STFT) domain, which results in well defined lines (Figure 2.3). However,

it is evident that some observations are perturbed by noise, broadening the

lines. It is necessary that the lines are as well defined as possible, as the line

estimation stage of the LOST algorithm is dependent on the quality of the

sparse representation.

The broadening of the lines may be reduced by controlling the effects
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Figure 2.3: Scatter plots for two mixtures of two sources and two mixtures of
three sources in the time domain (top), real coefficients of the 512-point STFT
domain (middle) and kurtosis weighted STFT domain (bottom). It can be seen
that the kurtosis scaled STFT domain produces the best defined lines, which is
especially evident for the two mixtures of two sources scatter plot. The figures
axes are measured in arbitrary units of mixture coefficients.

of the perturbing noise, which may be achieved by segregating the STFT

coefficients into different classes based on some notion of noise level. Here,

we examine the levels of noise present in each frequency bin over all STFT

frames. Since speech is sparse in the STFT domain, we can assume that fre-
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2.1 Oriented Lines Separation

quency bins that have a distribution of coefficients that reflect a Gaussian are

mostly noise, while frequency bins that exhibit a Laplacian distribution con-

tribute most to the definition of the lines; the distinguishing feature between

the two distributions being their peakedness. We measure the peakedness of

the distribution of coefficients for each bin using kurtosis,

kurt(ck) =
〈(ck − µ)4〉

σ4
− 3, (2.8)

where ck is the distribution of coefficients for the k-th frequency bin. Each

bin is subsequently scaled by its kurtosis, kurt(ck). Weighting the frequency

bins that have a Laplacian distribution of values greater than those that have

a Gaussian pushes those observations away from the origin while pulling the

noisy observations toward the origin, resulting in better defined lines and

improved line estimates.

The effects of kurtosis scaling are illustrated in Figure 2.3. It can be seen

that the kurtosis weighted STFT domain produces the best defined lines,

which is especially evident for the two mixtures of two sources scatter plot.

The effectiveness of kurtosis scaling is discussed in Section 2.2.3.

2.1.4 Source Unmixing

As discussed in Section 1.2.2, the dimensionality of Â determines the proce-

dure used to estimate ŝ. Therefore, so as to be applicable to separation prob-

lems that exhibit an arbitrary number of sources and mixtures, the LOST

algorithm supports three different source-unmixing methods. For the even-

determined case, where M = N , Â is square and the data points can be

assigned to line orientations using ŝ(t) = Wx(t). When there are more

observations than sources, i.e., the over-determined case (M > N), data

points can be assigned to sources by finding the least squares solution. When

M < N , the under-determined case, A is not invertible therefore S needs to

be estimated by some other means. One technique is so-called hard assign-

ment of coefficients (Rickard and Dietrich, 2000; Roweis, 2001; Vielva et al.,

2000, 2002; Lin et al., 1997). Another is partial assignment, where each coef-

ficient can be decomposed into more than one source. This is generally done

by minimisation of the L1-norm, which can be seen as a maximum likelihood

reconstruction under the assumption that the coefficients are drawn from a
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2.1 Oriented Lines Separation

Laplacian distribution—this being the method used by the LOST algorithm.

2.1.5 The LOST Algorithm Summary

The following is a summary of the LOST algorithm, describing both line

orientation estimation and source unmixing.

Line Estimation

1. Create a scatter plot of X in a sparse domain: Transform the obser-

vations, x1, . . . , xM , using an STFT and perform kurtosis scaling of

the coefficients; the transformed observations are subsequently plotted

against each other.

2. Randomly initialise the N line orientation vectors vi, and initialise γ

to a sufficiently large value.

3. Partially assign each observation, x(t), to each line orientation vector,

vi, using a soft data assignment:

qit = ‖x(t)− (vi · x(t))vi‖2,

q̃it =
e−γqit

∑

i′

e−γqi′t

,
(2.9)

where γ controls the boundary between the regions attributed to each

line, and q̃it are the computed weightings of observation at time t for

each line i.

4. Calculate the covariance matrix for the weighted observations assigned

to each line. The covariance matrix expression and assignment weight-

ings are combined as follows:

Σi =

∑

t

q̃it(x(t)− µ)(x(t)− µ)T

∑

t

q̃it

, (2.10)

where µ is a vector of the mean values of the rows of X, which is typi-

cally zero for speech, and Σi is the covariance of weighted observations
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2.1 Oriented Lines Separation

associated with line i.

5. Update the line orientation estimates to the principal eigenvector of

each covariance matrix: The eigenvector decomposition of Σi is

Σi = UiΛiU
−1
i , (2.11)

where the columns of the matrix Ui contain the eigenvectors of Σi and

the diagonal matrix Λi contains its associated eigenvalues λi, . . . , λM .

The new line orientation vector estimate is the principal eigenvector of

Σi,

vi ← umax (2.12)

where umax is the principal eigenvector, i.e., the eigenvector with the

largest eigenvalue, λmax.

6. Update γ using the variances that are orthogonal to the direction of the

lines: Select the second largest eigenvalue from each diagonal matrix

Λi, and update to the reciprocal of the largest eigenvalue from this set,

γ ← 1

max(λi, . . . , λM)
, (2.13)

where λi is the second largest eigenvalue of Σi. Return to step 3 and

repeat until vi converge.

7. After convergence, adjoin the line orientations estimates to form Â,

Â =
[

v1

∣

∣· · ·
∣

∣vN

]

. (2.14)

As discussed in Section 1.2, previous methods for mixing matrix esti-

mation include: fuzzy C-means clustering (Zibulevsky et al., 2002), kernel

methods (Bofill and Zibulevsky, 2001), clustering using topographic maps

(van Hulle, 1999), feature extraction using the Hough transformation (Lin

et al., 1997), joint unitary diagonalisation (Belouchrani et al., 1997), entropy

maximisation (Bell and Sejnowski, 1995) and independence maximisation

(Herault and Jutten, 1986).
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Source Unmixing

1. Perform line estimation to calculate Â.

2. (a) Even-determined case: Source estimates are calculated using lin-

ear transformation,

ŝ(t) = Wx(t), t = 1, . . . , T,

where W = Â−1.

(b) Over-determined case: Source estimates are calculated by finding

the least squares solution,

minimise ‖Âŝ(t)− x(t)‖2, t = 1, . . . , T.

(c) Under-determined case: Source estimates are calculated using L1-

norm minimisation4 for each observation in the sparse STFT do-

main such that

arg min
ŝ(ω)∈RN

‖ŝ(ω)‖1 subject to Âŝ(ω) = x(ω).

Subsequent to which, an inverse transformation is performed,

ŝ(ω) 7→ ŝ(t).

3. The final result is an N×T matrix Ŝ that contains the source estimates,

ŝ1, . . . , ŝN , in each row.

2.2 Experiments

To demonstrate the effectiveness of the LOST algorithm, we investigate its

separation performance when applied to speech mixtures: We use speech

4The solution can be found efficiently using linear programming (Chen et al., 1998).
We introduce vectors s+ and s−, each with the same dimensionality as ŝ(t), and use the

linear constraints s+, s− ≥ 0 and Âs+ − Âs− = x(t). The minimisation of ‖ŝ‖1 =
∑

i
|ŝi|

becomes the linear objective of minimising
∑

i
(s+

i
+ s−

i
). After solving this system, the

desired coefficients are ŝ(t) = s+ − s−. When using complex data, as in the case of a
STFT representation, we treat the real and imaginary parts separately, thus doubling the
number of coefficients.
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sources that are extracted from a commercial audio CD of poems read by

their authors (Paschen et al., 2001); each source is a ten second segment of

a poem, which has been down-sampled to 8 kHz; details of the extraction

procedure and the poems used are presented in Appendix A.

Throughout this section we use the notation MmNs to denote the mix-

tures, where M and N indicate the number of mixtures and sources used,

e.g., 4m6s indicates an instantaneous mixture that has 4 observations of 6

sources. For all experiments, we evaluate the separation performance of the

LOST algorithm when applied to the following mixtures: 2m2s, 2m3s, 3m2s,

3m3s, 3m4s, 4m3s, 4m4s, 4m5s and 4m6s; which includes even-determined,

over-determined and under-determined mixtures.

2.2.1 Performance Measurement

For the purposes of ease of comparison with existing separation methods,

we evaluate the separation performance of the LOST algorithm using the

measures provided by the BSS_EVAL toolbox (Févotte et al., 2005). The

performance measures are based on the principal that a given source estimate,

ŝ, is composed as a sum that includes the original source and different classes

of noise:

ŝ(t) = s(t) + ǫi(t) + ǫn(t) + ǫa(t), (2.15)

where ǫi(t) is noise due to interference from other sources, ǫn(t) is pertur-

bating noise (such as Gaussian noise) and ǫa(t) is the noise due to artifacts

(such as musical noise). The noise introduced by each class is estimated by

the toolbox and used in the following global performance measures:

• Source-to-Artifact Ratio (SAR): Measures the level of artifacts in the

source estimate,

SAR =
‖s + ǫi + ǫn‖2
‖ǫa‖2

. (2.16)

• Source-to-Interferences Ratio (SIR): Measures the level of interference

from the other sources in the source estimate,

SIR =
‖s‖2
‖ǫi‖2

. (2.17)

• Source-to-Distortion Ratio (SDR): Provides an overall separation per-
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formance criterion,

SDR =
‖s‖2

‖ǫi + ǫn + ǫa‖2
. (2.18)

All performance measures are expressed in dB, with higher performance val-

ues indicating better quality estimates.

2.2.2 Transform Sparseness

We achieve a sparse representation of the mixtures by exploiting the sparse-

ness of speech in the Short Time Fourier Transform (STFT) domain. In order

to find the optimal transform parameters for the data, we perform separation

over a wide parameter space and evaluate the estimates. Specifically, we per-

form an STFT on each mixture where each frame is windowed using a Ham-

ming function over a range of FFT sizes, {128, 256, 512, 1024, 2048, 4096},
and FFT frame advances, { 1

16
, 1

8
, 1

4
, 1

2
, 1} (expressed in fractions of FFT size).

We perform this procedure for each of the previously specified mixtures and

repeat for 20 Monte Carlo runs, resulting in a total of 5400 (6× 5× 9× 20)

LOST algorithm experiments. Furthermore, the sources used in each mixture

are randomly selected from the set of source signals (Appendix A), and are

mixed using a random mixing matrix. The procedure for each experiment is

as follows:

1. N source signals are randomly selected from the set of sources presented

in Appendix A, and are mixed using a randomly generated A resulting

in a matrix of observations, X = AS.

2. The LOST algorithm (Section 2.1.5) is applied to X, and the source

estimates, Ŝ, are constructed.

3. The estimates and the original sources are used to evaluate the sepa-

ration performance of the LOST algorithm, using the following perfor-

mance measures SIR, SAR and SDR.

Results

The results from all experiments are collated and separation performance is

calculated as follows: The performance values of the source estimates for each
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experiment are averaged, which are themselves averaged over 20 Monte Carlo

runs. The worst, median and best performances results, and the transform

parameters that achieved these results are tabulated in Table 2.1; average

values for γ and iterations are also tabulated. As indicated in Figure 2.1 the

sparseness of the coefficients in the transform domain will have an important

effect on how well defined the line orientations will be, which ultimately con-

trols the separation performance of the LOST algorithm. The results show

that a frame size of 2048 or 4096 produce the worst separation performance

for all three measures, which indicates that speech that is sampled at 8 kHz is

not sufficiently sparse in this domain. Median performance is achieved for a

frame size of 128 or 256, while the best performance is achieved for 256, 512,

1024. It is evident that the average γ values obtained for the best perfor-

mance values are smaller than all others, indicating that the line orientations

are well defined when using the associated STFT parameters. Furthermore,

the best performance experiments typically converge the fastest. Therefore,

the sparseness of the transform domain effects not only the separation per-

formance but convergence speed also.

To analyse the performance of the LOST algorithm for STFT parameters

that achieve good separation, we select a subset of the experiments that have

a frame size of 512 or 1024 (which results in a total of 200 experiments for

each mixture) and represent the results using box plots: Each box presents

information about the median and the statistical dispersion of the results.

The top and bottom of each box represents the upper and lower quartiles,

while the length between them is the interquartile range; the whiskers rep-

resent the extent of the rest of the data, and outliers are represented by +.

Box plots for SDR, SIR and SAR are presented in Figure 2.4, Figure 2.5 and

Figure 2.6 respectively.

The performance values for SDR indicate that over-determined mixtures

produce the best results, while under-determined mixtures produce the worst,

which is to be expected for over-determined mixtures, as there are more

knowns in s than unknowns in x. The general trend in SDR performance

is that as M increases, separation performance decreases, which decreases

further as N increases relative to M .

For SAR performance, the large distances between the median values

for the even-determined and under-determined performance results illustrate

the high level of artifacts present in the under-determined mixture source
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Table 2.1: The Relationship Between Transform Parameters and the Separation Performance of the LOST Algorithm; Average Sepa-
ration Performance over 20 Monte Carlo Runs for Each Experiment.

Measure
Rand.
Mix.

Worst Performance Median Performance Best Performance

FFT Param.
γ Iter.

Avg. Res.

(dB)
FFT Param.

γ Iter.
Avg. Res.

(dB)
FFT Param.

γ Iter.
Avg. Res.

(dB)
Frame Adv. Frame Adv. Frame Adv.

SDR

2m2s 128 16 47.4 11.05 33.28 256 16 44.67 8.85 39.9 1024 256 18.66 7.4 45.76
2m3s 4096 4096 59.52 22.5 1.97 128 8 108.37 29.95 7.29 512 64 12.76 19.6 10.26
3m2s 4096 256 10.02 12.2 36.33 256 16 26 6.2 41.83 512 32 15 8.4 49.05
3m3s 128 32 88.04 20.65 21.11 256 16 24.8 16.85 27.03 1024 256 8.22 17.05 34.71
3m4s 4096 4096 39.18 30.75 4.09 128 16 84.4 27.75 9.93 512 32 7.16 24.3 14.25
4m3s 4096 256 5.95 31.45 18.32 128 32 90.88 14.75 31.21 256 32 21.58 12.3 37.37
4m4s 2048 2048 10.56 34.4 15.55 128 16 66.68 24.95 23.4 256 64 19.55 18.35 27.88
4m5s 2048 2048 9.33 41.45 6.46 128 8 66.81 35.45 11.54 512 32 9.05 33.55 14.35
4m6s 4096 4096 32.91 39.65 1.31 128 8 63.86 48.2 6.64 256 16 14.4 46.7 9.72

SIR

2m2s 128 16 47.4 11.05 33.32 256 16 44.67 8.85 39.99 1024 256 18.66 7.4 46.97
2m3s 4096 4096 59.52 22.5 9.79 128 8 108.37 29.95 14.72 512 256 25.03 15.1 17.98
3m2s 4096 256 10.02 12.2 36.33 256 16 26 6.2 41.89 512 32 15 8.4 49.58
3m3s 128 32 88.04 20.65 21.11 256 16 24.8 16.85 27.03 1024 256 8.22 17.05 34.71
3m4s 4096 512 5.04 47.3 10.27 128 16 84.4 27.75 16.04 256 64 21.86 24.65 20.69
4m3s 4096 256 5.95 31.45 18.32 128 32 90.88 14.75 31.21 256 32 21.58 12.3 37.38
4m4s 2048 2048 10.56 34.4 15.55 128 16 66.68 24.95 23.4 256 64 19.55 18.35 27.88
4m5s 4096 2048 7.2 44.3 11.48 256 16 15.66 36.2 17.01 512 512 9.97 25.9 22.04
4m6s 4096 2048 5.99 59.05 7.72 128 8 63.86 48.2 13.17 256 64 14.04 31.15 18.05

SAR

2m2s 4096 4096 59.86 11.1 66.27 256 128 58.18 9.35 70.45 1024 512 15.18 7.7 72.56
2m3s 4096 4096 59.52 22.5 4.18 256 16 40.88 34.1 11.51 256 16 40.88 34.1 15.58
3m2s 128 8 68 12 68.99 256 16 26 6.2 71.78 256 16 26 6.2 73.01
3m3s 2048 128 7.02 26.85 63.09 128 64 77.12 18 65.87 1024 128 4.6 14.7 68.37
3m4s 4096 4096 39.18 30.75 7.53 128 8 88.21 36.55 15.06 512 64 7.15 38.15 18.68
4m3s 4096 2048 12.93 22.3 65.7 128 16 88.94 15.05 68.66 128 32 90.88 14.75 70.5
4m4s 128 128 82.53 22.2 61 128 16 66.68 24.95 64.02 1024 1024 10.46 22.5 66.89
4m5s 4096 4096 33.08 30.4 9.03 128 8 66.81 35.45 17.84 256 32 14.51 43.75 22.2
4m6s 4096 4096 32.91 39.65 3.98 128 8 63.86 48.2 11.16 512 32 4.53 46.8 15.31
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Figure 2.4: SDR results for the LOST algorithm: Box plots are used to illustrate
the performance results for each mixture, with each box representing the median
and the interquartile range of the results. For SDR, which represents overall
separation performance, separation performance decreases as M increases, which
decreases further as N increases relative to M .
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Figure 2.5: SIR results for the LOST algorithm: Box plots are used to illustrate
the performance results for each mixture, with each box representing the median
and the interquartile range of the results. The results indicate that the source
estimates become more resilient to interference from other sources as M increases
relative to N .

estimates. Listening to these estimates reveals the presence of clipping sounds

and portions of the other sources in the estimates. Such artifacts are not

audible for the even-determined or over-determined source estimates, and are
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Figure 2.6: SAR results for the LOST algorithm: Box plots are used to illustrate
the performance results for each mixture, with each box representing the median
and the interquartile range of the results. For SAR, it is evident that there are
dramatic differences between the performances achieved for even-determined and
under-determined mixtures, which is a consequence of the artifacts produced by
L1-norm minimisation.

produced by L1-norm minimisation when more than M sources are active at

the same time. This contrasts with SIR, where the difference between even-

determined and under-determined performance is not so dramatic.

