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Abstract

This thesis deals with the stability analysis of switched linear systems. Such systems

are characterised by a mixture of continuous dynamics and logic-based switching

between discrete modes. This system class appears in a large variety of control systems

and has a wide field of applications in the modern industrial society.

While the application of switched control systems can be very beneficial, their stability

analysis is often complex. Even though, switched system analysis has been studied

extensively in the last decade, few analytical tools for stability have been developed.

To date, the most common stability tools are based on numerical optimisation that

provide little insight into the (in)stability properties of the process. The objective of

this thesis is to develop stability tools that are readily applicable and provide some

support for the design process of controllers for switched systems.

In this thesis stability criteria for hybrid systems that resemble many of the classical

stability results for linear time-invariant systems are derived. The principal tool

employed for stability analysis of the systems is Lyapunov theory: both quadratic and

non-quadratic Lyapunov functions are used to derive compact eigenvalue conditions

that guarantee stability of certain classes of switched systems. New results for second

order switched systems are developed, a describing function technique for switched

systems is presented, and pole-placement techniques for stabilising switched single-

input single-output (SISO) PID control structures are derived. In addition, the results

also lead to new more compact versions of well known SISO stability criteria for

nonlinear systems of the Lur’e type. In this context, we show that well known criteria

such as the Circle Criterion, Popov Criterion, and the KYP lemma can be evaluated

in a compact manner.
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Chapter 1

Introduction and overview

In this introductory chapter, we motivate the study of switched and hybrid

systems, and point out some of the issues associated with the stability of

these systems. We also provide a rough overview of the nature of available

stability results in the area, along with a brief outline of the work contained

in the remainder of the thesis.

1.1 Introductory remarks and motivation

Over the past two decades dramatic progress in computing capabilities has resulted

in the synthesis and implementation of increasingly complex dynamical systems.

In this context, control systems often fulfill several objectives or interact in a net-

work of decentralised control systems. Such systems typically exhibit simultane-

ously discrete and continuous dynamics and are known as hybrid dynamical sys-

tems. Control-problems that can be described in such a form can be found in ap-

plications in various industrial fields like aircraft control [BM00, BM01], traffic con-

trol [HV00, TPS98, GLS94], automotive control [Sho96, CGS04], and power systems

[RBM+97, PL99]. It is fair to say that the theory of hybrid systems is by now a

well-established research area with contributions from several research communities

such as engineering, mathematics and computer science.

The subject of this thesis is a class of hybrid systems that is known as switched linear

systems. The continuous dynamics of switched linear systems are described by a set
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of linear time-invariant differential equations which involve (at least partially) the

same states. Each of these differential equations represent the dynamics of a linear

time-invariant (LTI) system, often referred to as constituent systems of the switched

linear system. The discrete dynamics are represented by some logic- or event-driven

switching unit that alternates the linear dynamics at distinct time-instances. An

example of a possible closed-loop controller structure is shown in Figure 1.1.

PSfrag replacements

Controller 1

Controller 2

Controller N

Process
u

yr e

Switching unit

Figure 1.1: Example of the structure of a switched control system.

Here a bank of N controllers is used to control the process. At any given time

only one of the controllers is active in the closed-loop and supplies the control

signal. The switching unit determine the controller to be active at any given time

instant.

Switched control systems can be applied for a number of reasons. In the following list

some scenarios are described that motivate the study of switched systems.

(i) Switching process. Maybe the most obvious reason for applying a switched

control-scheme is given for the case where the process itself is inherently multi-

modal such that its dynamics change (more or less) instantaneously over time.

Examples for such behaviour can be found in mechanical systems where a gear-

box is fundamental part of the dynamics. Consider the longitudinal dynamics

of an automobile. In each gear the dynamics can be described by a different

continuous model [Sho96]. A change of gear can then be viewed as a mode-

switch of the overall longitudinal dynamics.

(ii) Multiple control objectives. Even when the plant itself does not exhibit

switching dynamics, switched controllers can be used to meet multiple control
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objectives. This can be necessary when the process is exposed to changing

environments or disturbances. A good example for an application with such

changing objectives is the control of wind-turbine power generators [LLMS02,

LSL+03]. For reasons of security and performance the generator operates in

different modes depending on the current wind-speed.

(iii) Performance and constraints. Control-design is typically a trade-off be-

tween several objectives such as response speed, over-shoot, robustness, dis-

turbance attenuation and control- and state-constraints. Some limitations of

classical linear or non-linear controllers can be overcome by switching appro-

priately between individual controllers that are designed for specific tasks (for

examples see [FGS97],[MK00] and references therein). For example, the perfor-

mance of a PI controller can be improved by switching off the integral part of

the controller when the error is large. For large errors the remaining propor-

tional controller provides fast response, while the PI controller provides good

low-frequency disturbance attenuation when the error is small.

(iv) Adaptive control. For processes with uncertainties and largely varying dis-

turbances, adaptive controllers can be applied to account for the changing oper-

ating conditions. Switched dynamical systems arise naturally as a consequence

of the introduction of the multiple-models, switching and tuning paradigm in

[NB95, NB97]. Here, a number of different models are used to represent the

various operating conditions. With each model a controller is associated whose

parameters are tuned as long as the changes are small. When the conditions

change rapidly, the model is selected that describes the current situation best

and its associated controller is applied. Such a switching scheme allows for a

much faster adaptation than classical single-model adaptive controllers.

While the application of switched controllers can undoubtedly be beneficial, the sta-

bility analysis of the resulting closed-loop systems is by no means trivial. At first

sight, one might assume that the switched system only exhibits properties of the in-

volved linear systems and therefore is stable whenever the constituent linear systems

are stable. However, it is not hard to demonstrate that such a conjecture is false (see

[LM99, DBPL00] for examples). In fact, the switching action between the constituent

systems can induce a wide range of dynamical behaviour that cannot be observed in

any of the constituent systems.
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To assist intuition consider the following example of the “Car in the desert” borrowed

from [SN98c] that illustrates a possible instability mechanism of the switched system.

Figure 1.2: ‘The car in the desert’

Imagine the situation depicted in Figure 1.2. A man is stranded with his

car in the desert. As depicted he has two possible strategies (a and b) to

reach the oasis and being saved from starvation. Both of those strategies

can be considered as “stable” since they will lead to the rescue of the man.

However, if the man initially follows strategy a but changes his mind after

a while to follow strategy b, he might get further away from the oasis

as indicated by path c. Continuation of changing his strategy in such

a fashion would lead to catastrophic results. However, would he choose

for example larger time-intervals between the change of his strategies (or

simply never change his mind) he would reach the oasis safely.

While the above example is somewhat frivolous, it still shows one of the many possible

instability mechanisms of switched linear systems (known as chattering instability).

The two strategies a and b represent trajectories in the state-space of the constituent

stable LTI systems. A change of strategy corresponds to switching the dynamics from

one vector-field to the other. Although the resulting trajectory c consists of fractions

of trajectories belonging to strategy a or b, it exhibits a completely different qualitative

behaviour. Furthermore, we observe that the same set of strategies (constituent

systems) can result in stable and unstable trajectories, depending on the switching

scheme applied. Therefore the switched system is only properly defined by the set of

constituent systems in conjunction with admissible switching schemes.

This distinction motivates various approaches to the stability analysis of switched

systems. Depending on the objectives and constraints of the application, different

lines of inquiry are appropriate. Consider for example the case where we have little
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influence on the closed-loop dynamics of the constituent systems. In such situation

it might be of interest to identify switching rules that result in stable behaviour.

The opposite approach considers a class of admissible switching schemes and aims to

design a set of controllers that ensure stability. Restriction of the class of admissible

switching schemes usually results in a greater freedom for the design of the individual

controllers.

This thesis is focussed on the stability analysis of switched linear systems with arbi-

trary switching schemes. Thus we derive conditions on the dynamics of the constituent

systems such that the stability of the switched system is guaranteed. This is the most

general case of the latter approach and is pertinent whenever the admissible switch-

ing schemes cannot be specified or a high degree of robustness (with respect to the

switching scheme) is required. Moreover, as shall be discussed in a later section, the

stability problem of switched systems with arbitrary switching is equivalent to robust

stability of certain classes of parameter-varying systems. A pleasant ‘by-product’ of

the analysis of switched systems for arbitrary switching is therefore, that the results

are immediately applicable to the corresponding robustness problem.

1.2 Brief overview on existing stability approaches

The stability of the closed-loop system is probably the most fundamental objective

for the control design. It is well known that efficient control-design methods can only

be developed when the stability properties of the system are fully understood. In

order to motivate the approaches in this thesis, this section provides a brief overview

on the nature of available stability results for switched linear systems with arbitrary

switching. A detailed review follows in Chapter 2.

The analysis of switched systems has received considerable attention from various

research communities in the past decade. Most results are based on Lyapunov’s sta-

bility theory which has played a dominant role in the analysis of dynamical systems

for more than a century. Roughly speaking, Lyapunov theory guarantees stability

of the dynamical system if a function (called Lyapunov function) with a certain set

of properties can be associated with that system (see Section 2.4 for the full defin-

itions). The crucial part of applying Lyapunov’s theory is to find such a Lyapunov

function or at least to establish that one exists. For linear time-invariant (LTI) sys-
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tems this is rather straight forward since a simple eigenvalue-test reveals the existence

of a quadratic Lyapunov function. Moreover, the existence of a quadratic Lyapunov

function is necessary and sufficient for the asymptotic stability of an LTI system.

However, the analysis of switched linear systems is more complex. The introductory

discussion indicates that the existence of a quadratic Lyapunov functions for each of

the constituent LTI systems is not sufficient for the stability of the switched system.

But it is well known that the switched system is stable if there exists some common

Lyapunov function that satisfies the conditions of the Lyapunov theory simultane-

ously for all constituent systems. More recently, a number of converse theorems have

been established [MP86, MP89, DM99], showing that such common Lyapunov func-

tion always exists when the switched linear system is stable for arbitrary switching.

However, general conditions for determining the existence of a common Lyapunov

function for switched systems are unknown. Therefore, most stability results consider

some class of switched systems or a specific type of common Lyapunov function.

We can roughly categorise the available stability results for arbitrary switching into

numerical and analytic conditions, based on either quadratic or non-quadratic Lya-

punov functions.

The majority of results use common quadratic Lyapunov functions (CQLF) to estab-

lish stability. The most applicable analytic results are formulated in terms of eigen-

value properties of the system matrices (e.g. eigenvalue or matrix-pencil conditions)

or apply to subsystems with specific properties such as commuting system matrices

or triangular systems. While those conditions are very compact and simple to apply

in practice, the greatest disadvantage lies in their restriction to a rather small class of

systems. Numerical approaches for the existence of a CQLF are applicable to a much

greater class of systems. This is mainly due to the fact, that the CQLF problem can

be formulated as linear matrix inequalities (LMI) for which powerful solution-tools

are available [BEFB94]. However, solving the respective LMIs only provides an an-

swer to the existence (or non-existence) of a CQLF and does not provide any insights

into the dynamical behaviour or guidelines for the controller design.

In contrast to LTI systems, the existence of a common Lyapunov function of the

quadratic type is in general not necessary for the stability of switched systems. It is

not hard to find stable switched systems for which no CQLF exists. In those cases,

stability conditions that are based on the existence of a CQLF will lead to conservative



1.3 Overview and contributions 7

results. This problem can be overcome by considering alternative types of Lyapunov

functions as for example piecewise linear or piecewise quadratic Lyapunov functions.

In the work on the converse Lyapunov theorems it is shown that such types of common

Lyapunov functions always exist if the system is stable. The crucial question here

is to determine the number of pieces needed to construct such Lyapunov function.

In general, this problem appears to be rather difficult. Therefore, most results using

these types of Lyapunov function concern switched systems where switching occurs

along specified switching surfaces in the state-space. Such a structured state-space can

be used as a guideline for the layout of the piecewise Lyapunov function. Analytic

results using piecewise Lyapunov functions for arbitrary switching are very scarce.

There are a few numerical approaches to finding a piecewise linear Lyapunov function.

However, these algorithms also suffer from the problem that the number of partitions

is unknown and effectively are not applicable to systems of order higher than three

or four.

1.3 Overview and contributions

The subject of this thesis is the stability analysis of switched linear systems where

arbitrary switching signals are admissible. As the previous discussion shows, there

is a large number of stability results for this system class available in the literature.

However, many of the conditions obtained are theoretical, non-constructive results

or impose considerable restrictions on the control design for the systems. The main

objective in this thesis is to contribute stability conditions that provide some insight

into the stability (or instability) properties of the switched system and can support

the design process of controllers for switched systems.

A second motivation for the work in this thesis stems from the fact that the majority

of the stability tools available use quadratic forms to establish stability. This can

lead to conservative results since the existence of a quadratic Lyapunov function is

sufficient, but in general not necessary for stability. In other words, the considered

system might well be stable even when a CQLF fails to exist. For this reason we choose

alternative approaches in order to establish stability for a larger set of systems.

In the following Chapter 2 we formally define the switched systems considered in this

thesis and introduce the relevant notions of stability. Furthermore, we discuss some
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typical stability problems that arise in the analysis of this system class and review

the most relevant stability theory that is related to the work in this thesis.

In Chapter 3 a class of second-order switched systems is considered. We derive a

simple stability condition (45◦ Criterion) which is based on eigenvalue properties of

the constituent systems matrices. The formulation of the stability condition in terms

of the eigenvalues has the advantage that the condition is invariant under co-ordinate

transformations. We employ two types of Lyapunov functions to establish stability for

this condition: quadratic Lyapunov functions and a type of piecewise linear Lyapunov

functions. Clearly, the existence of either Lyapunov function is sufficient for the

stability of the switched system. However, both Lyapunov functions are needed to

derive the stability condition presented. The analysis reveals that the use of the

piecewise linear Lyapunov function is particularly beneficial when the constituent

LTI systems have real eigenvalues. For some of these cases, the quadratic Lyapunov

function fails to exist. Moreover, the derivation of the results allows to directly

construct such piecewise linear Lyapunov function for a given switched system. This

could prove useful for the development of design-methods for controllers for switched

systems.

While switched systems have only been explicitly studied for roughly a decade, their

analysis is closely related to classes of nonlinear systems that have been the subject

of earlier research. In Chapter 4 we consider a particular type of switched system

that is related to the classical single-input single-output Lur’e system. We show

that typical stability problems for these two system classes are equivalent such that

stability results obtained for these systems are mutually applicable. A recent result

in [SN03b] relates the Circle Criterion to a simple eigenvalue test of the product of

the constituent system matrices. We extend this result to show that a large number

of classical stability conditions for the Lur’e system can be formulated as eigenvalue

conditions of a matrix product. In fact, any condition that relates the location of the

Nyquist plot to a disk in the complex plane can also be expressed as an eigenvalue

test (for example the sensitivity analysis of LTI systems). This can be useful for the

robust design of controllers with several constraints.

The same system class is subject of the analysis in Chapter 5. Here we choose a

frequency-domain approach which is motivated by a stability conjecture originally

formulated in [PT74]. The authors use an approach similar to describing functions

for stationary nonlinearities to detect the existence of periodic motion. In Chapter 5
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we analyse this conjecture and examine a number of questions arising from it. In this

context the existence of a periodic solution in the proximity of the stability boundary

is of particular interest. While it remains an open question whether or not the non-

existence of a periodic solution is sufficient for stability, we can establish that its

absence is of some significance for the stability of the system. Based on this analysis

we derive stability conditions that approximate the stability boundary arbitrarily

close. Note, that these results are simultaneously valid for Lur’e systems and the

corresponding class of switched systems.

In Chapter 6 we shift the focus from the pure analysis of the system to a design-method

for a switched controller. We propose a controller architecture which is suitable to

meet typical requirements for a switched process. We pursue two goals in this chapter.

Firstly, we exploit the structure of the resulting closed-loop system to derive simpli-

fied stability conditions for systems with an arbitrary, finite number of subsystems.

Secondly we derive conditions for the controller-design that minimise the transient

responses when the plant switches under certain circumstances.

The work described in the thesis has led to a number of publications in international

conference proceedings and peer-reviewed journals. In particular, results of Chapter 3

concerning the proposed piecewise linear Lyapunov function and the 45◦ Criterion

for systems with real eigenvalues have been published in [WCS01], [WSC02b] and

[WSC02a]. The extension of the matrix-product result in [SN03b] to multiplier criteria

in the frequency domain in Chapter 4 has been published in [SCW03] and [SCW04].

The relation of the existence of periodic motion to the absolute stability problem in

Chapter 5 has been discussed in [WFS03].





Chapter 2

Stability of switched linear

systems

In this chapter we define the class of switched linear system and the notion

of stability that are subject of the analysis in this thesis. Further, a num-

ber of problems regarding the stability of this system class are described,

followed by a brief review of the known stability results on switched linear

systems that are available in the literature.

2.1 Introductory remarks

Switched linear systems are defined by a set of linear time-invariant (LTI) systems

and a switching mechanism that orchestrates between them. A key issue for the

stability analysis of the switched system is the interaction of the piecewise constant

dynamics and the switching mechanism. In fact, for some switching patterns this

interaction can cause unstable behaviour in a switched system formed from a set of

stable LTI systems and vice versa. For most of this thesis we are concerned with

finding conditions on the family of subsystems that guarantee stable behaviour for

arbitrary switching schemes.

In this chapter we formally define the class of switched systems considered in this

thesis and the relevant notions of stability. Further we describe some major stability

problems concerning switched systems that have been studied in the recent past. In
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Section 2.4.2 a brief overview on Lyapunov theory in relation to switched systems is

given and a number of fundamental converse theorems stated which form the theoret-

ical basis of many stability results. In the last two sections we briefly review stability

results available in the literature for switched systems with arbitrary and constraint

switching signals, respectively.

2.2 Switched linear systems

The switched linear system consists of a finite set of linear time-invariant (LTI) sys-

tems

ΣAi
: ẋ(t) = Aix(t), Ai ∈ R

n×n, i ∈ I =
{

1, . . . , N
}

. (2.1)

We refer to ΣAi
interchangeably as constituent system i, subsystem i or mode i of the

switched system. The index-set I denotes the set of modes i. Since the subsystems

are uniquely defined by their system matrix Ai, we will often refer to the system Ai,

meaning the autonomous linear time-invariant system ΣAi
defined by Ai.

Note, while each subsystem is described by an individual system matrix Ai, the state-

vector x ∈ R
n is shared between them. At any given point in time one and only one

subsystem ΣAi
describes the evolution of the state x(t). For most of this thesis we shall

consider systems that switch arbitrarily between the constituent systems while the

switching law may be unknown. However, we require that once the system switches

into a given subsystem, it remains in that mode for some time interval. Although

this time interval may be arbitrarily small, it excludes the possibility that an infinite

number of switches occur in finite time, known as Zeno behaviour [Lib03].

The switching sequence describes the switching action between the constituent sys-

tems. The time instance where mode switches occur are given by a sequence of

switching instances tk. With every switching instant tk we associate the mode ik ∈ I
that describes the subsystem that becomes active in the respective switching instant.

Together they form the switching sequence given by the sequence of ordered pairs

(t0, i0), (t1, i1), · · · , (tk, ik), · · ·

where t0 < t1 < . . . < tk < . . ., and ik ∈ I, ik 6= ik+1 ∀ k ≥ 0.

The kth switching interval is given by tk ≤ t < tk+1 where the switched system is

in mode ik. During that interval the state x(t) evolves according to ẋ(t) = Aik
x(t).
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Recall that the state vector x is common to the constituent systems and therefore is

continuous at the switching instances. Thus the initial state x(tk) for ẋ(t) = Aik
x(t)

is the terminal state of ẋ(t) = Aik−1
x(t),

x(tk) = lim
t→tk,t<tk

x(t).

The length of the kth interval is denoted by τk = tk+1 − tk > 0.

The above elements fully describe the dynamics of the switched linear system. In

order to describe the switched system in a closer form we introduce the switching

signal which determines the interaction of the subsystems.

Definition 2.1 (Switching signal) A switching signal σ(t) is a piecewise constant

function σ : R
+ → I with the following properties:

(i) the points of discontinuity are the sequence of numbers t0 < t1 < . . . < tk < . . .;

(ii) there exists a lower bound τmin > 0 for the interval between two consecutive

discontinuities tk, tk+1, such that tk+1 − tk > τmin for all k;

(iii) σ(·) is continuous from the right, i.e. σ(t) = ik for tk ≤ t < tk+1.

Using the elements described above we can define the switched linear system as a

linear time-varying system with piecewise constant, linear dynamics given by a family

of linear time-invariant systems.

Definition 2.2 (Switched linear system) Let A =
{

A1, . . . , AN

}

⊂ R
n×n be a

finite set of system matrices defining a family of linear time-invariant systems ΣAi
,

i ∈ I =
{

1, . . . , N
}

and let S be the set of admissible piecewise constant switching

signals σ(·) : R
+ → I. Then the switched linear system is defined by

ΣA,S : ẋ(t) = A(t)x(t), (2.2)

where A(t) ∈ A and A(t) ≡ Aσ(t), σ(t) ∈ I for all t ∈ R
+ and all σ(·) ∈ S.

For most of this thesis we assume that the switching law allows for arbitrary switching,

meaning that the set S contains all functions σ(·) with the properties in Definition 2.1.

In these cases we shall omit the set S in the notation and simply refer to ΣA as the

switched system.
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As a final piece of notation x(t, t0, x0, σ) denotes the state vector x at the time t for

a given initial condition x0 = x(t0) and where the dynamics of the system switches

according to σ. When the meaning is clear from the context we will simply use x(t)

to denote a trajectory or solution of the system. In the next section is shown that

the solution x(t, t0, x0, σ) of the switched system exists for all t ∈ R
+ and any given

initial state x0, initial time t0 and switching signal σ(·) ∈ S.

Representation of the solutions

At any time instant exactly one subsystem ΣAi
is active and according to the assump-

tions, the solution x(t) is continuous, albeit not continuously differentiable. Figure 2.1

shows an example for a state trajectory of a second-order switched system. Between

two consecutive switching instances the trajectory has all characteristics of a linear

time-invariant system. At the switching instances, the trajectory is possibly non-

smooth but continuous.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Figure 2.1: Sample-trajectory of an unforced second-order switched

linear system. The initial state is (0, 1) and the switching instances

are indicated by a dot.

As for linear time-invariant systems we can write the solution of (2.2) for a given

switching signal σ(·) and initial state x0 as

x(t, t0, x0, σ) = Φσ(t, t0)x0

where Φσ(t, t0) denotes the transition matrix of the switched system (2.2) with switch-

ing signal σ(·).
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The solution x(t) can be constructed by piecing together the respective solutions of

the constituent LTI systems. For the kth interval tk ≤ t < tk+1 we obtain

x(t) = e(Aik
(t−tk)) x(tk) .

Since x(tk+1) is the initial state for the following interval we get for tk+1 ≤ t < tk+2

x(t) = e(Aik+1
(t−tk+1)) e(Aik

τk) x(tk)

with τk = tk+1 − tk.

The transition matrix Φσ(t, t0) and with that the solution of (2.2) for any given initial

state x0 and any given switching signal σ(·), is uniquely defined by

x(t, t0, x0, σ) = Φσ(t, t0)x0

with Φσ(t, t0) = e

(

Aik
(t−tk)

) k−1
∏

l=0

e(Ail
τl)

where tk is the last switching instant before t, i.e. tk ≤ t < tk+1.

Non-autonomous systems

Thus far we defined the switched linear system as an unforced system without input

and output, commonly referred to as an autonomous system. Of course, for control

systems the input-output behaviour is of major interest. We therefore introduce the

non-autonomous switched system.

Similar to (2.1) we consider the set of constituent linear time-invariant input-output

systems given by

ẋ(t) = Aix(t) + Biu(t) (2.3a)

y(t) = Cix(t), ∀ i ∈ I (2.3b)

where u(t) ∈ R
r denotes the input and y(t) ∈ R

p is the output of the system. The

matrices Bi, Ci are of according dimensions. In the special case that r = p = 1 we

speak of (2.3) as a single-input single-output (SISO) system.

The non-autonomous switched system is then defined by the family of time-invariant

input-output systems (2.3) for i ∈ I. Thus, the input-output behaviour in each mode

i ∈ I is defined by the matrix triple (Ai, Bi, Ci). The input u(t) and the output y(t)

signals are shared by all constituent systems.
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Including the switching signal σ(·) ∈ S we obtain for the non-autonomous switched

system

ẋ(t) = A(t)x(t) + B(t)u(t) (2.4a)

y(t) = C(t)x(t) (2.4b)

where A(t) ≡ Aσ(t), B(t) ≡ Bσ(t) and C(t) ≡ Cσ(t) for all t ∈ R
+ and σ(t) ∈ I.

Note, that the matrices A(t), B(t), C(t) switch synchronously at exactly the same

time instances tk. Thus, the non-autonomous switched system is defined by the set of

input-output systems
{

(Ai, Bi, Ci)
}

, i ∈ I and the set of admissible switching signals

σ(·) ∈ S.

2.3 Stability theory of switched systems

Stability is a fundamental requirement for all control systems. As we shall see, there

are a number of questions pertaining to the stability of switched linear systems that

are as yet unanswered. Before we begin our discussion of these question we shall now

introduce the formal definitions of the types of stability that are considered in this

thesis.

2.3.1 Internal stability

Internal stability considers stability of the autonomous system in view of an equilib-

rium point xe. A point xe ∈ R
n is called equilibrium of the autonomous system (2.2)

if Aixe = 0 for all i ∈ I. In particular, the origin is always an equilibrium point

of (2.2).

Definition 2.3 (Uniformly stable equilibrium) The origin is said to be a uni-

formly stable equilibrium of (2.2) if for any given ε > 0 there exists a δ(ε) > 0 such

that

||x0|| < δ(ε) ⇒ ||x(t, t0, x0, σ)|| < ε ∀ t ≥ t0 , ∀ σ(·) ∈ S.

Note that δ(ε) does neither depend on t0 nor on σ(·). Hence, stability of the equilib-

rium is uniform with respect to the initial time and the switching signal σ(·).

If there exists a region around the origin such that all trajectories starting within that

region converge to the origin, we speak of an attractive origin.
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Definition 2.4 (Uniformly attractive equilibrium) The origin is said to be a

uniformly attractive equilibrium of (2.2) if there exists a δa > 0 such that

||x0|| < δa ⇒ x(t, t0, x0, σ) → 0 as t → ∞ ∀ t0 ≥ 0 , ∀ σ(·) ∈ S.

Again, uniformity applies with respect to the initial time and the switching signal.

Combining both notions of stability we obtain asymptotic stability.

Definition 2.5 (Uniform asymptotic stability) The origin is said to be a uni-

formly asymptotically stable equilibrium if it is uniformly stable and uniformly attrac-

tive.

Figure 2.2 shows an illustration of the above notions of stability.

PSfrag replacements

δ

ε

x1

x2

x(t0)

Figure 2.2: Illustration of stability definitions. The dashed line stays

within the ball ε, but will not converge to the origin (equilibrium). Systems with

such trajectories are called stable. The solid trajectory stays within the ε-ball

and converges to the equilibrium, i.e. such systems are asymptotically stable.

An even stronger property is exponential stability which refers to the rate of conver-

gence.

Definition 2.6 (Uniform exponential stability) The origin is said to be a uni-

formly exponentially stable equilibrium if there exist real numbers a, b > 0 such that

all solutions of (2.2) satisfy

||x(t, t0, x0)|| ≤ a||x0||e−bt ∀ t ≥ t0 ,∀ σ(·) ∈ S.
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Some remarks are in order for the case where S contains all switching signals as in

Definition 2.1:

(i) For linear time-varying systems asymptotic stability is equivalent to global asymp-

totic stability, i.e. the region of attraction is the whole state-space [Kha96].

(ii) For switched linear systems uniform attractivity, uniform asymptotic stability

and uniform exponential stability are all equivalent [Ang99, DM99].

Note, that in all definitions uniformity is with respect to all admissible switching

signals σ(·) ∈ S. For most of this thesis we are interested in stability of arbitrary

switching between the constituent systems, i.e. S contains all signals as defined in

Definition 2.1. However, when a system fails to have an asymptotically stable equi-

librium in S, we might still be able to find a subset S ′ ⊂ S of switching signals for

which stability can be established.

For the remainder of this thesis we omit the term “uniform” and use asymptotic stabil-

ity and exponential stability interchangeably, meaning uniform exponential stability.

2.3.2 Input-Output stability

All the above notions of stability consider unforced systems and describe the behaviour

of the state trajectories x(t) for initial states x0 6= 0. In contrast to that, input-

output stability addresses the stability of the non-autonomous system with initial

state x0 = 0 and relates the output behaviour of the system to bounded inputs. If all

bounded inputs u(·) result in outputs y(·) that are themselves bounded, we speak of

bounded-input bounded-output stability (BIBO-stability).