It is worth noting that over all performance measures, increasing the num-

ber of observations for an even-determined mixture, does not dramatically

improve separation performance. For example, we can see from inspection

of the results for the mixtures 3m3s & 4m3s that the additional observation

provides a small increase in performance, the same is also true for 2m2s &

3m2s. Such an incremental improvement may defy preconceptions, but is

typical of BSS algorithms.

The outliers that are evident in the box plots may be due to the random

mixing matrices used to generate our mixtures. Such randomly generated

mixtures may produce scatter plots that contain lines that are too close

for the LOST algorithm to separate effectively, i.e., A is an ill-conditioned

matrix. A plot of the estimates for 4m6s produced by the LOST algorithm

is presented in Figure 2.7.

Overall, the LOST algorithm provides very good results for the blind

source separation of even-determined and over-determined mixtures, and suc-
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Figure 2.7: Source estimate plots for the LOST algorithm. The plots above show
ten second clips of six acoustic sources, s1, . . . , s6; 4 mixtures, x1, . . . , x4; and
6 source estimates, ŝ1, . . . , ŝ6. Sound wave pressure is plotted against time in
units of seconds.

cessfully achieves separation of under-determined mixtures with good sepa-

ration performance.

2.2.3 Robustness to Noise

We perform an empirical investigation on the separation performance of the

LOST algorithm when Gaussian noise is added to S. The noise added to each

source is measured using the signal-to-noise ratio and is expresses in dB.

We perform experiments where Gaussian noise of the following intensities

is added to the each source: 20 dB, 15 dB, 10 dB, 5 dB and 2 dB. As a

means of comparison, we also perform an experiment where no noise (∞
dB) is added to the sources. We run the LOST algorithm using an FFT

frame size of 512 and frame advance of 128. In contrast to the experimental

procedure presented in Section 2.2.2, each mixture is generated using a fixed

mixing matrix and fixed set of sources, which is necessary as we are only

interested in robustness to noise and not general separation performance.
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Figure 2.8: LOST algorithm convergence plots for the following experiments:
2m2s ◦, 2m3s 2, 3m2s 3, 3m3s △, 3m4s ⊲, 4m3s ⊳,4m4s +,4m5s ⋆,4m6s •; the
convergence of the mixing matrix, Â is presented on the right, while convergence
of the boundary value, γ, is presented on the left. It is evident that both γ and
Â quickly converge to stable values.

Additionally, we evaluate the performance of the LOST algorithm with and

without kurtosis scaling of the STFT coefficients.

Results

The results from all experiments are collated and averaged as before, and

separation performance for each experiment is presented in Table 2.2. It is

evident that the SIR performance results degrade for all mixtures as the level

of noise increases, this reflects the perturbation of the line orientations by the

random noise, which influences the level of interference from other sources

that will be present in the source estimates.

The SAR performance remains relatively constant for the even-determined

and over-determined mixtures over all noise levels, while the results for the

under-determined results gradually degrade as noise increases. This degra-

dation in performance demonstrates that L1-norm minimisation is generally

unstable for perturbation of A. Furthermore, the results show that SAR is

largely unaffected by the kurtosis scaling of the transform coefficients, which

demonstrates that kurtosis scaling has no effect on the presence of artifacts.

Overall performance, as indicated by SDR, demonstrates that the LOST

algorithm achieves good separation results over all noise levels. Further-
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Table 2.2: Average Separation Performance for the LOST Algorithm on Noisy Mixtures, With and Without Kurtosis Scaling.

Measure
Fixed
Mix.

FFT Param. With Kurtosis Scaling Without Kurtosis Scaling

Frame Adv. Avg. Res. (dB) for Added Noise (SNR) Avg. Res. (dB) for Added Noise (SNR)

None 20 dB 15 dB 10 dB 5 dB 2 dB None 20 dB 15 dB 10 dB 5 dB 2 dB

SDR

2m2s

512 128

55.96 59.2 49.11 50.29 49.25 33.74 41.88 41.81 42.59 42.57 46.65 31.34
2m3s 9.19 8.85 8.31 7.16 5.15 2.84 9.07 8.72 8.19 7.06 5.1 2.91
3m2s 35.04 33.14 31.05 28.39 25.81 23.08 27.03 26.52 25.82 24.1 20.94 16.33
3m3s 30.24 29.12 27.75 24.73 20.58 14.36 30.25 29.67 28.46 25.06 19.29 11.22
3m4s 12.01 11.88 11.25 9.88 7.68 4.42 11.95 11.79 11.14 9.7 7.22 3.04
4m3s 36.85 35.35 33.76 30.48 27.99 22 34.67 33.52 32.05 27.93 21.62 13.08
4m4s 29.87 28.66 27.33 24.84 20.73 15.27 27.35 26.32 25.02 22.14 16.66 9.63
4m5s 16.52 15.2 13.85 11.99 8.99 6.17 15.47 14.68 12.91 11.19 8.61 5.77
4m6s 9.87 10.12 8.97 7.55 5.13 2.53 10.7 10.32 9.46 7.56 5.06 -0.68

SIR

2m2s

512 128

55.99 59.32 49.12 50.3 49.25 33.74 41.88 41.81 42.59 42.57 46.69 31.34
2m3s 17.27 16.66 15.86 14.13 11.17 7.69 17.1 16.53 15.76 14.13 11.14 7.57
3m2s 35.04 33.14 31.05 28.39 25.81 23.08 27.03 26.52 25.82 24.1 20.94 16.33
3m3s 30.24 29.12 27.75 24.73 20.58 14.36 30.25 29.67 28.46 25.06 19.29 11.22
3m4s 19.81 19.47 18.51 16.56 13.02 7.69 19.63 19.18 18.19 16.14 12.09 6.49
4m3s 36.85 35.35 33.76 30.49 27.99 22 34.67 33.52 32.05 27.93 21.62 13.08
4m4s 29.87 28.66 27.33 24.84 20.73 15.27 27.35 26.32 25.02 22.15 16.66 9.63
4m5s 27.1 25.19 23.17 20.35 15.62 11.13 25.47 24.12 20.99 18.35 14.2 9.36
4m6s 18.52 18.96 17.1 15.26 11.76 7.89 20.1 19.46 18.18 15.34 11.51 1.49

SAR

2m2s

512 128

77.47 77.29 77.29 77.32 78.19 79.28 77.47 77.26 77.28 77.31 78.16 79.3
2m3s 10.04 9.76 9.29 8.34 6.83 5.51 10.01 9.72 9.25 8.29 6.8 5.61
3m2s 74.24 74.07 74.05 74.67 74.52 76.22 74.07 73.97 73.97 74.54 74.36 75.94
3m3s 74.52 74.51 74.58 74.72 75.05 75.4 74.5 74.48 74.57 74.71 74.96 74.87
3m4s 13.22 13.14 12.6 11.53 10.23 10.93 13.07 13.01 12.51 11.47 10.43 11.31
4m3s 76.3 76.33 76.33 76.61 77.23 78.15 76.29 76.34 76.34 76.6 77.06 77.81
4m4s 66.87 66.88 66.88 66.83 66.94 68.57 66.77 66.77 66.76 66.63 66.42 67.46
4m5s 18.33 17.6 16.01 12.8 10.24 8.34 16.14 15.42 13.9 12.39 10.45 9.58
4m6s 10.73 10.87 9.93 8.64 6.65 4.9 11.35 11.02 10.22 8.62 6.68 11.44
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Table 2.3: Typical Run Times for the LOST Algorithm on 10 Second Mixtures,
Using a Frame Size of 512 and Frame Advance of 128.

Mixture Time (sec.) Mixture Time (sec.)

2m2s 7 4m3s 20
2m3s 30 4m4s 18
3m2s 8 4m5s 45
3m3s 14 4m6s 60
3m4s 40

more, kurtosis scaling improves separation performance for all mixtures

at all noise levels, however it is particularly effective for even-determined

and over-determined mixtures. The tabulated results demonstrate that the

LOST algorithm is an effective algorithm for blind source separation of over-

determined, even-determined and under-determined mixtures, even in the

presence of noise.

To illustrate the convergence of the LOST algorithm, convergence curves

for both γ and the norm of Â are presented for each mixture in Figure 2.8; the

curves correspond to the experiments presented in Table 2.2 where kurtosis

scaling is performed and no noise is added. It is evident that both γ and Â

converge to stable results after a small number of iterations, demonstrating

the fast convergence properties of the LOST algorithm.

We implemented the LOST algorithm in C, and all the experiments pre-

sented were run on a 3.06 GHz Intel Pentium-4 based computer with 768 MB

of RAM running the Debian GNU/Linux operating system. Typical run

times for a frame size of 512 and frame advance of 128 are presented in Ta-

ble 2.3. Our C code implementation of the LOST algorithm is freely available

and can be downloaded from http://www.hamilton.ie/paul/

2.2.4 LOST Vs geoICA

One of the main advantages of the LOST algorithm is that it provides a so-

lution for the under-determined case. In order to demonstrate the usefulness

of the LOST algorithm when applied to under-determined mixtures, we com-

pare its performance to the geoICA5 algorithm (Theis et al., 2004), which also

5Matlab implementations for geoICA and GCE are available at http://www.biologie.
uni-regensburg.de/Biophysik/Theis/research/geoICA.zip
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Table 2.4: Average GCE with Standard Deviations for LOST and geoICA over
20 Monte Carlo Runs for Each Experiment, where smaller values indicate better
performance.

Mixture
Algorithm

LOST geoICA geoICA+STFT

2m2s 0.42±0.88 0.48±0.55 0.05± 0.09

2m3s 0.12± 0.17 0.95±0.55 0.91±0.59
3m2s 0.02± 0.02 0.37±0.61 0.02±0.02
3m3s 0.12± 0.22 1.29±0.69 1.05±0.58
3m4s 0.3± 0.49 1.82±0.42 1.25±0.42
4m3s 0.19± 0.57 1.16±0.77 0.76±0.82
4m4s 0.55± 1.02 2.06±0.48 1.61±0.8
4m5s 0.62± 0.92 3±0.85 2.13±0.76
4m6s 0.76± 0.79 3.7±0.78 2.68±0.77

provides a solution for the under-determined case. We test both algorithms

using the previously specified mixtures; where A is randomly generated and

the sources are randomly selected as in Section 2.2.2. Furthermore, each

experiment is repeated for 20 Monte Carlo runs. For the LOST algorithm

a FFT size of 512 and frame advance of 128 is used, geoICA does not spec-

ify a STFT. However, in order to place both algorithms in an even setting,

we perform geoICA using speech that is STFT transformed using the same

parameters as those specified for the LOST algorithm. Furthermore, we use

geoICA with its default number of iterations, which is 10×#samples.

The geoICA algorithm specifies no method to separate the sources once

Â is found (such as L1-norm minimisation), therefore we measure the perfor-

mance of the algorithms using the Generalised Crosstalk Error (GCE) (Theis

et al., 2004) between A and Â:

GCE = min
L∈Π
‖A− ÂL‖, (2.19)

where the minimum is taken over the group Π of all invertible matrices having

only one non-zero entry per column. When A and Â are equivalent, GCE

vanishes, which indicates that GCE decreases as performance increases.

The results for each experiment are collated, and the average GCE per-

formances, along with their standard deviations, are presented in Table 2.4.

It is evident from the results that the LOST algorithm achieves superior per-
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formance over geoICA when applied to the separation of speech mixtures.

While geoICA performs well for 2m2s, 2m3s and 3m2s; it performs badly for

all other mixtures, even when the observations are transformed to the STFT

domain. The general trend of the results show that geoICA does not perform

well when M > 2, and while the LOST algorithm does exhibit decreased per-

formance, the scale of degradation is not as dramatic as that exhibited by

geoICA. The reason for this may be that geoICA maps the observations to

the unit half-sphere, which may cause difficulties when the sources lie near

the equator. Another reason may be the fact that geoICA is a simple clus-

tering approach that does not specify any particular prior, unlike the LOST

algorithm, which assumes a Laplacian prior.

2.3 Discussion

One of the main benefits of our approach is that a solution for the under-

determined case can be found. In contrast to other similar approaches (Mi-

tianoudis and Stathaki, 2005), the LOST algorithm is not constrained to just

two mixtures. Furthermore, by comparison with the geoICA algorithm, we

have demonstrated that the LOST algorithm produces good results when

M > 2.

The performance of the LOST algorithm is heavily influenced by how

well defined the linear subspaces are in the transform domain. Therefore,

the sparse domain transformation is an integral component of the algorithm,

and appropriate selection of such is required to provide useful results. We

use the STFT transform, which achieves good separation performance for

speech mixtures when an FFT frame size of 512 or 1024 is used. Alternative

transformations such as Gabor or wavelet could also be used. Although, this

may not be necessary as the performance comparison between LOST and

geoICA indicates that the STFT transformation is sufficient to achieve good

separation performance.

The algorithm we present is a batch operation algorithm, which oper-

ates on the entire set of observations. Conversely, an online approach that

operates on an observation-by-observation basis is also possible. We have

previously presented such an algorithm (O’Grady and Pearlmutter, 2004a),

where the PCA computations of the batch algorithm are replaced by the

stochastic gradient algorithm, which converges to the direction of largest
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variance of its input data.

The scheme we use for line estimation involves updating the current line

estimates to the principal eigenvector of the covariance matrix associated

with each line. While this is a perfectly acceptable assumption for small

values of M . For very large hyper spaces, where M is large, such a scheme

may not produce an optimal estimate of the direction of linear subspace. The

same is also true for the γ update. Therefore, to more accurately estimate

the direction and width of a linear subspace in a high dimensional space, a

more sophisticated scheme using the provided eigenvalues may be required.

Throughout our experiments, we have observed on occasion that the ran-

dom initialisation of A affects the performance of the line estimation pro-

cedure. Sensitivity to initial conditions is common among clustering algo-

rithms, and in the case of the LOST algorithm, such a scenario is indicated

when γ < 1. In this event, we suggest that A is reinitialised and that the

experiment is repeated.

Finally, occasionally we observe that the scheme we use for the adaption

of γ causes the parameter to grow without bounds. This typically happens

when the transform parameters selected produce scatter plots that are not

well defined. When this behaviour is observed, we recommend that γ is fixed

to some suitably large value. Alternatively, we have observed that increasing

the dynamic range of the mixtures works on occasion.

2.4 Conclusion

In this chapter, we presented an EM algorithm that identifies linear sub-

spaces that cross the origin, we have illustrated how such a problem arises

in the context of blind source separation of instantaneous mixtures, where

mixture matrix columns correspond to linear subspaces in a scatter plot.

This method, combined with a transformation into a sparse domain and an

L1-norm optimisation, constitutes the LOST algorithm, which provides a

solution for the blind source separation of instantaneous mixtures with an

arbitrary number of mixtures and sources. We performed an extensive in-

vestigation on the general separation performance of the LOST algorithm,

which yielded good results, and demonstrated the algorithm’s robustness in

the presence of noise. Furthermore, we demonstrated that the LOST algo-

rithm performs well when compared to the geoICA algorithm.
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CHAPTER 3

Perceptual Evaluation of the NMF Objective

Since the introduction of the NMF algorithm by Lee and Seung (2001), the

two originally proposed reconstruction objectives—Squared Euclidean Dis-

tance and Kullback-Leibler Divergence—have remained the most popular

choice for implementation of the algorithm. These objectives can be used

effectively to measure the reconstruction error of the factorisation. However,

they may not necessarily reflect the subjective realities of how a person would

perceive the signal. A more appropriate way to measure the reconstruction

error for perceptible data is to develop a generalised receiver model of the

target sense. In the case of audio, the receiver is ultimately the ear and the

perception of sounds is determined by its psychoacoustic properties. Such

evaluation methods apply greater weight to perceptually important features

of the data.