Definition 2.7 (BIBO-stability) The non-autonomous switched linear system (2.4)

is BIBO-stable if there exists a finite constant γ > 0 such that for any initial time t0,

any switching signal σ(·) ∈ S and any bounded input signal u(·), the corresponding

output signal y(·) satisfies

sup
t≥t0

||y(t)|| ≤ γ sup
t≥t0

||u(t)||

Essentially, BIBO-stability provides that input signal cannot be amplified by a gain

greater than some finite constant γ.
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There are strong relations between input-output stability and internal stability (see

e.g. [AM69] for a thorough discussion). Most relevant in our context is, that the non-

autonomous system (2.4) is bounded-input bounded-output stable, if the correspond-

ing autonomous system (2.2) is uniformly asymptotically stable [Rug96]. Therefore,

we will focus our analysis on the internal stability of the autonomous switch system.

2.3.3 Stability problems for switched linear systems

Determining asymptotic stability for a single LTI system is rather simple. It is well

known that the system

ẋ(t) = Ax(t), A ∈ R
n×n

is asymptotically stable if and only if the eigenvalues of A lie in the open left half of

the complex plane [Kai80]. Matrices A with such properties are referred to as Hurwitz

matrices. However, for switched systems with arbitrary switching it is not sufficient

for stability that all constituent systems ΣAi
are stable LTI systems. Instead, the

switching between the modes can cause instability even if the LTI systems on their

own are stable. This is illustrated by the following example.

Example 2.1 Consider the set of system matrices A = {A1, A2} with

A1 =







−0.5 −1.0

15.0 −1.5






, A2 =







0 1

−1 −1






.

It is readily verified that both matrices are Hurwitz and therefore the respective LTI

systems are asymptotically stable.

We choose a periodic switching signal where the switched system is first in mode 1 for

2π
25 time-units and then in mode 2 for 8π

25 time-units. We apply the following switching

sequence
(

0, 1
)

,
(2π

25
, 2

)

,
(10π

25
, 1

)

,
(12π

25
, 2

)

. . . (2.5)

The trajectory of the switched system for this switching signal and the initial state

(1, 1)T is shown as a dashed line in Figure 2.3. Clearly, this switching signal results

in an unstable trajectory.

However, choosing a slightly different switching signal can result in opposite stability

behaviour. Choose the periodic switching sequence
(

0, 1
)

,
(4π

25
, 2

)

,
(10π

25
, 1

)

,
(14π

25
, 2

)

. . . (2.6)
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This switching signal results in a trajectory that converges to the origin, shown as a

solid line in Figure 2.3. Note that the only difference between the switching sequences

(2.5) and (2.6) is the ratio of the time that the system stays in each mode. �
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Figure 2.3: Sample trajectories of the switched system in Example 2.1 illustrating differ-

ent behaviour for the same set of subsystems depending on the applied switching sequence.

The trajectory in dashed line results from the switching sequence in (2.5), the solid line

corresponds to the switching sequence in (2.6). The initial state is (1, 1) in both cases.

The above example demonstrates that a set of stable LTI systems can result in an

asymptotically stable or an unstable switched system, depending on the set of switch-

ing signals associated with it. Hence the stability problem of switched systems break

down to finding combinations of system matrices A and sets of admissible switch-

ing signal S that result in asymptotically stable switched systems. Naturally two

questions arise:

(i) Given a set of switching signals S, which class of system matrices A will result

in asymptotical stable switched systems ΣA,S?

(ii) Given a set of matrices A, find a set of switching signals S, such that the

switched system ΣA,S is asymptotically stable.

We can identify four major problems of merit in the literature on stability of switched

linear systems:
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(i) Arbitrary switching. This problem is to identify sets of matrices A that result

in exponentially stable switched systems with arbitrary switching signals, i.e.

all switching signals described in Definition 2.1 result in asymptotically stable

trajectories. In particular the system must be stable for constant switching

signal σ(t) = i. Thus it is necessary that each of the constituent systems is a

stable LTI system.

(ii) Time-dependent switching. This is the first of two problems that considers

stability for a subset of switching signals. The switching signals are classified by

the time-interval between two consecutive switching instances. The constituent

systems are usually assumed stable. Hence sufficiently slow switching will result

in asymptotic stable behaviour [LHM99]. The task is to find the minimum time

between two consecutive switching instances to guarantee stability. The most

prominent approaches are the dwell-time problem and the multiple-Lyapunov

function approach.

(iii) State-dependent switching. This problem again, considers a subset of switch-

ing signals. In contrast to the previous problem, the switching signal is depen-

dent on the state-vector. For every subsystem regions in the state-space are

identified where they are allowed to be active while preserving stability of the

switch system. The regions may overlap but have to cover the whole state-space

as a union.

(iv) Stabilising switching signals. Here, the switched system is formed by un-

stable LTI systems. The goal is to construct switching signals, that result in

stable trajectories. Such switching signals are commonly referred to as stabilis-

ing switching signals.

2.4 Lyapunov Theory

Lyapunov theory has played a key role in the stability analysis of linear and nonlinear

system for a long time [Kal63, Rug96, Vid93]. It is therefore not surprising that many

stability results for switched systems are based on Lyapunov Theory. In this section we

briefly recall Lyapunov’s stability theorem and define the common Lyapunov function

for switched linear systems.
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Common Lyapunov functions play an important role for the stability of switched sys-

tems. If there exists a common Lyapunov function for the constituent LTI systems

then the switched system is exponentially stable for arbitrary switching signals. Con-

versely, a number of authors have shown that the existence of common Lyapunov

function is also necessary for the exponential stability of the switched system.

2.4.1 Lyapunov functions

The idea behind Lyapunov’s stability theory is as follows: assume there exists a

positive definite function with a unique minimum at the equilibrium. One can think

of such a function as a generalised description of the energy of the system. If we

perturb the state from its equilibrium, the energy will initially rise. If the energy

of the system constantly decreases along the solution of the autonomous system, it

will eventually bring the state back to the equilibrium. Such functions are called

Lyapunov functions. While Lyapunov theorems generalise to nonlinear systems and

locally stable equilibria (see [Vid93] for a thorough discussion) we shall only state

them in the form applicable to our system class.

Theorem 2.8 (Lyapunov stability) The equilibrium x = 0 of the switched linear

system (2.2) is uniformly asymptotically stable if there exists a continuous, differen-

tiable and radially unbounded function V : R
n → R with

V (0) = 0 is a unique minimum, (2.7a)

V (x) > 0 elsewhere (2.7b)

such that the derivative along the solutions x(t, t0, x0, σ) of (2.2) is negative, i.e.

d

dt
V

(

x(t, t0, x0, σ)
)

< 0 ∀ x0 6= 0, t 6= tk (2.8)

for all initial times t0 and all switching signals σ(·) ∈ S, where tk denotes the switching

instances.

A function that satisfies the first two conditions (2.7) is sometimes referred to as

Lyapunov function candidate.

The requirements that V (x) is continuous and differentiable are classical and cus-

tomary assumptions. In general, the function V (x) does not need to be continuously

differentiable as long as its decrease along the system trajectories can be guaranteed.
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Note that the above Lyapunov theorem is applicable to switched systems with any

class of switching signals. In the following we shall focus on applying Lyapunov theory

to switched systems with arbitrary switching signals. If V (x) is a Lyapunov function

for the switched system (2.2) with arbitrary switching signals, V (x) is certainly also a

Lyapunov function for each of the constituent LTI systems ΣAi
. Functions for which

the properties (2.7) and (2.8) hold simultaneously for the systems ΣAi
are called

common Lyapunov functions.

Definition 2.9 (Common Lyapunov function) The function V : R
n → R is a

common Lyapunov function for the family of LTI systems ΣAi
, Ai ∈ A, if V (x) is a

Lyapunov function candidate and satisfies

∇V(x)Aix < 0 ∀ Ai ∈ A, x ∈ R
n (2.9)

where ∇V denotes the gradient of V .

The existence of a common Lyapunov function for the constituent systems is sufficient

for asymptotic stability of the switched system (2.2) with subsystems A. To see

this consider the following. Between the two consecutive switching instances tk, tk+1

the switched system evolves according to ΣAik
for which ∇V(x)Aik

x < 0. At any

switching instant the state is continuous and after switching into mode ik+1 we get

∇V(x)Aik+1
x < 0. Thus the derivative is always negative along the solutions of (2.2).

A formal proof of the following theorem can be found in [Lib03].

Theorem 2.10 (Sufficient condition for asymptotic stability)

The switched linear system (2.2) is asymptotically stable for arbitrary switching signals

σ(·) ∈ S, if there exists a common Lyapunov function V (x) for the constituent LTI

systems ΣAi
, i ∈ I.

Common Lyapunov functions are of great importance for establishing asymptotic

stability of switched linear systems with arbitrary switching signals. We shall note

some properties that will be used throughout this thesis.

(i) Coordinate independence.

Lemma 2.11 Let V (x) be a common Lyapunov function for the LTI systems

ΣAi
with Ai ∈ A and choose the co-ordinate transformation x̃ = Sx with S ∈

R
n×n, non-singular. Then V (S−1x̃) is a common Lyapunov function for the

transformed systems ΣÃi
with Ãi = SAiS

−1.
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Proof. V (S−1x̃) is a Lyapunov function for ΣÃi
if and only if

∇V(S−1x̃) Ãix̃ < 0

The gradient of V(S−1x̃) with respect to x̃ is ∇V(S−1x̃)S−1. Thus

∇V(S−1x̃)S−1Ãix̃ < 0

Substituting Ãi = SAiS
−1 and x̃ = Sx yields

∇V(x)Aix < 0

The latter holds according to the assumption that V (x) is a Lyapunov function

for ΣAi
. �

(ii) Convex combination.

Lemma 2.12 Let V (x) be a common Lyapunov function for the LTI systems

ΣAi
with Ai ∈ A. Then V (x) is also a Lyapunov function for the LTI systems

ΣĀ with

Ā =

N
∑

i=1

αiAi with αi ≥ 0,

N
∑

i=1

αi = 1. (2.10)

Proof. V (x) is a Lyapunov function for the LTI system ΣÃ if and only if

∇V(x)
N

∑

i=1

αiAix < 0 (2.11)

⇔
N

∑

i=1

αi∇V(x)Aix < 0 .

Since V (x) is a Lyapunov function for the LTI systems ΣAi
, ∇V(x)Aix is a

negative scalar for all Ai ∈ A. The convex combination of negative numbers

yields a negative number. Hence (2.11) holds and V (x) is a Lyapunov function

for ΣÃ. �

(iii) Robustness.

Both exponential stability and the existence of a common Lyapunov function

are robust properties in the sense that they are retained under sufficiently small

parameter perturbations [SOCC00].
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In particular the properties (i) and (ii) are used in many stability results for switched

linear systems. Moreover, Lemma 2.12 implies that V (x) is also a Lyapunov function

for the (continuously) parameter-varying system

ẋ(t) = A(t)x(t) , A : R → co
{

A1, . . . , AN

}

. (2.12)

Thus stability results for switched linear systems guaranteeing the existence of a

common Lyapunov function for the constituent systems, are also valid for the robust

stability of the related parameter-varying system (2.12).

2.4.2 Converse Theorems

A number of converse Lyapunov theorems establish that the existence of a common

Lyapunov function is also necessary for the asymptotic stability of the switched system

(2.2) with arbitrary switching signals. While these theorems are not constructive, they

provide an important theoretical basis for the development of analytic and theoretic

stability results. Although, the results stated in this section are originally proven for

differential inclusions and polysystems, we shall state them as they apply to switched

linear systems of the form (2.2).

Dayawansa and Martin investigated in [DM99] the existence of common Lyapunov

function for dynamical polysystems, a collection of smooth vector fields, similar to

differential inclusions. In the context of switched linear systems they show that uni-

form asymptotic stability is equivalent to the existence a smooth common Lyapunov

function.

Theorem 2.13 The origin of the switched linear system (2.2) is stable if and only

if there exists a C∞ positive definite function V (x) such that ∇V (x)Aix < 0 for all

Ai ∈ A.1

In the same paper it is shown that the statement of the above theorem applies equiva-

lently to the existence of a C1 function V : R
n → R. Hence, a necessary and sufficient

condition for uniform asymptotic stability of the switched linear system (2.2) is the

existence of a continuously differentiable Lyapunov function as well as the existence

of a smooth Lyapunov function.

1A function is C∞ if it has continuous partial derivatives of all orders; a function is called C1 if

its first partial derivative is continuous.
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In the context of differential inclusions Molchanov and Pyatnitskii investigated the

existence of Lyapunov functions that are not necessarily continuously differentiable

[MP86, MP89]. In this context, the usual derivative is replaced by

u(x) = max
i∈I

∂V (x)

∂ξi

where ξi = Aix is the direction of the trajectory in the point x when the subsystem

ΣAi
is active, and

∂V (x)

∂ξ
= lim

∆→+0

V (x + ∆ξ) − V (x)

∆

is the one-sided derivative. Then, u(x) is the maximum over all one-sided derivatives

of V (x) at the point x ∈ R
n in the directions of ξi = Aix.

With that, Molchanov and Pyatnitskii derive a number of important results in [MP86,

MP89]. They show that a switched linear system is uniformly asymptotically stable

if and only if there exists a common quasi-quadratic Lyapunov function for the con-

stituent systems [MP89].

Theorem 2.14 The origin of the switched linear system (2.2) is asymptotically stable

if and only if there exists a strictly convex, homogeneous2 of degree two Lyapunov

function V (x) of the form

V (x) = xTL(x)x , L(x) ∈ R
n×n, (2.13)

with L(x)T = L(x) = L(ax) , a ∈ R

V (0) = 0

such that the derivative u(x) is strictly negative along all solutions x(t), i.e.

max
ξi=Aix

∂V (x)

∂ξi
≤ −γ||x||2, γ > 0 . (2.14)

The function V : R
n → R is convex, but not always continuous differentiable. At every

point x, L(x) is symmetric and L(·) is radially constant. The description for V (x)

as a quasi-quadratic, stems from the form of (2.13). In case that L(x) is piecewise

constant a piecewise quadratic Lyapunov function is obtained; if L(x) is constant over

the whole state-space, V (x) is a common quadratic Lyapunov function.

Consider the piecewise linear function

Vm(x) = ||Lx||∞ (2.15)

2A function V : Rn → R is homogeneous of degree p if V (ax) = apV (x) for all a > 0 and x ∈ Rn.
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where L ∈ R
m×n and rank{L} = n ≤ m. Vm(x) satisfies condition (2.7), thus Vm(x)

is a Lyapunov function candidate. The row-vectors of L are the normals to the faces

of centrally symmetric polyhedrons. Therefore Lyapunov functions of the form (2.15)

are sometimes also referred to as polyhedral Lyapunov functions.

The level surface of (2.13) can be approximated by the surface of such convex poly-

hedron. It is shown in [MP86] that by choosing m large enough, it is always possible

to find a function Vm(x) of the form (2.15) such that the condition (2.14) is satisfied.

With Vm(x) we can associate a piecewise quadratic Lyapunov function

V (x) = ||Lx||2∞ (2.16)

which also defines a necessary and sufficient condition for the asymptotic stability of

the switched linear system (2.2).

Theorem 2.15 [MP86] The origin of the switched linear system (2.2) is asymptot-

ically stable if and only if there exists a piecewise linear Lyapunov function (2.15)

(piecewise quadratic Lyapunov function (2.16), respectively) whose derivative along

all solutions is negative as in (2.14).

With these results, general conditions for the existence of common piecewise linear

and piecewise quadratic Lyapunov functions is established. These converse theorems

provide a theoretical justification for the search of Lyapunov function conditions as

described in the following sections and for much of the work in this thesis.

Similar results in the context of discrete-time switched systems have been obtained

by Brayton and Tong in [BT79]. For background to that material and the relation

to the absolute stability problem refer to [MP86, Pya70]. Further results on general

classes of Lyapunov functions and their existence for classes of uncertain systems can

be found in [Bla94, Bla95, BM99].

2.5 Stability results for arbitrary switching

The results described in the previous section provide general necessary and sufficient

conditions for the asymptotic stability of switched linear systems for arbitrary switch-

ing signals. However, in order to apply these results, we need to develop methods

to find such common Lyapunov function or derive conditions that guarantee its exis-
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tence. Since it is certainly not feasible to randomly test all possible Lyapunov function

candidates, stability results are commonly restricted to a specific class of Lyapunov

function candidates. In this section we describe some of the methods developed in

the past.

2.5.1 Common quadratic Lyapunov functions

A necessary condition for the asymptotic stability of the switched system (2.2) with

arbitrary switching signals is that the constituent LTI systems ΣAi
, i ∈ I are asymp-

totically stable. It is well known that the existence of a quadratic Lyapunov function

is necessary and sufficient for asymptotic stability of LTI systems. A natural ques-

tion is therefore, under which conditions a number of LTI systems share a common

quadratic Lyapunov function. In this section we collect conditions for the existence

of such functions.

Given the quadratic form

V (x) = xTPx with P = PT > 0 (2.17)

it is readily verified, that such function satisfies the conditions (2.7) for a Lyapunov

function candidate.

We speak of V (x) as a common quadratic Lyapunov function (CQLF) for the LTI

systems ΣAi
with Ai ∈ A, if (2.17) satisfies simultaneously

AT

i P + PAi = −Qi, with (2.18)

Qi = QT

i > 0 for all i ∈ {1, . . . , N} . (2.19)

The existence of such a common Lyapunov function is sufficient but in general not

necessary for the asymptotic stability of the switched linear system (2.2) [DM99].

However, it is possible to identify system classes for which the existence of a CQLF

is also necessary [Mas04].

Triangular system matrices

There is number of classes of switched systems for which the existence of a CQLF is

readily given by the structural properties of the system matrices Ai ∈ A. A relatively

simple example for such a class are switched systems where the system matrices Ai,
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i ∈ I are Hurwitz and symmetric [CL97]. In this case the matrices Ai are negative

definite and hence the identity matrix I is a common Lyapunov function for the

constituent LTI systems.

For switched systems with two constituent system we note the following result from

[BBP78] that proves useful deriving stability conditions for pairs of LTI systems.

Theorem 2.16 Let A ∈ R
n×n be a Hurwitz matrix. Then any quadratic Lyapunov

function V (x) for the LTI system ΣA is also a Lyapunov function for ΣA−1 .

The CQLF existence for sets of matrices that can be simultaneously transformed

into upper triangular form is subject of various publications. It has been shown by

several authors that a set of matrices Ai ∈ A that are in upper triangular form and

Hurwitz have a CQLF. Hence by Lemma 2.11, so does any set of matrices that can be

simultaneously transformed into upper triangular form by similarity transformation

(see e.g. [MMK96, SN98b]). The version of the theorem stated here is from [SN98a].

Theorem 2.17 A sufficient condition for the Hurwitz matrices Ai ∈ A sharing a

common quadratic Lyapunov function is that there exists a nonsingular matrix T ∈
C

n×n such that TAiT
−1 ∈ C

n×n is upper triangular for all i ∈ {1, . . . , N}.

The proof of this theorem uses on the fact that systems of this form can be represented

as cascades of first order or certain (very benign) second order subsystems, which again

can be shown to be asymptotically stable.

The strength of Theorem 2.17 is that it is applicable to switched systems with any

finite number of subsystems of arbitrary system order. However, it is not easy to

determine whether a set of matrices is simultaneously triangularisable. Theorem 2.17

includes a much earlier results on the CQLF problem. Narendra and Balakrishnan

established that a set of stable LTI systems with commuting system matrices, i.e.

AiAj = AjAi ∀ i, j ∈ {1, . . . , N} has a common quadratic Lyapunov function [NB94].

However, it is a well known result of linear algebra that a commuting family of real

matrices can be simultaneously triangularised by a real orthogonal matrix [HJ85]. A

number of further conditions on simultaneously triangularisable systems can be found

in [Laf78].

In [LHM99, AL01] the problem is related to the solvability of Lie algebras. The Lie

algebra conditions can be considered as an extension of the commuting matrices results
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above by linking the commutators [Ai, Aj ] to the existence of a CQLF. It turns out,

that matrices for which the Lie algebra is solvable are simultaneously triangularisable.

A further drawback is that the property of simultaneous triangularisation is not ro-

bust under parameter perturbations (see [SOCC00] for an example). A robustness

analysis of Theorem 2.17 can be found in [MMK97]. The approach here is to bound

the maximum allowable perturbations of the matrix parameters from a nominal (tri-

angularisable) set of matrices, while guaranteeing the existence of a CQLF. Other

approaches extend the results by relaxing the simultaneous triangularisabilty condi-

tion. In [SOC01, SOC02] conditions are derived where the triangular property only

needs to apply for any pair of matrices in A. Here asymptotic stability of the switched

system is guaranteed although there might not exist a CQLF for all constituent sys-

tems. However, all those conditions suffer from a more or less strong restriction on

the structure of the system matrices Ai.

Matrix pencil conditions

The convexity property of common Lyapunov functions (Lemma 2.12) provides a

powerful tool for the stability analysis of switched linear systems. Recall that V (x)

is a common Lyapunov function for the LTI systems ΣAi
, i ∈ I only if it is also a

Lyapunov function for all LTI systems ΣĀ with

Ā =
N

∑

i=1

αiAi with αi ≥ 0,
N

∑

i=1

αi = 1.

It is well known that there exists a Lyapunov function for the LTI system ΣĀ if

and only if the eigenvalues of Ā lie in the open left half of the complex plane. If

the spectrum of co
{

A1, . . . , AN

}

has an eigenvalue with positive real part, it follows

that there exists an LTI system with system matrix Ā ∈ co
{

A1, . . . , AN

}

for which no

Lyapunov function exists. Then it follows from the converse theorems in Section 2.4.2

that the switched system (2.2) with A = {A1, . . . , AN} is not asymptotically stable

for arbitrary switching signals. In fact, it has been shown in [SOCC00] that in such

case there exists a destabilising switching sequence.

There are a number of stability conditions for switched systems that are formulated in

terms of the spectrum of the convex combination of the constituent system matrices

for switched systems that consist of two subsystems. To comply with standard ter-

minology of the literature we shall refer to the convex combination αA1 + (1−α)A2,
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α ∈ [0, 1] as the matrix pencil σα[A1, A2]. There are two such matrix pencil results

concerning the existence of a CQLF for second order systems.

Theorem 2.18 [SN97] A sufficient condition for the existence of a CQLF for the

switched system (2.2) with A = {A1, A2} ⊂ R
2×2 is that the eigenvalues of the matrix

pencil σα[A1, A2] are negative and real for all α ∈ [0, 1].

Of course, the condition of this theorem requires that the matrices Ai, i = 1, 2 are

Hurwitz and have real eigenvalues. This restriction can be relaxed adding a further

condition which also yields necessity for the existence of a CQLF [SN99]:

Theorem 2.19 A necessary and sufficient condition for the existence of a CQLF for

the switched system (2.2) with A = {A1, A2} ⊂ R
2×2 is that the eigenvalues of the

matrix pencils σα[A1, A2] and σα[A1, A
−1
2 ] are in the open left complex plane for all

α ∈ [0, 1].

This theorem is inspired by Theorem 2.16 and its implications regarding the spectrum

of the matrix pencil. Theorem 2.16 provides that any quadratic Lyapunov function

V (x) for ΣA, with A ∈ R
n×n is also a Lyapunov function for ΣA−1 . Hence, there

exists a CQLF for the systems ΣA1
and ΣA2

if and only if there exists a CQLF for

ΣA1
and ΣA−1

2

.

This reasoning generalises to systems with N subsystem. Consider the set Ak obtained

by substituting any k matrices Ai ∈ A by their inverse A−1
i . It follows that it is

necessary for the existence of a CQLF for the LTI systems ΣAi
, Ai ∈ A, that all

matrices in the convex hull co
(

Ak

)

are Hurwitz for all 0 ≤ k ≤ N .

In [SN02] a relation of the eigenvalues of the matrix pencil σα[A1, A2] for all α ∈ [0, 1]

and the eigenvalues of the product A−1
2 A1 is established.

Lemma 2.20 Let A1, A2 ∈ R
2×2 be Hurwitz matrices. The eigenvalues of the matrix-

pencil σα[A1, A2] are in the open left half-plane for all α ∈ [0, 1] if and only if the

matrix product A−1
2 A1 has no negative, real eigenvalue.

Using this lemma the matrix pencil condition of Theorem 2.19 reduces to a simple

eigenvalue test of the matrix products A−1
2 A1 and A1A2 when A1, A2 ∈ R

2×2. This

result has been recently extended to a class of n-th order systems [SMCC04]:
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Theorem 2.21 Let A1, A2 ∈ R
n×n be Hurwitz matrices where rank{A1 − A2} = 1.

There exists a CQLF for the LTI systems ΣA1
and ΣA2

if and only if the matrix

product A1A2 has no negative, real eigenvalues.

Linear matrix inequalities

The problem of finding a CQLF for a set of LTI systems can be formulated as a

feasibility problem of linear matrix inequalities [BEFB94, EGN00].

Recall that V (x) = xTPx is a CQLF for the systems ΣAi
, if P is a symmetric, positive

definite matrix and satisfies inequality (2.18) simultaneously for all Ai ∈ A. These

conditions define a system of linear matrix inequalities (LMIs) in P , namely

P = PT > 0 (2.20a)

(AT

i P + PAi) < 0 for i ∈ {1, . . . , N} . (2.20b)

The system of LMIs (2.20) is said to be feasible if a solution P exists. Therefore, the

problem reduces to the convex optimisation problem of checking whether the LMIs

(2.20) are feasible. Due to the powerful convex optimisation algorithms developed

over the last two decades, such problems can be solved with great efficiency. Imple-

mentation of such algorithms in software packages like the LMI toolbox for Matlab

[GNLC95] have made the approach widely used.

The great advantage of the LMI approach is that it is applicable to switched systems

of any order and with any number of subsystems; only restricted by computational

capacities. However due to its numerical nature, little insights are provided into why

a CQLF may or may not exist. Moreover, it has been shown that it is not hard to

construct examples for which the most commonly used LMI toolbox for Matlab fails

to give the appropriate answer [MSL01].

2.5.2 Common piecewise linear Lyapunov functions

The converse Theorem 2.15 provides that there exists a common piecewise linear Lya-

punov function (PLF) if and only if the switched linear system (2.2) is asymptotically

stable. It is therefore reasonable to search for simple conditions that guarantee the

existence of such type of common Lyapunov function for a set of LTI systems.

Piecewise linear functions are commonly defined in terms of the l1 or the l∞ norm.
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We shall use the definition in [MP89]:

V (x) = ||Lx||∞ (2.21)

where L ∈ R
m×n,m ≥ n has full rank n. Such functions are radially unbounded, have

a unique minimum and the onesided derivative exists [MP89, KAS92].

For a common piecewise linear Lyapunov function for a set of LTI systems the fol-

lowing condition is obtained in [MP89]:

Theorem 2.22 The function V (x) = ||Lx||∞ is a common piecewise linear Lyapunov

function for the LTI systems ΣAi
with Ai ∈ R

n×n, i ∈ I if and only if there exist

Qi ∈ R
m×m, i ∈ I such that

qkk +

N
∑

l=1

l 6=k

||qlk|| < 0 (2.22)

and

LAi − QiL = 0 (2.23)

Remark: This theorem is the special case for p = ∞ of the result in [KAS92] for

general Lyapunov functions based on p-norms, V (x) = ||Lx||p.

The approach of utilising piecewise linear Lyapunov functions can be tracked back to

the sixties with a series of papers by Rosenbrock [Ros62] and Weissenberger [Wei69]

on Lur’e type systems. But powerful algebraic tools for the existence of piecewise

linear Lyapunov functions remain scarce. One reason for this might be due to the

open problem of deciding on the number of faces m that are needed to find a piecewise

linear Lyapunov function for a given system.

Regarding LTI systems, this problem has been recently addressed in [BP01] and

[Bob02]. In this work, the authors relate the number of faces of the PLF (2.21) to the

location of the spectrum of the system matrix A. Let K(m) denote the sector of the

complex plane whose bisector is the negative real axis and whose angle is
(

1 − 2
m

)

π.

Theorem 2.23 [BP01] Let V (x) with L ∈ R
m×n be a piecewise linear Lyapunov

function (2.21) for the LTI system ΣA with A ∈ R
n×n and the eigenvalues of A are

distinct. Then the following holds:

σ(A) ⊂ K(m).
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Of particular interest is the minimum number of faces for which there exists a PLF

for a given LTI system ΣA. We shall denote this number as ν(ΣA). For LTI systems

with real eigenvalues the minimum number of faces ν(ΣA) can be directly computed

[BP01]:

Theorem 2.24 Let ΣA be a LTI system where A ∈ R
n×n has distinct real eigenval-

ues. Then ν(ΣA) = n + 1 and the spectrum of A lies in the sector K(ν(ΣA)).

For systems with non-real eigenvalues the minimum number of faces ν(ΣA) is still

unknown. However, an upper bound for ν(ΣA) is given in [Bob02].

The above theorems can serve as a starting point for the derivation of conditions

for the existence of a common PLF for a set of LTI systems. Using the convexity

property of Lemma 2.12 we can immediately find necessary conditions in terms of the

eigenvalues of the matrices of the convex hull co(A).

Theorem 2.25 Consider the LTI systems ΣAi
, Ai ∈ A ⊂ R

n×n where the eigenval-

ues of Ai are distinct for all i. Let V (x) = ||Lx||∞ with L ∈ R
m×n be a common PLF

for the LTI systems ΣAi
, Ai ∈ A, then

⋃

A∈co(A)

σ(A) ⊂ K(m).

Proof. The proof follows directly from Theorem 2.23 and the convexity property of

the common Lyapunov function in Lemma 2.12. �

Most results for the existence of a common PLF are of numerical nature. As for the

search of common quadratic Lyapunov functions, optimisation algorithms are used to

find matrices L and Qi that satisfy the conditions (2.22) and (2.23). However, the

search for a common PLF is more complex since the size of L is unknown. Com-

mon algorithms starting with an initial set of vertices (or alternatively faces) of a

polyhedron, check whether the conditions (2.22) and (2.23) are satisfied for the con-

stituent systems and refine the shape (and possibly the number of vertices) until an

appropriate function is found.

Brayton and Tong were one of the first to suggest an algorithm to successively

construct a PLF for discrete-time systems [BT79, BT80]. The majority of meth-

ods for calculating PLFs are similar and mainly seek to find algorithms that con-

verge more reliably and efficiently. Powerful approaches using linear programming
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for fast optimisation and various refining methods have been suggested by Polański

[Pol95, Pol97, Pol00] and Yfoulis et al. [YMWP99, YMW02, YS04] . However, the

computational effort still increases immensely with the system order n. Consequently,

the algorithms are currently only feasible for systems of order three, maybe four.

2.6 Stability results for constrained switching

The results we discussed so far consider asymptotic stability of switched linear sys-

tems with arbitrary switching signals. However, in many practical applications some

switching signals can be discarded. For example, this could be due to bandwidth

limitations of the hardware that do not allow switching above a certain frequency or

due to other design specifications that exclude certain switching sequences. In these

cases common Lyapunov function approaches can lead to conservative results since

they even provide for dynamics caused by switching signals that are not admissible for

the system. Even if a common Lyapunov function fails to exist, it might still be pos-

sible to establish stability for a (sub-)class of switching signals. This is in particular

important for systems with unstable constituent systems.

In this section we describe a number of stability conditions that account for partic-

ular properties of the switching signal. The first approach bases upon the idea of

monitoring the evolution of a set of Lyapunov functions (Multiple Lyapunov func-

tion approach) which yields indirectly a stable switching signal. The second guaran-

tees stability by explicit calculation of a minimum time between consecutive switches

(dwell-time approach).

In the third part of this section we briefly describe a number of results obtained for

piecewise linear systems where the switching action depends on the current state of

the system. This approach leads to a partitioned state-space where switching occurs

along specific switching surfaces. These partitions can be used to construct piecewise

Lyapunov functions for the switched system.

2.6.1 Multiple Lyapunov function

The key idea of the multiple Lyapunov function approach is to employ a number of

different Lyapunov functions (commonly one for each subsystem) instead of a single
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Lyapunov function for all constituent systems. The idea is to derive conditions on the

switching signal such that the switched system is guaranteed to be stable. In other

words, given a set of system matrices A we identify a class of switching signals for

which an asymptotically stable switched system is obtained.

Roughly speaking the idea is that we only allow to switch back to a particular mode i

if the value of the associated Lyapunov function Vi(x) has decreased since we left that

mode the last time. This idea should probably be credited to Peleties and DeCarlo

who showed that asymptotic stability is achieved by switching in such fashion [PD91].3

However, several authors have modified and extended this approach over the last ten

years. Branicky formulated this approach as a general concept for stability analysis

and established results that are also applicable for switched systems with nonlinear

subsystems in [Bra98]. In this section we shall describe this result in terms of the

switched linear system (2.2) to illustrate the main ideas behind this method. For

a thorough overview on multiple Lyapunov functions see [DBPL00] and reference

therein.

Given the switching system (2.2) we associate Lyapunov functions Vi(x) ∈ V for each

subsystem Ai ∈ A. While each Vi decreases when the ith subsystem is active, any

other function Vj , j 6= i, may increase (c.f. Figure 2.4). Consider now the values of Vi

at the beginning of each interval. If the sequence of these initial values is decreasing

for all modes i, the system is asymptotically stable.

Theorem 2.26 Let A be a set of stable system matrices Ai ∈ A, let Vi ∈ V be

a Lyapunov functions for the LTI system ΣAi
for all i ∈ I and let σ(·) ∈ S be a

switching signal. Consider the pairs of switching instances (tj , tl)i for the mode i,

with j < l such that σ(tj) = σ(tl) = i and σ(tk) 6= i for ti < tk < tl. The switched

linear system ΣA,S is asymptotically stable if there exist a γ > 0 such that

Vi(x(tl)) − Vi(x(tj)) ≤ −γ||x(tj)||2 (2.24)

for all pairs (tj , tl)i and all σ(·) ∈ S.

Note, that if (2.24) holds for all switching signals defined in Definition 2.1 then ac-

cording to the converse Theorems 2.14 and 2.15 there exists also a common Lyapunov

3In the original paper the authors consider systems that switch along switching surfaces in the

state-space. This approach is discussed in Section 2.6.3.
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Figure 2.4: Multiple Lyapunov functions. Evolution of the Lyapunov func-

tions V1 and V2. The solid lines indicate that the respective subsystem is switched

in and therefore Vi decrease. When the other system is active, the value may

increase (dashed lines). If the sequences of initial values ’x’ and ’♦’ constantly

decrease, the switched system is asymptotically stable.

function for all subsystems. However, Theorem 2.26 does not rely on the explicit

construction of this common Lyapunov function.

If a common Lyapunov function fails to exist, we might be still able to construct stable

switching signals using multiple Lyapunov functions. However, the resulting set of

switching signals S depends on the initial choice of Lyapunov functions Vi. Therefore,

an unfortunate choice of Lyapunov functions may lead to conservative switching rules

or even no result. Further, in order to apply Theorem 2.26 we need the values of

the respective Lyapunov functions Vi(x) at the switching instances. In general this

requires the knowledge of the state at these times, whereas classical Lyapunov stability

approaches do not require any knowledge about the solutions.

The multiple Lyapunov function approach is not dependent on the system order or

number of subsystems. It can even be applied to heterogenous hybrid systems (where

the structure of the subsystems is not homogeneous) and to hybrid systems that switch

between nonlinear vector fields ẋ = fi(x) as Branicky proves in a first generalisation

of the multiple Lyapunov function approach in [Bra94, Bra98].

The original theorem in [PD91] applies multiple Lyapunov functions to switched sys-
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tems with unstable subsystems. This requires a relaxation on the properties of the

function Vi. Instead of demanding that their derivatives along the solutions of the sub-

system Ai is negative for the whole state space, we can only require that this holds for

certain regions Ωi ⊂ R
n×n. In this case the functions Vi are often call Lyapunov-like

functions. This allows more freedom of choosing appropriate functions Vi, however,

the associated system Ai is only allowed to be active if x ∈ Ωi. Obviously, the union

of all regions
⋃

i Ωi has to cover the whole state space (c.f. Section 2.6.3 on state

dependent switching below).

In a more general framework, but also applicable to our case, Ye et al. relax this

condition further [YMH98, Mic99]. Here, the value of Vi may increase in a bounded

fashion, even if the respective system Ai is active, i.e. Ai may be switched in even if

x /∈ Ωi. Asymptotic stability can be shown if the initial values of Vi(x(tk)) form a

decreasing sequence for each mode.

2.6.2 Dwell-time approach

An alternative approach to determine a set of switching signals S that yields as-

ymptotically stable switched systems ΣA,S is to restrict the minimum time interval

between two consecutive switching instances. This time constant τD ≤ ti+1−ti ∀ i ∈ I
has been termed dwell-time4. When the constituent subsystems ΣAi

are asymptoti-

cally stable, sufficiently slow switching will yield stability.

For switched linear systems this dwell-time can be explicitly calculated [Mor96].

Theorem 2.27 Let SτD
denote the set of switching signals with a dwell-time τD.

Then, the switched linear system (2.2) is asymptotically stable for the switching signals

σ(·) ∈ SτD
if

τD > sup
i

(

ai

λi

)

with ai ≥ 0 and λi > 0 such that

∣

∣

∣

∣eAit
∣

∣

∣

∣ < eai−λit ∀ t > 0.

Choosing the dwell-time as in the above theorem, ensures that the norm of the transi-

tion matrix Φ(t, t0, x0, σ) of the switched system is bounded by the transition matrix

4The term is chosen to suggest that the switching signal "dwells" on each of its values for at least

τD time-units
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of the subsystem ΣAi
with the smallest decay rate.

This result was extended by Hespanha and Morse in [HM99], where the average dwell-

time τ̄D is introduced. Here single switching intervals in σ(·) are allowed to be smaller

than τ̄D provided that the average of all switching intervals in σ(·) is no smaller than

τ̄D. Discarding the first N0 switchings, we request that the number of switchings

between any t2 > t1 ≥ t0 does not exceed t2−t1
τ̄D

afterwards. The set of such switching

signals is denoted with S[τ̄D, N0].

Theorem 2.28 Given the set of system matrices Ai ∈ A, i ∈ I and a positive

constant λ0 such that Ai + λ0I is asymptotically stable for all i ∈ I, then, for any

chosen λ ∈ [0, λ0), there is a finite constant τ̄ ∗
D such that (2.2) is asymptotically stable

for all switching signals σ(·) ∈ S[τ̄D, N0] if τ̄D ≥ τ̄∗
D.

This average dwell-time τ̄ ∗
D can be calculated involving similar parameters of the

subsystems as in Theorem 2.27.

The work of Zhai et al. [ZHYM00a] modifies this result such that the lowest average

dwell-time τ̄∗
D ensures that the switched system achieves a chosen L2 gain. The above

results can be extended such that stable and unstable subsystems ΣAi
are allowed

(e.g. [ZHYM00b, Yed01]).

2.6.3 State-dependent switching

In the previous subsections we discussed approaches where the stability conditions

impose restrictions on the switching instances. Another approach to constrained

switching is state-dependent switching, where switching occurs whenever the state-

trajectory crosses a pre-defined switching surface. The switching signal in (2.2) is

then formally defined by σ : R
n×n → I. However, for state-dependent switching it

is common to characterise the switching by a partitioned state-space. The partitions

describe regions Ωi in the state-space where a certain subsystem ΣAi
is active.

There is a number of problems that can be considered using a partitioned state-

space. Typical examples include the stabilisation of switched systems with unstable

subsystems and optimal control for constraint systems. In this section we shall only

outline some of the approaches to illustrate the main ideas.

State-dependent switching appears in some of the earliest papers on the design of
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switching systems [PT73, PD91, PD92]. One way to establish stability is to find a so-

called Lyapunov-like function whose derivative along the solutions of the subsystems

is only negative in the regions where the respective subsystems are actually active.

As in the multiple Lyapunov function approach we define a family of function Vi :

R
n → R for i ∈ I, each associated with one of the subsystems ΣAi

. A Lyapunov-like

function for the system ΣAi
with the equilibrium x0 ∈ Ωi ⊂ R

n×n is a real-valued

function that satisfies the conditions for a Lyapunov function for ΣAi
in Ωi, namely

Vi(0) = 0 (2.25a)

Vi(x) > 0 (2.25b)
d

dt
V

(

x(t, t0, x0, σ)
)

< 0 (2.25c)

for all x ∈ Ωi. In other words, outside the region Ωi none of the above conditions

need to hold.

There are several approaches to establish stability for a switched system with such

a partitioned state space. One such approach is a version of the multiple Lyapunov

function approach as described in Section 2.6.1 [PD91, PD92].

When using quadratic Lyapunov-like functions Vi, the problem of finding the functions

Vi that satisfy the relaxed conditions (2.25) can be formulated as LMIs. Consider the

simple case where the same Lyapunov-like functions Vi(x) = xTPx, i ∈ I is used in

all regions Ωi. For each region Ωi we require that xT(AT

i P + PAi)x is negative for

x ∈ Ωi. To account for this relaxed requirement a method known as S-procedure is

applied. Construct matrices Si such that xTSx ≥ 0 for x ∈ Ωi. Then we obtain the

following relaxed stability condition

AT

i P + PAi + Si < 0 (2.26)

for all i ∈ I. Since xTSx ≥ 0 for x ∈ Ωi, then xT(AT

i P + PAi)x < 0 is satisfied when

x ∈ Ωi. However, xTSix is allowed to be negative outside Ωi and hence allows for

xT(AT

i P + PAi)x > 0 in those regions. Condition (2.26) defines a system of LMIs

in the variable P and therefore we can apply the methods of Section 2.5.1 to test its

feasibility.

In [JR98] this approach is extended to formulate LMIs where the Lyapunov-like func-

tions are quadratic functions Vi(x) = xTPix, but different for each region. By formu-

lating further constraints it is ensured that the Lyapunov-like functions are continu-

ously joined together at the boundary of the regions, i.e. Vi(x) = Vj(x) for x ∈ Ωi∩Ωj .
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Thus when the LMI is feasible we obtain a piecewise quadratic Lyapunov function for

the switched system. An example of such a Lyapunov function is shown in Figure 2.5.
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Figure 2.5: Level curves of a piecewise quadratic Lyapunov function con-

structed for a partitioned state-space using the LMI-approach in [JR98].

2.7 Conclusions

In this chapter we defined the system class and the stability notions that are the

subject of this thesis. The stability analysis of switched linear systems is much more

complex than the stability of LTI systems and raises a number of stability problems.

Despite the large number of available stability results, there are still many questions

unresolved. In particular there is a pressing need for results that can easily be used

as a basis to develop powerful design methods for switched linear systems.

While the theoretical stability results are valid for a wide range of system classes and

supply an important basis for their stability analysis, they are usually non-constructive

and therefore not immediately applicable for a given control-problem. In contrast to

this, the numerical tools provide a direct answer to the stability problem for a given

system. However, they are lacking any guideline for the control design and do not

provide any insight into the stability or instability mechanisms. Moreover, they are

either restricted to quadratic stability (LMI approach) or are only applicable for

systems of relatively low order.
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Analytical stability tools have the potential to bridge the gap between stability theory

and practical control design. However, most available results impose considerable

restrictions on the system class and commonly only consider quadratic stability which

can lead to conservative results. The objective in this thesis is twofold. Firstly, we

aim to derive stability conditions that provide some assistance for the control-design

for switched linear systems; and secondly, we use non-quadratic approaches in order

to establish stability for a larger set of systems than purely quadratic approaches can

provide.
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We consider asymptotic stability of the class of switched linear systems

ΣA consisting of two subsystems A =
{

A1, A2

}

⊂ R
2×2 where arbitrary

switching signals are admissible. It is shown that the switched linear sys-

tem ΣA is asymptotically stable if the spectrum of αA1 + (1 − α)A2 lies

within a certain region of the complex plane for all α ∈ [0, 1]. It is demon-

strated that the stability result extends upon quadratic stability by using a

new type of piecewise linear Lyapunov function. The existence of a com-

mon quadratic Lyapunov function and the common piecewise linear Lya-

punov function can be related to properties of the spectrum of the convex

combination for different subclasses of the second-order switched system.

3.1 Introductory remarks

In this chapter we consider the class of switched linear systems with two subsystems

ΣA1
and ΣA2

where A1, A2 ∈ R
2×2. Thus the system dynamics are given by

ẋ(t) = A(t)x(t) A(t) ∈ A = {A1, A2} ⊂ R
2×2 (3.1)

while the set of switching signals S contains all functions as in Definition 2.1, i.e.

we consider arbitrary switching between the matrices A1 and A2. Therefore we shall

omit the set of switching signals for the remainder of this chapter and simply refer to

(3.1) as the switched system ΣA. In this chapter we derive conditions on the matrices

A1 and A2 that guarantee asymptotic stability of the switched system ΣA by the
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existence of a common Lyapunov function.

The converse Lyapunov theorems in Section 2.4 establish that a necessary and suf-

ficient condition for asymptotic stability of the switched system (3.1) is that there

exists a common Lyapunov function for A1 and A2. Of course this requires, that the

constituent systems are stable LTI system, i.e. A1 and A2 are Hurwitz matrices. For

LTI systems the Hurwitz property of the system matrix is necessary and sufficient

for both, asymptotic stability and the existence of a quadratic Lyapunov function.

However, this does not guarantee stability for the switched system as illustrated in

Example 2.1. Yet, the existence of a common quadratic Lyapunov function (CQLF)

ensures asymptotic stability of the switched system.

Even though, common quadratic Lyapunov functions proved to be very useful for

establishing stability, there are cases where such approach can lead to conservative

results [Bro65, DM99, SN98b]. In particular, the example in [DM99] demonstrates

that switched linear systems can be asymptotically stable for arbitrary switching even

if the constituent systems have no common quadratic Lyapunov function. The work

of this chapter aims to extend the class of systems for which asymptotic stability can

be established by introducing a new type of Lyapunov function.

The stability condition derived in this chapter is formulated in terms of the eigenval-

ues of the convex combination αA1+(1−α)A2, α ∈ [0, 1]. Although this approach has

been considered before for the existence of common quadratic Lyapunov functions we

shall extend these results by also employing a type of piecewise linear Lyapunov func-

tion. The analysis reveals that depending on properties of the constituent systems,

either the quadratic Lyapunov function or the piecewise linear Lyapunov function is

more suitable to establish stability of the switched system.

The chapter is organised as follows. In the following section the piecewise linear

Lyapunov function under consideration is introduced and elementary properties for

its existence for LTI systems derived. In Section 3.3 available pencil conditions for the

existence of common quadratic Lyapunov Lyapunov functions are summarised along

with some technical lemmas that shall proof useful for deriving the main results. In

Section 3.4 the main stability result is proven and the existence of the two types of

common Lyapunov function for different system-classes is discussed.
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3.2 The unic Lyapunov function

The following example illustrates that for certain switched systems common quadratic

Lyapunov functions might not be the best choice to establish asymptotic stability.

Example 3.1 Consider the switch system (3.1) with constituent system matrices

A1 =







−4.3 −4.6

−0.6 −1.1






, A2 =







1.8 −2.4

9.3 −11.9






. (3.2)

The eigenvalues of A1 are approximately −5 and −0.4; A2 has the eigenvalues −10.0

and −0.1. Hence, both LTI systems are stable and have a quadratic Lyapunov function

each. A sample trajectory of the switched system (3.1) with system matrices (3.2) is

depicted in Figure 3.1. Here switching occurs every π
5 time-units; the initial state is

x(0) = (1, 1)T. The switching signal was chosen to be little stabilising to demonstrate

some ‘worst’ behaviour of the system.

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Figure 3.1: Sample trajectory of the switched system in Example 3.2

The switching instances are clearly visible as corners of the trajectory in the phase-

plane. For such switched system a common quadratic Lyapunov function does not

appear to be the optimal choice, since its level-sets are ellipses in the state-space and

therefore are less suitable to account for such corners in the trajectories. (In fact, we

shall see later that there exists no CQLF for the constituent systems in this example.)

The shape of the trajectory suggests to look for a type of Lyapunov function that is
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not continuously differentiable and therefore can account for the characteristics of the

trajectories. In this section we propose a piecewise linear Lyapunov function for the

analysis of switched systems and derive properties for its existence for LTI systems.

3.2.1 Definition

In this section we introduce a piecewise linear Lyapunov function defined on the basis

of the l1-norm. It can be considered as a special case of the polyhedral Lyapunov

functions considered in [Pol97] and of the norm-based Lyapunov functions discussed

in [KAS92].

Definition 3.1 (Unic Lyapunov function candidate) Let Ld ∈ R
2×2 be a non-

singular diagonal matrix, and T ∈ R
2×2, nonsingular, then a unic Lyapunov function

candidate is defined as

V (x) =
∣

∣

∣

∣ LdT
−1x

∣

∣

∣

∣

1
. (3.3)

V (x) has a unique minimum at x = 0, is positive definite otherwise and radially

unbounded and therefore satisfies the conditions for a Lyapunov function candidate

in Theorem 2.8.

The level-sets given by
{

xc

∣

∣ V (xc) = c, c > 0
}

describe parallelograms in the phase-

plane with vertices along the vectors given by the columns of T−1 (c.f. Figure 3.2).
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Figure 3.2: Level-curves of the unic and diagonal unic Lyapunov function
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For the special case where T is the identity I the vertices of the level-sets of V (x)

are on the co-ordinate axis. We refer to such Lyapunov functions Vd(x) = ||Ldx|| as

diagonal unic Lyapunov function. Note, that any LTI system ΣA for which a unic

Lyapunov function V (x) exists, the co-ordinate transformation x̃ = T−1x yields the

system ΣÃ, with Ã = T−1AT such that Vd(x̃) = ||Ldx̃|| is a diagonal unic Lyapunov

function for ΣÃ.

The stability conditions presented in this chapter are based on eigenvalue properties

of the system matrices. Since the eigenvalues of A are invariant under the similarity

transformation T we shall derive most results in terms of the existence of a diagonal

unic Lyapunov function for ΣÃ. If we can find a similarity transformation T such

that Vd(x̃) is a diagonal unic Lyapunov function for ΣÃ then V (x) =
∣

∣

∣

∣LdT
−1x

∣

∣

∣

∣ is a

unic Lyapunov function for ΣA. Hence, there exists a unic Lyapunov function V (x)

for ΣA if and only if there exists a diagonal unic Lyapunov function Vd(x) for ΣÃ.

Before analysing the existence of a common unic Lyapunov function for a set of LTI

systems, we shall examine the existence of a diagonal unic Lyapunov function for a

single LTI system.

Diagonal unic Lyapunov functions for LTI systems

In the following we consider the existence of a diagonal unic Lyapunov function

(dULF) for a single LTI system ΣA. We shall use simple geometric relations of the

entries of the system matrix A to construct a dULF and derive conditions for which

such Lyapunov function exists. These conditions can be confirmed by application of

Theorem 2.22 for norm-based Lyapunov functions.

Consider the LTI system with system matrix

A =







a b

c d






, a, b, c, d ∈ R.

Since the dULF has its vertices on the co-ordinate axis of the phase-plane we consider

the flow Ax of the system along the co-ordinate axis as depicted in Figure 3.3. We

construct a dULF by choosing the level-set along the flow at the point (−1, 0). The

flow of ΣA is given by the vector ẋ = [−a − c]T. It follows that the Lyapunov surface

crosses the x2-axis at the point (0,− c
a ). By symmetry the other vertices of V (x) are

given by (1, 0) and (0, c
a ).
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Figure 3.3: Construction of a diagonal unic Lyapunov function for an LTI system ΣA.

By the construction of the Lyapunov function we can deduce conditions on the entries

of A. For the point (−1, 0) being a vertex of the Lyapunov function we require that

a < 0 and by symmetry d < 0. Next, let ξ denote the projection along the flow at

(0,− c
a ) onto the x1-axis. The flow at the point (0,− c

a ) has to cut inside the Lyapunov

surface (at the limit being parallel). Thus we require |ξ| < 1. Basic geometry reveals

∣

∣ξ
∣

∣ =

∣

∣

∣

∣

bc

ad

∣

∣

∣

∣

< 1

∣

∣bc
∣

∣ <
∣

∣ad
∣

∣.

The flow along the faces of the parallelogram is a convex combination of the flow

at the vertices. Therefore the above conditions are necessary and sufficient. These

observations are summarised in the following lemma.

Lemma 3.2 A necessary and sufficient condition for the system ΣA with system

matrix

A =







a b

c d






, a, b, c, d ∈ R

to have a diagonal unic Lyapunov function Vd(x) is that

a2d2 > b2c2 (3.4)

and a, d < 0. (3.5)
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Proof. Since the dULF is a piecewise linear Lyapunov function we can apply Theo-

rem 2.22 using the version for l1-norms that can be found in [KAS92]. V (x) = ||Ldx||1
is a Lyapunov function for the system ΣA if and only if

max
k∈{1,2}

qkk +

2
∑

l=1

l 6=k

| qlk | < 0 (3.6)

where

LdA = QLd







l1 0

0 l2













a b

c d






=







q1 q2

q3 q4













l1 0

0 l2







⇔ Q =







a l1
l2

b

l2
l1

c d






.

The inequality (3.6) for the diagonal dominance of Q yields then

max

{

a +

∣

∣

∣

∣

l2
l1

c

∣

∣

∣

∣

, d +

∣

∣

∣

∣

l1
l2

b

∣

∣

∣

∣

}

< 0

It follows immediately that a, d < 0. Further

a +

∣

∣

∣

∣

l2
l1

c

∣

∣

∣

∣

< 0 ⇔
∣

∣

∣

∣

l2
l1

∣

∣

∣

∣

<
−a

| c |

d +

∣

∣

∣

∣

l1
l2

b

∣

∣

∣

∣

< 0 ⇔
∣

∣

∣

∣

l2
l1

∣

∣

∣

∣

>
| b |
−d

Hence,
∣

∣

∣

∣

b

d

∣

∣

∣

∣

<

∣

∣

∣

∣

l2
l1

∣

∣

∣

∣

<
∣

∣

∣

a

c

∣

∣

∣
(3.7)

�

Corollary 3.3 (dULF for LTI systems) Let ΣA be an LTI system that satisfies

the condition for the existence of a dULF in Lemma 3.2. Then Vd(x) = ||Ldx||1 is a

Lyapunov function for ΣA with

Ld =







l1 0

0 l2






with

∣

∣

∣

b

d

∣

∣

∣ <
∣

∣

∣

l2
l1

∣

∣

∣ <
∣

∣

∣

a

c

∣

∣

∣, l1, l2 ∈ R. (3.8)

Proof. This follows immediately from inequality (3.7) of the proof of Lemma 3.2. �
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3.2.2 Eigenvalue condition for LTI systems

The above necessary and sufficient conditions for the existence of a diagonal unic

Lyapunov function are based on the entries of the system matrix and therefore are

co-ordinate dependent. We shall now derive a condition on the eigenvalues of the

systems matrix A that guarantees the existence of a unic Lyapunov function Vd(x)

for the system ΣA.

A necessary and sufficient condition for the existence of a quadratic Lyapunov function

for an LTI system ΣA is that the eigenvalues of A lie in the open left half of the complex

plane. Analogous, we can identify a region in the complex plane that contains the

eigenvalues of A if and only if there exists a unic Lyapunov function for ΣA.

Definition 3.4 (45◦-Region) The 45◦-Region is the open subset Ω45 of the complex

plane defined by

Ω45 =
{

s
∣

∣

∣ Re{s} < −
∣

∣ Im{s}
∣

∣

}

C

(3.9)
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Figure 3.4: The 45◦-Region in the complex plane.

Lemma 3.5 The eigenvalues of the matrix A ∈ R
2×2 lie within the 45◦-Region if and

only if A is Hurwitz and

tr2A > 2 det A

where tr2A denotes (trace(A))
2.
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Proof. The eigenvalues of A are given by

λ =
1

2
trA ±

√

1

4
tr2A − detA .

If the eigenvalues are real, the Hurwitz condition suffices.

Otherwise, the eigenvalues are complex if and only if

tr2A − 4 det A < 0 . (3.10)

The eigenvalues λi are in the 45◦-Region if and only if Re{λ} < 0 and

∣

∣Re{λ}
∣

∣ >
∣

∣Im{λ}
∣

∣

∣

∣

∣

∣

trA

2

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

√

1

4
tr2A − det A

∣

∣

∣

∣

∣

tr2A

4
>

∣

∣

∣

∣

1

4
tr2A − det A

∣

∣

∣

∣

tr2A

4
> −1

4
tr2A + det A

tr2A > 2 det A

�

Based on the previous findings we can derive a necessary and sufficient condition for

the existence of a unic Lyapunov function by constraining the eigenvalue location of

A to the 45◦-Region.

Theorem 3.6 (Unic Lyapunov Function for LTI systems) Let A be a Hurwitz

matrix in A ∈ R
2×2. There exists a unic Lyapunov function for the LTI system ΣA

if and only if the eigenvalues of A lie within the 45◦-Region.

Proof. We prove sufficiency and necessity of the theorem separately.

Sufficiency: Consider the LTI system ΣA where A ∈ R
2×2 is Hurwitz with complex

eigenvalues λ1/2 = µ±iν with µ, ν ∈ R, ν 6= 0 and eigenvectors x±iy with x, y ∈ R
2×1.

Then the eigenvalue equation A(x ± iy) = (µ ± iν)(x ± iy) yields

Ax = µx − νy and

Ay = νx + µy .

The vectors x, y cannot be linearly dependent as we can see from the following con-
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tradiction. If x, y are linearly dependent, i.e. y = kx, k ∈ R \ {0}, we get

Ax = (µ − νk)x

Akx = (ν + µk)x

⇒ k(µ − νk) = ν + µk

0 = (1 + k2)ν .

This equality does not hold if the eigenvalues of A are non-real (ν 6= 0). Thus x, y

have are linearly independent.

Consider the non-singular matrix T =
(

x y
)

∈ R
2×2. Similarity transformation

yields

Ã = T−1AT

=







µ −ν

ν µ






.

It follows by Lemma 3.2 that there exists a diagonal unic Lyapunov function Vd(x) =

||Ldx||1 for ΣÃ since |µ | > | ν | and µ < 0. Hence, V (x) =
∣

∣

∣

∣LdT
−1x

∣

∣

∣

∣

1
is a unic

Lyapunov function for ΣA. The invariance of the eigenvalues under similarity trans-

formation proves the condition.

For the case that A has negative real eigenvalues, a simple modal transformation, i.e.

diagonalisation of A, reveals the existence of a diagonal unic Lyapunov function.