For many years the speech compression community have employed psy-

choacoustic results in speech quality measures (Quackenbush et al., 1988).

Audio encoders achieve compression by exploiting the fact that some of

the audio information presented at the ear is not detectable by the listener

(Painter and Spanias, 2000). In the case of NMF of speech data, it would

be desirable that the reconstruction objective focus on the more perceptu-

ally relevant features of the data. With this in mind, we investigate the

perceptual properties of a parameterisable divergence known as the beta di-

vergence (Kompass, 2005) when used in an NMF algorithm that is applied
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to speech data. The beta divergence is tested for a range of β values and the

resultant reconstructions are perceptually evaluated using the noise-to-mask

ratio (Brandenburg, 1987). By way of comparison, we also present a percep-

tually weighted version of NMF that utilises the noise-to-mask ratio as its

reconstruction objective.

In contrast to the LOST algorithm, where the algorithm learns the pa-

rameters of an LMM that factorise probability densities, NMF factorises a

non-negative matrix, V, into matrices containing bases, W, and activations,

H. Furthermore, the LOST algorithm estimates the sources by applying

L1-norm minimisation to the original observations in a sparse domain. Con-

versely, NMF does not separate sources using the original data and instead

synthesises the sources using the discovered bases and activations. Since the

LOST algorithm does not synthesise the sources from learned features, a

perceptual evaluation of the algorithm is not required.

This chapter is organised as follows: We present an overview of psy-

choacoustic phenomena and discuss a perceptual evaluation method that is

based on such phenomena in Section 3.1. We present the objective functions

that are under investigation, discuss their symmetry properties, and present

NMF algorithms that use these objectives in Section 3.2. The reconstruc-

tions produced by the presented algorithms are perceptually evaluated and

the results are discussed in Section 3.3. The chapter closes with a discussion

and conclusion.

3.1 Psychoacoustics

Psychoacoustics is the branch of psychology that studies human acoustical

perception. Psychoacoustic phenomena are elucidated by observing the re-

sponse of a human subject to different sound stimuli. These stimuli may

include a single tone or a narrow-band noise signal. Psychoacoustic effects

have been shown to occur between stimuli that occur at the same time, while

other effects occur over intervals of time (Zwicker and Fastl, 1999). The dis-

covered phenomena are also known to be very dependent on physiology of the

ear. In this section, we introduce the psychoacoustic phenomena that affect

how we perceive sound by discussing the experimental procedures involved

in investigating such phenomena.
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3.1.1 Psychoacoustic Experimental Methods

The basis of the following psychoacoustic experiments is the notion of tonal

detection thresholds. Tonal detection thresholds are used to express the per-

ceived intensity of the stimulus, and are measured in terms of Sound Pressure

Level (SPL). The SPL expresses the intensity of stimulus sound pressure

in decibels (dB) relative to an internationally defined reference level, i.e.,

LSPL = 20 log10 (p/p0) dB, where p is the sound level of the stimulus in Pas-

cals, and p0 is the standard reference level of 20 micropascals. The dynamic

range of the intensity for the human auditory system is about 150 dBSPL,

which includes sounds that range from the limits of detection for low in-

tensity (quiet) stimuli, up to the threshold of pain for high intensity (loud)

stimuli. Typical SPL levels for some commonly occurring sounds include 30

dBSPL for a whisper, 70 dBSPL for conversational speech and 140 dBSPL for

a jet engine. The psychoacoustic phenomena addressed in this section are

characterised in terms of SPL.

3.1.2 Hearing Threshold

A first step towards a perceptual model is to determine the tone detection

threshold required for detection of each frequency in the hearing spectrum.

This is known as the absolute threshold of hearing in quiet, and is measured

experimentally by progressing through the frequencies of the spectrum allow-

ing the subject to modulate the intensity of a tone until it becomes audible.

The absolute threshold is measured in dBSPL and is approximated by the fol-

lowing non-linear function, which is representative of a young listener with

acute hearing (Terhardt, 1979),

Tq(f) = 3.64

(

f

1000

)−0.8

− 6.5e−0.6( f

1000−3.3)
2

+ 10−3

(

f

1000

)4

, (3.1)

where f is frequency in Hertz. The behaviour of the function can be de-

scribed by its constituent terms: The first term describes the low-frequency

cutoff of hearing, the second describes the increased sensitivity of the ear

around 3 kHz, and the third describes the high-frequency cutoff. A plot of

the threshold function is presented in Figure 3.1. It can be seen that for

low frequencies, the threshold requires relatively high SPL reaching about 40
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Figure 3.1: The absolute threshold of hearing in quiet. Across the spectrum of
human hearing, the threshold quantifies the SPL necessary at each frequency such
that an average listener detects a pure tone stimulus in a noiseless environment.

dBSPL at 50 Hz. The level at 300 Hz has dropped by about 30 dBSPL. For fre-

quencies between 0.5 and 2 kHz, the threshold remains almost independent

of frequency, followed by a very sensitive bump at around 3 kHz. For fre-

quencies above 10 kHz the threshold increases sharply with some frequencies

remaining inaudible for older subjects irrespective of SPL.

3.1.3 Masking Effects

The threshold in quiet only considers a subject’s response to single tones.

When the subject’s response to multiple simultaneous tones is considered,

a phenomenon known as simultaneous masking is observed. Simultaneous

masking describes the inaudibility of weaker tones (the maskee) when in

close proximity to louder tones (the masker). Masking of one tone by an-

other occurs more acutely when both tones reside in a predefined bandwidth

known as the critical bandwidth. This behaviour results from the operation

of the cochlea, which can be viewed from a signal processing perspective as a

bank of overlapping bandpass filters, where the passbands are of nonuniform

bandwidth and the bandwidths increase with frequency. These passbands

define the critical bandwidths, and are determined experimentally using the
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Table 3.1: Idealised Critical Band Parameters (After Scharf (1970)).
Critical Centre Bandwidth Critical Centre Bandwidth

Band No. Freq. (Hz) (Hz) Band No. Freq. (Hz) (Hz)

1 50 -100 14 2150 2000-2320
2 150 100-200 15 2500 2320-2700
3 250 200-300 16 2900 2700-3150
4 350 300-400 17 3400 3150-3700
5 450 400-510 18 4000 3700-4400
6 570 510-630 19 4800 4400-5300
7 700 630-770 20 5800 5300-6400
8 840 770-920 21 7000 6400-7700
9 1000 920-1080 22 8500 7700-9500
10 1175 1080-1270 23 10500 9500-12000
11 1370 1270-1480 24 13500 12000-15500
12 1600 1480-1720 25 19500 15500-
13 1850 1720-2000

following procedure: A single tone and a narrow-band noise signal with time

varying bandwidth are centred at the same frequency. As the noise band-

width increases, the noise energy increases resulting in an elevated tone de-

tection threshold. However, there will come a point where an increase in

bandwidth does not result in an increase in tone detection threshold, indi-

cating that only a limited band of noise acts to mask the tone; this is the

critical bandwidth.

Idealised critical band parameters (Scharf, 1970) are presented in Ta-

ble 3.1, and are approximated by the following expression (Zwicker and Fastl,

1999)

CB(f) = 25 + 75

[

1 + 1.4

(

f

1000

)2 ]0.69

(Hz), (3.2)

which is plotted in Figure 3.2. For an average listener, the critical bandwidth

remains constant at about 100 Hz up to 500 Hz, and increases to approx-

imately 20% of centre frequency above 500 Hz. The critical bandwidth is

usually represented using the bark scale, where the centre frequencies of each

band are equally spaced, and a distance of one critical band is referred to

as one Bark. The following function (Zwicker and Fastl, 1999) is used to

convert from frequency in Hertz to the Bark scale,

B(f) = 13 arctan(0.00076f) + 3.5 arctan

[(

f

7500

)]2

(Bark). (3.3)

A plot of Eq. 3.2 in the Bark domain is presented in Figure 3.3. It is evident

from the graph that the spacing of critical bands is non-uniform on the Hertz

scale, but uniform on a Bark scale.
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Figure 3.2: Critical bandwidth as a function of centre frequency.

Simultaneous masking effects can be measured experimentally using a

similar procedure. The two most commonly used approaches are Noise-

Masking-Tone (NMT) and Tone-Masking-Noise (TMN). In the NMT ap-

proach a fixed bandwidth narrow-band noise signal masks a tone within the

same critical band: The intensity of the tone is fixed at a constant value,

while the intensity of the narrow-band noise is increased until the tone be-

comes inaudible. The TMN approach employs the reverse of this procedure,

where the intensity of the narrow-band noise is fixed and the tone intensity

is variable. The difference between the intensity of the masker and maskee is

known as the Signal-to-Mask Ratio (SMR). Numerous studies investigating

NMT and TMN for random noise and pure tone stimuli have appeared over

the years. For example, in a reported NMT study (Egan and Hake, 1950) a

critical band noise masker centred at 410 Hz with an intensity of 80 dBSPL

masks a 410 Hz tone with an intensity of 76 dBSPL, resulting in a SMR of 4

dB at the threshold of detection. The threshold SMR increases as the tone

is shifted above or below 410 Hz. In a similar TMN study (Schroder et al.,

1979), a critical band noise masker centred at 1 kHz with an intensity of 56

dBSPL is masked by a tone centred at the same frequency at an intensity

of 80 dBSPL. Here, the SMR is 24 dB. An interesting observation from this

comparison is that even though the intensity of the masker is identical in each

case, the SMR is markedly different; indicating that simultaneous masking
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Figure 3.3: Plot of frequency to Bark domain mapping for Eq. 3.2, where +
indicates the centre frequencies for each band and ⋄ indicates the idealised centre
frequencies of Table 3.1.

is an asymmetric process, and that significantly greater masking power is

associated with noise maskers.

Simultaneous masking is not confined to the bandwidth of a single critical

band; stimuli can also have a predictable effect on the detection thresholds

in other critical bands. This effect is known as the spread of masking. The

effects of the spread of masking can be determined experimentally using a

tone-masking-tone procedure. The procedure is similar to determining the

absolute threshold of hearing in quiet. The difference being that the tone

detection threshold for each frequency is measured in the presence of a single

tone fixed at a specified frequency and intensity. The effect of the masking is

asymmetric, resulting in a steep decrease in tone detection threshold from the

masker to lower frequencies, whereas a more gentle decrease is experienced in

the direction of higher frequencies (Zwicker and Fastl, 1999). This behaviour

is modelled on the Bark scale using a triangular spreading function, with the

peak of the triangle corresponding to the critical band under consideration,

zc. The slope for Bark values less than zc is fixed, while the slope for values

larger than zc is dependent on the intensity of the stimuli in the corresponding

critical bands (Terhardt, 1979).

Masking effects also occur between stimuli over small intervals of time,
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where a sound stimulus renders an immediately preceding (backward mask-

ing) or following (forward masking) stimulus inaudible. Temporal masking

is characterised by exponential attenuation from the onset and offset of the

masker, where the onset attenuation lasts for approximately 10 ms, and the

offset attenuation approximately 50 ms.

3.1.4 Psychoacoustic Model

The results from studies of these psychoacoustic phenomena have created

a wide body of knowledge about how the ear works. Over the years, this

information has been used to form analytical approximations, which replicate

the operation of the different processes within the ear. Such models result

in sound representations that correspond to the physical activity of the hair

cells along the basilar membrane. These patterns are known as excitation

patterns and can be used to determine the masking pattern for the frequencies

in a sound. This work has led to the development of models of auditory

perception that utilise masking patterns to evaluate sound quality in a much

more subjective way. Such perceptual evaluation methods have long been

adopted by the speech compression community (Brandenburg, 1987), and

are an important discovery necessary for the invention of lossy compression

standards such as MP3.

In Appendix B we detail the psychoacoustic model used to create our

masking patterns. The model is based on the PEAQ algorithm (Perceptual

Evaluation of Audio Quality (Thiede, 1999)), which is an internationally

recognised standard for the measurement of perceived audio quality.

3.1.5 Noise-to-Mask Ratio

The importance of the masking pattern is that it indicates the tone detection

threshold for each frequency at each point in time. Signals that are beneath

this threshold are inaudible to the listener. In the context of speech pro-

cessing, a masking pattern can be used to formulate a perceptual evaluation

measure called the Noise-to-Mask Ratio (NMR); the noise-to-mask ratio is

calculated in the Bark domain, and measures the level of noise between a

reference signal and its estimate, in relation to the masking pattern for the
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reference signal:

NMR =
∑

kn

[(A−B)2]kn

[MA]kn

, (3.4)

where A is the magnitude spectra of the reference signal, B is the magnitude

spectra of the estimate and MA is the masking pattern for A; perceptual

performance increases with decreasing NMR. Furthermore, NMR can be used

as an objective to be minimised, with the result that the reconstruction noise,

which is ordinarily spread throughout the spectrum, is concentrated in the

areas of the spectrum that are masked.

3.2 The NMF Objective

An important component in the formulation of the NMF algorithm is the

comparison of the matrix to be factorised (V) and its reconstructed esti-

mate (WH). This comparison is performed using an objective function

that utilises some function of dissimilarity between the two, and ensures

non-negativity. The NMF algorithm minimises the specified objective while

enforcing a non-negativity constraint on the resulting factors:

min
W,H

D(V‖W,H) W,H ≥ 0,

where the resultant reconstructions are characterised by the penalty scheme

enforced by the objective function, which is dependent on the form of the

objective.

3.2.1 Symmetry Properties of Objective Functions

The asymmetric effects displayed by simultaneous and temporal masking

motivates our interest in the symmetry properties of the objective function.

An objective function that displays similar asymmetry may be used to shape

the reconstruction error such that it is inaudible by the human ear. We

discuss two notions of symmetry, which we refer to as metrical symmetry

and error symmetry.

An objective function is metrically symmetric if D(a, b) = D(b, a), which

is a property of metric spaces and simply states that the distance from a to

b is the same as from b to a. The importance of this property is that the
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objective does not specify an a priori reference variable, i.e., a and b are

treated equally. Metrically symmetric objectives are defined by a distance

metric, whereas metrically asymmetric objectives are typically defined by a

divergence measure. An objective function can penalise additive error more

than subtractive error, or vice versa, where the error ǫ is additive when

b = a + ǫ and subtractive if b = a− ǫ. Additive error is penalised more than

subtractive error if

D(a, a + ǫ) > D(a, a− ǫ), a > ǫ

and vice versa if the inequality is reversed; both types of error are penalised

symmetrically if

D(a, a + ǫ) = D(a, a− ǫ), a > ǫ.

3.2.2 Objectives Under Investigation

Below we present the objectives that are investigated in our experiments, dis-

cussing both symmetry properties and statistical considerations. A selection

of these objective functions are plotted in Figure 3.4.

Squared Euclidean Distance

The Squared Euclidean Distance (SED) is a measure of the ordinary distance

between two points. It is metrically symmetric and penalises both additive

and subtractive error equally:

DSED(A,B) =
1

2

∑

ij

(aij − bij)
2 , (3.5)

where A and B are the matrices to be compared, and aij and bij are the

matrix elements.

Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) (Kullback, 1959) is a directed diver-

gence that has its roots in information theory, and is based on the discrim-

inant information between two distributions. It measures the log likelihood
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of an observation being in one distribution over another distribution. For

speech processing applications, such a likelihood measure indicates the simi-

larity between two speech spectrograms. KLD is metrically asymmetric and

penalises additive error less than subtractive error. A generalised version of

KLD is commonly used for NMF,

DKLD(A‖B) =
∑

ij

(

aij log
aij

bij

− aij + bij

)

. (3.6)

Itakura-Saito Divergence

The Itakura-Saito Divergence (ISD) (Itakura and Saito, 1968) is a directed

divergence, which was designed as a similarity measure for speech signals.