Necessity: For necessity we show by contradiction that there is no similarity transfor-

mation such that ΣÃ has a diagonal unic Lyapunov function if the eigenvalues of A

lie outside the 45◦-Region.

Suppose we have an appropriately transformed matrix

Ã =







a b

c d







with eigenvalues outside the 45◦-Region. Applying Lemma 3.5 yields

tr2A ≤ 2 det A

(a + d)2 ≤ 2ad − 2bc

a2 + d2 ≤ −2bc.

Since a2 + d2 ≥ 0, both sides are non-negative and we get after squaring

(

a2 + d2
)2 ≤ 4b2c2. (3.11)
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Assume that there exists a diagonal unic Lyapunov function for ΣÃ. Then Lemma 3.2

provides

b2c2 < a2d2.

With inequality (3.11) we get

(

a2 + d2
)2 ≤ 4b2c2 < 4a2d2.

But this implies

(

a2 + d2
)2

< 4a2d2

(

a2 − d2
)2

< 0.

Since the left side of the above inequality is non-negative, the inequality does not

hold and thus the system ΣÃ cannot have a diagonal unic Lyapunov function. This

implies that there exists no unic Lyapunov function for ΣA.

�

3.3 Preliminary results and definitions

3.3.1 Matrix Pencil

The stability condtion derived in this chapter is formulated in terms of the eigenvalues

of the convex combination αA1 + (1 − α)A2. In accordance with the convention of

earlier publications in this area we define the matrix-pencil as follow.

Definition 3.7 (Matrix Pencil) The matrix pencil σα[A1, A2] is the convex com-

bination of the matrices A1, A2, given by

σα[A1, A2] = αA1 + (1 − α)A2, α ∈ [0, 1]. (3.12)

Note, that the eigenvalues of a matrix depend continuously on its entries [HJ85].

Therefore, the eigenvalues σα[A1, A2] describe a continuous locus in the complex

plane while α varies in [0, 1]. We shall refer to that locus as the eigenvalue locus of

the matrix pencil.

Recall from Section 2.4 that V (x) is a Lyapunov function for ΣA1
and ΣA2

if and

only if it is also a Lyapunov for all LTI systems ΣĀ with Ā = αA1 + (1 − α)A2 for

α ∈ [0, 1] (Lemma 2.12).



54 The 45
◦ Criterion

As we shall see, the eigenvalues of the matrix pencil can provide insight into the

stability of the switched system. For instance, consider the case were the matrix pencil

σα[A1, A2] has an eigenvalue with non-negative real part for some α ∈ [0, 1]. Thus,

for some α0 ∈ [0, 1], we obtain the unstable system matrix A0 = α0A1 + (1 − α0)A2

for which no Lyapunov function exists. It follows immediately from Lemma 2.12 that

there exists no common Lyapunov function of any type for ΣA1
and ΣA2

and hence the

switched system (3.1) is not asymptotically stable for arbitrary switching. Therefore,

a necessary condition for asymptotic stability of the switched system (3.1) is that the

eigenvalues of the matrix pencil lie in the open left half-plane for all α ∈ [0, 1]. We

shall say, such matrix pencil is Hurwitz. For details on the instability of switched

systems see [SOCC00].

For the existence of a common quadratic Lyapunov function for two second order LTI

systems we recall the following two theorems which shall be applied for deriving the

main results in this chapter.

Theorem 3.8 (Sufficient condition for CQLF) Let A1, A2 ∈ R
2×2 be Hurwitz

matrices with real eigenvalues. A sufficient condition for the existence of a CQLF for

the LTI systems ΣA1
and ΣA2

is that the matrix pencil σα[A1, A2] has negative, real

eigenvalues for all α ∈ [0, 1].

Proof: see [SN97].1

Theorem 3.9 (Necessary and sufficient condition for CQLF) Let A1 and A2

be Hurwitz matrices in R
2×2. A necessary and sufficient condition for the existence

of a CQLF for the LTI systems ΣA1
and ΣA2

is that the pencils σα[A1, A2] and

σα[A1, A
−1
2 ] have eigenvalues in the open left half of the complex plane for all α ∈ [0, 1].

Proof: see [SN99].

The following lemma provides a simple condition for testing the Hurwitz property of

the matrix-pencil σα[A1, A2] for second order systems [WS01], [SN02]. This makes

some calculations in this chapter more tractable and, more importantly, simplifies the

condition for the CQLF existence to a simple eigenvalue-test.

1Originally, this theorem was restricted to matrices with distinct eigenvalues. However, it can

be shown that the theorem extends to matrices with identical eigenvalues, by introducing ε as the

difference between the eigenvalues and letting ε → 0.
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Lemma 3.10 (Matrix-product equivalence) Let A1, A2 ∈ R
2×2 be Hurwitz ma-

trices. The matrix-pencil σα[A1, A2] is Hurwitz for α ∈ [0, 1] if and only if the matrix

product A−1
2 A1 has no negative, real eigenvalue.

Proof. According to the assumptions A1 and A2 are both Hurwitz. Hence,

tr
(

σα[A1, A2]
)

= α trA1 + (1 − α) trA2 < 0, for all α ∈ [0, 1].

It follows that σα[A1, A2] cannot have purely imaginary eigenvalues. Thus, the matrix

pencil σα[A1, A2] is non-Hurwitz if and only if there exists an α0 ∈ (0, 1) for which

σα0
[A1, A2] is singular. Then,

(

α0A1 + (1 − α0)A2

)

v = 0

(

A−1
2 A1 +

1 − α0

α0
In

)

v = 0

A−1
2 A1 v = −1 − α0

α0
v .

Hence, A−1
2 A1 has a negative, real eigenvalue − 1−α0

α0
if and only if the matrix pencil

σα[A1, A2] is non-Hurwitz. �

Lemma 3.10 provides simple algebraic conditions for the Hurwitz property of the

matrix pencil which will be used extensively in the proofs of the main results.

Moreover, it allows the reformulation of Theorem 3.9 as an eigenvalue condition. Note

that the eigenvalue loci of σα[A1, A2] and σα[A2, A1] are identical. Hence, A−1
2 A1 has

real negative eigenvalues if and only if A−1
1 A2 does. Moreover, by symmetry and

Theorem 3.9 we can formulate the following corollary.

Corollary 3.11 Given two Hurwitz matrices A1, A2 ∈ R
2×2. A necessary and suffi-

cient condition for the existence of a CQLF for the LTI systems ΣA1
and ΣA2

is that

the matrix products A−1
1 A2 and A1A2 have no negative, real eigenvalues.

3.3.2 Some technicalities

Before we commence deriving the main results in this chapter, we collect some prop-

erties of the matrix pencil that are frequently used in the later proofs.

Even though the theorems in this chapter will be stated in terms of the matrix pencil

σα[A1, A2], for algebraic simplicity the proofs will be given in terms of the related
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matrix pencil σγ [A1, A2] defined by

σγ [A1, A2] = A1 + γA2 , γ ∈ [0,∞). (3.13)

The eigenvalue loci of the matrix pencils σα[A1, A2] and σγ [A1, A2] have equal prop-

erties in terms of their relative location to sectors in the complex plane with vertex

at the origin and the negative real axis as bisector.

Lemma 3.12 The matrix-pencil σα[A1, A2] with A1, A2 ∈ R
n×n has an eigenvalue

that is real, complex or lies in the 45◦-Region, if and only if the eigenvalues of A1 or

σγ [A1, A2] for γ ≥ 0 has an eigenvalue with the same property, respectively.

Proof. Consider the matrix-pencil σα[A1, A2] for α ∈ (0, 1]. Then,

σα[A1, A2] = α

(

A1 +
1 − α

α
A2

)

, ∀ α 6= 0.

Define f : (0, 1] → [0,∞) with γ = f(α) = 1−α
α . Then,

σα[A1, A2] =
1

γ + 1
(A1 + γA2) =

1

γ + 1
σγ [A1, A2] γ ≥ 0 .

The positive scaling factor 1
γ+1 does not effect the considered properties of the eigen-

values (real, complex or within the 45◦-Region) and can therefore be omitted. The

singularities γ = −1 and α = 0 are not in the considered intervals.

For α = 0 the eigenvalues of the matrix-pencil σα[A1, A2] equal the eigenvalues of A1.

This completes the proof. �

The following lemma describes the dependency of det σγ [A1, A2] on γ. For ease of

exposition we shall use the following notation throughout:

tri ≡ trAi

∆i ≡ det Ai ∀ i ∈ I.

Lemma 3.13 Let A1, A2 be nonsingular matrices in R
2×2, then

det
(

σγ [A1, A2]
)

= ∆2γ
2 + ∆1tr

(

A−1
1 A2

)

γ + ∆1 . (3.14)

Proof. Let A1 and A2 be given by

A1 =







a1 a2

a3 a4






A2 =







b1 b2

b3 b4






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then the determinant of the matrix pencil is given by

det (A1 + γA2) = (a1 + γb1)(a4 + γb4) − (a2 + γb2)(a3 + γb3)

= (b1b4 − b2b3)γ
2 + (a4b1 + a1b4 − a3b2 − a2b3)γ + (a1a4 − a2a3)

= ∆2γ
2 + (a4b1 + a1b4 − a3b2 − a2b3)γ + ∆1

Consider

∆1A
−1
1 A2 =







a4 −a2

−a3 a1













b1 b2

b3 b4






=







a4b1 − a2b3 a4b2 − a2b4

a1b3 − a3b1 a1b4 − a3b2







With ∆1tr
(

A−1
1 A2

)

= tr
(

∆1A
−1
1 A2

)

the result follows. �

Similar elementary calculations reveal the following relation between the traces of the

matrix-products A1A2 and A−1
1 A2.

Lemma 3.14 Let A1, A2 be nonsingular matrices in R
2×2, then

tr(A1A2) = tr1tr2 − ∆1tr
(

A−1
1 A2

)

(3.15)

Proof. This relation can be shown using similar elementary calculations as in the

proof of Lemma 3.13 above and is therefore omitted. �

3.4 Sufficient condition for stability

In this section a number of theorems are presented that relate the eigenvalue locus of

the matrix-pencil σα[A1, A2] and the 45◦-Region to the existence of a common unic or

common quadratic Lyapunov function. The aim is to derive a sufficient condition for

asymptotic stability of (3.1). Since the existence of the two types of Lyapunov function

under consideration differs for various subclasses we shall discuss the following cases

separately:

(i) the system matrices A1, A2 ∈ R
2×2 are Hurwitz and have real eigenvalues;

(ii) the system matrices A1, A2 ∈ R
2×2 are Hurwitz and have complex eigenvalues;

(iii) the system matrices A1, A2 ∈ R
2×2 are Hurwitz one of which having real eigen-

values and the other having complex eigenvalues.
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Combining the results obtained in the discussion of these cases yields to a compact

and readily applicable condition for asymptotic stability of the switched system (3.1)

for arbitrary switching signals.

Theorem 3.15 (45◦ Criterion) The switched linear system (3.1) with A={A1, A2},
A1, A2 ∈ R

2×2 and arbitrary switching signals complying with Definition 2.1 is as-

ymptotically stable if the eigenvalue-locus of the matrix pencil σα[A1, A2], α ∈ [0, 1]

lies completely in the 45◦-Region.

This theorem is proven in the course of this section and is a direct consequence of the

Theorems 3.8, 3.16, 3.21 and 3.23.

Even though the above stability condition holds for all three cases, the analysis of the

different system classes gives insight into their different characteristics. The existence

of the type of Lyapunov function differs for each system class which gives insight into

different properties of the system. By discussing each case separately, we attempt to

highlight those differences.

3.4.1 Constituent systems with real eigenvalues

We begin our discussion by switched systems consisting of subsystems with real eigen-

values, i.e. A = {A1, A2} ⊂ R
2×2 where A1, A2 are Hurwitz and have real eigenvalues.

By Theorem 3.8 there exists a common quadratic Lyapunov function (CQLF) for ΣA1

and ΣA2
if the eigenvalue locus of σα[A1, A2] is Hurwitz and real for all α ∈ [0, 1].

However the eigenvalues of the matrix-pencil σα[A1, A2] can be complex for some

α ∈ [0, 1] even if the eigenvalues of A1, A2 are real. The subsystems of the introduc-

tory Example 3.1 have such property as is shown by the eigenvalue locus depicted in

Figure 3.5.

For such cases we need to resort to the eigenvalue locus of σα[A1, A
−1
2 ] to establish

quadratic stability (c.f. Theorem 3.9). Unfortunately, there is not always a CQLF

for such systems. Using Lemma 3.10 we can quickly verify that the matrix pencil

σα[A1, A2] of Example 3.1 is non-Hurwitz since the product A−1
1 A2 has negative real

eigenvalues. Thus the LTI systems ΣA1
and ΣA2

have no CQLF. However we shall

show that asymptotic stability of the switched system (3.1) can still be established via

the existence of a common unic Lyapunov function, given that the eigenvalue locus

lies in the 45◦-Region.
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Figure 3.5: Eigenvalue locus of the matrix pencil σα[A1, A2] of the switched

system in Example 3.1. The eigenvalues of A1 and A2 are indicated by crosses,

the dots represent the eigenvalues of σα[A1, A2] for some values of α ∈ [0, 1].

Theorem 3.16 (Sufficient condition for common unic LF) Let A1, A2 ∈ R
2×2

be Hurwitz matrices with real eigenvalues. The linear systems ΣA1
and ΣA2

have a

common unic Lyapunov function if the matrix pencil σα[A1, A2] has complex eigen-

values for some α ∈ (0, 1) and its eigenvalue-locus stays within the 45◦-Region for all

α ∈ [0, 1].

The key-idea of the proof is to find points in the phase-plane where the flows of ΣA1

and ΣA2
are co-linear. We apply a similarity transformation defined by these points

of common flow and establish the existence of a common diagonal unic Lyapunov

function (dULF) for the transformed systems ΣÃ1
and ΣÃ2

under the conditions of

the theorem. The existence of a common dULF for the transformed systems implies

the existence of a common unic Lyapunov function for the original systems. Before

presenting the proof of Theorem 3.16, we discuss some preliminary findings.

Lemma 3.17 Given two matrices A1, A2 ∈ R
2×2 with negative, real eigenvalues for

which the matrix pencil σα[A1, A2] has complex eigenvalues for some α ∈ [0, 1]. Then

the matrix S = A−1
2 A1 has distinct, positive, real eigenvalues.

Proof. As noted in Section 3.3.2, the matrix pencil σα[A1, A2] has complex eigenval-
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ues for α ∈ [0, 1] if and only if σγ [A1, A2] does so for γ ≥ 0. Hence, there exist some

γ > 0 for which

tr2
(

σγ [A1, A2]
)

< 4 det
(

σγ [A1, A2]
)

.

On both sides of the inequality we have second order polynomials in γ given by

p1(γ) = tr2σγ = ( tr1 + γ tr2 )2

and, using the expression (3.14) of Lemma 3.13 we obtain

p2(γ) = 4 det σγ = 4∆2 γ2 + 4∆1tr
(

A−1
1 A2

)

γ + 4∆1 .

Since A1 and A2 are Hurwitz it follows that their traces are negative. Hence, p1(γ)

has a negative double zero at γ0 = − tr1
tr2

and is positive otherwise.

Since the determinant of A2 is positive, the second parabola p2(γ) is positive for

γ → ±∞. Further the eigenvalues of σγ are real for γ = 0 and γ → ∞. Hence,

p1(γ) > p2(γ) for γ = 0 and γ → ∞. Moreover, for the values γc > 0 where the

matrix-pencil σγ has complex eigenvalues, we have p1(γc) < p2(γc). It follows that

there are two values γc1, γc2 > 0 for which p1(γ) = p2(γ). These observations are

shown graphically in Figure 3.6.

PSfrag replacements
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Figure 3.6: Geometric relation of parabolas p1(γ) and p2(γ)

Two parabolas can intersect at most twice, i.e. p2(γ) < p1(γ) for γ < 0. Since
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p1(γ) has a negative zero, p2(γ) has to have two real zeros, one of which is less than

γ0 = − tr1
tr2

< 0. With those two findings we can prove the result:

(i) p2(γ) has two real zeros:

∆2
1tr

2
(

A−1
1 A2

)

− 4∆1∆2 > 0

tr2
(

A−1
1 A2

)

> 4
∆2

∆1

tr2S > 4 det S > 0 .

From the first inequality follows that S = A−1
1 A2 has distinct eigenvalues since

1
4 tr2S − det S 6= 0. The last inequality implies that S has real eigenvalues with

the same sign.

(ii) p2(γ) has a negative zero:

−∆1tr
(

A−1
1 A2

)

< 0

trS > 0

Hence, S has a positive eigenvalue and with the above argument the proof is

complete. �

The above lemma implies that the matrices A1 and A2 have points in the phase-plane

where the flow is co-linear, i.e.

A2 vcf,i = kiA1vcf,i

A−1
1 A2 vcf,i = kivcf,i , ki > 0.

The vectors of common flow vcf,i, i = 1, 2 are the eigenvectors of S = A−1
1 A2 and

ki > 0 are the eigenvalues of S. Since the eigenvalues ki are distinct we can construct

the non-singular transformation matrix

T =
(

vcf,1 vcf,2

)

(3.16)

consisting of the eigenvectors of S. Then the transformed system matrices Ãi =

T−1AiT have co-linear flow along the x1- and x2-axes. These observations are sum-

marised in the following corollary.

Corollary 3.18 Given two matrices A1, A2 ∈ R
2×2 such that A−1

1 A2 has real, posi-

tive eigenvalues k1, k2. Then there exists a non-singular transformation T such that

Ã1 =







a b

c d






Ã2 =







k1a k2b

k1c k2d







with a, b, c, d ∈ R and k1, k2 > 0.
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Proof. Let DS be the diagonal matrix with eigenvalues k1, k2 of S such that DS =

T−1ST . Then

Ã2 = T−1A2T

= T−1A1A
−1
1 A2T

= Ã1T
−1ST

= Ã1DS

�

Note, if Vd is a diagonal unic Lyapunov function for ΣÃ1
, then Vd is also a Lyapunov

function for ΣÃ2
. This follows immediately from condition (3.8).

With that we can end the preliminary discussion and proof Theorem 3.16.

Proof. [Proof of Theorem 3.16]

By assumption, the matrix pencil σα[A1, A2] has complex eigenvalues for some α ∈
(0, 1). Therefore, we can apply Corollary 3.18 and consider the matrix pencil of

the transformed matrices Ã1, Ã2. The eigenvalues are invariant under the similarity

transformation T , hence the eigenvalue loci of σα[Ã1, Ã2] and σα[A1, A2] are identical.

Applying Lemma 3.12 the eigenvalues of the matrix pencil σα[Ã1, Ã2], α ∈ [0, 1] lie

in the same sectors as the eigenvalues of σγ [Ã1, Ã2], γ ≥ 0. We consider

σγ [Ã1, Ã2] =







a b

c d






+ γ







k1a k2b

k1c k2d







=







[

1 + k1γ
]

a
[

1 + k2γ
]

b

[

1 + k1γ
]

c
[

1 + k2γ
]

d







=
[

1 + k1γ
]









a 1+k2γ
1+k1γ b

c 1+k2γ
1+k1γ d









.

The eigenvalues the matrix A ∈ R
n×n lie in the 45◦-Region if and only if the eigen-

values of
[

1 + k1γ
]

A do. Hence, the positive factor (1 + k1γ) does not change the

eigenvalue-locus of σγ [A1, A2] with respect to the 45◦-Region. Therefore we shall omit

that factor in the further discussion.
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Define the parameter

γ̃ =
1 + k2γ

1 + k1γ
.

Without loss of generality we can assume that k2 > k1. Then γ̃ ∈ Γ =
[

1, k2

k1

)

for

γ ≥ 0. We obtain

σγ̃ =







a γ̃b

c γ̃d






γ̃ ∈ Γ .

The existence of a diagonal unic Lyapunov function can be established by extracting

the relation of the trace and determinant of σγ̃ :

tr2σγ̃ = (a + γ̃d)
2

det σγ̃ = (ad − bc)γ̃ .

By our assumptions we get the following relations:

(i) the matrices A1, A2 have real eigenvalues, i.e. at the endpoints of Γ we have

tr2σγ̃ > 4 det σγ̃ ;

(ii) the matrix pencil has complex eigenvalues for some γ̃ in the interior of Γ

tr2σγ̃ < 4 det σγ̃ ;

(iii) the eigenvalues of the matrix pencil are within the 45◦-Region for all γ̃ ∈ Γ

tr2σγ̃ > 2 det σγ̃ .

These relations are illustrated in Figure 3.7. From (i) and (ii) we get that the parabola

tr2σγ̃ crosses the straight line given by 4 det σγ̃ twice in Γ.

Note that tr2σγ̃ has a unique minimum and a double zero at γ̃0 = −a
d . The above

argument implies that γ̃0 < 0, hence a and d have the same sign. Since Ã1 is Hurwitz,

trÃ1 < 0 and it follows that a, d < 0.

Relation (iii) gives that tr2σγ̃ does not intersect with 2 det σγ̃ for γ̃ ∈ Γ. Since the

minimum of the parabola is zero, we can infer that there is no intersection for any

γ̃ ∈ R. Hence,

d2γ̃2 + 2bcγ̃ + a2 > 0 ∀ γ̃ ∈ R .
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Ã2

1 k2

k1

γ̃

real eigenvalues

complex

outside 45◦

Figure 3.7: Geometrical relation of the trace and determinant of σγ̃ .

That immediately yields the remaining condition (3.4) for the existence of a diagonal

unic Lyapunov function

b2c2 − a2d2 < 0 .

Thus, there exists a diagonal unic Lyapunov function for Ã1.

It follows from Condition (3.8) that any diagonal unic Lyapunov function Vd(x) =

||Ldx||1 for ΣÃ1
is also a Lyapunov function for ΣÃ2

. By similarity V (x) =
∣

∣

∣

∣LdT
−1x

∣

∣

∣

∣

1

is a common unic Lyapunov function for ΣA1
and ΣA2

. �

Theorem 3.16 complements Theorem 3.8 to a sufficient condition for asymptotic stabil-

ity of the switched system (3.1) with real eigenvalues. If the matrix pencil σα [A1, A2]

has real eigenvalues for all α ∈ [0, 1], Theorem 3.8 guarantees the existence of a

common quadratic Lyapunov function. In case that the matrix pencil has complex

eigenvalues for some α ∈ (0, 1) a common unic Lyapunov function exists.

Corollary 3.19 (45◦ Criterion) The switched linear system (3.1) with system ma-

trices A1, A2 ∈ R
2×2 with real eigenvalues, is asymptotically stable for arbitrary

switching signals if the eigenvalue-locus of the matrix pencil σα [A1, A2] , α ∈ [0, 1]

lies completely in the 45◦-Region.
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Discussion and application of the result

In the following we demonstrate the application of the result and discuss further im-

plications of the 45◦ Criterion for the existence of the two types of Lyapunov function

considered. In particular we are interested in how conservative the 45◦ Criterion is.

The following example demonstrates the application of the result and shows that the

45◦ Criterion extends upon quadratic stability. If is further demonstrated that an

explicit unic Lyapunov function is immediately obtained by the application of the

results in this chapter. This can prove valuable in practice when a stable switched

system is to be designed.

Example 3.2 (No common quadratic LF, but common unic LF)

Consider the switched system in the introductory Example 3.1 with

A1 =







−4.3 −4.6

−0.6 −1.1






, A2 =







1.8 −2.4

9.3 −11.9






.

Figure 3.5 shows that the eigenvalue-locus of the matrix pencil σα[A1, A2] lies com-

pletely in the 45◦-Region. However, the eigenvalues of the matrix product A1A2 are

approximately {−35.94,−0.05}. Since they are both negative and real, by Lemma 3.10

no common quadratic Lyapunov function exists. But Theorem 3.16 guarantees the

existence of a common unic Lyapunov function.

A specific unic Lyapunov function is obtained as follows. The matrix product A−1
1 A2

has positive real eigenvalues such ΣA1
and ΣA2

have points of co-linear flow in the

phase-plane. For the transformation matrix T given in (3.16) we obtain

T =







−0.7875 0.7235

−0.6164 −0.6903







yielding the transformed system matrices

Ã1 =







−5.1813 −0.2827

2.9597 −0.2187






and Ã2 =







−0.0515 −12.9902

0.0294 −10.0485






.

With Corollary 3.3 we obtain a common diagonal unic Lyapunov function for ΣÃ1

and ΣÃ2
by choosing Ld with l2

l1
∈ [ 1.2927, 1.7506 ], where the interval is simply given

by the ratio of the column entries of Ã1. Common unic Lyapunov functions for ΣA1

and ΣA2
are immediately given by V (x) =

∣

∣

∣

∣LdT
−1x

∣

∣

∣

∣

1
.
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A sample level-set of the unic Lyapunov function with l2
l1

= 1.52 and the flow of

the constituent systems are depicted in Figure 3.8a. Some sample trajectories of the

switched system together with some level-sets of the Lyapunov function are shown in

Figure 3.8b. �
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Figure 3.8: Unic Lyapunov function for the switched system in Example 3.2. Part (a)

shows the flow of the vector fields of the constituent LTI systems on a level set of the unic Lyapunov

V (x) =
�� �� LdT−1x

�� ��
1
. Part (b) shows two sample trajectories of the switched system for the initial

conditions (1, 1) and (0.5,−1), respectively, and some level sets of the Lyapunov function.

The above example demonstrates the need for the two types of Lyapunov function

to formulate the stability condition in Corollary 3.19. Moreover, we can identify the

existence of each type of Lyapunov function with the respective behaviour of the

eigenvalue locus of σα[A1, A2]. This suffices for stability of the switched system, but

is by no means necessary for stability. However, the 45◦-Region provides a neces-

sary condition for the existence of both types of Lyapunov function, as the following

theorem reveals.

Theorem 3.20 (Necessary Condition) Let A1, A2 ∈ R
2×2 be Hurwitz matrices

with real eigenvalues and for which the matrix pencil σα[A1, A2] has eigenvalues out-

side the 45◦-Region for some α ∈ [0, 1]. Then

(i) there exists no common unic Lyapunov function for ΣA1
and ΣA2

;

(ii) there exists no common quadratic Lyapunov function for ΣA1
and ΣA2

.

Proof. Statement (i) follows directly from the preliminary discussion. If V is a

common Lyapunov function for ΣA1
and ΣA2

then it is also a Lyapunov function for

all systems defined by convex combinations αA1+(1−α)A2, α ∈ [0, 1], (Lemma 2.12).
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However, if for some α0 ∈ [0, 1] the matrix pencil σα[A1, A2] has eigenvalues outside

the 45◦-Region, then there exists no unic Lyapunov function for the LTI system

defined by α0A1 + (1 − α0)A2. Hence, ΣA1
and ΣA2

cannot share a common unic

Lyapunov function.

To prove statement (ii) we show that under the given assumptions, the matrix product

A1A2 has real negative eigenvalues. Then by Corollary 3.11 there exists no CQLF.

If the matrix pencil has eigenvalues outside the 45◦-Region then there exists a γ0 > 0

for which

tr2σγ < 2 det σγ .

With (3.14) we get

(tr1 + tr2 γ0)
2 < 2∆2γ

2
0 + 2∆1tr

(

A−1
1 A2

)

γ0 + 2∆1

rearranging and substituting (3.15) yields

(

tr22 − 2∆2

)

γ2
0 + 2tr

(

A1A2

)

γ0 + tr21 − 2∆1 < 0 .

Since A1 and A2 have real eigenvalues, i.e. tri − 4∆i > 0, the above parabola is

positive for γ = 0 and γ → ∞. It follows that for the inequality to hold, the parabola

has two positive real zeros. That implies −tr(A1A2) > 0 and

tr2
(

A1A2

)

−
(

tr22 − 2∆2

) (

tr21 − 2∆1

)

> 0

tr2
(

A1A2

)

− tr21tr
2
2 + 2∆1tr

2
2 + 2∆2tr

2
1 − 4∆1∆2 > 0 .

Rearranging gives

tr2
(

A1A2

)

− 4∆1∆2 >
1

2

(

tr21 − 4∆1

)

tr22 +
1

2

(

tr22 − 4∆2

)

tr21 .

Since A1, A2 have real eigenvalues the righthand side of the inequality is positive.

Hence, the product A1A2 has real eigenvalues. Since its determinant is positive and

its trace is negative, both eigenvalues are real and negative. This violates the necessary

condition for CQLF existence in Corollary 3.11. �

The above theorem establishes that the 45◦-Region is also a necessary condition for

the existence of the two types of Lyapunov functions under consideration when A1, A2

have real eigenvalues. Although none of these Lyapunov functions exists when the

eigenvalue-locus of σα[A1, A2] lies outside the 45◦-Region for some α, the switched
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system might still be asymptotically stable. However, the following example demon-

strates that the 45◦-Region is the largest sector (with vertex at the origin and the

negative real axis as bisector) that results in a sufficient stability condition of the kind

in Theorem 3.15.