ISD was formulated from the linear predictive coding analysis equations,

and corresponds to a maximum likelihood estimate for the parameters of an

i-th order Gaussian autoregressive process, on asymptotically long observed

frames of speech. The heritage of ISD makes it an important candidate for

the NMF of speech data; ISD is metrically asymmetric and penalises additive

error less than subtractive error,

DISD(A‖B) =
∑

ij

(aij

bij

− log
aij

bij

− 1
)

. (3.7)

Beta Divergence

The Beta Divergence (BD) (proposed as an objective for NMF by Kompass

(2005); also referred to as the modified alpha divergence (Cichocki et al.,

2006)) is a parameterised divergence measure that encompasses SED, KLD

and ISD. For β = 2, SED is obtained; for β → 1, the divergence tends to

KLD; and for β → 0, it tends to ISD. The choice of the β parameter depends

on the statistical distribution of the data, and requires prior knowledge. The

utility of this divergence is that it enables the investigation of the above

measures, and the fractional divergences between them.

DBD(A‖B, β) =
∑

ij

(

aij

aβ−1
ij − bβ−1

ij

β(β − 1)
+ bβ−1

ij

bij − aij

β

)

(3.8)
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Noise-to-Mask Ratio

The noise-to-mask ratio is metrically asymmetric and penalises both additive

and subtractive error equally. This objective utilises masking thresholds that

are constructed from excitation patterns, as described in Section 3.1. The

objective minimises the reconstruction error variance under the additional

constraint that the energy of the estimation error is beneath the masking

threshold MA,

DNMR(A‖B,C,MA) =
∑

bj

(
∑

i cbi aij −
∑

i cbi bij)
2

mbj

. (3.9)

Here, A and B contain magnitude spectra information, and C performs a

frequency (Hz) to Bark domain transformation, which is necessary as MA is

in the Bark domain.

It is important to note that the NMR objective achieves masking using

the additional constraint of the masking threshold, while the proceeding ob-

jectives exhibit auditory masking properties that are purely based on signal

detection.

3.2.3 NMF Algorithms

For the purposes of our investigation, we select the beta divergence as the

reconstruction objective for NMF. We perform experiments using this di-

vergence for a range of different β values, and perceptually evaluate the

reconstructions. The NMF objective utilising beta divergence is

DBD(V‖W,H, β) =
∑

ik

(

vik
vβ−1

ik − [WH]β−1
ik

β(β − 1)
+ [WH]β−1

ik

[WH]ik − vik

β

)

,

(3.10)

which results in the following update rules

wij ← wij

∑N
k=1(vik/[WH]2−β

ik )hjk
∑N

k=1[WH]β−1
ik hjk

, hjk ← hjk

∑M
i=1 wij(vik/[WH]2−β

ik )
∑M

i=1 wij[WH]β−1
ik

.

(3.11)

We also investigate convolutive NMF: Replacing WH in Eq. 3.10 with the

convolutive generative model, Λ =
∑To−1

t=0 Wt

t→
H, results in the following
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Figure 3.4: Plot of NMF objective functions: Solid line: Itakura-Saito diver-
gence; Dashed line: Kullback-Leibler divergence; Dotted line: Squared Euclidean
distance. The curves indicate the penalty scheme imposed by each objective,
where the reconstruction error is represented on the x-axis, while the associated
penalty is represented on the y-axis. Here, the reference variable is 3, where an
estimate of 3 has no penalty.

update rules

wij t ← wij t

∑T
k=1(vik/[Λ]2−β

ik )
t→
hjk

∑T
k=1[Λ]β−1

ik

t→
hjk

, hjk ← hjk

∑M
i=1 wij t

←−t

(vik/[Λ]2−β
ik )

∑M
i=1 wij t[

←t

Λ ]β−1
ik

.

(3.12)

As a means of providing a comparative benchmark for an ideal perceptual

performance, we investigate an NMF algorithm that utilises NMR as its

reconstruction objective;

DNMR(V‖W,H,C,MV) =
∑

bk

(
∑

i cbi vik −
∑

i cbi [WH]ik)
2

mbk

, (3.13)

which results in the updates

wij ← wij
[CT(M−1

V ⊗ (CV))HT]ij

[CT(M−1
V ⊗ (CWH))HT]ij

, (3.14a)
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NMF with Beta Divergence

Obj=sum(sum((V.*((((V+1E-9).^(b-1))-((W*H+1E-9).^(b-1)))./(b*(b-1)+1E-9))

(((W*H+1E-9).^(b-1)).*(((W*H)-V)./(b+1E-9))))));

W=W.*((V./(W*H+1e-9).^(2-b))*H’)./((W*H+1e-9).^(b-1)*H’);

H=H.*(W’*(V./(W*H+1e-9).^(2-b)))./(W’*(W*H+1e-9).^(b-1));

NMF with NMR Reconstruction Objective

Obj=0.5*sum(sum((C*V-C*W*H).^2./Mv));

Minv=Mv.^(-1);

W=W.*(C’*(Minv.*(C*V))*H’)./(C’*(Minv.*(C*W*H))*H’+1e-9);

H=H.*((C*W)’*(Minv.*(C*V)))./((C*W)’*(Minv.*(C*W*H))+1e-9);

Convolutive NMF with Beta Divergence

Obj=sum(sum((V.*((((V+1E-9).^(b-1))-((lambda+1E-9).^(b-1)))./(b*(b-1)+1E-9))

(((lambda+1E-9).^(b-1)).*(((lambda)-V)./(b+1E-9))))));

for t=1:To

Vt(:,:,t)=(W(:,:,t)*padshift(H,t-1));

end

lambda=sum(Vt,3);

for t=1:To

Hs=padshift(H,t-1);

W(:,:,t)=W(:,:,t).*((V./(lambda+1e-9).^(2-b))*Hs’)./((lambda).^(b-1)*Hs’+1e-9);

end

for t=1:To

Qs=padshift((V./(lambda).^(2-b)),-(t-1));

Ps=padshift((lambda.^(b-1)),-(t-1));

Ht(:,:,t)=H.*(W(:,:,t)’*Qs)./((W(:,:,t)’*Ps)+1e-9);

end

H=mean(Ht,3);

Figure 3.5: Matlab notations for NMF algorithms using beta divergence and
NMR.

hjk ← hjk
[(CW)T(M−1

V ⊗ (CV))]jk

[(CW)T(M−1
V ⊗ (CWH))]jk

, (3.14b)

where ⊗ denotes an element-wise multiplication, and C is a Nc ×M matrix

(Nc < M) that performs Bark domain transformation (Section B.4). By

including the frequency grouping transformation in the objective, we avoid an

inverse transformation from the Bark to magnitude spectral domain. Matlab

notations for these algorithms are presented in Figure 3.5.
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3.3 Experiments

In this section, we detail the procedure used in our investigation and dis-

cuss our results. We perform a number of experiments on a speech signal

comprised of both male and female speakers, which is constructed as fol-

lows: 10 sentences are randomly selected from the TIMIT (Garofolo et al.,

1993) speech database (5 male 5 female) producing 30 seconds of mono-

phonic speech, which is subsequently down-sampled from 16 kHz to 8 kHz.

The speech signal is calibrated to an intensity of 70 dBSPL, which corresponds

to conversation-level speech, and a magnitude spectrogram is created: The

signal is framed into overlapping blocks of a specified size and windowed by

a hamming function, a short-term FFT is performed on each block and a

magnitude spectrogram, V, is constructed.

3.3.1 Conventional NMF

For our experiments, a number of parameters remain constant throughout.

These include an FFT frame advance of half the FFT frame size, and an

algorithm run limit of 150 iterations. For our variable parameters we use FFT

frame sizes of 128, 256, 512, 1024 & 2048, where M = FFT size
2

+ 1, with the

number of objects, R, specified as a fraction of M , R = {M
16

, M
8
, M

4
, M

2
,M}.

The NMF algorithm is tested for a range of β values between 0 and 2, where

β increases in steps of 0.1 resulting in 21 different values. As the experiment

is run, the factors W & H are obtained from the algorithm every 5 iterations,

and are used to create an estimate of V. The reconstruction quality for each

estimate is measured using the total noise-to-mask ratio,

NMRtot = 10 log10

[

1

T

T
∑

k=1

(

1

M

M
∑

i=1

([V]ik − [WH]ik)
2

[TV ]ik

)]

(dB), (3.15)

and the signal-to-noise ratio,

SNR = 20 log10

[ ‖V‖fro
‖V − (WH)‖fro

]

(dB). (3.16)

In this way, we observe the performance for each β as the algorithm converges.

This process is repeated for 5 Monte Carlo runs resulting in a total of 2625

(5× 5× 21× 5) experiments.
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Table 3.2: Conventional NMF: β Values for Optimal NMRtot and SNR.
NMRtot SNR

R = M × R = M ×
1

16

1

8

1

4

1

2
1 1

16

1

8

1

4

1

2
1

FFT
Size

128 0.7 0.8 0.8 0.7 0.6 2.0 1.8 1.6 1.3 0.9
256 1.0 1.0 0.9 0.8 0.7 1.9 1.8 1.6 1.3 1.1
512 1.2 1.0 1.0 0.9 0.9 2.0 1.9 1.6 1.6 1.3
1024 1.1 1.2 1.2 1.0 0.9 1.8 1.8 1.6 1.6 1.3
2048 1.1 1.2 1.1 0.8 0.7 1.7 1.6 1.4 1.0 0.9
4096 1.1 0.8 0.7 0.7 0.5 1.2 1.0 1.0 0.7 0.7

Results

The results from the investigation are collated and presented in two figures:

Figure 3.6 contains six rows and five columns of NMRtot performance sur-

faces, where each row represents a different FFT size and each column a

different R. For each surface the x-axis represents β, the y-axis represents

iterations and the z-axis is the NMRtot expressed in dB. Figure 3.7 provides

corresponding SNR surfaces—note that in order to properly view the SNR

surfaces the scales on the x-axis and y-axis are the reverse of Figure 3.6.

From inspection of the NMRtot results we see that for each FFT size as

R increases, the performance surface becomes more concave and the surface

minima becomes more defined; it is also evident that the surface minima

travels towards β = 0. As FFT size increases from 128 to 1024 for all R

there is a slight degradation of performance, but essentially the results vary

very little, for FFT size = 2048 and 4096 there is a jump in minimum NMR.

This jump in performance may be due to the statistics of our speech data:

Using the reduced 39 phoneme symbol set (Lee and Hon, 1989) our speech

data contains 369 phonemes (not including silences) with a maximum length

of 182 ms, an average length of 80 ms and minimum length of 25 ms. At these

FFT sizes the length of each object is 256ms and 512ms respectively, which is

larger than our maximum phoneme length. The extensive length of the FFT

size, along with a comparatively large R, allow for a more accurate estimation

as our auditory objects are represented by fewer basis vectors. Similarly, a

corresponding performance jump is evident from the SNR surfaces.

In order to find the optimal β for each surface, we calculate the average

NMRtot value for each β over all iterations, and select the β value that

corresponds to the minimum NMRtot. We use the same procedure for SNR,

this time selecting β that corresponds to the maximum SNR. The resultant

optimal parameters for NMRtot and SNR are presented in Table 3.2.
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Figure 3.6: NMRtot performance surfaces for the NMF algorithm, where smaller
values indicate better performance. Each row represents a different FFT size,
and each column represents a different R. For each plot the x-axis represents β,
the y-axis represents iterations and the z-axis is the NMRtot, which is expressed
in dB. Note that the scales for the z-axis change for each plot. It is evident
that for each FFT size as R increases, perceptual performance increases and the
minima travels towards β = 0.
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Figure 3.7: SNR performance surfaces for the NMF algorithm. Each row repre-
sents a different FFT size, and each column represents a different R. For each
plot the x-axis represents β, the y-axis represents iterations and the z-axis is the
SNR expressed in dB. Note that the scales for the z-axis change for each plot. In
contrast to the NMRtot performance surfaces, the SNR surface maximum, which
indicates optimal reconstruction, is positioned at a different β . Although, the
optimal β does exhibit the same drift towards 0 as R increases.
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Figure 3.8: NMF reconstructions for a sentence (SX181) from a female speaker
(SMA0). Row 1 & 2 contain the speech waveform and its log-power spectrogram,
row 3 & 4 contain the NMF estimates using both good and poor selections for
β. It is evident that when β = 0.5, the features of the original spectrogram are
better preserved in the reconstruction.

NMF Reconstructions

To illustrate the performance of the algorithm with an optimal β parame-

ter, we perform an experiment on a randomly chosen female (speaker: SMA0,

sentid: SX181) and male (speaker: DMT0, sentid: SX302) sentence from the

TIMIT database. The chosen speech segments have different speakers and

sentences to those used in our beta divergence investigation. We perform

the same preprocessing and use the same constant parameters specified pre-

viously. Variable parameters are set to the following values: FFT size =

128 and R = 32. For the selected algorithm parameters, Figure 3.6 indi-

cates that β = 0.5 provides superior perceptual quality over β = 2, we use

these values in our experiments. The reconstructions for the female and male

experiments are presented in Figure 3.8 and Figure 3.9 respectively. Both

figures contain the waveform and the log-power spectrogram of the sentence,
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Table 3.3: Reconstruction Experiment Results.

β SNR (dB) NMRtot (dB)

Male
0.5 18 25
2 20 29

Female
0.5 17 25
2 22 29

along with the NMF reconstructions for the specified β values. From the

results presented in Table 3.3 we can see that in both cases β = 0.5 provided

the best NMRtot. It is also evident that if we were to measure the quality

of reconstruction by using the SNR measure, the experiment would indicate

that the reconstruction with poorer perceptual performance provides better

quality.

In order to subjectively validate these results, an audible reconstruction

of the estimate is created. This can be achieved by combining the magnitude

spectrum of the NMF estimate with the phase of the original input (which

represents a Polar form of the complex FFT coefficients) and returning to

Cartesian form where an inverse FFT transformation can be performed. The

resultant waveform exhibits perfect phase, and its quality is uniquely depen-

dant on the magnitude spectrum provided by NMF. Therefore, subjective

listening tests should indicate the better β selection. In both of our experi-

ments, the β values that indicated better perceptual performance exhibited

superior subjective performance, thus providing support for our proposed β

values.

The constituent components of speech are evident from the spectrograms

in Figure 3.8 and Figure 3.9. These components are known as phones and

are composed of harmonic series with various pitch inflections or wideband

spectra. Comparison of the waveform spectrograms with their reconstruc-

tion estimates indicate the properties necessary for an objective function to

exhibit good perceptual performance. It is evident that for the β = 0.5 the

formants (harmonic peaks) in the speech are more closely preserved. This is

especially evident for the female sentence at lower frequencies where there is

more energy. The importance of this sensitivity to formant energy is that if

these frequencies are properly represented in the reconstruction, the masking

properties of such frequencies are elevated, resulting in heightened masking

of the approximation error when perceived by a listener. In this way, the ob-
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Figure 3.9: NMF reconstructions for a sentence (SX302) from a male speaker
(DMT0). Row 1 & 2 contain the speech waveform and its log-power spectrogram,
row 3 & 4 contain the NMF estimates using both good and poor selections for
β. It is evident that when β = 0.5, the features of the original spectrogram are
better preserved in the reconstruction.

jective exhibits auditory masking properties that are based solely on signal

detection.

3.3.2 NMF Using NMR as an Objective

By way of comparison, we repeat the experiments of the proceeding sec-

tion for an NMF algorithm that uses NMR as its reconstruction objective

(Eq. 3.14). The experiment parameters remain the same except for the β val-

ues, which are not used in this context. Convergence curves that indicate the

NMRtot performance of the algorithm at each iteration are presented in Fig-

ure 3.11, and can be contrasted with the performance surfaces in Figure 3.6.

It is evident that the rate of convergence for our perceptually weighted al-

gorithm is much slower than for our previous experiments, and therefore

requires more iterations to achieve a NMRtot similar to those observed in
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Figure 3.10: Reconstructions for NMF using NMR as an objective, where Nc =
67. A log-power spectrogram of a sentence from a male speaker using an FFT
frame size of 128 is presented in row 1, while its reconstruction is presented in row
2. A spectrogram and reconstruction for an FFT size of 256 is presented in row 3
& 4, respectively. It is evident that when FFT frame size is much larger than Nc,
as is the case for row 4, the reconstruction produced spreads the energy in the
Bark domain over multiple FFT bins (reverse of frequency grouping), resulting
in artifacts in its audible reconstruction.

Figure 3.6. Overall, the results indicate that NMF utilising beta divergence,

and an appropriately selected β, results in faster convergence and comparable

NMRtot performance to the perceptually weighted algorithm. However, the

perceptually weighted algorithm does not require the selection of additional

parameters, and will produce better results if run for long enough.