Example 3.3 We can construct a limit system by choosing an eigenvalue of zero for

both subsystems. Further, let the eigenvectors associated with these eigenvalues be

(−1 1)T and (1 1)T. For the remaining eigenvectors we choose (1 0)T and (0 1)T,

respectively, and let the associated eigenvalues be -100 and -200. The resulting system

matrices are

Ã1 =







−100 −100

0 0






and Ã2 =







0 0

200 −200






(3.17)

The eigenvalue locus of such system just touches the boundary of the 45◦-Region as

shown in Figure 3.9. When switching slow enough, the trajectories describe a limit

cycle as in Figure 3.10.
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Figure 3.9: Eigenvalue locus of σα[A1, A2] for

the system in (3.17).
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Figure 3.10: Sample trajectory and eigenvec-

tors of the system in (3.17).

Small perturbations of such system can lead to switched system with unstable trajec-

tories. Choose

Ã1 =







−100.00 −99.99

0 −0.01






and Ã2 =







−0.02 0

202.01 −200.00







The transition matrix Φ( 40
π , 0) = eA2

40
π eA1

40
π has a spectral radius of 1.005. Hence,

the switched system is just unstable for switching signals with switching instances at

every 40
π time-units. Of course, the eigenvalue locus is just outside the 45◦-Region for

some α ∈ [0, 1]. �
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Summarising the results of this section, we can relate the different behaviour of the

eigenvalue locus of σα[A1, A2] to the existence of the two types of Lyapunov functions

for second order systems with real eigenvalues. If the eigenvalue locus remains real

and Hurwitz for all α ∈ [0, 1], then a common quadratic Lyapunov function exists

(Theorem 3.8); if there are complex eigenvalues of σα[A1, A2] for some values α ∈
[0, 1], but the eigenvalue locus stays within the 45◦-Region for all α ∈ [0, 1], then

the existence of a common unic Lyapunov function is guaranteed (Theorem 3.16);

and if the matrix pencil has eigenvalues outside the 45◦-Region for some α ∈ [0, 1],

then neither a common quadratic Lyapunov function nor a common unic Lyapunov

function exists (Theorem 3.20). However, recall that the non-existence of those two

types of Lyapunov function does not necessarily imply the instability of the switched

system.

The 45◦ Criterion in Corollary 3.19 provides a compact and readily applicable con-

dition for stability of second-order systems with real eigenvalues. In the following

two sections we extend this extended this result to systems with arbitrary eigenvalues

in the 45◦-Region and discuss its implications for the existence of common unic and

common quadratic Lyapunov functions.

3.4.2 Constituent systems with complex eigenvalues

In this section we analyse to what extent the results on the 45◦ Criterion in the

previous section generalise to switched systems where A1, A2 ∈ R
2×2 have complex

eigenvalues. We will see that the stability condition formulated in Corollary 3.19 also

holds for this system class. However, necessity for the considered types of Lyapunov

functions cannot be established.

Theorem 3.21 (Sufficient condition for CQLF) Let A1, A2 ∈ R
2×2 be Hurwitz

matrices with non-real eigenvalues in the 45◦-Region. The systems ΣA1
and ΣA2

have

a CQLF if the eigenvalues of the matrix pencil σα[A1, A2] lie in the 45◦-Region for

all α ∈ [0, 1].

Proof. We shall proof the theorem by employing the sufficient condition for CQLF

existence in Theorem 3.8. By assumption the matrix pencil σα[A1, A2] is Hurwitz,

thus it remains to be shown that σα[A−1
1 , A2] is Hurwitz. By Lemma 3.10 this is

equivalent to the matrix product A1A2 having no negative real eigenvalues.
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By assumption and Lemma 3.12, the eigenvalue locus of the matrix-pencil A1 + γA2

lies in the 45◦-Region for all γ ≥ 0. Hence,

tr2 (A1 + γA2) > 2 det (A1 + γA2) ∀ γ ≥ 0 .

Substituting the expressions (3.14) and (3.15) and rearranging yields

p(γ) =
(

tr22 − 2∆2

)

γ2 + 2tr (A1A2) γ + tr21 − 2∆1 > 0 ∀ γ ≥ 0 . (3.18)

By assumption, A2 has complex eigenvalues within the 45◦-Region and therefore

tr22 − 2∆2 > 0. Hence, the parabola p(γ) has a minimum. Thus, inequality (3.18)

holds if and only if (a) all zeros of p(γ) are negative, or (b) p(γ) has no real zeros.

For the first case (a), we require that

−2tr(A1A2) < 0

tr(A1A2) > 0 .

This, together with det(A1A2) = ∆1∆2 > 0 implies that A1A2 has eigenvalues in the

open right half-plane.

In the latter case (b), we require

tr2(A1A2) −
(

tr22 − 2∆2

) (

tr21 − 2∆1

)

< 0

tr2(A1A2) − tr21tr
2
2 + 2∆2tr

2
1 + 2∆1tr

2
2 − 4∆1∆2 < 0

tr2(A1A2) − 4∆1∆2 −
1

2

(

tr21 − 4∆1

)

tr22 −
1

2

(

tr22 − 4∆2

)

tr21 < 0 .

According to our assumptions A1, A2 have non-real eigenvalues, thus tr2i − 4∆i < 0.

This leaves

tr2(A1A2) − 4∆1∆2 <
1

2

(

tr21 − 4∆1

)

tr22 +
1

2

(

tr22 − 4∆2

)

tr21 < 0 .

Hence, A1A2 has complex eigenvalues.

In both cases (a) and (b) the matrix product A1A2 has no negative real eigenvalues.

Thus by Lemma 3.10 and Theorem 3.8 a common quadratic Lyapunov function for

ΣA1
and ΣA2

exists. �

With the above theorem the stability statement of Corollary 3.19 can be extended to

second order systems with complex eigenvalues.
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Discussion of the result

In the previous section we found that the 45◦ Criterion is also a necessary condition for

the existence of a CQLF and CULF if A1, A2 have real eigenvalues. In the following

we shall discuss whether the 45◦-Region is of similar significance if the eigenvalues of

the constituent systems are complex.

We start considering two examples where the eigenvalue locus of σα[A1, A2] is outside

the 45◦-Region for some α ∈ [0, 1].

Example 3.4 Consider the switched system (3.1) with system matrices

A1 =







−1.67 −0.83

1.60 0.23






A2 =







−0.51 −1.45

0.34 −1.31






(3.19)

The eigenvalue locus of σα[A1, A2] is Hurwitz and lies outside the 45◦-Region for some

α ∈ [0, 1] as shown in Figure 3.11. However, the eigenvalues of the matrix product

A1A2 are approximately λ1,2 = −1.0259±0.2085i. Thus there exists a CQLF for ΣA1

and ΣA2
.
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Figure 3.11: Eigenvalue-locus of the matrix

pencil σα[A1, A2] with (3.19).
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Figure 3.12: Eigenvalue-locus of the matrix

pencil σα[A1, A2] with (3.20).

Not surprisingly the 45◦ Criterion is not necessary for the existence of a CQLF for

the case that the eigenvalues of the constituent systems are complex. However, it is

not hard to find examples for which no CQLF exists when the eigenvalue locus leaves

the 45◦-Region for some α ∈ (0, 1).

In Figure 3.12 the eigenvalue locus of σα[A1, A2] with

A1 =







−1.89 −0.31

1.22 −0.68






A2 =







0.32 −1.08

0.56 −1.23






(3.20)
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is shown. The eigenvalues of the matrix product A1A2 are approximately λ1 =

−0.8427 and λ1 = −0.4169. Hence, ΣA1
and ΣA2

do not have a common quadratic

Lyapunov function. �

This observation suggests that it might be hard to find a larger sector that gives rise

to a sufficient condition of the kind of Theorem 3.21 for the existence of a CQLF.

For systems with real eigenvalues two types of Lyapunov functions are required to

prove stability for systems satisfying the 45◦ condition. In the current case with

subsystems with complex eigenvalues only considering common quadratic Lyapunov

functions was sufficient. It remains open whether the condition in Theorem 3.21 is

also sufficient for the existence of a common unic Lyapunov function.

Example 3.5 Consider the switched system with

A1 =







−1.2 0.5

−0.2 −0.9






and A2 =







−0.9 −1.5

0.2 −1.5






.

The matrix product S = A−1
1 A2 has the complex eigenvalues 0.9364 ± 0.7221i. Thus

the systems ΣA1
and ΣA2

have no points of co-linear flow in the phase-plane. There-

fore the method used in the previous section to construct a common unic Lyapunov

function cannot be applied.

However, for this example we can find a diagonal unic Lyapunov function. Applying

Corollary 3.3 yields that a dULF for system ΣA1
satisfies

∣

∣

∣

b1

d1

∣

∣

∣
<

∣

∣

∣

l2
l1

∣

∣

∣
<

∣

∣

∣

a1

c1

∣

∣

∣

0.5556 <
l2
l1

< 6 .

For system ΣA2
we require l2

l1
∈ [1, 4.5]. Since the two intervals intersect we can

choose l2
l1

= 2 to obtain a common unic Lyapunov function V (x) = ||Ldx|| with

Ld =







1 0

0 2







satisfying both conditions. A level-set of V (x) together with the flows of System ΣA1

and ΣA2
is shown in Figure 3.14. �

Certainly it is not always possible to find common diagonal unic Lyapunov function.

Whether or not the 45◦ condition is sufficient for the existence of a common unic

Lyapunov function for systems with complex eigenvalues has yet to be proven.
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Figure 3.13: Eigenvalue-locus of the matrix

pencil σα[A1, A2] in Example 3.5.
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Figure 3.14: Common unic Lyapunov function

for the system in Example 3.5.

3.4.3 The mixed case

After we have discussed the two cases of switched systems consisting of subsystems

with real and complex eigenvalues, respectively, it remains to prove stability for the

case where one matrix has real eigenvalues and the second matrix has complex eigen-

values in the 45◦-Region.

Similar to the first case where both matrices A1, A2 have real eigenvalues, we will

employ both types of Lyapunov function to establish stability. Before presenting the

main result we shall note the following preliminary lemma.

Lemma 3.22 Let A1, A2 ∈ R
2×2 be Hurwitz matrices, one of which has real eigen-

values and the other non-real eigenvalues. If the eigenvalues of the matrix pencil

αA1 + (1 − α)A2 lie in the 45◦-Region for all α ∈ [0, 1] then one of the following

statements is true:

(i) the matrices A1A2 and A−1
1 A2 have no real, negative eigenvalue;

(ii) the matrix A−1
1 A2 has distinct, positive, real eigenvalues.

Proof. Without loss of generality we assume that the eigenvalues of A1 are complex

and the eigenvalues of A2 are real. By assumption the matrix pencil σγ [A1, A2] is Hur-

witz. Thus the matrix product A−1
1 A2 has no negative real eigenvalues (Lemma 3.10).

From the assumptions on the eigenvalues of A1, A2 and the matrix pencil σγ [A1, A2]

we can derive conditions on the relation of the trace of the matrix-pencil σγ [A1, A2]

to its determinant for γ ≥ 0.



74 The 45
◦ Criterion

Consider the two parabolas given by

p1(γ) = tr2 (A1 + γA2) = (tr1 + γtr2)
2

p2(γ) = 2 det (A1 + γA2) = 2∆2γ
2 + 2∆1tr

(

A−1
1 A2

)

γ + 2∆1 .

The parabola p1(γ) has a unique negative zero at γ0 = − tr1
tr2

. Since the eigenvalues

of the matrix pencil σγ [A1, A2] lie in the 45◦-Region for all γ ≥ 0, it follows that

p1(γ) > p2(γ) for γ non-negative. The parabolas can only intersect for negative

values of γ.
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Figure 3.15: Geometric relation of the trace and determinant of the matrix pencil in Lemma 3.22.

Consider the case (i) where p1(γ) and p(γ) have an intersection for γ < 0. Hence,

(tr1 + γtr2)
2 − 2∆2γ

2 − 2∆1tr
(

A−1
1 A2

)

γ − 2∆1 = 0 .

With Lemma 3.14 we get

(

tr22 − 2∆2

)

γ2 + 2tr (A1A2) γ + tr21 − 2∆1 = 0 .

This polynomial in γ has a negative root only if tr (A1A2) > 0. Since the determinant

det(A1A2) = ∆1∆2 > 0 we conclude that the matrix product A1A2 has eigenvalues

in the right half-plane.
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In case (ii) the parabolas p1(γ) and p2(γ) do not intersect for γ ∈ R. This implies that

p2(γ) has two real roots, at least one of which is negative. Consider now the parabola

p3(γ) = 2p2(γ) = 4 det σγ , which of course has also two real zeros. We obtain

tr2
(

A−1
1 A2

)

− 4
∆2

∆1
> 0

tr2
(

A−1
1 A2

)

> 4 det
(

A−1
1 A2

)

.

Hence, the matrix product A−1
1 A2 has distinct real eigenvalues.

By assumption A1 has complex eigenvalues, thus p3(0) > p1(0) while p1(0) > p2(0)

(because of the 45◦ Condition). Hence, the two real zeros of p2(γ) and p3(γ) are

either both positive or both negative. Since we require that p2(γ) has a negative zero

it follows that both zeros are negative. Therefore

−2∆1tr
(

A−1
1 A2

)

< 0

tr
(

A−1
1 A2

)

> 0 .

Since the determinant det
(

A−1
1 A2

)

= ∆2

∆1
> 0 it follows that the matrix product

A−1
1 A2 has positive real eigenvalues. �

We can now prove the stability result for the mixed case.

Theorem 3.23 (Sufficient condition for stability) Let A1, A2 ∈ R
2×2 be Hur-

witz matrices, one of which has real eigenvalues and the other non-real eigenvalues.

The switched linear system (3.1) is asymptotically stable if the eigenvalues of the

matrix pencil αA1 + (1 − α)A2 lie in the 45◦-Region for all α ∈ [0, 1].

Proof. We will establish stability of the switched system by showing that under the

given assumptions there either (i) exists a common quadratic or (ii) a common unic

Lyapunov function for the LTI systems ΣA1
and ΣA1

.

Consider the two cases of Lemma 3.22. In case (i) it follows with Corollary 3.11 that

there exists a CQLF for the systems ΣA1
and ΣA1

.

In the second case the matrix S = A−1
1 A2 has distinct positive real eigenvalues.

Hence we can transform the system matrices as in Corollary 3.18 such that the points

of common flow are along the co-ordinate axis. We can establish the existence of

a common diagonal unic Lyapunov function for the transformed systems by similar

arguments as in the proof of Theorem 3.16 on page 62. �

In the following we present two examples that illustrate the results in this section.
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Example 3.6 Consider the switched system (3.1) with system matrices

A1 =







−0.4 −0.4

2.4 −1.4






and A2 =







−0.1 0

0.5 −0.8







The eigenvalue locus of σα[A1, A2] is in the 45◦-Region as shown in Figure 3.16.

The eigenvalues of A−1
1 A2 are complex. Thus there exist no points of co-linear flow.

However, the eigenvalues of the matrix product A1A2 are λ1 = 0.8154 and λ2 =

0.1446. Hence, there exists a common quadratic Lyapunov function. A level set of

the quadratic Lyapunov function V (x) = xTPx with

P =







2.3552 0.0582

0.0582 0.6033







is shown in Figure 3.17. �
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Figure 3.16: Eigenvalue-locus of the matrix

pencil σα[A1, A2] in Example 3.6.
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Figure 3.17: Common quadratic Lyapunov

function for the system in Example 3.6.

Example 3.7 This example demonstrates that the 45◦ Criterion extends stability

results obtain by using only common quadratic Lyapunov functions. Consider the

switched system (3.1) with system matrices

A1 =







0.3 −0.5

1.3 −1.9






and A2 =







−1.2 −1.2

0.4 −0.6







The eigenvalues of the matrix product A1A2 are approximately λ1 = −0.87 and

λ2 = −0.11. Hence no CQLF exists for ΣA1
and ΣA2

. Yet, the eigenvalue locus of

σα[A1, A2] lies in the 45◦-Region as shown in Figure 3.18.
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We can construct a common unic Lyapunov function following the same procedure as

in Example 3.5. A level set of the unic Lyapunov function V (x) =
∣

∣

∣

∣LdT
−1x

∣

∣

∣

∣

1
with

Ld =







1.0 0

0 1.3






and T =







0.8253 −0.6278

0.5647 0.7784







is shown in Figure 3.17. �
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Figure 3.18: Eigenvalue-locus of the matrix

pencil σα[A1, A2] in Example 3.7.
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Figure 3.19: Common unic Lyapunov function

for the system in Example 3.7.

3.5 Conclusions and outlook

The main contribution of this chapter is a sufficient condition for the asymptotic sta-

bility switched systems consisting of two second-order subsystems. The formulation

of the condition in terms of the eigenvalues of the matrix-pencil σα[A1, A2] ensures

independence of co-ordinate transformations and is therefore readily applicable. In

case of the existence of a common unic Lyapunov function, an explicit range of Lya-

punov functions is directly obtained by the derivations. Therefore the stability of

the switched system can be incorporated as a parameter constraint into the design

process of the switched system.

Stability of the switched system is established by employing two different types of

Lyapunov functions, quadratic and unic. It is shown that the stability condition can

only be established after introduction of the latter type which accounts for certain

characteristics of the considered switched systems.

The existence of either type of Lyapunov function has been analysed in relation to

characteristics of the eigenvalue locus of the matrix pencil for different system classes.
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We note that the unic Lyapunov function appears more suitable whenever one of

the constituent systems has real eigenvalues. For this system class the existence of

common quadratic Lyapunov functions can yield conservative results.

For switched systems with real eigenvalues it has been shown that the 45◦ Criterion

is also a necessary condition for the existence of either type of Lyapunov function

considered. In this context the 45◦-Region is the largest region (with vertex at the

origin and the negative real axis as bisector) for which eigenvalue locus conditions of

the form of Theorem 3.15 can be obtained.

Future work

Unfortunately, it is not possible to generalise the 45◦ Criterion in Theorem 3.15 to

switched systems with higher order subsystems.

Consider the switched system with system matrices

A1 =













−0.4 1.4 0

0.6 −0.6 −0.5

0.3 0.8 −0.6













, A2 =













−0.9 −0.5 −1.0

−1.0 0.4 0.8

1.1 −1.0 −1.7













. (3.21)

The eigenvalue locus of the matrix-pencil σα[A1, A2] lies completely in the 45◦-Region

as shown in Figure 3.20. However, the spectral radius of the transition matrix

Φ(2π, 0) = eA2πeA1π

is approximately 1.35. Hence, the switching signal with switching instances at every π

time-units results in unstable behaviour [Rug96].

However, empirical studies suggest that the 45◦ Criterion might hold for switched

linear systems where the system matrices of the constituent systems are given in the

companion form

A =



























0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1



























.
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Figure 3.20: Eigenvalue locus of σα[A1, A2] for the system matrices (3.21).

Such system matrices are obtained for systems described by the time-varying differ-

ential equation

y(n) =

n−1
∑

k=0

ak(t)y(k) + u (3.22)

where the coefficients ak(t) are piecewise constant and change discontinuously within

finite parameter sets.

For the generalisation of our result two problems arise. Firstly it is important to

determine a suitable type of Lyapunov function that can be employed to establish

stability. Secondly, although the empirical studies suggest that the 45◦-Region might

yield sufficient conditions for the stability of this class of systems, a different region

could be more significant for the considered system class. In this context the Theorems

2.23 and 2.24 on piecewise linear Lyapunov functions for LTI systems might prove

valuable; both in determining the number of faces of the Lyapunov function needed

and in indicating the appropriate spectral region.





Chapter 4

Spectral conditions for classical

stability results

In this chapter we formally relate a class of switched linear systems to the

non-linear system known as Lur’e system. It is shown that the switched

system is asymptotically stable for arbitrary switching if and only if the

Lur’e system is absolutely stable. This implication allows for the mutual

application of stability results obtained in each area. We extend a result

from [SN03a] to derive spectral versions of classical stability conditions for

Lur’e systems. Some examples highlight the benefits of these new formu-

lations.

4.1 Introductory remarks

In this chapter we consider the asymptotic stability under arbitrary switching signals

of switched linear systems that consist of two subsystems of order n and whose system

matrices Ai ∈ A are in companion form. In Section 2.4 it is shown that a common

Lyapunov function for the constituent systems ΣA1
and ΣA2

is also a Lyapunov func-

tion for all LTI systems ΣĀ with Ā = αA1 + (1 − α)A2, α ∈ [0, 1]. We shall use

this observation to establish the equivalence of the asymptotic stability of the sys-

tem class defined above and the classical problem of absolute stability of single-input

single-output Lur’e systems.
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Given these observations, the question arises, how the stability results obtained for

Lur’e systems relate to problems from the analysis of switched systems. In this chapter

we establish that results from the stability theory of both system classes are mutually

applicable, and further, that results from the Lur’e problem can give new insights into

the stability properties of switched linear systems. More specifically, recently it has

been shown in [SN03a] that the Circle Criterion derived for the SISO Lur’e system

can be utilised to derive a necessary and sufficient condition for the existence of a

CQLF for the switched system in terms of the product of the system matrices. The

main contribution in this chapter is the generalisation of this result that makes it

applicable to a wide range of stability conditions formulated in terms of the frequency

response.

The chapter is organised as follows. In the first section the single-input single-output

Lur’e system is introduced and the equivalence of the respective stability problems

is shown. In the second section the main lemma is derived which relates the clas-

sical frequency response inequality to spectral properties of a matrix product. The

frequency-response inequality in question appears in a large number of classical analy-

sis tools. Therefore, the matrix product equivalence has potentially many implications

in various areas. Some of these implications are discussed in Sections 4.4 and 4.6.

4.2 The Lur’e problem and switched linear systems

4.2.1 Lur’e systems and absolute stability

Lur’e systems are nonlinear feedback systems consisting of a linear time-invariant

forward path and a memoryless (possibly time-varying) nonlinearity in the feedback

path. The block structure of such system is shown in Figure 4.1.

The dynamics of the system are given by

ẋ(t) = Ax(t) + bu(t) (4.1a)

y(t) = cTx(t) + du(t) (4.1b)

z(t) = φ (t, y(t)) (4.1c)

u(t) = −z(t) (4.1d)

where x(t) ∈ R
n, y(t), z(t), u(t), d ∈ R, the system matrix A ∈ R

n×n and b, c are
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PSfrag replacements ẋ = Ax + bu

y = cTx + du

y0 u

z
φ(·, ·)

Figure 4.1: Block diagram of the single-input single-output Lur’e system.

vectors in R
n. In accordance with convention the quadruplet (A, b, cT, d) is assumed

to be a minimal realisation of the proper rational transfer function

G(s) = cT
(

sI − A
)−1

b + d (4.2)

such that (A, b) is completely controllable and (A, cT) is completely observable.1

The non-linearity φ(·, ·) is a time-varying scalar function φ : R
+ × R → R satisfying

k1y
2 ≤ φ(t, y)y ≤ k2y

2 ∀ y ∈ R, t ∈ R
+ (4.3)

where k1, k2 ∈ R and k1 < k2. The above condition is a sector constraint for the

nonlinearity; we say that φ(·, ·) belongs to the sector [k1, k2]. This property has the

graphical interpretation as shown in Figure 4.2: for all t ∈ R
+ and y(t) ∈ R the graph

of φ(t, y(t)) is bounded by the sector defined by two straight lines with the slopes k1

and k2.

Summarising the above, the Lur’e system is completely defined by the linear transfer

function (4.2) and a given sector [k1, k2]. Subject to this definition, the problem

is to find conditions on G(s) which ensure asymptotic stability for any nonlinearity

satisfying the sector condition (4.3). More formally we define absolute stability :

Definition 4.1 (Absolute stability) Given the linear SISO system (4.1a)–(4.1b)

with (A, b) controllable and (cT, A) observable and two numbers k1, k2 ∈ R, k1 < k2.

The equilibrium x = 0 is absolutely stable if it is globally uniformly asymptotically

stable for every function φ : R
+ × R → R belonging to the sector [k1, k2].

1Note, that for any given proper rational transfer function G(s) we can find a realisation with the

mentioned properties [Che71].
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PSfrag replacements

k1y

k2y

y
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Figure 4.2: Illustration of a sector-bound nonlinearity.

Note that the absolute stability problem is concerned with the stability of an entire

family of systems, since φ(·, ·) can be any function satisfying the sector condition (4.3).

Remark: If the nonlinearity φ(·, ·) is linear in y(t), i.e. φ(t, y) = φ′(t)y(t), we can apply

a loop transformation to obtain the transformed Lur’e system with

G̃(s) =
G(s)

1 + k1G(s)

φ̃(t, y) = φ′(t) − k1y(t)

where φ̃(·) belongs to the sector [0, k] where k = k2−k1

1+2dk1+d2k1k2
. For the remainder of

this chapter we shall consider Lur’e systems with sector nonlinearities belonging to

[0, k].

Remark: Let 1 + k0d = 0 for some k0 ∈ [0, k]. For this feedback gain we obtain an

unstable closed-loop system since

lim
s→∞

Gcl(s) =
d

1 + k0d
.

Using the loop-transformation and Nyquist arguments we can assume without loss of

generality that 1 + dk > 0.
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4.2.2 Equivalent stability problems

In this section we show that the absolute stability problem for Lur’e systems is equiv-

alent to the asymptotic stability of a class of switched linear systems.

Let the transfer function G(s) of the linear part of the Lur’e system be given by

G(s) =
pnsn + . . . + p2s

2 + p1s + p0

sn + qn−1sn−1 + . . . + q2s2 + q1s + q0

As realisation (A, b, cT, d) of the transfer function G(s) we choose the control canonical

form:

A =



























0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0 0 · · · 0 1

−q0 −q1 · · · −qn−2 −qn−1



























(4.4)

where qj , j = 0, . . . , n − 1, are the coefficients of the characteristic polynomial of A.

We refer to that matrix structure as companion form of A. Further,

b =
(

0 . . . 0 1
)T

cT =
(

(p0 − pnq0) (p1 − pnq1) . . . (pn−1 − pnqn−1)
)

d = pn

Consider now the special case where the nonlinearity φ(·, ·) only takes on the extreme

values on the sector bound such that

φ(t, y(t)) = φ′(t)y(t), φ′(t) ∈ {0, k} (4.5)

Thus, φ′ : R
+
0 → {0, k} is a piecewise constant function.

Substitution into the equations (4.1) yields

z(t) =
φ′(t)

1 + φ′(t)d
cTx(t)

ẋ(t) =

(

A − φ′(t)

1 + φ′(t)d
bcT

)

x(t) (4.6)

The above equations (4.6) and (4.5) describe an autonomous switched linear system

with constituent system matrices



86 Spectral conditions for classical stability results

A1 = A

A2 = A − k

1 + kd
bcT

where the switching signal σ(t) = 1 for φ′(t) = 0 and σ(t) = 2 for φ′(t) = k. Note

that (4.6) describes a class of switched systems where the constituent system matrices

have a difference rank of one, i.e. rank{A1 − A2} = 1.

We show now that the Lur’e system (4.1) is absolutely stable if and only if the switched

linear system (4.6) is asymptotically stable for arbitrary switching signals.

Theorem 4.2 Let the quadruplet (A, b, c, d) be a minimal realisation of the proper

transfer function G(s). Then the Lur’e system (4.1) with nonlinearity φ(·, ·) belonging

to the sector [0, k] is absolutely stable if and only if the switched linear system (2.2)

with A =
{

A, A− k
1+kdbcT

}

is asymptotically stable for arbitrary switching signals.

Proof. The switched system with A = {A1, A2} is asymptotically stable for arbitrary

switching signals if and only if ΣA1
and ΣA2

have a common Lyapunov function V (x)

(c.f. Section 2.4). That implies that V (x) is also a Lyapunov function for all LTI

systems ΣĀ with Ā = αA1 + (1 − α)A2 for all α ∈ [0, 1].

On the other hand, at any given time instant t the Lur’e system (4.1) is equivalent

to the LTI system

ẋ(t) =

(

A − φ(t)

1 + φ(t)d
bcT

)

x(t) φ(t) ∈ [0, k] .

We need to show that the sets of matrices given by
{

αA1 + (1 − α)A2, α ∈ [0, 1]
}

and
{

A − φ(t)
1+φ(t)dbcT, φ(t) ∈ [0, k]

}

are equivalent. We require that for any given

φ(t) ∈ [0, k] there exists an α ∈ [0, 1] such that

αA + (1 − α)

(

A − k

1 + kd
bcT

)

= A − φ(t)

1 + φ(t)d
bcT .

Thus we need to show

(α − 1)
k

1 + kd
= − φ(t)

1 + φ(t)d

α = 1 − φ(t)

1 + φ(t)d

1 + kd

k

Since 1+φ(t)d > 0 for all φ(t) ∈ [0, k] there is a unique α ∈ [0, 1] for every φ(t) ∈ [0, k].

This proves that the sets of matrices are equivalent. Hence the common Lyapunov

function V (x) for A1 and A2 is also a Lyapunov function for the Lur’e system. �
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4.3 Spectral condition for a class of strictly positive

real transfer functions

In the previous section is shown that the absolute stability of the Lur’e system (4.1)

and the asymptotic stability of the switched system (4.6) are equivalent problems.

Therefore, stability conditions from either research area are mutually applicable.

Naturally, the question arises how stability results obtained for the respective sys-

tem classes relate. In this chapter we consider the CQLF existence problem which

plays a major role in the stability theory for both system classes.

Inspired by the matrix-pencil conditions in Theorem 2.19 for second-order systems

and their matrix product formulation of Lemma 2.20 Shorten & Narendra utilised the

Circle Criterion to derive a matrix product condition for the existence of a CQLF,

[SN03b]. In this chapter we show that a generalised form of that result is applicable

to a wide range of conditions obtained for Lur’e systems.

Before we state the main result of this section we shall note two preliminary results

that will prove useful later. The first lemma is a well known result from linear algebra:

Lemma 4.3 [Kai80] Let A ∈ R
n×p and B ∈ R

p×n. Then,

det[In − AB] = det[Ip − BA] (4.7)

where In denotes the identity matrix in R
n×n and Ip ∈ R

p×p.

The next lemma is a generalisation of a result used in [Kal63]. We shall therefore

retain the original notation.

Lemma 4.4 Let A ∈ R
n×n be Hurwitz and c, b ∈ R

n×1 and (A, b, cT) a minimal

realisation of the strictly proper transfer function G(s). Then, the numerator and

denominator polynomials of the rational function,

1 + Re {G(jω)} =
Γ(−ω2)

|M(jω)|2 (4.8)

are given by

Γ(−ω2) =
(

1 − cTA
(

ω2In + A2
)−1

b
)

det
[

ω2In + A2
]

, (4.9)

|M(jω)|2 = det
[

ω2In + A2
]

.
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Proof. The transfer function G(s) can be written as (see A.13 in [Kai80])

G(s) = cT (sIn − A)
−1

b =
det

[

sIn − A + bcT
]

− det [sIn − A]

det [sIn − A]

Substituting this into (4.8) we obtain for the left side

1 + Re {G(jω)} = 1 + Re

{

det
[

jωIn − A + bcT
]

− det [jωIn − A]

det [jωIn − A]

}

= Re







1 +

(

det
[

jωIn − A + bcT
]

− det[jωIn − A]
)

det[−jωIn − A]

det[jωIn − A] det[−jωIn − A]







=
Re

{

det
[

ω2In + A2 − bcTA − jωbcT
]

}

det
[

ω2In + A2
] (4.10)

Applying an appropriate similarity transformation, we may assume without loss of

generality that the rank-one matrix bcT is in one of the Jordan canonical forms:

bcT =





















µ 0 · · · 0

0 0 · · · 0

...
...

0 · · · · · · 0





















, bcT =



























0 · · · · · · 0

1 0 · · · 0

0 0 · · · 0

...
...

0 · · · · · · 0



























Direct computation yields then for the numerator in (4.10)

Re
{

det
[

ω2In + A2 − bcTA − jωbcT
]

}

= det
[

ω2In + A2 − bcTA
]

Hence,

1 + Re {G(jω)} =
det

[

ω2In + A2 − bcTA
]

det
[

ω2In + A2
]

=
det

[

ω2In + A2
]

det
[

In −
(

ω2In + A2
)−1

bcTA
]

det
[

ω2In + A2
]

Applying Lemma 4.3 to the numerator yields

1 + Re {G(jω)} =
det

[

ω2In + A2
]

(

1 − cTA
(

ω2In + A2
)−1

b
)

det
[

ω2In + A2
]

=
Γ(−ω2)

|M(jω)|2

�
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We can now state the main result of this section. The principal ideas of this lemma

appeared first in [SN03b] with variations and extensions in [SCW03].

Lemma 4.5 Let G(s) be a proper rational transfer function with poles in the open

left half-plane and {A, b, c, d} be a minimal realisation of G(s) such that G(s) =

cT(sI−A)−1b+d, and let K ∈ R satisfy K+d > 0. Then the following are equivalent:

(i) K + Re {G(jω)} > 0, ∀ ω ∈ R,

(ii) the matrices A1 = A and A2 =
(

A − bcT

K+d

)

are Hurwitz and the matrix product

A1A2 has no negative real eigenvalue.

Proof. The first statement in the lemma can be written as

K + Re {G(jω)} > 0 , ∀ ω ∈ R (4.11)

K + d + Re
{

cT(jωIn − A)−1b
}

> 0

Applying Lemma 4.4 we obtain

K + d − 1 +

(

1 − cTA
(

ω2In + A2
)−1

b
)

det
[

ω2In + A2
]

det [ω2In + A2]
> 0

K + d − cTA(ω2In + A2)−1b > 0

which is equivalent to

det
[

K + d − cTA(ω2In + A2)−1b
]

> 0.

Applying Lemma 4.3 yields

det
[

(K + d)In − (ω2In + A2)−1bcTA
]

> 0

det
[

(ω2In + A2)−1
]

det
[

(K + d)(ω2In + A2) − bcTA
]

> 0

det
[

(ω2In + A2)−1
]

(K + d)n det

[

ω2In + A2 − 1

K + d
bcTA

]

> 0

Since A is Hurwitz, all real eigenvalues of A2 are positive. Thus det
[

ω2In + A2
]

> 0

for all ω ∈ R. With K + d > 0 we obtain

det

[

ω2In +

(

A − 1

K + d
bcT

)

A

]

> 0. (4.12)

Let A1 = A and A2 = A− 1
K+dbcT and suppose A1A2 has no negative real eigenvalue.

Then inequality (4.11) holds for all ω ∈ R, thus K + Re{G(jω)} > 0 ∀ ω ∈ R.
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On the other hand, if the product A2A1 has a negative real eigenvalue then there

exists some ω2
0 > 0 for which det

[

ω2
0In + A2A1

]

= 0 and condition (4.12) does not

hold, i.e. condition (4.11) is violated if A1A2 has the eigenvalue −ω2
0 . �

4.4 Implications for classical stability results

A number of classical stability conditions for Lur’e systems are stated as strictly

positive real (SPR) conditions of some transfer function H(s).

Definition 4.6 (Positive real transfer function) [NT73] A function H(s) is pos-

itive real if

(i) H(s) is real for s ∈ R,

(ii) Re{H(s)} ≥ 0 for all Re{s} > 0.

H(s) is strictly positive real if and only if H(s − ε), ε > 0 is positive real [Tay74].

Determining whether a transfer function is strictly positive real is not always straight

forward (see [NT73] or [IT87] for details). However the following result shall be

sufficient for the cases of our discussion.

Theorem 4.7 [IT87] Let H(s) be a rational transfer function with poles in the open

left half-plane and relative degree n∗ = 0, i.e. numerator and denominator have the

same degree. Then H(s) is strictly positive real if and only if

Re
{

H(jω)
}

> 0 for all ω ∈ R . (4.13)

Applying Lemma 4.5, we can formulate a new condition for strict positive real transfer

functions.

Theorem 4.8 Let (A, b, c, d) be a minimal realisation of the proper transfer function

H(s) with poles in the open left half-plane and d > 0. Then H(s) is strictly positive

real if and only if
(

A − 1
dbcT

)

is Hurwitz and the matrix product A
(

A − 1
dbcT

)

has no

negative real eigenvalue.

This theorem follows immediately from Theorem 4.7 and Lemma 4.5. A generalisation

of the result for the case d = 0 can be found in [SK04].
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Many conditions derived for Lur’e systems are based on the positive realness of some

transfer function. We shall now employ the Lemma 4.5 to obtain eigenvalue conditions

for results formulated in terms of strictly positive real functions.

One of the most fundamental results derived for Lur’e systems is the Kalman Yaku-

bovic Popov (KYP) lemma. Note that a number of different versions of the KYP

lemma have been derived by various authors (see [NA89, Vid93] for an overview).

Theorem 4.9 (KYP lemma) Given a Hurwitz matrix A ∈ R
n×n and vectors b, c ∈

R
n such that the pair (A, b) is controllable and given scalars k ≥ 0 and ε > 0, and

a positive definite matrix Q ∈ R
n×n. Then there exists a positive definite matrix

P ∈ R
n×n and a vector q ∈ R

n satisfying

ATP + PA = −qqT − εQ (4.14a)

Pb − cT =
√

γq (4.14b)

if and only if

k + Re
{

cT(jωIn − A)−1b
}

> 0 ∀ ω ∈ R. (4.15)

The system considered in the KYP lemma satisfies the assumptions of Lemma 4.5.

Therefore we can reformulate the KYP lemma as eigenvalue condition.

Theorem 4.10 (Spectral version of the KYP lemma) Given a Hurwitz matrix

A ∈ R
n×n and vectors b, c ∈ R

n such that the pair (A, b) is controllable and given

scalars k ≥ 0 and ε > 0, and a positive definite matrix Q ∈ R
n×n. Then there exists

a positive definite matrix P ∈ R
n×n and a vector q ∈ R

n satisfying (4.14) if and only

if the matrix product A
(

A − 1
k bcT

)

has no negative real eigenvalue.

The KYP lemma plays a key role in the proof of several stability results for Lur’e

systems. One of the best known stability condition is the Circle Criterion.

Theorem 4.11 (Circle Criterion) Consider the Lur’e system (4.1) with the trans-

fer function G(s) and sector nonlinearity φ(t, y) belonging to the sector [0, k]. Then

system (4.1) is absolutely stable if G(s) is a stable transfer function and

1

k
+ Re

{

G(jω)
}

> 0 for all ω ∈ R. (4.16)

It follows from Lemma 4.5 that the condition (4.16) holds if and only if the matrices

A1 = A and A2 =
(

A − k
1+kdbcT

)

are Hurwitz and the matrix product A1A2 has
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no negative real eigenvalue [SN03b]. Since the matrices A1, A2 represent the closed-

loop system we can immediately incorporate loop-transformations for arbitrary sector

bounds by choosing A1 = Ã− k1

1+k1dbcT and A2 = Ã− k2

1+k2dbcT, where Ã is the system

matrix of the transformed transfer function G̃(s) = G(s)
1−k1G(s) . The Criterion takes then

the following form.

Theorem 4.12 (Spectral version of the Circle Criterion) Consider the Lur’e

system (4.1) with the transfer function G(s) and sector nonlinearity φ(t, y) belonging

to the sector [k1, k2] with k1, k2 ∈ R. Then system (4.1) is absolutely stable if A1 and

A2 are Hurwitz and the matrix product A1A2 has no negative real eigenvalues.

Sufficiency of the Circle Criterion for the existence of a CQLF was directly shown in

[NG64] by means of the KYP lemma. Necessity was first established in [Wil73] using

indirect arguments. With Lemma 4.4 we can derive an alternative proof for necessity:

Suppose condition (4.16) is violated, i.e.

1

k
+ Re{G(jω)} = 0

for some ω0. Then by Lemma 4.4

det
(

ω2
0I + A2A1

)

= 0

det
(

ω2
0A−1

2 + A1

)

= 0 (4.17)

The latter follows since A2 is Hurwitz. This implies that the matrix pencil

σγ [A−1
1 , A2] = A−1

1 + γA2 is singular for γ = ω2
0 . However, it is a necessary con-

dition for the existence of a CQLF that the matrix pencil σγ [A−1
1 , A2] is Hurwitz for

all γ > 0.

Multiplier criteria

For various classes of the Lur’e system (4.1) stability conditions have been derived in

terms of the frequency response G(jω) involving the use of multipliers, e.g. [Pop61,

ZF68, CN68]. These conditions typically require the existence of some transfer func-

tion M(s), called multiplier, such that

Re
{

M(jω)G(jω)
}

> 0 ∀ ω ∈ R.

to establish stability of different classes of the Lur’e system.
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In many cases M(s)G(s) is a bi-proper real rational transfer function with poles in

the open left half-plane where
(

Ā, b̄, c̄, d̄
)

is a minimal realisation of M(s)G(s) with

d̄ > 0. For these cases we can apply Lemma 4.5 to obtain eigenvalue conditions for

stability. The best known multiplier criterion is the Popov criterion:

Theorem 4.13 (Popov Criterion) Let G(s) = cT (sI − A)
−1

b be the transfer func-

tion of the system (4.1) and consider the time-invariant feedback nonlinearity φ(·)
belonging to the open sector (0, k). Then the feedback system is absolutely stable if

there exists a number α > 0 such that H(s) = 1
k + (1 + jαω)G(s) is strictly positive

real.

Applying Theorem 4.8 on strict positive realness and Lemma 4.5 we can reformulate

the Popov criterion.

Theorem 4.14 (Spectral version of the Popov Criterion) Consider the sys-

tem (4.1) where d = 0 and with the time-invariant nonlinearity φ(·) belonging to

the open sector (0, k). Let H(s) = 1
k +(1+ jαω)G(s) and let

(

Ā, b̄, c̄, d̄
)

be a minimal

realisation of H(s). Then system (4.1) is absolutely stable if there is a number α > 0

such that d̄ 6= 0, the poles of H(s) are in the open left half-plane, the matrices A1 = Ā

and A2 = Ā − 1
d̄
b̄c̄T are Hurwitz, and the matrix product A1A2 has no negative real

eigenvalues.

Note, that in all the above classic frequency-domain conditions, the test of an infinite

number of points ω ∈ R has been replaced by a single eigenvalue calculation in the

time-domain.

Relation to Optimal control

An alternative condition for the existence of the quadratic Lyapunov function of the

KYP lemma can be found in the context of optimal control. The condition is given in

form of eigenvalue constraints on the Hamiltonian matrix associated with the solution

of the algebraic Ricatti equation [BEFB94]. There exists a Lyapunov function of the

form (4.14) for the Lur’e system (4.1) if and only if the Hamiltonian matrix

H =







A − k
2 bcT 1

2bbT

−k2

2 ccT −AT + k
2 cbT







has no (non-zero) purely imaginary eigenvalues.
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This condition has a similar form as the spectral condition for KYP lemma in The-

orem 4.10. This suggests that the eigenvalues of the Hamiltonian matrix H and the

eigenvalues of the matrix product are related. Indeed the following equivalence can

be established [CS04]

det
(

λI2n − H
)

= det

(

λ2In − A
(

A − 1

k
bcT

)

)

.

From that follows that the Hamiltonian matrix H has a purely imaginary eigenvalue

jω 6= 0 if and only if the matrix product A
(

A − 1
k bcT

)

has a real negative eigen-

value −ω2.

4.5 Implications for switched systems

In the previous section the implications of Lemma 4.5 for frequency inequality con-

ditions for Lur’e type systems have been outlined. On the other hand, the principle

ideas of Lemma 4.5 have been initially used to derived necessary and sufficient condi-

tions for the existence of a CQLF for a class of switched systems [SN03a]. Moreover,

the eigenvalues of the matrix product A1A2 and the eigenvalue locus of matrix-pencil

σα[A1, A2] are closely related. In this section a number of results are collected to

summarise the relation of the matrix products, matrix-pencils and the existence of a

CQLF for the LTI system ΣA1
and ΣA2

.

In [Loe76] and [BBP78] the following is shown.

Theorem 4.15 Let A ∈ R
n×n be a Hurwitz matrix. Then any quadratic Lyapunov

function V (x) for the LTI system ΣA is also a Lyapunov function for ΣA−1 .

Recall from Lemma 2.12 that if there exists a common Lyapunov function for the

systems ΣA1
and ΣA2

then the matrix pencil σγ [A1, A2] is Hurwitz for all γ > 0.

From Theorem 4.15 it follows that it is also necessary for the existence of a CQLF

for ΣA1
and ΣA2

that the matrix pencil σγ [A−1
1 , A2] is Hurwitz for all γ > 0.

Lemma 4.16 [SN98a] Let A1, A2 be Hurwitz matrices in R
n×n. A necessary con-

dition for the existence of a CQLF for the systems ΣA1
and ΣA2

is that the matrix

pencils σγ [A1, A2] and σγ [A−1
1 , A2], and equivalently σγ [A2, A1] and σγ [A−1

2 , A1], are

Hurwitz.
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Note that the conditions of the above lemma are also sufficient for the existence of

a CQLF when A1, A2 ∈ R
2×2 (Theorem 2.19). For this system class Lemma 2.20

establishes that the matrix pencil σα[A1, A2] is Hurwitz if and only if the matrix

product A−1
1 A2 has no negative real eigenvalue. Thus there exists a CQLF for ΣA1

and ΣA2
with A1, A2 ∈ R

2×2 if and only if A1, A2 are Hurwitz and the matrix products

A−1
1 A2 and A1A2 have no negative real eigenvalue.

This result can be generalised for a class of systems with A1, A2 ∈ R
n×n using a

variation of the proof of Lemma 4.5 and its relation to the Circle Criterion [SMCC04].

Theorem 4.17 Let A1, A2 be Hurwitz matrices in R
n×n and rank{A2 − A1} = 1.

Then the LTI systems ΣA1
and ΣA2

have a CQLF if and only if the matrix product

A1A2 has no negative real eigenvalue.

Note that for matrices A1, A2 ∈ R
n×n with a difference of rank 1, only one of the

two matrix products needs to be checked. In fact, it has been shown for systems with

rank{A1 − A2} = 1 that system class the product A−1
1 A2 cannot have any negative

real eigenvalues and that the matrix-pencil σα[A1, A2] is always Hurwitz [LSC02].

Assuming that A1, A2 are Hurwitz, it follows from (4.17) that the matrix product

A1A2 has no negative real eigenvalue if and only if A1+γA−1
2 is non-singular. Further,

by Theorem 4.16 it is necessary for the existence of a CQLF that the matrix-pencil

σγ [A1, A
−1
2 ] is Hurwitz. Hence, a necessary and sufficient condition for the existence

of a CQLF for the switched system (4.6) is that A1 + γA−1
2 is Hurwitz for all γ ≥ 0.

This has a somewhat surprising analogy to Aizerman’s famous conjecture [Aiz49]. The

corresponding formulation of this conjecture for our system class is that the system

(4.6) is absolutely stable if A1 + γA2 is Hurwitz for all γ ≥ 0. It is well known that

the Aizerman Conjecture is false.

From the above discussion we can conclude the following summarising corollary.

Corollary 4.18 Let A1, A2 be Hurwitz matrices in R
n×n and rank{A2 − A1} = 1.

Then the following statements are equivalent:

(i) there exists a CQLF for the LTI systems ΣA1
, ΣA2

, ΣA−1

1

and ΣA−1

2

;

(ii) the matrix products A1A2, A−1
1 A2, A2A1 and A−1

2 A1 have no negative real

eigenvalues;

(iii) the matrix pencils A−1
1 +γA2, A1 +γA2, A−1

2 +γA1, and A2 +γA1 are Hurwitz

for all γ ≥ 0.
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4.6 Application of the generalised SPR condition

In this section we consider some examples to demonstrate the application of some of

the results in this chapter. It is shown that the application of Lemma 4.5 can simplify

some control-design tasks. Moreover, we show that the graphical interpretation of the

frequency inequality allows the application of Lemma 4.5 to further design criteria

for LTI system.

Not least due to its graphical interpretation the Circle Criterion proves very useful for

the design of linear controllers for nonlinear systems. Let D(k1, k2) denote the disk in

the complex plane with diameter on the real axes defined by the interval
[

− 1
k1

,− 1
k2

]

.

Then the graphical version of the Circle Criterion is given by:

Theorem 4.19 The Lur’e system (4.1) with nonlinearity φ(·, ·) belonging to the sec-

tor [k1, k2] and G(s) = cT(sI − A)−1b + d with ν poles in the right half-plane is

absolutely stable if

(i) 0 < k1 < k2: the Nyquist plot of G(s) lies entirely outside the disk D(k1, k2)

and encircles it ν times counter-clock-wise;

(ii) 0 = k1 < k2 : ν = 0 and the Nyquist plot of G(s) lies entirely to the right of the

line Re{s} = − 1
k2

;

(iii) k1 < 0 < k2 : ν = 0 and the Nyquist plot of G(s) lies entirely inside the disk

D(k1, k2).

The main difference of the formulation of the stability results in terms of the fre-

quency response and the matrix product, lies in the fact that the classical stability

results are formulated in terms of the open-loop transfer function G(s) whereas the

matrix-product conditions involves the closed loop system matrices A − kibc
T. The

original formulation of the stability conditions proves very useful when applying clas-

sical frequency-domain design methods like loop-shaping, the eigenvalue condition

could have advantages to determine parameter-constraints.

Example 4.1 Consider the Lur’e system with the linear transfer function given by

A =







0 1

−1 −2






, b =







0

1






, c =







1

0






, d = 0.
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and nonlinearity φ(·, ·) belonging to the sector [k1, k2]. The objective is to determine

pairs of parameters (k1, k2) such that the Lur’e system is absolutely stable.

Applying the condition of Theorem 4.12, let A1 = A − k1bc
T and A2 = A − k2bc

T.

Then we obtain for the matrix product

A1A2 =







−1 − k2 −2

2 + 2k2 3 − k1






.

We can now calculate the eigenvalues of that matrix product for values (k1, k2) in

the parameter space. Figure 4.3 shows the properties of the eigenvalues of A1A2 over

the parameter space. For parameter pairs that yield a matrix A1A2 with negative

real eigenvalues are dark shaded. The white area indicates parameter combinations

for which the Circle Criterion holds. From this diagram we can directly read off,

parameter combinations that ensure the stability of the Lur’e system.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

k
1

k 2

matrix product A
1
A

2
has a negative        
real eigenvalue

matrix product A
1
A

2
has no negative     
real eigenvalues

Figure 4.3: Sector bounds for which the matrix

product A1A2 in Example 4.1 has negative real

eigenvalues
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Figure 4.4: Nyquist plot of G(jω) for Exam-

ple 4.1 with circles given for nonlinearities be-

longing to two different sectors.

Figure 4.4 shows the Nyquist plot of G(jω) to verify those findings. For comparison

with the classical Circle Criterion we choose the three sectors [−0.8, 4], [0, 7] and

[1, 12]. As indicated in Figure 4.3, the first two points yield stable systems and for

the last sector bounds there exists no CQLF. For the first sector we have to apply

case (iii) of the Circle Criterion, i.e. the Nyquist plot lies inside the disk D(−0.8, 4)

(dashed line). In the second case the Nyquist plot lies to the right of the (dotted) line

Re{s} = − 1
7 . Only the third case violates the Circle Criterion since the Nyquist plot

intersects the disk D(1, 12) (solid line). These findings for the three cases marked in

Figure 4.3 are confirmed by the matrix product condition. �
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Example 4.2 (taken from [Kha96])

Consider the Lur’e system (4.1) with the unstable linear transfer function

G(s) =
4

(s − 1)(s + 1
2 )(s + 1

3 )

Again, we are interested in determining sectors [k1, k2] for which the system is stable.

Choosing some minimal realisation {A, b, c} of G(s), Theorem 4.12 provides a straight
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Figure 4.5: Stability evaluation for Example 4.2. Part (a) shows the results of the

evaluation of the matrix product. For parameter combinations in the dark grey area the ma-

trix product has negative real eigenvalues. In the light grey areas one of the matrices A1, A2

is non-Hurwitz. Only sector bounds of the white area satisfy the conditions of Theorem 4.12.

Part (b) shows the Nyquist plot of G(s). Two parameter combinations are chosen for verify

the results with the Circle Criterion. The sector bound [3, 3.5] correspond to the disk in the

right lope, the disk of the sector [1.6, 1.8] lies in the left lope.

forward answer. Let A1 = A − k1bc
T and A2 = A − k2bc

T. The eigenvalue condition

of Theorem 4.12 for different sector bounds is depicted in Figure 4.5a. The dark

shaded areas denote parameter combinations (k1, k2) for which the matrix product

A1A2 has real negative eigenvalues. For the light shaded areas the product has no

negative real eigenvalue, but either A1 or A2 is not Hurwitz and therefore the system

has no common quadratic Lyapunov function. Only for parameters in the white area

the requirements of Theorem 4.8 are satisfies and thus there exists a CQLF.

Figure 4.5b shows the Nyquist plot of G(jω). From the Circle Criterion we know that

the Nyquist plot must encircle the disk D(k1, k2) once counter clockwise, since the

G(jω) has one pole in the right half-plane. Hence the disk has to be inside the left

lope.



4.6 Application of the generalised SPR condition 99

4.6.1 Other Nyquist-based circle conditions

The graphical interpretation of the Circle Criterion in Theorem 4.19 suggests that the

eigenvalue condition in Theorem 4.12 is applicable to other conditions expressed by

the location of the Nyquist plot and some circle in the complex plane. Such conditions

appear for example in the sensitivity analysis of linear systems [ÅPH98].

The following example demonstrates how the eigenvalue condition in Theorem 4.12

can be applied to design a PI-controller for a nonlinear plant, subject to stability and

sensitivity constraints. The example is taken from [?] where similar analysis is used

to design a switched controller for an ABS system of an automobile.

Example 4.3 Consider the system in Figure 4.6. The plant is given by the Lur’e

system with linear part Gp(s) = 1
(s+1)3 and nonlinearity φ(·, ·) belonging to the sector

[1, 4]. The objective is to design a PI-controller such that the closed loop system is

stable and has a sensitivity to modelling errors of Ms = 1
0.6 .

PSfrag replacements
Gc(jω) Gp(jω)

Figure 4.6: Control system of Example 4.3.

The transfer function of the PI-controller is given by

Gc(s) = Kp +
Ki

s

where Kp,Ki > 0 are the design parameters.

We shall now apply the matrix product condition parameterised by Kp and Ki to

obtain a controller that satisfies both constraints.

Stability analysis The closed loop system in Figure 4.6 is equivalent with the

Lur’e system with nonlinear feedback belonging to the sector [1, 4] and linear transfer

function
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G(s) =
Gp(s)

1 + Gp(s)Gc(s)

=
s

s4 + 3s3 + 3s2 + (1 + Kp)s + Ki

Choosing the control canonical realisation {A, b, c} of G(s) we can apply Theorem

4.12. We evaluate the matrix product
(

A − bcT
)(

A − 4bcT
)

for values of Kp and Ki

we are interested in. The matrix product has negative real eigenvalues for parameter

combinations (Ki,Kp) above the dashed line in Figure 4.7. Thus we obtain controllers

that satisfy the stability constraint by the parameter space below the dashed line.
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Figure 4.7: Parameter constraints for the controller in Example 4.3.

Parameter combinations below the dashed line satisfy the stability constraint,

combinations below the solid line satisfy the sensitivity constraint.

Sensitivity analysis The sensitivity constraint requires that the open-loop transfer

function L(s) = GcGp =
Kps+Ki

s(s+1)3 does not intersect the circle with radius Rs = 0.6

around the point (−1, 0), [ÅPH98]. Let {AL, bL, cL} be a minimal realisation of

L(s). By geometric equivalence this constraint is satisfied when the matrix product
(

AL − αbLcT

L

)(

AL − βbLcT

L

)

with α = 1
1.6 and β = 1

0.4 has no negative eigenvalue.

Again we evaluate the eigenvalues of the product for the chosen set of controller

parameters. The area below the solid line in Figure 4.7 denotes parameter sets for

which the sensitivity constraint is satisfied.

We can now read off controller parameters that satisfy both conditions. For per-

formance reasons we would usually aim to maximise the integrator gain [ÅPH98].

Therefore, we choose the controller at the intersection of both constraints: Kp =
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0.6,Ki = 0.46. Figure 4.8 shows the Nyquist plot of the open-loop transfer func-

tion L(jω) for the chosen controller. The plot does not intersect the circle of radius

Rs = 0.6 and hence the sensitivity constraint is satisfied. Figure 4.9 confirms that

the Nyquist plot G(jω) for the chosen controller does not intersect the critical circle

and hence a common quadratic Lyapunov function exists.
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Figure 4.8: Sensitivity plot for the controller

in Example 4.3
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Figure 4.9: Stability for the controller in Ex-

ample 4.3

4.7 Conclusions

In this chapter we established a connection between a class of switched systems and

SISO Lur’e systems. It is shown that the problem of absolute stability is equivalent to

the asymptotic stability of the corresponding switched system for arbitrary switching.

This equivalence enables stability results obtained for the respective system classes

to be applied interchangeably. The main result of this chapter relates the frequency-

response inequality K + Re{G(s)} > 0 to eigenvalue properties of the corresponding

matrix product A1A2. This equivalence casts a new light on the large number of

results that have been derived in terms of this inequality. The implications and

possible interpretations of the reformulation of these conditions leave room for further

research.





Chapter 5

Existence of periodic motion

and absolute stability

In this chapter we consider the stability of a class of switched linear single-

input single-output systems whose asymptotic stability is equivalent to the

absolute stability of the corresponding Lur’e system. The approach is

adopted from a stability conjecture first posed in [PT74] which aims to

predict the existence of periodic motion. The validity of the conjecture is

examined and several questions arising from it are analysed. Based on

this analysis a necessary and sufficient condition for the existence of pe-

riodic motion is derived. It is shown that a numerical approximation of

this result can yield good estimates for the existence of periodic motion.

5.1 Introductory remarks

In the previous chapter the equivalence of the absolute stability of SISO Lur’e systems

and the asymptotic stability of the corresponding switched linear system has been

established (Theorem 4.2). It has been shown that this equivalence can be exploited

to gain new insights into the analysis of either system class. In this chapter we shall use

the frequency-domain description of the Lur’e system to obtain non-quadratic stability

conditions for the two system classes. In particular we shall consider the existence of

periodic motion and its relation to the stability of the considered system. Clearly, if
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there exists a periodic solution x(t, t0, x0, σ) = x(t + T, t0, x0, σ) for the autonomous

switched linear system (2.4) the system is not asymptotically stable. However, our

analysis reveals that the non-existence of such periodic motion is of some significance

for the absolute stability of the Lur’e system. This insight is exploited to derive

conditions that approximate the largest symmetric sector [−k, k] for which the Lur’e

system is absolutely stable.