There is an important caveat in relation to audible reconstructions: Since

the noise-to-mask ratio objective is calculated in the Bark domain, and V

is in the magnitude spectral domain, an implicit inverse frequency grouping

procedure is performed. For our data, where the sample frequency is 8 kHz,

the energy in each FFT frame is grouped into 67 critical bands, Nc = 67

(Appendix B). Since, the Bark domain transformation is specified by an

under-determined matrix, the inverse frequency grouping procedure is ill-
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Figure 3.11: NMRtot performance curves for NMF using NMR as an objective.
Each row represents a different FFT size, and each column represents a different
R. For each plot the x-axis represents iterations and the y-axis represents NMRtot,
which is expressed in dB. It is evident that the additional constraints introduced
by the masking threshold scaling has a degenerative effect on the convergence
rate of the algorithm, with the effect worsening as FFT Size and R increases.
However, when the algorithm is run for enough iterations, it produces very good
NMRtot results.
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Table 3.4: Convolutive NMF: β Values for Optimal NMRtot.

R =
20 40 80 120 240

FFT
Size

128 0.8 0.8 0.7 0.7 0.7
256 1.0 1.0 0.9 0.9 0.8
512 1.0 1.2 1.1 1.0 0.9
1024 1.3 1.3 1.2 1.1 1.1
2048 1.4 1.3 1.3 1.3 1.1

defined and results in energy spreading when returning to the magnitude

spectral domain, which produces artifacts in the audible reconstructions.

This effect is more evident the larger FFT size is in relation to Nc, and may

be ameliorated by decreasing FFT size (as illustrated in Figure 3.10), or

increasing the critical band resolution in the Bark domain.

3.3.3 Convolutive NMF

The additional computation required for the convolutive NMF algorithm (ef-

fectively To instances of conventional NMF per reconstruction), together with

the computationally intensive model used to create the masking patterns,

make an extensive perceptual evaluation of the convolutive beta divergence

NMF algorithm prohibitively time consuming. In contrast to our investiga-

tion for conventional NMF, in which we explored a wide parameter space, we

fix To to a minimum of 0.176 seconds and investigate the perceptual perfor-

mance of the algorithm using the following variable parameters: FFT size =

{128, 256, 512, 1024, 2048}, R = {20, 40, 80, 120, 240} and an FFT frame ad-

vance of half the FFT size. The FFT size and frame advance used affect our

ability to achieve the desired To; consequently, we use To = {21, 10, 5, 2, 1}
(in order of corresponding FFT size), which results in the following temporal

extents: 0.176, 0.176, 0.192, 0.192, 0.256} (expressed in seconds). We use the

same data and β values as those used in the conventional NMF investigation,

and repeat each experiment for 5 Monte Carlo runs.

Results

NMRtot results are presented in Figure 3.12, which contains a performance

plot for each experiment, where each row represents a different FFT size and
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Figure 3.12: NMRtot performance surfaces for convolutive NMF algorithm. Each
row is for a different FFT size, and each column in the row is for a different
R. For each plot the x-axis represents β, the y-axis represents iterations and
the z-axis is the NMRtot, which is expressed in dB. Note that the scales for the
z-axis change for each plot. It is evident that for each FFT size as R increases
the performance surface becomes more defined and travels towards β = 0.
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Figure 3.13: Auditory objects discovered from the magnitude spectrum of mixed
speech using a good (β = 1) selection for β.

each column a different R. The optimal β values for each plot are presented

in Table 3.4. We can see from the results, that convolutive NMF behaves in

a similar way to conventional NMF, where β drifts towards 0 as the number

of objects, R, increases. In General, for both investigations, the smaller the

FFT size and the larger R is, the closer optimal β is to 0, with β = 0.5 being

the smallest value encountered overall.

To illustrate the performance of convolutive NMF using the beta diver-

gence objective, auditory objects that exhibit good and bad perceptual per-

formance are extracted by the algorithm, where β = 1 (Figure 3.13) and

β = 0 (Figure 3.14) respectively. We can see by inspection that for β =

0 the auditory objects are characterised by dark dots as opposed to pho-

netic pitch inflections (β = 1). This effect indicates that for our algorithm

parameters, the penalty scheme of the Itakura-Saito divergence, i.e., weak

penalty for overestimation, results in some features dominating others. Fur-

thermore, audible reconstructions reveal the presence of intermittent musical

noise, where tonal elements in the phones are over overestimated.
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Figure 3.14: Auditory objects discovered from the magnitude spectrum of mixed
speech using a poor (β = 0) selection for β.

3.4 Discussion

The quality of the reconstructions produced by the NMF algorithm ulti-

mately depends on two parameters: The number of auditory objects to dis-

cover, as specified by R, and the number of iterations of the algorithm.

Assuming that these parameters are fixed at appropriate values for the data

under consideration, the selection of an appropriate reconstruction objec-

tive becomes important. For perceptible data such a speech, the subjective

quality of NMF reconstructions can be improved by using an objective func-

tion that preserves perceptually important features. In the case of the NMF

algorithm, the presence of such features in the reconstruction elevates the

masking threshold associated with the features, which results in increased

masking of the approximative error. This is auditory masking based purely

on accurate signal detection.

Through our investigation of the beta divergence, we have endeavoured

to illustrate the perceptual properties of the Squared Euclidean distance, the

Kullback-Leibler divergence, the Itakura-Saito divergence, and the fractional

divergences between them. As indicated by Figure 3.6, the optimal β param-

eter is dependant on the FFT size and R. The performance plots also reveal

that the rate of convergence is essentially the same for our selected range of β

values. It is evident from the NMRtot performance surfaces that, for selected
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FFT sizes and R, the slope towards β = 0 may become very steep resulting

in poor NMRtot performance. Audible reconstructions reveal the presence

of musical noise and loud tonal sounds, which is a result of the relatively

low penalty for additive error enforced by the Itakura-Saito divergence. It is

worth noting that optimal β, presented in Table 3.2, never exceeds 1.2; this

may be due to the fact that the human ear perceives loudness in a semiloga-

rithmic way, which is modelled by the log likelihood measures utilised in the

beta divergence. As β tends towards 2 the log terms in the divergence vanish

and the divergence loses its ability to model this psychoacoustic phenomena.

It is evident from the performance surfaces that the optimal β value can

be determined after only a few iterations. A practical approach that can be

used to select an appropriate β parameter, which is specific to the data under

consideration, is to run the algorithm for a small number of iterations over

a range of β parameters. This preliminary step indicates an appropriate β

that can be used in subsequent experiments. It may be tempting to suggest

that an exhaustive investigation such as ours can be avoided by learning an

optimal β directly from the data using a Bayesian approach. However, such

methods cannot be directly applied since β is not a parameter in a statistical

model but rather a parameter that defines a divergence.

The versatility of the beta divergence is that by modulating the β param-

eter we modify the symmetry of the divergence, which enforces a different

penalty scheme for subtractive and additive error. From our results, we can

see that penalising subtractive and additive error equally results in recon-

structions that are not of optimal perceptual quality. It is also evident that

for the accurate comprehension of speech, it is acceptable to use a penalty

scheme that enforces a weak penalty for overestimation, which is justified by

the fact that it is more important to have some portion of a phonetic feature

present as opposed to it being absent.

By way of comparison, we presented an NMF algorithm that utilises

the masking patterns of the input data as an additional constraint. Such

an approach requires additional processing to create the masking patterns,

which are created using sophisticated psychoacoustic models, and detract

from NMF’s ease of implementation.
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3.5 Conclusion

3.5 Conclusion

We have demonstrated the utility of the proposed beta divergence for the

purposes of the NMF of speech spectrograms. By creating auditory mask-

ing patterns for our input data, and measuring the perceptual quality of

NMF reconstructions using the noise-to-mask ratio, we have illustrated the

reconstruction performance of the NMF algorithm for a range of β values.

Furthermore, we have compared our results to a perceptually weighted NMF

algorithm that utilises the noise-to-mask as its reconstruction objective. Fi-

nally, due to the fact that so many variables influence the selection of an

optimal β, and the fact that terms involving fractional powers require ad-

ditional computation, for most applications it may be better to resort to

the Kullback-Leibler Divergence, as it has performed better than both the

Squared Euclidean Distance and Itakura-Saito Divergence throughout our

investigation.
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CHAPTER 4

Convolutive NMF with a Sparseness Constraint

Discovering a representation that allows auditory data to be parsimoniously

represented is useful for many machine learning and signal processing tasks.

Such a representation can be constructed by Non-negative Matrix Factorisa-

tion (NMF) (Section 1.3). For some tasks it may be advantageous to perform

NMF with additional constraints placed on either W or H. One increasingly

popular and powerful constraint is that the rows of H have a parsimonious

activation pattern for the basis contained in the columns of W. This is

the so called sparseness constraint (Field, 1994; Olshausen and Field, 2004).

Moreover, the addition of a sparseness constraint enables the discovery of an

over-complete basis.

Although convolutive NMF produces activation patterns that tend to be

sparse, the addition of the sparseness constraint on H provides a means of

trading off the sparseness of the representation against accurate reconstruc-

tion. Previous algorithms for sparse NMF (Hoyer, 2002; Virtanen, 2003;

O’Grady and Pearlmutter, 2006) have suffered from the scaling problem as-

sociated with the addition of a sparse constraint on H. In order for the

algorithm to behave as required, an additional normalisation step on W is

needed. As will be discussed in Section 4.1.2, this may result in W having

an additive update rule. We overcome this restriction by using a normalised

version of W explicitly in the reconstruction objective, and present an algo-

6Some material in this chapter appeared in O’Grady and Pearlmutter (2006)
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4.1 Sparse Convolutive NMF

rithm that has multiplicative updates for both H and W. Furthermore, the

proposed algorithm uses the beta divergence as its reconstruction objective,

which we have shown to be versatile when used in NMF algorithms that are

applied to speech (Chapter 3).

We extract phones from speech using both convolutive NMF and sparse

convolutive NMF and apply them to a supervised separation scheme for

monophonic mixtures. In contrast, the LOST algorithm is not an appropriate

method for the separation of speakers from a monophonic recording as it

requires a scatter plot of the observations to be constructed, which is not

possible here as there is only one observation.

This chapter is organised as follows: In Section 4.1 we discuss convolu-

tive NMF with an additional sparseness constraint on H, and present an

algorithm that has multiplicative updates. In Section 4.2 we apply sparse

convolutive NMF to speech data, and demonstrate its utility in the extrac-

tion of speech phones. We apply such phone sets to a monophonic mixture

separation task in Section 4.3, and discuss their use in speech coding in

Section 4.4. We complete the chapter with a discussion and conclusion.

4.1 Sparse Convolutive NMF

The specifics of the convolutive NMF algorithm are presented in Section 1.3.2.

For our sparse convolutive NMF algorithm, we use the beta divergence as

the reconstruction objective,

DBD(V‖Λ, β) =
∑

ik

(

vik
vβ−1

ik − [Λ]ik
β−1

β(β − 1)
+ [Λ]ik

β−1 [Λ]ik − vik

β

)

, (4.1)

where β controls the reconstruction penalty and Λ is the current estimate of

V,

Λ =
To−1
∑

t=0

Wt

t→
H;

the j-th column of Wt describes the spectrum of the j-th object t time steps

after the object has begun,
i→
(·) denotes a column shift operator and To is

the length of each object sequence. Combining our reconstruction objective

(Eq. 4.1) with a sparseness constraint on H results in the following objective
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4.1 Sparse Convolutive NMF

function:

G(V‖Λ,H, β) = DBD(V‖Λ, β) + λ
∑

jk

hjk, (4.2)

where the left term of the objective function corresponds to convolutive NMF,

and the right term is an additional constraint on H that enforces sparsity by

minimising the L1-norm of its elements. The parameter λ controls the trade

off between sparseness and accurate reconstruction.

4.1.1 Basis Normalisation

The objective of Eq. 4.2 creates a new problem: The right term is a strictly

increasing function of the absolute value of its argument, so it is possible that

the objective can be decreased by scaling Wt up and H down (Wt 7→ αWt

and H 7→ (1/α)H, with α > 1). This situation does not alter the left term

in the objective function, but will cause the right term to decrease, resulting

in the elements of Wt growing without bound and H tending toward zero.

Consequently, the solution arrived at by the optimisation algorithm is not

influenced by the sparseness constraint.

To avoid the scaling misbehaviour of Eq. 4.2 another constraint is needed:

The scale of the elements in Wt and H can be controlled by normalising the

convolutive bases. Normalisation is performed for each object matrix, Wj,

by rescaling it to the unit L2-norm,

W̄j =
Wj

‖Wj‖
, j = 1, . . . , R, (4.3)

where the matrix Wj is constructed from the j-th column of Wt at each

time step, t = 0, 1, . . . , To − 1. Normalisation of Wj has no adverse effects

on the NMF algorithm, as the objective function (Eq. 4.2) does not depend

on the norm of the object matrices.
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4.1 Sparse Convolutive NMF

4.1.2 Additive W Update

An NMF algorithm that uses Eq. 4.2 as its objective and performs the nec-

essary basis normalisation results in the following update for H.

hjk ← hjk

∑M
i=1 wij t

←−t

(vik/[Λ]2−β
ik )

∑M
i=1 wij t[

←t

Λ ]β−1
ik + λ

. (4.4)

The additional unit norm constraint on each object, Wj, complicates the up-

date rule and impedes the discovery of a suitable diagonally rescaled learning

rate, ηwijt
, which would result in a multiplicative update. Consequently, the

following additive update is used

wijt = wijt + ηwijt

[ T
∑

k=1

(vik/[Λ]2−β
ik )

t→
hjk −

T
∑

k=1

[Λ]β−1
ik

t→
hjk

]

. (4.5)

After this update, any negative values in the set of matrices Wt are set to

zero (non-negativity constraint), and each Wj is normalised.

4.1.3 Multiplicative W Update

A multiplicative update can be obtained by including the normalisation re-

quirement in the objective. Previously, this has been achieved for conven-

tional NMF using the Squared Euclidean Distance reconstruction objective

(Eggert and Körner, 2004). Here, we derive the multiplicative updates for

a convolutive NMF algorithm utilising beta divergence. The classic NMF

update rules (Lee and Seung, 2001) implement gradient descent, our new

updates will also follow this approach. First, we will introduce our new re-

construction objective, which is a modification of Eq. 4.1 where each of the

objects contained in W are normalised,

DBD(V‖∆, β) =
∑

ik

(

vik
vβ−1

ik − [∆]ik
β−1

β(β − 1)
+ [∆]ik

β−1 [∆]ik − vik

β

)

. (4.6)

Here, ∆ is the current estimate of V following the normalisation of Wj

(Eq. 4.3); this normalisation requires that each object is treated separately,
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4.1 Sparse Convolutive NMF

resulting in a column-by-column generative model,

∆ =
To−1
∑

t=0

R
∑

j=1

w̄jt(
t→
hj), (4.7)

where wjt is a column vector and hj is a row vector. By substituting Eq. 4.7

into Eq. 4.2 we obtain

G(V‖∆,H, β, λ) = DBD(V‖∆, β) + λ
∑

jk

hjk. (4.8)

We can now derive the gradient descent update for H,

hjk ← hjk − ηhjk

∂G

∂hjk

. (4.9)

Taking the gradient of Eq. 4.8 with respect to H gives

∂G

∂hjk

=
M
∑

i=1

w̄ijt

←−t

(vik/[∆]2−β
ik )−

M
∑

i=1

w̄ijt[
←t

∆]β−1
ik + λ. (4.10)

Diagonally rescaling the variables (Lee and Seung, 2001) and setting the

learning rate to

ηhjk
=

hjk

∑M
i=1 w̄ijt[

←t

∆]β−1
ik + λ

(4.11)

gives the following multiplicative update rule for H

hjk ← hjk

∑M
i=1 w̄ijt

←−t

(vik/[∆]2−β
ik )

∑M
i=1 w̄ijt[

←t

∆]β−1
ik + λ

, (4.12)

which is the same as the update of Eq. 4.4.

Similarly, we derive a new update for wjt,

wijt ← wijt − ηwijt

∂G

∂wijt

. (4.13)

To calculate the gradient of Eq. 4.8 with respect to wjt, we first need to

95



4.1 Sparse Convolutive NMF

calculate the gradient of ∆ using the quotient rule,

∂[∆]ak

∂wijt

=

∂

(

∑To−1
p=0

∑R
q=1

waqp

‖Wq‖

p→
hqk

)

∂wijt

=
‖Wj‖

t→
hjk − (wijt

t→
hjk)

∂‖Wj‖
∂wijt

‖Wj‖2
,

(4.14)

where a = i; p = t; q = j; and
∂‖Wj‖
∂wijt

= W̄j for the L2-norm. The gradient of

Eq. 4.8 can now be expressed as

∂G

∂wijt

=
T
∑

k=1

[ vik

[∆]2−β
ik

− [∆]β−1
ik

]∂[∆]ik
∂wijt

. (4.15)

Setting the learning rate to

ηwijt
=

wijt‖Wj‖2
∑T

k=1

t→
hjk

[

‖Wj‖[∆]β−1
ik + w̄ijt(wijt(vik/[∆]2−β

ik ))
]

, (4.16)

then rearranging Eq. 4.13 and scaling by ‖Wj‖/‖Wj‖ results in the following

element-wise update,

wijt ← wijt

∑T
k=1

t→
hjk

[

(vik/[∆]2−β
ik ) + w̄ijt(w̄ijt[∆]β−1

ik )
]

∑T
k=1

t→
hjk

[

[∆]β−1
ik + w̄ijt(w̄ijt(vik/[∆]2−β

ik ))
]

, (4.17)

and column-wise update,

wjt ← wjt ⊗
[

(V/∆2−β) + (w̄jtw̄
T
jt∆

β−1)
]
t→
hj

[

∆β−1 + (w̄jtw̄
T
jt(V/∆2−β))

]
t→
hj

, (4.18)

where ⊗ denotes an element-wise (also known as Hadamard or Schur prod-

uct) multiplication, and division is also element-wise. The update for wjt is

now in terms of its normalised version, which is calculated (Eq. 4.3) after the

update. As long as ηwijt
and ηhjk

are sufficiently small, these updates should

reduce Eq. 4.8. Matlab notations for sparse convolutive NMF are presented

in Figure 4.1.
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4.1 Sparse Convolutive NMF

Sparse Convolutive NMF with Beta Divergence

Obj=sum(sum((V.*((((V+1E-9).^(b-1))-((delta+1E-9).^(b-1)))./(b*(b-1)+1E-9))

(((delta+1E-9).^(b-1)).*(((delta)-V)./(b+1E-9))))))+lambda*sum(sum(H));

for t=1:To

Vt(:,:,t)=W(:,:,t)*padshift(H,t-1);

end

delta=sum(Vt,3);

for t=1:To

Hs=padshift(H,t-1);

for j=1:R

NumMatW=((V./delta.^(2-b))+(W(:,j,t)*W(:,j,t)’*(delta.^(b-1))))*Hs(j,:)’;

DenMatW=(delta.^(b-1)+(W(:,j,t)*W(:,j,t)’*(V./(delta.^(2-b)))))*Hs(j,:)’;

W(:,j,t)=W(:,j,t).*(NumMatW)./(DenMatW+1e-9);

end

end

for j=1:R

scaling=sqrt(sum(sum(W(:,j,:).^2)));

W(:,j,:)=squeeze(W(:,j,:))./((ones(M,To)*scaling)+1e-9);

end

for t=1:To

Qs=padshift((V./(delta).^(2-b)),-(t-1));

Ps=padshift(delta.^(b-1),-(t-1));

Ht(:,:,t)=H.*(W(:,:,t)’*Qs)./((W(:,:,t)’*Ps)+lambda+1e-9);

end

H=mean(Ht,3);

Figure 4.1: Matlab notations for sparse convolutive NMF.

4.1.4 Sparse Convolutive NMF Applied to Audio Spectra

An interesting property of the sparseness constraint is that it enables the

discovery of an over-complete basis, i.e., a basis that contains more basis

functions than are necessary to span the projection space.

To illustrate the performance of convolutive NMF on data generated from

an over-complete basis, consider the example presented in Figure 4.2. The

signal is composed of three auditory objects, each occurring at least twice:

The first object is an exponentially decreasing then increasing frequency

sweep centred around 4 kHz, the second object has a frequency sweep that

is the reverse of the first and is also centred at 4 kHz, while the third object

is a combination of the first two. Convolutive NMF is applied to the data

with R = 3 and To = 2 seconds, and the resultant factors are presented.

It is evident from the results that only the first two auditory objects are

identified. The reason being that the third object can be expressed in terms
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Figure 4.2: Spectrogram of a signal composed of an over-complete basis, and its
factors obtained by convolutive NMF. It is evident that convolutive NMF fails to
reveal the over-complete basis used to create the signal.

of the first two, and the signal can be adequetly described by using the first

two objects. Therefore, convolutive NMF achieves its optimum with just the

first two linearly independent objects, without the need for an over-complete

representation.

When a sparseness constraint is introduced, the existence of an over-

complete representation helps minimise the objective, allowing for a sparser

description of the signal. Sparse convolutive NMF applied to the same sig-

nal (Figure 4.3) identifies all three objects and their associated activation

patterns, successfully revealing the over-complete basis used to generate the

signal.

4.1.5 Sparse Convolutive NMF Applied to Music

We now compare these algorithms on a simple music example. For illustra-

tive clarity the music is composed of rudimentary synthesised guitar notes,

98



4.1 Sparse Convolutive NMF

Time (seconds)

F
re

qu
en

cy
 (

kH
z)

Spectrogram of Signal

0 2 4 6 8 10 12 14 16 18 20 22

8

6

4

2

0

Time

F
re

qu
en

cy
 (

kH
z)

Object 1

0 1 2

8

6

4

2

0

Time

F
re

qu
en

cy
 (

kH
z)

Object 2

0 1 2

8

6

4

2

0

Time

F
re

qu
en

cy
 (

kH
z)

Object 3

0 1 2

8

6

4

2

0

A
ct

iv
at

io
n

Time (seconds)

Rows of H

0 2 4 6 8 10 12 14 16 18 20 22

3

2

1

Figure 4.3: Spectrogram of a signal composed of an over-complete basis, and its
factors obtained by sparse convolutive NMF. It is evident that sparse convolutive
NMF successfully reveals the over-complete basis used to create the signal.

where each note produces only its fundamental frequency. The arrange-

ment is simple, composed of three sections: The six notes of a G chord

are played individually in descending order; all six notes of the chord are

played simultaneously; and each note is played in reverse order. Each note

is played for approximately one second, and the frequencies of the notes are

98.00 Hz (G), 123.47 Hz (B), 146.83 Hz (D), 196.00 Hz (G), 246.94 Hz (B) and

392.00 Hz (G).

Both sparse convolutive NMF and convolutive NMF are applied to the

music and the resultant factors are presented in Figure 4.4. It is evident

from the spectrogram that the music can be represented by an over-complete

representation consisting of each individual note and the chord. Convolutive

NMF is applied with R = 7 and To = 1 second, the resultant factors are

presented in rows 5 & 6. As can be seen from the activation pattern, the

algorithm has failed to represent the chord as an individual auditory object

and instead represents it as a combination of notes. Sparse convolutive NMF
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Figure 4.4: Music waveform and its associated spectrogram along with its factors
obtained by sparse convolutive NMF (rows 3 & 4) and conventional convolutive
NMF (rows 5 & 6).

is applied with the same parameters, where the additional parameter λ is

selected on an ad hoc basis; the resultant factors are presented in rows 3

& 4. Here, it is evident that an over-complete representation is discovered,

whereby the chord is represented as an individual auditory object.

4.2 Sparse Convolutive NMF Applied to Speech

We have demonstrated the properties of sparse convolutive NMF when ap-

plied to synthetic audio data, we will now turn our attention to real-world

data. We apply sparse convolutive NMF to speech, and present a learned ba-

sis for the sparse representation of speech using the TIMIT (Garofolo et al.,

1993) database. Recently, such work has been presented for convolutive NMF

(Smaragdis, 2007).

First, it is necessary to appropriately define the constituent elements of

speech. At a conceptual level, the theoretical representation of a sound is
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4.2 Sparse Convolutive NMF Applied to Speech

called a phoneme, which is a sound in the most neutral form. Different

phonemes distinguish different words. A segment of speech that possess’s

distinct physical or perceptual properties is called a phone. Phones occur

frequently within speech and are the constituent components that create

a speech spectrogram. In this context, the features that are extracted by

convolutive NMF are called phones.

4.2.1 Discovering a Phone-like Basis

To illustrate the differences between the phones extracted by convolutive

NMF and sparse convolutive NMF we perform the following three experi-

ments for each algorithm: We take around 30 seconds of speech from a single

male speaker (DMT0), a single female speaker (SMA0), and around 15 seconds

from both to create a contiguous mixture. The data is normalised to unit

variance, down-sampled from 16 kHz to 8 kHz, and a magnitude spectrogram

of the data is constructed. We use a FFT frame size of 512, a frame overlap of

384 and a hamming window to reduce the presence of sidelobes. We extract

40 bases, R = 40, with a temporal extent of 0.176 seconds, To = 8, and run

convolutive NMF (with β = 1) for 200 iterations. The extracted bases for

male, female and mixed speech are presented in Figure 4.5, Figure 4.6 and

Figure 4.7, respectively. The experiments are repeated for sparse convolutive

NMF with λ = 15, and the corresponding bases are presented in Figure 4.8,

Figure 4.9 and Figure 4.10.

Convolutive NMF Basis

For convolutive NMF, it is evident that the extracted bases correspond to

speech phones. The verification of which, can be achieved by listening to

an audible reconstruction as described in Section 3.3.1. Most of the phones

represent harmonic series with differing pitch inflections, while a smaller

subset of phones contain wideband components that correspond to conso-

nant sounds. The form of the extracted basis functions are very dependent

on the data, and reflect the timbral characteristics of each speaker’s voice.

Comparison of the male and female phone sets reveal that the most impor-

tant difference between the two is the spacing between the harmonics of the

phones. For the male speaker, the harmonics are spaced much closer to-
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Figure 4.5: A collection of 40 phone-like basis functions extracted by convolutive
NMF for a single male speaker (DMT0) taken from the TIMIT speech database,
where the temporal extent of each basis is 176 ms.
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Figure 4.6: A collection of 40 phone-like basis functions extracted by convolutive
NMF for a single female speaker (SMA0) taken from the TIMIT speech database,
where the temporal extent of each basis is 176 ms.

gether, which is indicative of a lower pitched voice, while the female speaker

phone set contains harmonics which are farther apart, indicating a higher

pitched voice. Otherwise, both phone sets are quite similar. For the mixture

phone set it is evident that the extracted phones correspond to either the
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Figure 4.7: A collection of 40 phone-like basis functions extracted by convolutive
NMF for a mixture of a male (DMT0) and female speaker (SMA0) taken from the
TIMIT speech database, where the temporal extent of each basis is 176 ms.

male or female phone set. This indicates that the timbral characteristics of

the male and female speaker are sufficiently different, such that phones that

are representative of both cannot be extracted. Although, this may not be

true for consonant phones.

Due to the approximative nature of NMF, the number of bases R and the

temporal extent of each basis To affects the ability of the algorithm to repre-

sent phonetic content in a speech spectrogram. This is reflected by the SNR

of the original spectrogram and its NMF reconstruction. For a large value of

R, convolutive NMF can more accurately represent individual phones as in-

dividual basis functions, resulting in better reconstruction quality. For small

values of R the resultant bases are forced to simultaneously represent multi-

ple phones in each individual basis function, resulting in a blurry distinction

between the bases, and poor reconstruction quality. For the purposes of our

illustrative examples, the chosen algorithm parameters suffice.

Sparse Convolutive NMF Basis

By placing a sparseness constraint on the activations of the basis functions,

we specify that the expressive power of each basis be extended such that it is

capable of representing phones parsimoniously, much like an over-complete
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Figure 4.8: A collection of 40 phone-like basis functions for a single male speaker
(DMT0) taken from the TIMIT speech database. The bases are extracted using
Sparse Convolutive NMF with λ = 15, and a temporal extent of 176 ms.

dictionary. The result is that the extracted phones exhibit a structure that is

rich in phonetic content, where harmonics at higher frequencies have a much

greater intensity than seen in the phones extracted by convolutive NMF. This

reflects the requirement that the basis functions in our new sparse phone set

must contain enough features to produce a parsimonious activation pattern.

Analysis of the male and female sparse phone set reveals another im-

portant difference between the two speakers. In addition to difference in

harmonic spacing, it is evident that the structure of the male phones are

of a more complex nature, where changes over time are much more varied

than for the female phone set. Furthermore, for the male sparse phone set,

basis functions that contain both harmonic series and wideband components

are extracted. For the mixture phone set, the effects are the same as those

previously observed, where extracted phones correspond to either the male

or female sparse phone set.

It is worth noting the effects of the selection of the weighting parameter λ.

Since λ controls the tradeoff between accurate reconstruction and sparseness

of the activations, larger values for λ will result in degradation of the quality

of the approximation. Consequently, for the same algorithm parameters,

convolutive NMF typically produces better reconstructions. This effect can

be ameliorated by increasing R or reducing λ.
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Figure 4.9: A collection of 40 phone-like basis functions for a single female
speaker (SMA0) taken from the TIMIT speech database. The bases are extracted
using Sparse Convolutive NMF with λ = 15, and a temporal extent of 176 ms.
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Figure 4.10: A collection of 40 phone-like basis functions for a a mixture of a
male (DMT0) and female speaker (SMA0) taken from the TIMIT speech database.
The bases are extracted using Sparse Convolutive NMF with λ = 15, and a
temporal extent of 176 ms.

Sparsity of Activations

The sparsity of the activations produced by convolutive NMF, Hc, and sparse

convolutive NMF, Hsc, can be compared using the Kurtosis Ratio (KR):
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4.3 Supervised Method for the Separation of Speakers

KR(Hsc,Hc) =
1
R

∑R
j=1 kurt(hsc

j )
1
R

∑R
j=1 kurt(hc

j)
, (4.19)

where kurt is given in Eq. 1.8. KR > 1 indicates that the Hsc is sparser

than Hc, and vice versa. The KR values for our male, female and mixed

representations are 2.03, 1.74 and 1.98 respectively. Indicating that sparse

convolutive NMF has indeed discovered a sparse representation for each.

4.3 Supervised Method for the Separation of Speakers

To demonstrate the utility of the extracted phone sets, we apply them to the

separation of speakers from a monophonic mixture. From inspection of the

NMF generative model, we can see that the estimate for V is constructed by

taking the outer product of each column of W and row of H, then summing

the resultant matrices,

V ≈
R
∑

j=1

wjhj.

This reconstruction scheme together with a magnitude spectrogram repre-

sentation, where overlapping spectra sum approximately, constitute a scheme

whereby different sounds, represented by different basis functions, can be sep-

arated from the mixture. This scheme can be extended to convolutive NMF.

4.3.1 Monophonic Separation of Known Speakers

As illustrated in our previous experiments, the structure of the bases that

are extracted from the speech data are uniquely dependent on the speaker

(given the same algorithm parameters). In the context of speech separa-

tion, it is not unreasonable to expect that the bases extracted for a specific

speaker adequately characterise the speaker, such that they can be used to

discriminate them from other speakers. For a monophonic mixture where a

number of speakers are added together, it is possible to separate the speakers

in the mixture by constructing an individual magnitude spectrogram for each

speaker, using the phones specific to that speaker.

It is evident that this scheme requires that the bases be categorised into
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4.3 Supervised Method for the Separation of Speakers

individual phone sets. If the speakers are known in advance, a phone set can

be extracted for each speaker and used in this scheme in a supervised man-

ner. For example, consider a mixture of a known male and female speaker.

The set of male bases, Wm
t , and female bases, W

f
t , are learned from training

data, and it is assumed that they will roughly correspond to bases extracted

from any unknown sentences voiced by that speaker. By arranging the re-

spective bases contiguously to form a combined basis, W
mf
t = [Wm

t |Wf
t ],

we can fit the mixture to the combined basis by fixing Wt = W
mf
t and

updating H. Separation can be achieved by constructing an individual mag-

nitude spectrogram using each speaker’s bases and associated activations.

The separation performance of such an approach is highly dependant on the

similarity of each speaker’s phone set. For a typical male and female mix-

ture, the respective phone sets will be sufficiently different to achieve good

results.

We use the following procedure for the separation of a known male and

female speaker from a monophonic mixture:

1. Obtain training data for the male, sm(t), and female, sf (t), speaker,

create a magnitude spectrogram for both, and extract corresponding

phone sets, Wm
t and W

f
t , using sparse convolutive NMF.

2. Construct a combined basis set W
mf
t . This results in a basis that is

twice as big as R.

3. Take a mixture that is composed of two unknown sentences voiced

by our selected speakers, and create a magnitude spectrogram of the

mixture. Fit the mixture to W
mf
t by performing sparse convolutive

NMF with Wt fixed to W
mf
t , and learn only the associated activations

H.

4. Partition H such that the activations are split into male, Hm, and

female, Hf , parts that correspond to their associated bases, H =

[Hm|Hf ]T.

5. Construct a magnitude spectrogram for both speakers, using their

respective bases and activations: Sm =
∑To−1

t=0 Wm
t Hm and Sf =

∑To−1
t=0 W

f
t H

f .