In this chapter we continue to analyse the behaviour of switched systems with two

constituent systems

ẋ = A(t)x A(t) ∈ A = {A1, A2} ⊂ R
n×n (5.1)

where A1 and A2 are in companion form (4.4) (or simultaneously similar to com-

panion form). We shall consider stability for arbitrary switching signals σ(·) as in

Definition 2.1.

For the analysis in this chapter we choose a frequency-domain approach to exploit

characteristics of the frequency-spectrum of the periodic signals. As in Section 4.2 we

shall therefore describe the switched system (5.1) by the corresponding Lur’e system

in Figure 5.1. Let A = 1
2

(

A2 + A1

)

and choose vectors b, c and a number k > 0 that

satisfy kbcT = 1
2

(

A2 − A1

)

. Then by Theorem 4.2 the asymptotic stability of the

switched system (5.1) is equivalent to the absolute stability of the Lur’e system with

G(s) = cT(sI − A)−1b (5.2a)

z(t) = φ(t)y(t) (5.2b)

where the time-varying feedback gain φ(·) belongs to the sector [−k, k].

PSfrag replacements G(s)
y0 e

z
φ(t)

Figure 5.1: Feedback representation of the switched system (5.2).

Some remarks on the considered system classes are in order:

(i) Note that system (5.2) is equivalent to the switched system (5.1) if φ(t) =
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k(2σ(t) − 3). Since the value-set of σ(·) is simply the index set I whose values

can be chosen arbitrarily, the set of switching signals σ(·) and the set of feedback

modulation signals φ(·) are essentially the same. To keep notation simple we

shall refer to S as the set of admissible switching signals σ(·) and the set of

feedback modulations φ(·) in (5.2b) interchangeably.

(ii) The Lur’e system (5.2) is only defined for the time-varying feedback gain φ(·).
Commonly the Lur’e system is defined for more general nonlinearities for which

z(t) = φ
(

t, y(t)
)

and φ(·, ·) belongs to the sector [−k, k]. However, as established

in Section 4.2, for the analysis of absolute stability it is necessary and sufficient

to consider the class of time-varying feedback gains.

(iii) The stability results in this chapter hold simultaneously for switched systems of

the form (5.1) and for Lur’e systems (5.2). Note, that we consider Lur’e systems

with strictly proper transfer functions (5.2a) such that limω→∞ G(jω) = 0.

We pursue two main objectives in this chapter. Firstly we shall investigate how

to determine the stability boundary of system (5.2) in terms of the parameter k,

i.e. given the matrix A and vectors b, c we want to find the largest sector [−k, k]

for which the Lur’e system (5.2) is absolutely stable. The second line of inquiry

aims to identify a subclass of switching signals from which we can derive necessary

and sufficient conditions for the asymptotic stability of the switched system (5.1) for

arbitrary switching signals.

The stability analysis in this chapter is motivated by a conjecture proposed indepen-

dently in [PT74] and later in [Sho96]. Instead of finding a common Lyapunov function,

the authors adopt an approach similar to the describing function approach [Moh91]

in order to determine the possibility of periodic motion. Although, the examination

in this chapter shows that this conjecture is in general false, a number of interesting

questions arise from its analysis. Based on the discussion of these issues we develop

a sufficient condition for the absolute stability of the Lur’e system.

The chapter is organised as follows. In the next section we introduce the approach

and the stability conjecture in [PT74]. In Section 5.3 the validity of the conjecture

is examined and several questions arising from the conjecture are discussed. Based

on these findings a sufficient condition for absolute stability is derived in Section 5.4.

This condition is based on the evaluation of the eigenvalues of infinite-dimensional ma-

trices. In Section 5.5 we analyse the effects of approximating the infinite-dimensional



106 Existence of periodic motion and absolute stability

matrices by finite truncations. In Section 5.6 some observations on the behaviour of

switched linear systems that arise from analysis in the previous sections are discussed.

5.2 Conjecture for absolute stability

In this section we present a technique to approximate the stability for Lur’e systems

that was suggested independently by Shorten [Sho96] and Power & Tsoi [PT74]. The

method considers the existence of periodic motion y(·) of the Lur’e system (5.2)

for a class of periodic feedback modulations φ(·). From the non-existence of such

periodic motion, absolute stability of the feedback system is suggested. The approach

is similar to the describing function approach.1 The main difference is that here

time-varying feedback gains are examined whereas the original approach considers

stationary nonlinearities.

In order to highlight the fundamental ideas of the approach, we begin our discussion

by considering the feedback gain

φ(t) = −2qcos(ωst), ωs ∈ R . (5.3)

To illustrate the intuition behind the approach we consider the open loop system

where the loop is cut open at the output as depicted in Figure 5.2. We assume a

periodic signal of the form y′(t) = 2 cos(ωyt + ϕ) at the output and follow the signal

traversing the loop.
PSfrag replacements

G(s)

y′

y0 e

z
φ(t)

Figure 5.2: Open feedback-loop of the Lur’e system.

1The describing function approach is a classical analysis method for stationary feedback nonlin-

earities. The output of the nonlinearity is approximated by a first-harmonic representation. The

analysis aims to detect whether such oscillation is attenuated in the loop. For details see e.g. [Moh91].
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Using the exponential description of cosines

y′(t) = ej(ωyt+ϕ) + e−j(ωyt+ϕ)

φ(t) = −qejωst − qe−jωst

we obtain for z(t) after multiplication

−z(t) = qej(ωs+ωy)t+jϕ + qej(−ωs+ωy)t+jϕ + qej(ωs−ωy)t−jϕ + qej(−ωs−ωy)t−jϕ .

For the next step we introduce the following notation for the gain and argument of

the transfer function G(jω) at the frequencies of interest:

g3 =
∣

∣ G(j(ωs + ωy))
∣

∣, ϑ3 = arg
{

G(j(ωs + ωy))
}

,

g1 =
∣

∣ G(j(ωs − ωy))
∣

∣, ϑ1 = arg
{

G(j(ωs − ωy))
}

.

For the considered real rational transfer functions holds
∣

∣G(jω)
∣

∣ =
∣

∣G(−jω)
∣

∣ and

arg{G(jω)} = − arg{G(−jω)}. Substitution yields

y(t) = q g3

(

ej(ωs+ωy)t+j(ϕ+ϑ3) + ej(−ωs−ωy)t−j(ϕ+ϑ3)
)

+

+ q g1

(

ej(−ωs+ωy)t+j(ϕ−ϑ1) + ej(ωs−ωy)t−j(ϕ−ϑ1)
)

.

Assume now that G(jω) has sufficient low-pass characteristic such that g3 � g1.

Then y(t) can be approximated by

y(t) ≈ q g1

(

ej(ωs−ωy)t−j(ϕ−ϑ1) + e−j(ωs−ωy)t+j(ϕ−ϑ1)
)

. (5.4)

Subject to this approximation, the signal y′(t) is reproduced at the output only if

ωy = 1
2ωs, ϕ0 = 1

2ϑ1 and the gain of the transfer function satisfies
∣

∣ qG(j ωs

2 )
∣

∣ = 1.

Assuming that the absence of periodic motion is sufficient for stability, the Lur’e

system is suggested to be stable [Sho96] for the time-varying feedback gain (5.3) if

∣

∣qG(jω)
∣

∣ < 1 ∀ ω ∈ R . (5.5)

In [PT74] this technique is applied to analyse the feedback system (5.2) for a class of

piecewise constant periodic feedback gains. Consider the piecewise constant function

φ : R → {k1, k2} of period T
2 in Figure 5.3 with exactly two discontinuities per period.

Let t = t0 be the beginning of one such period then φ(·) is defined by

φ(t) =











k1 for t0 ≤ t < t0 + ∆T
2

k2 for t0 + ∆T
2 ≤ t < t0 + T

2

(5.6)
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Figure 5.3: Class of nonlinearities considered in [PT74].

where T > 0 , k1, k2 > 0, and ∆ ∈ [0, 1] is called the duty-cycle and denotes the ratio

of one period for which φ(t) equals k1.

In order to apply the ideas of the previous reasoning we approximate the feedback

modulation φ(·) with its first order Fourier expansion

φ(t) ≈ ν0(∆) + 2ν1(∆) sin
(

2ω(t − t0) −
π

2

)

(5.7)

where ω = 4π
T and the Fourier coefficients are given by ν0(∆) = k1 + (k2 − k1)∆ and

ν1(∆) = k2−k1

π sin π∆.

Neglecting higher-order harmonics, the same calculation as above yields that the

periodic motion

y(t) ≈ sinωt (5.8)

can be sustained by the feedback system if

−1

G(jω)
= ν0(∆) + ν1(∆)e−jωt0 (5.9)

for some ω > 0 and t0 ∈ R, [PT74].

Condition (5.9) has a simple graphical interpretation. In a manner similar to the

describing function approach, the negative inverse Nyquist plot −1
G(jω) is compared

to the describing function-like representation of the feedback modulation φ(·). The

right-hand side of condition (5.9) describes a family of circles in the complex plane,

parameterised by the duty-cycle ∆. For every ∆ ∈ [0, 1] we obtain a circle with radius

ν1(∆) centred at the point
(

ν0(∆), 0
)

. If the inverse Nyquist plot does not intersect

any circle of that family, Equation (5.9) does not hold for any pair (∆, ω). This

relation is illustrated by the following example.
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Example 5.1

Consider the Lur’e system with linear part

G(s) =
−1.1s − 0.7

s2 + 2.3s + 1.8

and feedback modulation φ(·) of the class (5.6) belonging to in the sector [1, 2].

Figure 5.4 shows the inverse Nyquist plot −1
G(jω) and the circles given in (5.9) for some

∆ ∈ [0, 1]. Since the inverse Nyquist plot does not intersect any of the circles, we

would expect – within some approximation error – that the system does not sustain

a periodic motion y(t) for any modulation frequency ω. �
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−1
G(jω)
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Figure 5.4: Graphical interpretation of the stability conjecture in [PT74]. The

family of circles in solid line represents the first-order approximation (5.7) of the feedback

modulation. Since the inverse Nyquist plot does not intersect any circle of this family, the

system is deemed to not having a periodic solution [PT74]. For comparison, the Circle

Criterion requires that −1
G(jω)

does not intersect the dotted circle.

Note that the above reasoning is based on the considerations of the specific class

of time-varying feedback gains (5.6). The authors obtain this class of signals by

constructing a feedback modulation that is assumed to be most destabilising for a

second-order system. Therefore and upon further observations and empirical studies

the following conjecture is formulated:
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Conjecture 5.1 The Lur’e system (5.2) is absolutely stable, if the inverse Nyquist

plot −1
G(jω) lies completely outside the family of circles described by ν0(∆)+ν1(∆)e−jωt0

for all ω, t0 ∈ R and ∆ ∈ [0, 1].

Conjecture 5.1 relaxes the stability condition given by the Circle Criterion, which

requires that the inverse Nyquist plot −1
G(jω) lies outside the circle k2+k1

2 + k2−k1

2 ejωt0

(shown as a dotted line in Figure 5.4). According to Conjecture 5.1 the Lur’e system in

our example is absolutely stable while the condition of the Circle Criterion is violated

and thus, no CQLF exists. If proven true, Conjecture 5.1 would establish stability for

a large class of systems for which the Circle Criterion fails.

Unfortunately, as we shall see, the conjecture is not true in general. This is ultimately

due to the error caused by the approximations (5.7) and (5.8). However, the exam-

ination of the conjecture raises a number of questions which lead to further insights

and results.

5.3 Examination of the stability conjecture

In this section we examine the validity of Conjecture 5.1. Although it turns out to be

in general not true, Conjecture 5.1 raises a number fundamental theoretical questions

which we shall clarify and discuss in this section. In particular the following problems

need to be resolved to verify the validity of Conjecture 5.1:

(i) The analysis that leads to Conjecture 5.1 aims to detect periodic motion y(·).
It needs to be shown that the non-existence of such periodic motion is sufficient

for absolute stability, i.e. that the system is asymptotically stable for all non-

linearities in [k1, k2] if no periodic feedback gain φ(·) belonging to that sector

sustains a periodic motion y(·).

(ii) The class of feedback modulations φ(·) in (5.6) does not represent all periodic

signals belonging to [k1, k2]. Therefore, Conjecture 5.1 implies that the class of

signals (5.6) represents (in some sense) the most destabilising periodic feedback

modulation belonging to the sector [k1, k2].

(iii) The impact of the approximations (5.7) and (5.8) needs to be analysed. For the

application of Conjecture 5.1 it is of great importance whether condition (5.9)

is sufficient for stability or necessary for instability.
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(iv) The authors observe that y(t) is an inverse-repeat wave form of twice the period

of φ(t) and base their approach upon this observation.

The above issues are fundamental for the validity and applicability of Conjecture 5.1.

In this section we analyse the first three questions and discuss their implications for

the stability of switched systems. The last point is briefly addressed in Section 5.4.1.

5.3.1 On periodic and asymptotic stability

In this section we shall investigate whether the absence of periodic motion for all

periodic feedback modulations belonging to the sector [0, k] is sufficient for the ab-

solute stability of the Lur’e system with nonlinearities belonging to this sector. By

Theorem 4.2 the absolute stability of the Lur’e system is equivalent to the asymptotic

stability of the corresponding switched system. Since the switched system is obtained

by piecewise constant feedback modulations taking on values on the boundary of the

sector, we shall only consider this class of signals for the remainder of this discussion.

More precisely, we consider the following problem: Let S(k) denote the set of piecewise

constant functions φ(·) : R → {0, k} and let Sp(k) ⊂ S(k) be the set of periodic

functions in S(k). We call the Lur’e system (5.2) with nonlinearities belonging to

sector [0, k] periodically stable if it is asymptotically stable for all φ ∈ Sp(k). In

the following we investigate whether periodic stability of (5.2) implies its absolute

stability.

Consider the state-transition matrix Φφ(t, t0) which yields the solution of the Lur’e

system (5.2) for a given feedback modulation φ(·) ∈ S

x(t, t0, x0, φ) = Φφ(t, t0)x(t0) .

As in [PR91b] we define a generalised notion of the spectral radius2

<
(

G(s),S
)

= lim sup
t→∞

max
φ(·)∈S

%
(

Φφ(t, t0)
)

.

This quantity is similar to generalised spectral radius introduced in [DL92] for discrete-

time systems. Simply speaking, <
(

G(s),S
)

denotes the spectral radius of the transi-

tion matrix Φφ(t, t0) of system (5.2) for the “worst-case” feedback modulation

2The spectral radius of the matrix A is defined by %(A) = maxλi
|λi| where λi are the eigenvalues

of A.
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φ(·) ∈ S for t → ∞. The quantity <
(

G(s),S
)

can only take on three different val-

ues [PR91b] which yield immediately the following stability properties for the Lur’e

system (5.2):

<
(

G(s),S
)

=























0 : absolutely stable,

1 : marginally stable,

∞ : unstable.

(5.10)

Existence of periodic motion and its relation to absolute stability

The existence of periodic motion in relation to the absolute stability of the Lur’e

system (5.2) is investigated in a series of publications by Pyatnitskii and Rapoport.

Clearly, if there exists periodic motion y(·) for some φ(·) ∈ S then the Lur’e system

is not absolutely stable. The converse problem is considered in [Pya71] for second-

order systems, in [PR91a] for third-order systems and for systems of arbitrary order

in [PR91b] and [PR96].

Let k∗ < ∞ denote the least upper bound of k for which the system (5.2) is absolutely

stable in S(k). Under mild conditions Pyatnitskii and Rapoport show the following

[PR91b]:

Theorem 5.2 Consider the system in Figure 5.1. Let k′ > k∗. Then, there exist

T > 0, k ∈ [k∗, k′) and a T -periodic function φ(·) ∈ S(k) such that the solution

of (5.2) is T -periodic.

In other words, arbitrarily close to (but above) the boundary of stability k∗ there exists

a periodic feedback gain φj ∈ S(k) of period T such that %(Φφj
(T, 0)) = 1. Hence,

the existence of a periodic solution is a necessary condition for the instability of the

system (5.2). Moreover, for second and third order systems it has been established

that periodic motion can be found for φ(·) ∈ Sp(k
∗), see [Pya71] and [PR91a] or

[Bar93], respectively.

Recall that the Lur’e system (5.2) with nonlinearity φ(·, ·) belonging to the sector

[0, k] is absolutely stable if and only if is asymptotically stable for all φ : R → {0, k}.
Hence, the Lur’e system of order n ≤ 3 is absolutely stable if and only if it does not

support periodic motion for any φ ∈ Sp(k). For higher order systems the same can

be shown under the additional assumption that there exists an invariant cone for the

system (5.2). For a proof of this fact see [PR91b] and [PR96].
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Sufficient condition for stability

Although algebraic evidence for the existence of periodic motion on the stability

boundary k∗ for Lur’e systems of order n > 3 has yet to be found, the absence of

periodic motion for all nonlinearities φ ∈ S is still of some significance for absolute

stability [WFS03].

Consider the periodic switching signal φp(·) ∈ Sp with period T . From Floquet

Theory it can be shown [Rug96] that the system (5.2) is asymptotically stable for the

feedback signal φp(·) if and only if the spectral radius of the transition matrix for one

period is less than one, i.e.

%
(

Φφp
(T, 0)

)

< 1. (5.11)

Let Sp,T be the set of T -periodic functions φp,T (·). Consider

<
(

G(s),Sp,T

)

= max
φp,T (·)∈Sp,T

%
(

Φφp,T
(T, 0)

)

.

Then <
(

G(s),Sp,T

)

tends to <
(

G(s),S
)

when T → ∞. Since <
(

G(s),Sp,T

)

is con-

tinuous in T we obtain a sufficient condition for absolute stability by introducing a

notion of robustness ε > 0 that bounds <
(

G(s),Sp,T

)

< 1 − ε for all T > 0.

Corollary 5.3 [WFS03] System (5.2) with nonlinearity φ(·, ·) belonging to the sector

[0, k] is absolutely stable, if there exists ε > 0 such that %(Φφp
(T, 0)) < 1 − ε for all

T -periodic functions φp(·) ∈ Sp(k).

5.3.2 Feedback modulation with two switches per period

The previous discussion showed that we can obtain sufficient conditions for absolute

stability by considering periodic piecewise constant feedback modulations that only

takes on values on the boundary of the sector. However, the reasoning that led to

the Conjecture 5.1 only considers a subclass of such periodic functions. The class

of functions (5.6) is essentially characterised by having exactly two discontinuities

per period; one at t = ∆T
2 and another right at the end of the period t = T

2 . The

authors obtain this system class by constructing a feedback signal that maximises

the trajectory slope of a second order system and therefore is deemed be the most

destabilising [PT74]. In this section we shall justify the restriction of the condition in

Conjecture 5.1 to this class of functions.



114 Existence of periodic motion and absolute stability

The problem whether the Lur’e system is absolutely stable if and only if it is

asymptotically stable for all periodic feedback modulations with two discontinuities

per period has been studied in several publications in the past. In fact, this hypothesis

has been proven true for second-order systems [Pya71] and for third-order systems in

[Bar93, Rap94]. However, it is unknown whether such assertion is true for systems of

order greater than three.

In this section we shall show that the graphical condition of Conjecture 5.1 holds

for any piecewise constant periodic modulation signal φ : R → {k1, k2} if and only

if it holds for the class of periodic modulation signals (5.6) with two switches per

period. Geometrically speaking, we show that the area covered by the family of

circles obtained by any signal with 2N discontinuities per period is included in the

area covered by the circles of the signals with two discontinuities (see Figure 5.5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 5.5: Families of circles of the first-order approximation of feedback mod-

ulations with 2 discontinuities per period (fat, dark lines), and 4 discontinuities

per period (thinner, light gray lines).

The circle associated with the periodic piecewise constant function φ(·) is given by

ν0(φ) + ν1(φ)ejωt0 (5.12)

where ν0(φ), ν1(φ) are the first two coefficients of the Fourier series of φ(·). The circles

are centred at ν0(φ) and have a radius of ν1(φ). We shall show, that for any given

ν0 the greatest radius ν1(φ) is obtained by a function with two discontinuities per

period.

Consider the class V(ν0) of periodic functions φ(·) with the average value ν0 that

consist of square pulses of equal magnitude (as depicted in Figure 5.6). Without loss
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of generality we assume that magnitude and period are normalised to unity. The

function φN (·) ∈ V(ν0) consists of N ∈ N pulses, where pulse i starts at time ti and

has the length τi > 0. Since all functions in V(ν0) have the same average value, it

follows that
∑N

i τi = ν0.

Let ν1(φN ) denote the Fourier coefficient of the first harmonic of φN . We show that

the largest magnitude of the first harmonic

ν̂1(ν0) = max
N∈N,φN∈V(ν0)

∣

∣ ν1(φN )
∣

∣

is attained by the function φN (t) with N = 1 for all ν0 ∈ (0, 1).
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Figure 5.6: Feedback signal φN (t).

Note, that a phase shift of the function only affects the phase of the first harmonic

but not its magnitude. Therefore we assume without loss of generality that the first

pulse of φ(·) ∈ V(ν0) starts at t = 0 and the last pulse ends at tN + τN < T = 1.

The idea of the proof is the following. Consider the function φN+1 ∈ V(ν0)

φN+1(t) = φ1(t) + φN (t − ϕ) (5.13)

where φ1(t) ∈ V(τ0) and φN (t) ∈ V(ν0 − τ0) as depicted in Figure 5.7. φ1 is shown

as a solid line and φN is shown as a dashed line with the time-shifts varphi tak-

ing on different values for each sub-figure. Since we require that φN+1 ∈ V(ν0), the

time-shift ϕ is bounded by ϕ ∈ [τ0, 1 − (tN + τN )]. For the same reason we need

to restrict tN + τN < 1 − τ0. We shall show that the magnitude of the first har-

monic
∣

∣ν1(φN+1(t))
∣

∣ of the function φN+1(t) parameterised in ϕ is maximal if ϕ = τ0

(Figure 5.7b) or ϕ = 1 − (tN + τN ) (Figure 5.7c). In these two cases the function

in (5.13) essentially only consists of N pulses. We can now use the same arguments

to shift the remaining N − 1 pulses. By induction ν̂1(ν0) is attained if all pulses are

shifted to one side, which is equivalent to φ1(t) ∈ V(ν0).
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Figure 5.7: Construction of the function φN+1(t) in Equation (5.13) for different values of ϕ.

(a) τ0 < ϕ < 1 − (tN + τN ); (b) ϕ = τ0; (c) ϕ = 1 − (tN + τN ).

The Fourier coefficient of the first harmonic of φN is given by

ν1(φN ) =
1

T

∫ T

1

f(t)e−jωtdt

=
1

j2π

N
∑

i=1

e−j2πti− e−j2π(ti+τi)

=
1

π

N
∑

i=1

sin(−πτi) e−jπ(2ti+τi)

where ti ∈ [0, 1−τN−τ0). We can consider ν1(φN ) as a sum of vectors with magnitude

| sin(πτi)|. Let −θ be the argument of ν1(φN ). Neglecting some multiple of 2π the

argument θ is bounded by the smallest and largest angle in the sum, i.e. θ ∈ [τ1, 2tN +

τN ).

Using the above construction of the function φN+1 in (5.13) we get the Fourier coef-

ficient of its first harmonic

ν1(φN+1) =
1

π
sin(−πτ0) e−jπτ0 + e−j2πϕν1(φN )

where the time-shift ϕ ∈ [ τ0, 1 − (tN + τN ) ].
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Substituting ν1(φN ) = |ν1(φN )|e−jθ yields

ν1(φN+1) =
1

π
sin(−πτ0)e

−jπτ0 +
∣

∣ν1(φN )
∣

∣e−jπ(2ϕ+θ) (5.14)

Consider ν1(φN+1) as a sum of two vectors. Then |ν1(φN+1)| is maximal if the angle

between the two vectors is minimal, i.e.

max
ϕ

|ν1| ⇐⇒ min
ϕ

|π(τ0 − 2ϕ − θ) |

We shall now show that the minimum of π(τ0 − 2ϕ − θ) is obtained for ϕ at the

boundary of the interval [ τ0, 1 − (tN + τN ) ].

The function f(ϕ) = |π(τ0 − 2ϕ − θ) | has the minima ϕ0,n for which

| τ0 − 2ϕ0,n − θ | = 2n, n ∈ Z

We shall show that ϕ ∈
[

τ0, 1 − (tN + τN )
]

lies between the two consecutive minima

ϕ0,0 and ϕ0,1 for n = 0 and n = 1, respectively.

For n = 0 we obtain for the minimum ϕ0,1 = 1
2 (τ0 − θ). Hence we require

1

2
(τ0 − θ) < τ0

−θ < τ0

Since θ ≥ τ1 > 0 this inequality holds and ϕ ∈
[

τ0, 1 − (tN + τN )
]

is always greater

than ϕ0,0.

The minimum for n = 1 is given by ϕ0,1 = 1 + 1
2 (τ0 − θ). We require that ϕ0,1 is

greater than the upper bound 1 − (tN + τN ), i.e.

1 +
1

2
(τ0 − θ) > 1 − (tN + τN )

τ0 − θ > −2tN − 2τN

τ0 > −2tN − 2τN + θ

Substituting the upper bound for θ = 2tN + τN gives

τ0 > −τN

Since τN > 0 we can conclude that ϕ ∈ [ τ0, 1 − (t3 + τ3) ] lies between consecutive

minima. That implies that |ν1(φN+1)| is maximal for ϕ at the boundaries of that

interval. It follows by induction that the maximum ν̂1(φN ) for φN ∈ V(ν0) is attained

for the function φ1(t) ∈ V(ν0) for all ν0 ∈ (0, 1).
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We conclude, that the condition of Conjecture 5.1 holds for all periodic piecewise

constant feedback modulations if it holds for the considered class of functions (5.6).

Further recall that in [Pya71, Bar93, Rap94] is shown that the class of periodic, piece-

wise constant feedback modulations with two discontinuities per period is necessary

and sufficient for determining absolute stability of Lur’e system of order n ≤ 3. In

the sense of a first-order approximation of the feedback modulation φ the above find-

ings generalise this result for Lur’e systems of arbitrary order. While the derivation

in this section does not allow any conclusions for absolute stability, it encourages to

conjecture that the results of [Pya71, Bar93, Rap94] could be generalised for Lur’e

systems of arbitrary order.

5.3.3 Evaluation of the approximation error

In the previous two sections the fundamental assumptions that lead to the Conjec-

ture 5.1 have been discussed and justified. In this section we shall see that the error

due to the approximations (5.7) and (5.8) is not systematic in the sense that the

condition of Conjecture 5.1 is neither sufficient for the existence of periodic motion

nor sufficient for its non-existence.

The fact that Conjecture 5.1 only considers feedback modulations of the form (5.6),

allows the direct verification by computing the transition matrix Φσ(T, 0) for one

period for the respective values of ∆ and T and applying condition (5.11) obtained

by Floquet Theory [Rug96]. The Lur’e system (5.2) is asymptotically stable for the

periodic feedback modulation φ(·) in (5.6) if and only if

%
(

e(A+kbcT)(1−∆)T e(A−kbcT)∆T
)

< 1 . (5.15)

Therefore, we can evaluate the approximation error directly and independently of the

discussion of the previous sections.

In the following we present two examples to demonstrate that Conjecture 5.1 is neither

sufficient for stability nor sufficient for instability.

Example 5.2 Consider the switched linear system (5.1) with

A1 =







0 1

−0.5 −2.5






, A2 =







0 1

−190.5 −36.0






.
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The corresponding Lur’e system (5.2) is given by the transfer function

G(s) =
−16.75s − 95

s2 + 19.25s + 95.5

and the nonlinearities φ(·, ·) belonging to the sector [−1, 1].
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Figure 5.8: Graph of Conjecture 5.1 for Exam-

ple 5.2.
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Figure 5.8 shows the negative inverse Nyquist plot of G(jω) and circle segments for

some ∆ ∈ [0, 1] corresponding to the first-order approximation of the signal (5.6).

The inverse Nyquist plot intersects some of these circles. In particular, we can read

off intersections for ∆ = 0.9 at frequencies ω0 ≈ 1.5 rad
s and ω0 ≈ 3.65 rad

s of −1
G(jω) .

According to Conjecture 5.1 we would expect a periodic output-signal y(t) of frequency

ω0 if φ(t) switches with a duty-cycle ∆ = 0.9 and frequency 2ω0.

We verify this finding by calculating the spectral radius (5.15) for the duty-cycle

∆ = 0.9 shown in Figure 5.9. The graph does not exceed 0.8 for the frequencies

in question. Hence, the system does not sustain any periodic motion for that duty-

cycle. Further evaluation reveals that the spectral radius does not exceed 1 for any

duty-cycle ∆ ∈ [0, 1] and any modulation frequency. Note that the spectral radius

converges to 1 for ω → ∞ since

lim
ω→∞

eA 2π
ω = I .