6. Use the phase information from the original mixture (as described in

Section 3.3.1) to create an audible reconstruction for both speakers.
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4.3 Supervised Method for the Separation of Speakers

Table 4.1: Information on the Training Data for Each Speaker, Including Duration
of Training Data and Phoneme Information (39 Phoneme Set, Lee and Hon
(1989)).

Speakers
Training

Len. (sec.)

Phoneme Information
Total Time Len. (ms)
No. Min. Avg. Max.

ABC0 23 322 17 70 206
Male BJV0 24 331 23 73 175

DWM0 27 328 15 82 186

EXM0 32 350 17 96 213
Female KLH0 26 327 24 87 179

REH0 25 361 16 61 161

This procedure may also be used for convolutive NMF, and can be generalised

for more than two speakers, and speakers of the same gender.

4.3.2 Separation Experiments

In this section, we compare the separation performance of convolutive NMF

and sparse convolutive NMF. Our interest lies in how the algorithms perform

for the same algorithm parameters, which may not necessarily be the optimal

choice for each algorithm. For an extensive study of the relationship between

parameter selection and separation performance for convolutive NMF, see

Smaragdis (2007).

We randomly select three male and three female speakers from the TIMIT

database, and create a training set for each that includes all but one sentence

voiced by that speaker. We artificially generate a monophonic mixture by

summing the remaining sentences for a selected male female pair, generating

a total of nine mixtures in this way. More formally, each sentence pair

is normalised to unit variance, down-sampled from 16 kHz to 8 kHz, and

summed together. A magnitude spectrogram of each mixture is constructed

using a FFT frame size of 512, a frame overlap of 256 and a hamming window.

Information pertaining to the speakers and their training data is presented

in Table 4.1, while information about the mixtures is presented in Table 4.2.

The separation performance for both algorithms is evaluated for each

mixture over a selection of values for R (R = {40, 80, 140, 220}). For both al-
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4.3 Supervised Method for the Separation of Speakers

Table 4.2: The Speakers and Sentences Used for Each Male and Female Mix-
ture, Including Information About Sentence Duration and Phoneme Content (39
Phoneme Set, Lee and Hon (1989)).

Mix.
Speaker Sentence Len. (sec.) Phonemes

Male Female Male Female Male Female Male Female

1 ABC0 EXM0 SX331 SX291 2.45 3.48 32 36
2 ABC0 KLH0 SX331 SX357 2.45 3.69 32 43
3 ABC0 REH0 SX331 SX325 2.45 1.93 32 25
4 BJV0 EXM0 SX347 SX291 3.62 3.48 59 36
5 BJV0 KLH0 SX347 SX357 3.62 3.69 59 43
6 BJV0 REH0 SX347 SX325 3.62 1.93 59 25
7 DWM0 EXM0 SX286 SX291 3.66 3.48 52 36
8 DWM0 KLH0 SX286 SX357 3.66 3.69 52 43
9 DWM0 REH0 SX286 SX325 3.66 1.93 52 25

gorithms the temporal extent of each phone is set to 0.224 seconds (To = 6),

the number of iterations is 150, β is set to 1 and each experiment is re-

peated for 10 Monte Carlo runs. For convolutive NMF, a total of 24 speaker

phone sets are extracted and used in 360 (9 × 4 × 10) separation experi-

ments. For sparse convolutive NMF separation performance is tested for

λ = {0.01, 0.1, 0.3, 1.0, 2.0}; resulting in 120 (6 × 4 × 5) speaker phone sets

and 1800 (9× 4× 5× 10) separation experiments.

For the purposes of ease of comparison with existing separation methods,

we evaluate the separation performance of both algorithms using the mea-

sures provided by the BSS_EVAL toolbox (Févotte et al., 2005), which are

described in Section 2.2.1 and are briefly restated below:

• Source-to-Artifact Ratio (SAR): Measures the level of artifacts in the

source estimates.

• Source-to-Interferences Ratio (SIR): Measures the level of interference

from the other sources in each source estimate.

• Source-to-Distortion Ratio (SDR): Provides an overall separation per-

formance criterion.

All performance measures are expressed in dB, with higher performance val-

ues indicating better quality estimates.
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Figure 4.11: Separation performance for convolutive NMF: A bar chart for each
performance measure (SDR, SIR and SAR) is presented, where the performance
for each mixture, in ascending order, is plotted against the number of bases.
Note that the scales for the z-axis are expressed in dB and change for each plot.

Convolutive NMF Separation Performance

Here, we examine the separation performance of convolutive NMF applied

to our generated mixtures. The results for each experiment are averaged

over all runs and are presented in Figure 4.11. Each separation measure is

illustrated as a bar chart, where mixtures are plotted against the number of

bases used, and bar height indicates performance. For visual clarity, the 9

mixtures are arranged in ascending order.

The resultant performance values are very dependant on the mixture

under consideration, this may reflect similarity in the timbral characteristics

of the speakers in each mixture. On average, mixture 7 performed worst for

all performance measures, while mixture 2 performed best. The SDR results,

which indicate overall performance, improve for most mixtures as the number

of bases used increases. The average SDR over all mixtures range from -0.18

dB for 40 bases to 0.96 dB for 220 bases. The same is also true for SAR,

where performance rises from 1.75 dB at 40 bases to 3.37 at 220 bases. For

the SIR results, best performance is achieved when 80 bases are used.

Sparse Convolutive NMF Separation Performance

The results in Figure 4.11 can be compared with the corresponding results for

sparse convolutive NMF in Figure 4.12, in which 4 sets of results pertaining

to different values of λ are presented.

For added clarity, we statistically analyse the performance of convolutive
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Figure 4.12: Separation performance for sparse convolutive NMF: A bar chart for
each performance measure (SDR, SIR and SAR) is presented for a selection of
λ values, where the performance for each mixture, in ascending order, is plotted
against the number of bases. Note that the scales for the z-axis change for each
plot and are expressed in dB.
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Figure 4.13: A comparison of the SDR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results, with
each box representing the median and the interquartile range of the results. It is
evident that for λ = 0.1, a better spread of results is obtained, indicating that
sparse convolutive NMF achieves superior overall performance.
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Figure 4.14: A comparison of the SIR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results. For
λ = 0.1, a better spread of results is obtained, indicating that sparse convolu-
tive NMF produces estimates that are more resilient to interference from other
sources.

NMF and sparse convolutive NMF by collating the results from all experi-

ments (Figure 4.11 & Figure 4.12), and represent the results using box plots:

Each box presents information about the median and the statistical disper-
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Figure 4.15: A comparison of the SDR results obtained by convolutive and sparse
convolutive NMF: Box plots are used to illustrate the performance results, with
each box representing the median and the interquartile range of the results, the
whiskers represent the spread of the results. Here, convolutive NMF achieves
best results. This may reflect the fact that sparse phone sets exhibit phones
that are rich in features, which may produce artifacts in the resultant source
estimates.

sion of the results. The top and bottom of each box represents the upper and

lower quartiles, while the length between them is the interquartile range; the

whiskers represent the extent of the rest of the data, and outliers are repre-

sented by +. Box plots for SDR, SIR and SAR are presented in Figure 4.13,

Figure 4.14 and Figure 4.15 respectively.

The SDR results indicate that for λ = {0.1, 0.3}, the median performance

obtained (0.66 dB, 0.62 dB) exceeds convolutive NMF (0.44 dB) for our given

algorithm parameters. It is also evident that a better spread of results with

reduced variability is produced for sparse convolutive NMF; demonstrating

that when λ is chosen appropriately, sparse convolutive NMF achieves su-

perior overall performance. For SIR, λ = 0.3 produces the best spread of

results, which indicates that sparse convolutive NMF is more resilient to in-

terference from other sources. However, for SAR, convolutive NMF produces

the best results, this may reflect the fact that each sparse phone set exhibits

phones that are rich in features, which may manifest as artifacts in the resul-

tant source estimates. It is also evident that the performance of the sparse

convolutive algorithm degrades significantly for large λ values, so much so,

that it renders the results useless, this is especially evident for λ > 1.

113



4.4 Coding Efficiency of Learned Bases

4.4 Coding Efficiency of Learned Bases

Here, we demonstrate the utility of sparse convolutive NMF in the informa-

tion coding of speech data, we use a simple scheme whereby the K largest

coefficients in each column of H, along with their positions, are used to

reconstruct the data:

ΛK =
To−1
∑

t=0

Wt maxcol(K,
t→
H) 0 < K ≤ R, (4.20)

where maxcol creates a matrix the same size as H, with all but the K largest

coefficients in each column being zeroed. Here, we consider only the recon-

struction of the magnitude spectrogram and do not address how to encode

phase information.

We use an experimental procedure similar to that used in our separation

experiments, whereby we fix W to the basis for our speaker and fit an un-

known sentence to it by updating H. We then reconstruct ΛK by using its K

largest coefficients, over K = 1, . . . , R, and measure reconstruction quality

using the Signal-to-Noise Ratio (SNR); each experiment is repeated for 10

Monte Carlo runs. We select a male (ABC0) and female speaker (EXM0), and

use the 220 basis set learned for the experiments in the previous section. The

reconstruction quality for a range of λ values is investigated, and the results

are presented in Figure 4.16.

The curves in Figure 4.16 illustrate the trade-off between the fidelity of

the reconstruction and the coding cost, expressed in coefficients. We are

interested in the transitional phase leading to quiescent value for SNR; the

quicker the convergence the fewer coefficients needed to reconstruct Λ. The

coding efficiency for convolutive NMF (◦) can be easily compared with the

other curves, which represent the results for sparse convolutive NMF.

For both speakers, it is evident that sparse convolutive NMF needs fewer

coefficients to reach a quiescent SNR value, the SNR achieved is very depen-

dent on λ, which is indicative of the trade-off between the sparseness of H

and accuracy of reconstruction, this effect is particularly evident for large λ

values. For the male speaker, λ = 0.001 provides superior SNR over con-

volutive NMF when K < 15. Furthermore, the SNR achieved produces a

level of reconstruction quality such that the encoded sentence is intelligible.

For the female speaker λ = 0.01 produces superior quality when K < 5,
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Figure 4.16: Coding efficiency curves for sparse convolutive NMF, for both a
male (left: ABC0) and female (right: EXM0) speaker. The curve for convolutive
NMF (◦) can be contrasted with sparse convolutive NMF (2: λ = 0.001, 3:
λ = 0.01, △: λ = 0.1, ⊲: λ = 0.3, ×: λ = 1). It is evident that sparse
convolutive NMF provides a faster rate of convergence to a quiescent SNR.
Furthermore, for large λ values, a degenerative effect on reconstruction quality is
evident, which is indicative of the tradeoff between sparseness and reconstruction
quality.

while λ = 0.001 produces superior quality for all K. For both speakers

λ = {0.1, 0.3, 1} never exceeds the performance of convolutive NMF at any

point along the curve. Therefore, these values are an inappropriate choice for

our data and produce results that are of no use. The faster convergence rate

illustrated for the female speaker’s curves, may be due to the larger training

set (32 sec., 250 phonemes) used in the phone extraction phase (Table 4.1).

4.5 Discussion

The benefit obtained by combining convolutive NMF with a sparseness con-

straint on the activations, is due to the requirement that a parsimonious

representation must be found in order to satisfy sparseness. Such represen-

tations extract bases that are rich in phonetic structure, and exhibit superior

separation properties. Although, improved overall separation performance is

at the expense of additional artifacts in the estimates.

In contrast to previously proposed algorithms, which have additive up-

dates (Virtanen, 2003; O’Grady and Pearlmutter, 2006), our algorithm re-
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tains its advantages of parameter-independent gradient descent and fast con-

vergence. Moreover, multiplicative updates ensure that the algorithm arrives

at some solution, which from our experience, has not always been the case for

additive update algorithms. An additional benefit to our algorithm is that it

utilises the beta divergence, which enables different reconstruction penalties

to be selected depending on some additional requirement, e.g., perceptual

quality, as discussed in Chapter 3.

Normalisation of the objects in W introduces an asymmetry between W

and H, which makes it difficult to prove convergence properties of Eq. 4.18 as

indicated in Lee and Seung (2001) (Eggert and Körner, 2004). Nonetheless,

we have performed many experiments with our algorithm and it converges

to sensible solutions every time. Eggert and Körner (2004) propose that

convergence can be explained by the fact that the rescaling of the gradient

introduced by the multiplicative update rule, results in a gradient step that

has a positive projection on the true gradient, due to the non-negativity

constraint. Furthermore, as long as the gradient step size is sufficiently small

(this is true when Λ approaches V), convergence is achieved; we believe this

to be true in our case also.

Finally, due to the fact that our algorithm is implemented using column-

wise updates for Wt (because of the normalisation of the objects, Wj, con-

tained in W), the run time of the algorithm increases greatly: Consider

speaker ABC0 from Table 4.1, to extract 40 bases (as per our experiments)

on a 2.53 GHz Intel Pentium 4 computer with 256Mb of RAM, takes 4 min-

utes for convolutive NMF, while the same experiment takes 50 minutes for

sparse convolutive NMF. Furthermore, sparse convolutive NMF algorithms

with additive updates may run faster. However, our multiplicative algorithm

will always arrive at a solution with better quality results, and removes the

requirement to select both an appropriate learning rate and λ, which can

sometimes be painfully difficult to achieve.

4.6 Conclusion

In this chapter, we presented a sparse convolutive NMF algorithm, which ef-

fectively discovers a sparse parts-based representation for non-negative data.

This method extends the convolutive NMF objective by including a sparse-

ness constraint on the activation patterns, enabling the discovery of over-
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4.6 Conclusion

complete representations. Moreover, in contrast to previously proposed al-

gorithms, normalisation of the basis vectors is explicitly included in the re-

construction objective, resulting in multiplicative updates and more stable

convergence properties. We have applied the algorithm to speech data, and

have demonstrated its superiority to convolutive NMF, when applied to the

separation of speakers from a monophonic mixture and speech coding.
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CHAPTER 5

Conclusions and Future Work

In this thesis, we presented the principles that make blind source separation

of speech possible. For the even-determined case, we overviewed a number of

independent component analysis algorithms, each utilising a different notion

of statistical independence. For the under-determined case, where identifi-

cation of the mixing matrix is not possible using ICA as it has no inverse,

we discussed how the mixing matrix, A, is discovered using some clustering

procedure that identifies corresponding clusters in some, typically sparse,

transform domain. Furthermore, we discussed how to estimate the sources

by using a minimum L1-norm constraint, which regularises the inverse and

provides good results as long as the mixtures are in a sparse domain. We also

discussed Non-negative Matrix Factorisation, which is a contrasting parts-

based approach to separation, where monophonic mixtures of components

are separated using a non-negativity constraint. Furthermore, we demon-

strated the utility of a convolutive generative model when the components

are time-varying.

We built on the previous, and introduced two algorithms that utilise

sparseness in the separation of instantaneously mixed speech sources. First,

we explored the case where there are two or more observations and intro-

duced the LOST (Line Orientation Separation Technique) algorithm, which

identifies linear subspaces in a sparse domain that correspond to the columns

of A. Furthermore, once A is found, source estimates are calculated using
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L1-norm minimisation. Second, we introduced a convolutive NMF algorithm

that places a sparseness constraint on the activations. The algorithm has

multiplicative updates and extracts phones from a magnitude spectrogram

representation of speech, which can be subsequently used in a supervised

separation scheme.

Prior to the introduction of sparse convolutive NMF, we considered the re-

cently proposed beta divergence reconstruction objective, and demonstrated

the use of this objective for an NMF algorithm that is applied to speech.

The criterion we apply to qualify the objectives utility is perceptual perfor-

mance, which for the most part is dependent on signal detection. In this

respect, we demonstrated that the parameterisable beta divergence provides

greater flexibility than the originally proposed Squared Euclidean Distance

or Kullback-Leibler Divergence.

5.1 Summary

To complete this thesis we summarise the work presented and discuss future

directions for the presented work.

The LOST Algorithm: We introduced a blind source separation algorithm for

instantaneous mixtures that estimates A by identifying corresponding

linear subspaces in a scatter plot. The mixing process is expressed as a

Laplacian mixture model where an EM procedure is used to estimate

the model parameters, which identify the lines. Such an approach

enables the identification of an arbitrary number of sources from an

arbitrary number of mixtures, and together with an L1-norm minimi-

sation provides a solution for the under-determined case. We named

this algorithm the LOST algorithm, and applied it to the separation

of speech mixtures. The results demonstrate that the LOST algorithm

is an effective algorithm for the separation of speech. Furthermore, we

provided an empirical assessment of the robustness of the algorithm in

the presence of Gaussian noise, which also yielded useful results.

NMF Reconstruction Objective: We investigated the utility of the beta diver-

gence as a reconstruction objective for NMF, where the perceptual

quality of the NMF reconstruction is evaluated using the noise-to-mask

ratio over a wide selection of algorithm parameters. The results indi-
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cate that optimal β selection is very dependent on algorithm param-

eters. Although, the general trend is that as the number of objects

R increases, β tends toward 0. We also provided a comparison be-

tween NMF utilising the beta divergence, and a perceptually weighted

NMF algorithm that utilises noise-to-mask ratio; the results indicate

that NMF utilising beta divergence, and an appropriately selected β,

results in faster convergence and comparable NMRtot performance to

the perceptually weighted algorithm for the same number of iterations.

Although, the perceptually weighted algorithm does not require the dis-

covery of an optimal divergence parameter such as β, and will provide

better estimates as long as the algorithm is run for enough iterations. In

this way, we demonstrated the usefulness of the beta divergence when

used in NMF algorithms that are applied to speech spectrograms.

Convolutive NMF with a Sparseness Constraint: We introduced a convolutive

NMF algorithm that enforces a sparseness constraint on the activa-

tions. The proposed method overcomes the previously discussed re-

striction leading to an additive update for the basis by including the

required basis normalisation step directly in the reconstruction objec-

tive, resulting in a multiplicative update. We applied the algorithm

to synthetic data and demonstrated that it achieves sparse activation

patterns by identifying over-complete dictionary elements. Moreover,

we extracted sparse phone sets from speakers in the TIMIT database,

and used the extracted phones in a supervised separation scheme for

monophonic mixtures, which produces better separation performance

than convolutive NMF.

5.2 Future Work

Although the presented algorithms achieve the separation of speech from

under-determined instantaneous mixtures with some success, as with all sci-

entific endeavours improvements and extensions can be made.
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The LOST Algorithm

The separation performance of the LOST algorithm is heavily influenced

by how well defined the linear subspaces are in the scatter plot, which in

turn is dependent on sparsity of mixture coefficients in the transform do-

main. Currently, the LOST algorithm exploits the sparseness of speech in

the STFT transform domain. However, further performance improvements

may be achieved by using alternative transformations such as the Gabor

or Wavelet transforms. Furthermore, the LOST algorithm need not be re-

stricted to speech; by selecting an appropriate sparse transformation for the

data at hand, the LOST algorithm may be applied to other mixture types,

such as image or music data.

For the under-determined case, we estimate S using L1-norm minimisa-

tion, where minimisation is achieved using a linear program, and the real

and imaginary components of the STFT coefficients are treated separately.

Alternatively, L1-norm minimisation for complex data can be implemented

using a second order conic program optimisation, which eliminates the ap-

proximation made by treating real and imaginary components separately.

For most BSS algorithms the number of mixtures and sources are pro-

vided beforehand. However, for the LOST algorithm it may be possible to

estimate the number of sources directly from the mixtures. Such a scheme

would involve initialising the algorithm with a sufficiently large number of

orientation vectors, where line orientations that have principal eigenvalues

smaller than some predefined threshold are removed as the algorithm runs.

In this way, line orientation vectors that are additional to requirements are

removed, and the number of sources is estimated.

The LOST algorithm currently separates sources where A is fixed for

the duration of the mixing process. The algorithm may be extended to

instantaneous mixtures that have a time-varying A, i.e., mixtures of mov-

ing sources. Such an extension may be achieved by estimating A on an

observation-by-observation basis using a stochastic gradient algorithm to es-

timate the principal eigenvector of each linear subspace, which adapts to the

line orientations as they move.
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Convolutive NMF with a Sparseness Constraint

The experiments we presented for sparse convolutive NMF have been re-

stricted to speech spectrograms. However, the algorithm will extract bases

that vary along the horizontal for any non-negative data, e.g., music, image

data, etc. Furthermore, in the case of image data, a double convolutive algo-

rithm may be derived, such that the image is composed of two-dimensional

image patches that represent features that vary in both the vertical and hor-

izontal direction, i.e., a convolutive NMF algorithm that performs horizontal

and vertical shifts.

It would be interesting to investigate the utility of the extracted sparse

phone sets in a compressive sampling (Candes et al., 2006) framework:

Nyquist sampling theory states that a signal must be sampled at a rate

at least twice its highest frequency in order to be represented without error.

However, in practice, signals are often compressed soon after sensing, trad-

ing off accurate reconstruction for some acceptable level of error. Clearly,

this is a waste of valuable sensing resources. In recent years, a new and

exciting theory of compressive sampling has emerged, in which the signal

is sampled and compressed simultaneously at a greatly reduced rate using

sparse representations and an L1-norm minimisation.

The reconstruction objective used for our algorithm is the beta diver-

gence; for our experiments we kept β = 1, which specifies the Kullback-

Leibler Divergence. In Chapter 3 we discussed the perceptual properties of

the beta divergence. Additionally, it would be interesting to see how the

sparseness parameter λ and divergence parameter β interplay. Specifically,

it would be interesting to investigate the effect of β selection on separation

performance.

The presented experiments separated male and female speakers; it would

also be interesting to evaluate the performance of the extracted sparse phone

sets when applied to a speaker identification task. Furthermore, the extracted

phones may be applied to a speech denoising task, where a monophonic

recording of a known speaker is made in the presence of an unwanted sound,

such as street noise or a musical instrument.

Currently, the sparseness function used in the presented algorithm quan-

tifies the sparsity of the activation coefficients using the L1-norm. Alterna-

tively, other differentiable sparseness indicators may also be used, which may
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bring added benefits such as improved rates of convergence.

5.3 Closing Comment

Finally, we hope that the algorithms presented and the results discussed will

provide a worthwhile contribution to the area, and go some way towards the

ultimate goal of a practical and accurate speech separation machine.
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APPENDIX A

LOST Algorithm Source Signals

The source signals are taken from a commercial audio CD of poems read by

their authors (Paschen et al., 2001). The data is recorded as raw 44.1 kHz

16-bit stereo waveforms. Prior to further processing, ten-second clips are ex-

tracted, the two signal channels are averaged, and the data is down-sampled

to 8 kHz. The scale of the audio data is arbitrary, leading to the arbitrary

units on auditory waveform samples throughout Chapter 2. The sources are

extracted from the following poems:

• Coole Park and Ballylee, by William Butler Yeats.

• The Lake Isle of Innisfree, by William Butler Yeats.

• Among Those Killed in the Dawn Raid Was a Man Aged a Hundred,

by Dylan Thomas.

• Fern Hill, by Dylan Thomas.

• Ave Maria, by Frank O’Hara.

• Lana Turner Has Collapsed, by Frank O’Hara.
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APPENDIX B

Psychoacoustic Model

In this appendix, we detail the psychoacoustic model that is used to create

the masking thresholds used in Chapter 3. The model is based on the PEAQ

algorithm (Perceptual Evaluation of Audio Quality), which is an interna-

tionally recognised standard for the measurement of perceived audio quality.

The notation we use here corresponds to that in the PEAQ documentation

(ITU, 1998).

B.1 Input Signal

The PEAQ algorithm assumes that the sample frequency, Fs, of the test

signal, x, is 48 kHz, our model makes no such assumption. The test and

reference signals are assumed to be aligned in time. Processing occurs on

a frame-by-frame basis, where the length of each frame is Nf and contains

samples x[n] for n = (0, . . . , Nf − 1).

A rudimentary but important step in the process is test signal calibration.

For most purposes the test data will originate from a standard computer

sound card, and will be stored in a raw audio format such as 16-bit PCM.

Therefore, because the model is level dependent, it is necessary to fix the

amplitude range of the test signal in relation to a real acoustical signal.

The following expression can be used to scale the test signal such that it

corresponds to Lp dBSPL, where a root-mean-squared test signal amplitude
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B.2 Frequency Transformation

of 1 corresponds to 0-dBSPL,

x[n] =
x[n]

√

∑Nf

i x[i]2/Nf

10(Lp/20) (dBSPL). (B.1)

It is important to select an appropriate Lp for the signal under consideration,

e.g., it would make no sense to set Lp to 30-dBSPL(sound level of a whisper)

for a recording of a jet engine.

B.2 Frequency Transformation

As discussed in Section 3.1, the psychoacoustic phenomena of interest are

observed in the frequency domain. Therefore, the constituent operations of

the perceptual model operate in this domain. Each frame of data is first

windowed by a Hamming window, and subsequently transformed to the fre-

quency domain by a Nf -point Discrete Fourier Transform,

X[k] =
1

Nf

Nf−1
∑

n=0

hw[n] x[n] e−j2πnk/Nf .

Only coefficients for 0 ≤ k ≤ Nf/2, corresponding to frequencies from 0 to

Fs/2, are retained, and their magnitude |X[k]| will be used in subsequent

stages.

B.3 Outer and Middle Ear Weighting

The absolute threshold of hearing in quiet (Eq. 3.1), is modelled as a combi-

nation of internal noise and the outer and middle ear transfer function,

AdB(f) = w ·3.64

(

f

1000

)−0.8

−6.5e−0.6( f

1000−3.3)
2

+k ·10−3

(

f

1000

)4

. (B.2)

The internal noise is considered to be low frequency, and is modelled by a

portion of the energy in the first term as specified by w, while the weighting

parameter k determines the upper frequency cutoff, which is age dependent.

It can be seen from inspection of Figure 3.1 that the upper frequency cut-off

starts early, indicating that the subjects were rather old and may not be

126



B.4 Frequency Grouping

2 3 4

−20

−15

−10

−5

0

5

Frequency (kHz)

R
es

po
nc

e 
(d

B
)

Figure B.1: Outer and middle ear frequency response.

considered as normal hearing listeners. The weighting parameter w = 0.6

and k = 2 2 (shifts upper frequency cut-off to higher frequencies) resulting

in following outer and middle ear weighting,

AdB(f) = −2.184

(

f

1000

)−0.8

+ 6.5e−0.6( f

1000−3.3)
2

− 10−3

(

f

1000

)3.6

,(B.3)

W (f) = 10AdB(f)/20. (B.4)

A plot of the weighting function is presented in Figure B.1. Using the outer

and middle ear weighting the weighted DFT is

|Xw[k]| = W (f) |X[k]|. (B.5)

In order to save computational effort, the internal noise is added after the

bark domain transformation.

B.4 Frequency Grouping

As discussed in Section 3.1.3, the Cochlea can be characterised by a bank of

bandpass filters, which represent critical bands. It is necessary to group the

elements of |Xw[k]| to replicate this behaviour. This grouping is achieved by

a frequency (Hz) to Bark scale conversion using a simplified approximation
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B.5 Internal Noise

of the critical band conversion of Eq. 3.3 (Schroder et al., 1979),

z = B(f) = 7 arcsinh

(

f

650

)

(Bark). (B.6)

This conversion maps the frequencies 80 Hz to 18,000 Hz to 27 non-

overlapping critical bands, which have a bandwidth of 1 Bark each. For

the PEAQ algorithm, a fractional critical band representation is used, where

the widths and spacing of the critical band groupings are defined as 1/4 Bark,

corresponding to 109 critical bands. Each band i has a lower frequency edge,

fl[i], a centre frequency, fc[i], and an upper frequency edge, fu[i]. The fre-

quency of the k-th bin of |Xw[k]| is kFs/Nf Hz. The bins that fall within

the range of fl[i] and fu[i] are grouped together (kl[i] ≤ k ≤ ku[i]) and the

energy contribution from each bin is calculated as

U [i, k] =
max[0, min(fu[i],

2k+1
2

Fs

Nf
)−max(fl[i],

2k−1
2

Fs

Nf
)]

Fs

Nf

. (B.7)

The energy contributions are summed to give the energy in the i-th critical

band,

Eb[i] = Ul[i] |Xw[kl[i]]|+
ku[i]−1
∑

k=kl[i]+1

|Xw[k]|+ Uu[i] |Xw[ku[i]]|, (B.8)

where Ul[i] = U [i, kl[i]] and Uu[i] = U [i, ku[i]].

B.5 Internal Noise

Internal noise is generated in the ear, and can be caused by blood flow,

muscle activity, shot noise and neuronal noise. An offset is added to the

critical band energies to compensate for this noise,

E[i] = Eb[i] + EIN [i]. (B.9)
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Figure B.2: Internal noise contribution for the first 80 critical bands, where ◦
indicates the centre frequencies of each band.

As previously discussed, the internal noise, EIN [i], is modelled by the first

term of Eq. B.2,

EINdB(f) = (1− w) · 3.64

(

f

1000

)−0.8

= 1.456

(

f

1000

)−0.8

, (B.10)

EIN(i) = 10EINdB(f)/20. (B.11)

The factor w = 0.6 (as specified in Section B.3) and the response is plotted

in Figure B.2. The energy bands E[i] are known as pitch patterns.

B.6 Frequency Spreading

The spread of masking effects that are evident during simultaneous masking

are modelled by an energy spreading function that is level and frequency

dependant. The bark domain energy spread response is

Es[i] =
1

Bs[i]

(

Nc−1
∑

l=0

(E[l] S(i, l, E[l]))

)

, (B.12)
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B.7 Time Domain Spreading

where Nc is the number of critical bands. The normalising factor is calculated

for a reference level of 0 dB for each band,

Bs[i] =

(

Nc−1
∑

l=0

(S(i, l, E0))

)

, (B.13)

where E0 = 1 (0 dB). On the dB scale, the spreading function, S(i, l, E0), is

triangular, with the peak of the triangle at i = l

SdB(i, l, E) =







27(i− l)1
4
, i ≤ l,

[−24− 230
fc[l]

+ 2 log10(E)](i− l)1
4
, i ≥ l.

(B.14)

The slope for bark values less than l is fixed, whereas the slope for i larger

than l is frequency and level dependant. The spreading function is defined

in terms of the spreading function expressed in dB,

S(i, l, E[l]) =
1

A(l, E)
10SdB(i,l,E)/20, (B.15)

where the normalising factor, A(l, E), is chosen to give unit area to the

spreading function in the magnitude domain. The patterns derived from this

process are referred to as unsmeared excitation patterns (unsmeared in time).

B.7 Time Domain Spreading

In order to replicate the effects of temporal masking, a frequency dependant

temporal filtering is performed on the unsmeared excitation patterns. In

contrast to the previous steps this operation is performed on multiple frames

that are contiguous in time. Consequently, a frame index n in introduced.

Frames are updated every Nf/o samples and the frame rate is

Fss =
Fs

Nf/o
, (B.16)

where o is the reciprocal of the frame overlap. Time domain spreading is

performed by a first order smoothing filter,

Ef [i, n] = α[i]Ef [i, n− 1] + (1− α[i])Es[i, n], (B.17)

Ẽs[i, n] = max (Ef [i, n], Es[i, n]) , (B.18)
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where Ef [i, n] is the spread energy in band i at frame n and Ẽs[i, n] is the

maximum of the spread energy band or the unsmeared energy band. The

maximum operation ensures that Ẽs[i, n] follows increases in energy instan-

taneously i.e. the filter delay is not evident at the output. The parameter

α[i] is a frequency dependant decaying coefficient for band i and is controlled

by a time constant, τ [i],

τ [i] = τmin +
100

fc[i]
(τ100 − τmin) , (B.19)

α[i] = exp

(

− 1

Fssτ [i]

)

, (B.20)

where τmin = 8 ms and τ100 = 30 ms. The resultant patterns, Ẽs[i, n], are

known as excitation patterns and represent the physical activity of the hair

cells along the basilar membrane.

B.8 Masking Threshold

The masking threshold lies below the level of the excitation and is obtained

by introducing a frequency dependant offset to the excitation patterns. For

the PEAQ algorithm the offset is defined as

mdB[k] =

{

3, k ≤ 48,

0.25k 1
4
, k ≥ 48

(B.21)

m[k] = 10MdB [k]/20, (B.22)

and the masking threshold is calculated as

M [k, n] =
1

m[k]
Ẽs[i, n]. (B.23)

The intermediary representations used in creating the masking threshold are

presented in Figure B.3.
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Figure B.3: Excitation patterns and masking threshold for 10 seconds of speech taken from the poem The Lake Isle of Innisfree by
William Butler Yeats. The recording was taken from a commercial audio CD of poems read by their authors (Paschen et al., 2001)
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component approach to the analysis of EEG and MEG recordings. IEEE

Transactions on Biomedical Engineering, 47(5):589–93, 2000.

T. Virtanen. Sound source separation using sparse coding with temporal con-

tinuity objective. In in Proceedings of the International Computer Music

Conference (ICMC 2003), 2003.

N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time

Series. MIT Press, 1949.
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