Hence, Conjecture 5.1 is not sufficient for the existence of periodic motion. �

Example 5.3 Consider the switched linear system (5.1) with

A1 =







0 1.0

−0.0250 −0.6050






, A2 =







0 1.0

−0.7430 −0.2610






.
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The corresponding Lur’e system is given by the transfer function

G(s) =
0.172s − 0.359

s2 + 0.433s + 0.384

and nonlinearity φ(·, ·) belonging to the sector [−1, 1].
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ample 5.3.
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The negative inverse Nyquist plot of G(s) is shown in Figure 5.10 together with the

set of circles given by the first-order approximation of φ(t) in (5.6). The Nyquist

plot does not intersect any of the circles. Hence, by Conjecture 5.1 we would not

expect any periodic solution for the Lur’e system (5.2) and the system is deemed to

be absolutely stable.

The spectral radius of the transition matrix Φ(T, 0) for ∆ = 0.65 is shown in Fig-

ure 5.11. For T = 2π
0.9 we can read off a value of approximately 1.02 for the spectral

radius. Hence the system is just unstable for such a switching signal and Conjec-

ture 5.1 is not sufficient for absolute stability. �

The above examples demonstrate that the approximation inherent in (5.9) leads to

ambiguous results. Therefore we conclude that the condition of Conjecture 5.1 is

neither a sufficient for stability nor a sufficient for instability.

5.4 The boundary of absolute stability

In the previous section we examined the validity of the Conjecture 5.1 and discussed

various questions that arise from it. Although several implications of the conjec-

ture have been resolved, we have nevertheless shown that it fails to provide sufficient
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conditions for absolute stability. This is mainly due to the error caused by the approx-

imation of the periodic signals y(·) and φ(·) by their first harmonic. In this section we

incorporate all harmonics of these periodic signals to derive necessary and sufficient

conditions for the existence of periodic motion. By introducing a notion of robustness

as in Corollary 5.3 we obtain sufficient conditions for absolute stability of the Lur’e

system.

Our approach here is similar to the approaches in Section 5.2. But instead of consid-

ering the linear forward part G(s) and the time-varying feedback gain φ(t) separately,

both elements are lumped together into a single operator Fω0
describing the open loop

dynamics (c.f. Figure 5.12 on page 123). This operator Fω0
: L2[0, T0] → L2[0, T0] is

defined on the L2 space of T0-periodic functions:

L2[0, T0] =

{

f : R → R
∣

∣ f(t + T0) = f(t) ,

∫ T0

0

∣

∣f(t)
∣

∣

2
dt < ∞

}

.

A simple necessary and sufficient condition for the existence of a T0-periodic solution

y(·) ∈ L2[0, T0] for the autonomous closed loop system is derived. This result, together

with Theorem 5.2 on existence of periodic solutions, and Corollary 5.3, is used to

derive a sufficient condition for absolute stability that approximates the stability

boundary to an arbitrary degree of accuracy.

5.4.1 Frequency-ratio of the periodic motion and the periodic

feedback modulation

Consider the signals y(t), φ(t) and z(t) of the closed loop Lur’e system depicted in

Figure 5.1 and assume that y(·) is a periodic motion sustained by the periodic

feedback modulation φ(·). In the following we investigate how the frequencies ω = 2π
T

of these two functions relate.

We denote the period of φ(·) by Tφ and the period of y(·) by Ty.3 Then the respective

Fourier series are given by

φ(t) =
∞
∑

n=−∞

νne−jnωφt (5.16)

y(t) =

∞
∑

k=−∞

yke−jkωyt (5.17)

3Here, the term “T -periodic” is used in the minimal sense such that T ∈ R+ is the smallest value

for which φ(t + T ) = φ(t).
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where νn and yk denote the respective Fourier coefficient; ωφ = 2π
Tφ

and ωy = 2π
Ty

are

the fundamental harmonics of φ(·) and y(·), respectively.

For the signal z(·) we obtain after multiplication

z(t) =
∑

k

∑

n

νnyk e−j(nωφ+kωy)t . (5.18)

For the output y(·) we get

y(t) =
∑

k

∑

n

gnkνnyk e−j(nωφ+kωy)t (5.19)

where gnk = G
(

j(nωφ + kωy)
)

.

By assumption, y(·) is a periodic motion sustained by the feedback system (5.2). Thus

the description of the output signal y(·) in (5.17) and (5.19) are equivalent. It follows

that for any frequency component nωφ +kωy in (5.19) there is a frequency component

lωy in (5.17), i.e. for every n, k ∈ Z there exists an l ∈ Z such that

nωφ + kωy = lωy . (5.20)

Choosing n = 1 we get ωφ = (l − k)ωy, i.e. the fundamental frequency ωφ of the

modulation signal φ(·) is an integer multiple of the frequency of the output signal y(·).
However, from (5.20) we cannot deduce that the ratio of the fundamental harmonics

r = l−k
n equals two as assumed in the reasoning that led to the Conjecture 5.1.

5.4.2 The open-loop operator

In Section 5.3.1 it is established that the existence of a periodic solution is necessary for

the instability of the Lur’e system (5.2), and conversely, the nonexistence of periodic

solutions (in a robust sense) can be used to approximate the stability boundary to an

arbitrary degree of accuracy (Corollary 5.3). Therefore we shall only consider periodic

functions y(·) in this section and check whether the Lur’e system (5.2) can sustain

any such solutions for any φ(·) belonging to the sector [k1, k2].

Consider the space L2[0, T0] of T0-periodic functions f : R → R. Let the functions

φ(·), y(·), z(·) ∈ L2[0, T0] where T0 is the smallest T0 ∈ R
+ such that y(t + T0) = y(t).

With the Lur’e system (5.2) we associate the operator Fω0
: L2[0, T0] → L2[0, T0] as

depicted in Figure 5.12. In the following we investigate conditions for which Fω0
(G,φ)

has a solution y(·) ∈ L2[0, T0].
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Assume that there exists a periodic feedback modulation φ(·) for which the Lur’e

system sustains some periodic motion y(·) ∈ L2[0, T0]. In the previous section it was

shown that there exists an integer r > 0 such that ωφ = rωy = rω0. We denote

the periodic feedback modulation with frequency rω0 by φr(·) ∈ L2[0, T0]. Then the

Fourier expansions of y(t) and φr(t) with respect to the basis frequency ω0 = 2π
T0

are

given by

y(t) =
∑

k

yke−jω0t

φr(t) =
∑

n

νne−jnrω0t

=
∑

l

ν̃le
−jlω0t

where ν̃ = νn for l = nr and ν̃ = 0 otherwise.

PSfrag replacements
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F

Figure 5.12: Open loop operator F .

The functions y(·) and φr(·) can be expressed with respect to the basis e−jkω0t, k ∈ Z.

We obtain the infinite dimensional vectors yω0
and φr,ω0

representing the periodic

functions y(t) and φr(t) in this space, respectively; namely,

yω0
=

(

· · · y−r · · · y−1 y0 y1 · · · yr · · ·
)T

, (5.21)

φr,ω0
=

(

· · · 0 ν−1 0 · · · 0 ν0 0 · · · 0 ν1 0 · · ·
)T

(5.22)

where the entries in φr,ω0
with consecutive Fourier coefficients of νi and νi+1 are

separated by r − 1 zero-entries.

As in Section 5.2 we shall now follow the signal traversing the loop. In the frequency

domain we obtain the spectrum of z(t) by convolution of the spectra of y(t) and φr(t).
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Define Vω0
(φr) as the infinite dimensional Toeplitz matrix constructed by φr,ω0

:

Vω0
(φr) =



























. . .
. . .

. . .

ν1 0 · · · 0 ν0 0 · · · 0 ν−1 0 · · ·

· · · 0 ν1 0 · · · 0 ν0 0 · · · 0 ν−1 0 · · ·

· · · 0 ν1 0 · · · 0 ν0 0 · · · 0 ν−1

. . .
. . .

. . .



























.

From (5.18) we obtain

zω0
= Vω0

(φr)yω0
.

We can now express the components yk of yω0
by the products of zk and the value

of the transfer function G(s) evaluated at the respective frequencies jkω0. Define the

infinite-dimensional diagonal matrix

Gω0
= diag

(

· · ·G(−jrω0) · · ·G(−jω0) G(0) G(jω0) · · ·G(jrω0) · · ·
)

.

Then we obtain

yω0
= −Gω0

zω0
= −Gω0

Vω0
(φr)yω0

.

Define Fω0
(G,φr) = −Gω0

Vω0
(φr). Then

yω0
= Fω0

(G,φr)yω0
. (5.23)

The operator Fω0
(G,φr) defines the open loop dynamics of the Lur’e system in Fig-

ure 5.12 on the space L2[0, T0]. Note, that Fω0
(G,φr) depends on the chosen basis

ω0 = 2π
T0

, the frequency ratio r and the shape of φr(t) over one period which deter-

mines the non-zero entries of Vω0
(φr).

It follows from Equation (5.23) that the periodic motion yω0
is an eigenvector of the

operator Fω0
(G,φr) associated with the eigenvalue λ = 1.

Theorem 5.4 (Necessary and sufficient condition for periodic motion) The

Lur’e system (5.2) with the periodic feedback gain φr(·) ∈ L2[0, T0] with period T0

r has

a T0-periodic solution y(·) ∈ L2[0, T0] if and only if Fω0
(G,φr) : L2[0, T0] → L2[0, T0]

has an eigenvalue equal to one.

Proof. The theorem follows immediately from the above derivations and in particular

from Equation (5.23). �
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The above theorem enables us to verify whether the Lur’e system with a given periodic

feedback gain φr(·) has a periodic solution y(·) of a certain frequency. Consider now

the Lur’e system with feedback modulation φr(·) belonging to the symmetric sector

[−k′, k′]. Applying Theorem 5.4 we can identity the smallest sector [−k′′, k′′], for

which there exists a periodic solution y(·).

Theorem 5.5 Consider the Lur’e system (5.2) with φ(·) belonging to [−k′, k′]. Let λ′

be the supremum of the real eigenvalues of the operators F ω0
(G,φr) for all ω0, r > 0

and all periodic φr(·) ∈ L2[0, T0] belonging to the sector [−k′, k′]. Then there exists a

periodic motion y(·) ∈ L2[0, T0] for the Lur’e system (5.2) with any sector nonlinear-

ities belonging to [−k′′, k′′] where k′′ > k′

λ′
.

Proof. Let λ′ be the greatest real eigenvalue of Fω0
(G,φ′

r) where φ′
r(t) is some

piecewise constant function of period T0

r belonging to the sector [−k′, k′]. Consider

now the function φ′′
r (t) = 1

λ′
φ′

r(t). The operator Fω0

(

G,φ′′
r

)

is given by

Fω0

(

G,φ′′
r

)

= Gω0
Vω0

(

φ′′
r

)

= Gω0
Vω0

(

1
λ′

φ′
r

)

.

Let ν′′
k and the ν′

k denote the Fourier coefficients of φ′′
r (t) and φ′

r(t), respectively.

Since the sector bounds are symmetric ν ′′
k = 1

λ′
ν′

k, ∀ k, thus Vω0

(

φ′′
r

)

= 1
λ′

Vω0

(

φ′
r

)

.

Substitution yields

Fω0

(

G,φ′′
r

)

= 1
λ′

Gω0
Vω0

(

φ′
r

)

= 1
λ′

Fω0

(

G,φ′
r

)

.

Hence, Fω0

(

G,φ′′
r

)

has an eigenvalue equal to one, and by Theorem 5.4 the feedback

modulation φ′′
r (·) sustains a periodic motion y(·) ∈ L2[0, T0].

Let λ′ now be the supremum of the real eigenvalues of Fω0
(G,φr) for all ω0, r > 0 and

all periodic φr(t) ∈ L2[0, T0] belonging to [−k′, k′]. Then there exists a periodic feed-

back modulation φr(·) belonging to [−k′′, k′′] with k′′ > k′

λ′
such that φr(·) sustains

periodic motion for the Lur’e system. �

For second and third order systems it has been established in [Pya71, Bar93] that

there exists periodic motion of the type (5.6) on the stability boundary. Therefore k′′

in the previous theorem gives the least upper bound for which the Lur’e system with

symmetric sector bounds is absolutely stable.
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Corollary 5.6 (Necessary and sufficient condition) The Lur’e system (5.2)

with strictly proper transfer function G(s) of order two or three and feedback modula-

tion φ(·) belonging to the sector [−k, k] is absolutely stable if and only if λ̂ < 1, where

λ̂ denotes the greatest real eigenvalue of F ω0
(G,φr) for all r > 0 and all periodic

functions φr(·) with two discontinuities per period belonging to the sector [−k, k].

So far it has not been shown that there also exists a periodic solution on the stability

boundary k∗ for systems of order greater than three. However, there exists periodic

motion arbitrarily close, but beyond the stability boundary (Theorem 5.2). Therefore,

we can approximate the boundary of absolute stability for the Lur’e system (5.2) as

close as we wish by applying a notion of robustness as in Corollary 5.3.

Corollary 5.7 (Maximum sector for absolute stability) Consider the Lur’e

system (5.2) with symmetric sector bounds. Let k′ > 0 and let λ′ be the greatest

real eigenvalue of Fω0
(G,φr) for all ω0, r > 0 and all φr(·) belonging to the sector

[−k′, k′]. Then the Lur’e system (5.2) is absolutely stable for feedback nonlinearities

belonging to the sector [−k′′, k′′] where k′′ = k′

λ′+ε for any ε > 0.

The proof follows immediately from the above theorems: By Theorem 5.5 the sector

[− k′

λ′
, k′

λ′
] is the smallest sector for which the Lur’e system can possibly sustain periodic

motion. Theorem 5.2 establishes that k′

λ′
≥ k∗ is arbitrary close to the smallest upper

bound k∗ for which the Lur’e system is absolutely stable. The robustness margin

ε > 0 guarantees absolute stability by Corollary 5.3.

With Corollary 5.7 we can approximate the largest sector for the Lur’e system (5.2)

with symmetric sector bounds [−k, k] as closely as we wish. However, the simple

scaling of the sector by the largest real eigenvalue λ̂ always yields symmetric sector

bounds around the nominal system matrix A = 1
2 (A1 + A2). Clearly, if we wish

to keep, for example, the lower bound k1 constant the condition in Corollary 5.7

cannot approximate the largest upper bound for k2. However, absolute stability is

guaranteed.

The conditions of the Corollaries 5.6 and 5.7 yield non-conservative stability results.

Since the conditions are not based on the existence of any particular type of Lyapu-

nov function we can expect that we can establish stability in many cases where the

conditions of the Circle Criterion are violated.

However, there are some difficulties to apply the Corollaries 5.6 and 5.7 in practice.
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Firstly, the conditions involve determining the greatest real eigenvalue of the infinite

dimensional matrix Fω0
(G,φr). This problem is addressed in the next section, where

we discuss the impact of truncating the matrix Fω0
(G,φr) on the stability results.

Secondly, when considering systems of order higher than three, we need to determine

the greatest real eigenvalue for all periodic φr(·) belonging to the sector [−k, k] and

all ratios r > 0. Clearly this is not possible in practice. However, the results in Sec-

tion 5.3.2 encourage to search for classes of feedback modulations that are necessary

and sufficient for stability.

5.5 N-th order approximation

In this section we approximate the infinite dimensional matrix Fω0
(G,φr) by only

considering N harmonics of the Fourier expansions of y(t) and φr(t) and discuss its

impact on the greatest real eigenvalue. Ignoring higher harmonics simply results

in truncating the matrix Fω0
(G,φr). Thus we only consider finite inner matrices

F N
ω0

(G,φr) ∈ C
(rN+1)×(rN+1).

Consider the truncated matrix F N
ω0

(G,φr) where only N harmonics are considered.

For N = 2 and frequency ratio r = 2 the truncated matrix takes the form

F N
ω0

(G,φr) =



























G(−j2ω0)ν0 0 G(−j2ω0)ν−1 0 G(−j2ω0)ν−2

0 G(−jω0)ν0 0 G(−jω0)ν−1 0

G(0)ν1 0 G(0)ν0 0 G(0)ν−1

0 G(jω0)ν1 0 G(jω0)ν0 0

G(j2ω0)ν2 0 G(j2ω0)ν1 0 G(j2ω0)ν0



























.

Truncating the matrix Fω0
(G,φr) is equivalent to replacing the truncated entries by

zeros and results in a perturbation of the spectrum. The magnitude of the Fourier

coefficients of the piecewise constant function φr(t) tends to zero when kω0 → ∞.

Similarly, we may assume that the transfer function G(s) has low-pass characteristics

such that
∣

∣G(jω)
∣

∣ → 0 for ω → ∞. Thus, the magnitude of the entries of Fω0
(G,φr)

approaches zero the further they are located from the centre-entry G(0)ν0. Hence,

the perturbation of the spectrum of Fω0
(G,φr) is smaller the more harmonics are

included. The following examples demonstrate that the spectrum of the truncated

matrix can yield good approximations for the existence of periodic motion even for

small values of N .
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Figure 5.13: Spectral radius of the transition matrix Φ(T, 0) (dashed line) for feedback signals (5.6)

with duty-cycle ∆ = 0.65 and third-order approximation (solid line) of the maximum real eigenvalue

of the operator F for Example 5.3. The detail in part (b) shows that the unstable frequencies for

which %
�
Φ(T, 0) � > 1 are well matched by the third-order approximation.

Consider the Lur’e system in Example 5.3. To examine the quality of the approxima-

tion we shall only consider periodic functions φ(t) with two discontinuities as defined

in (5.6). Recall that the first-order approximation yields the false result that there

exists no periodic solution for any periodic φ(t) of the considered class (c.f. Figure

5.8). Using only three harmonics for the approximation of Fω0
(G,φr) rectifies this

result. Figure 5.13 shows the spectral radius %
(

Φ(T, 0)
)

for ∆ = 0.65 over the fre-

quencies ω = 2π
T (dotted line). The solid graph shows the greatest real eigenvalue

of F N
ω0

(G,φr) for N = 3 and r = 2 (solid line) for the same duty-cycle. Note, that

the greatest real eigenvalue of F N
ω0

(G,φr) does not approximate the spectral radius

of the transition matrix. However, both quantities indicate the existence of periodic

motion for the respective frequency of the feedback modulation φ(·) when reaching a

value equal to one. The detail in Figure 5.13b shows that the approximation predicts

unstable solutions for switching frequencies around 0.9 rad
sec . In fact, the approxima-

tion of the unstable frequency-band is quite good as the comparison with the spectral

radius shows. Including more harmonics increases the accuracy for this example.

To demonstrate the quality of the approximation we determine periodic solutions for

the parameter space (∆, ω0) of the class of feedback modulations (5.6). Figure 5.14a

shows the contour of duty cycles ∆ and frequencies ω for which the spectral radius

% (Φ(T, 0)) equals one (dashed line). The solid line shows the contour for which the

truncated matrix Fω0
(G,φr), r = 2 has an eigenvalue of one. Even though the area is

well matched, there is some discrepancy for duty-cycles around ∆ = 0.7. Using N = 5
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harmonics for the approximation (Figure 5.14b) shows that the error is significantly

reduced and the region of instability is well matched. We can observe a further

increase of precision when using more harmonics for the approximation.
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Figure 5.14: Instability area for the system in Example 5.3 for feedback signals (5.6) over the

parameter-space (∆, ω0). Part (a) shows the third-order approximation ; Part (b) shows the fifth-

order approximation. (dashed line: spectral radius; solid line: approximation.)

Example 5.4 Consider the switched linear system (5.1) with

A1 =













0 1 0

0 0 1

−0.3081 −1.4529 −0.3097













, A2 =













0 1 0

0 0 1

−1.4299 −0.7557 −1.9428













The corresponding Lur’e system is given by the transfer function

G(s) =
−0.8166s2 + 0.3486s − 0.5609

s3 + 1.126s2 + 1.104s + 0.869

and nonlinearity φ(·, ·) belonging to the sector [−1, 1].

We shall now determine the largest sector [−k, k] for which the system is absolutely

stable. The transfer function G(jω) has a maximum gain of maxω∈R

∣

∣G(jω)
∣

∣ ≈ 1.6.

Hence, by the Circle Criterion (Theorem 4.19) there exists a common quadratic Lya-

punov function if and only if k < 1
1.6 = 0.625.

Since the system is of third order, the class of switching signals with two discontinuities

is the “worst” in terms of proximity to the stability boundary [Bar93, Rap94]. Thus

it is sufficient to approximate the operator for functions φ(·) in that class. For the

approximation of the greatest real eigenvalue we shall again assume the frequency ratio

r = 2. The fifth-order approximation of the greatest real eigenvalue of F ω0
(G,φr)
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attains its maximum for duty-cycle ∆ = 0.42 shown as solid line in Figure 5.15a.

For comparison the spectral radius of the transition matrix Φ(T, 0) is shown as a

dashed line. Again we can observe that the two frequencies of φ(t) (approximately

ω0 = 1.8 and ω0 = 2) for which a periodic solution exists are well approximated.

The greatest real eigenvalue of F N
ω0

(G,φr) for all ∆, ω is approximately λ̂ = 1.1606.

Thus, by Theorem 5.5 the smallest sector for which there exists a periodic solution

is approximately k′′ = 1

λ̂
= 0.8616. Neglecting the approximation error, the Lur’e

system is absolutely stable for any sector bound less than k′′. Note, that this sector

is more than a third larger than that obtained using the Circle Criterion.
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(a) sector bound: k = 1.
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Figure 5.15: Spectral radius of the transition matrix Φ(T, 0) (dashed line) and greatest real eigen-

value of the fifth-order approximation of the operator F (solid line) for switching signals with duty-

cycle ∆ = 0.42.

For verification, the spectral radius of the transition matrix Φσ(T, 0) is shown in

Figure 5.15b for φ(·) belonging to the sector [−k′′, k′′]. Again we chose the duty-cycle

∆ = 0.42 which yields the greatest spectral radius. By computation we obtain a

greatest spectral radius of % = 1.0006. Thus the Lur’e system is just unstable for

such sector bounds. This deviation is certainly due to the truncation of the operator

Fω(G,φr). However the approximation of the smallest sector with periodic motion is

very accurate given that we only used a fifth-order approximation. �

For constructing the truncated matrix F N
ω0

(G,φ) in the above examples we only con-

sidered frequency ratios r = 2. This proved successful for all examples considered

in the work for of this thesis. In fact, using larger frequency ratios yielded the same

results. Such an approach is supported by results for the Mathieu equation for which
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has been found that the frequency ratio does not exceed r = 2 [NT73]. However,

resolving this problem should be the subject of future research.

The above examples show that the open-loop operator can be successfully approxi-

mated by the truncation of higher-order terms. However, a proof of convergence of

the eigenvalues of the truncated matrix to the eigenvalues of the operator has still to

be found. Alternatively, it would be desirable to determine an upper bound for the

approximation error on the maximum real eigenvalue induced by this truncation.

5.6 Observations on the switching frequency

For the analysis in this chapter we considered the absolute stability of the Lur’e

system (5.2). However, the obtained results are also valid for the corresponding class

of switched systems (5.1). In this section we briefly note some observations concerning

systems that are not stable for arbitrary switching signals; in particular, we shall

discuss some qualitative properties of classes of time-constrained switching signals.

The best known results for this stability problem are the multiple-Lyapunov function

approach and the dwell-time problem (c.f. Section 2.6). Both approaches require that

the constituent systems are stable. Therefore slow enough switching will clearly result

in asymptotically stable trajectories. The conditions in both approaches essentially

exploit this property and commonly lead to results where switching is (at least on

average) slow enough to guarantee stability. While this is certainly an interesting and

practical approach, we shall see that the analysis of periodic switching signals suggest

that for certain systems the converse is also true, i.e. that fast enough switching will

also result in asymptotically stable trajectories.

Consider the switched linear system (5.1) with

A1 =







0 1

−2.0 −1.0






A2 =







0 1

−200 −10






(5.24)

and the class of periodic switching signals with two discontinuities per period:

σ(t) =











1 for 0 ≤ t < ∆T

2 for ∆T ≤ t < T

Figure 5.16 shows the unstable switching signals of the above class parameterised by
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the duty-cycle ∆ and frequency ω = 2π
T . The solid lines shows the level curves for

which the spectral radius of the transition matrix Φ(t, 0) equals one. We can observe

that there are several regions of instability. In fact, for some duty-cycles ∆ ∈ [0, 1]

there are a number of frequency bands for the switching signal that result in unstable

trajectories. In Figure 5.17 the spectral radius is shown for ∆ = 0.7. As expected,

the switched system is stable for low switching frequencies. There are two instability

bands for frequencies between roughly 5 and 20 rad
s . For higher frequencies, however,

the spectral radius converges to one. It appears that there are a number of instability

bands for certain mid-range frequencies, but the system remains stable for frequencies

higher than 21 rad
s .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

∆

ω

Figure 5.16: Unstable switching signals with

two switches per period. The figures shows the

level curves of the spectral radius equal to one.
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Figure 5.17: Frequency-bands of instability for

a switching signal with two switches per period

and duty-cycle ∆ = 0.7.

In fact we can observe that for any given ∆ ∈ [0, 1] the trajectories of switched system

converge to those of the LTI system ΣA with system matrix A = ∆A1 + (1 − ∆)A2.

Figure 5.18 shows a trajectory for the switched system for ∆ = 0.7 and ω = 90.

The trajectory of the switched system (solid line) chatters along the trajectory of

the average LTI system ΣA (dashed line). For higher frequencies the switched system

attains a sliding mode-like behaviour. This observation implies that switched systems

where the convex combination αA1 +(1−α)A2 is Hurwitz for all α ∈ [0, 1] are stable

for very low and very high switching frequencies. In between there can be a number

of instability bands as shown in Figure 5.17. Conversely, it follows that a sufficient

condition for the instability of the switched system is that the convex combination

αA1 + (1 − α)A2 is non-Hurwitz for some α ∈ [0, 1].
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Figure 5.18: Sample trajectory for high switch-

ing frequency with duty-cycle ∆ = 0.7 (solid

line), and trajectory of the LTI system ΣA.
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Figure 5.19: Eigenvalue-locus σα[A1, A2] for

system (5.24). The eigenvalue for α = 0.7 are

indicated by the circles.

5.7 Discussion and summary of the results

In this chapter we considered the stability of the class of switched systems that can

be represented in Lur’e type form. The main focus of the analysis was on finding

conditions for which the system has a periodic solution. The approach in this chapter

is motivated by the stability conjecture of Power&Tsoi and Shorten. The validation

of this conjecture raised a number of questions on the relation of periodic signals and

absolute stability. Perhaps the most important issue in this analysis is to identify a

class of feedback signals that is necessary and sufficient for deriving conditions for

absolute stability. Or simply speaking, to identify the “worst” feedback signal for a

given sector.

Characteristic of the worst feedback modulation

The absolute stability problem can be reformulated as the problem of finding the

nonlinearity φ∗(·, ·) that is in some sense most destabilising for the system. In this

chapter we characterised some properties of such a class. By equivalence of absolute

stability of Lur’e systems and uniform asymptotic stability of switched linear systems,

we can identify that φ∗(·, ·) is a piecewise constant gain φ∗ : R → {k1, k2}. Further

it has been established that periodic motion is significant in the sense that we can

approximate the stability boundary k∗ arbitrarily close by considering the behaviour

of the system under periodic feedback signals.

For second and third order systems φ∗(·) has two discontinuities per period [Pya71,
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Bar93, Rap94]. We have shown that this also holds for the first-order approximation

for systems of order n > 3. This fact together with empirical studies suggests that

φ∗(t) might indeed be periodic and has two discontinuities per period. If this were

true, it would considerably simplify the stability analysis of Lur’e systems.

Stability conditions

Following the ideas first introduced by Power & Tsoi and later by Shorten, we derived

a necessary and sufficient condition for the existence of periodic motion for a given

periodic feedback signal. Using the results of the analysis of the existence of periodic

motion in proximity of the stability boundary we derived sufficient conditions for

absolute stability that exceed those stability bounds obtained from Circle Criterion.

Moreover, we can directly identify the smallest (symmetric) sector for which a periodic

solution exists. This implies in turn that we can approximate the largest sector for

which the Lur’e system is absolutely stable as closely as we wish.

Unfortunately, the conditions can not be directly applied without further analysis.

Firstly, the conditions involve the determination of the eigenvalues of an infinite

dimensional matrix (which is clearly not possible). However, since the considered

strictly proper transfer function G(s) has low-pass characteristics, the infinite di-

mensional matrix can, at least in some circumstances, be approximated by a low

dimensional matrix. Further, we demonstrate by example that such procedure can

lead to satisfying results for some classes of problem. However, a proof of convergence

of the approximation procedure that we introduce, as well as an error bound for the

approximation, has yet to be found.

The second problem for applying the results in practice is due to the large number

of matrices that need to be checked, since every switching signal and every frequency

ratio of output y(·) and periodic feedback modulation φ(·) results in a separate matrix.

Clearly, resolving the problem of identifying the “worst” feedback signal would simplify

this issue. There are also some indications for finding the correct frequency ratio. For

the Mathieu equation it can be shown that the frequency ratio is at most r = 2

[NT73]. This is confirmed by observations in [PT74] as well as empirical studies for

this thesis.

It should be noted that the numerical application of the results in this chapter require

more computational effort than calculating the spectral radius of the transition ma-
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trix. However, the construction of the open-loop operator gives a number of analytic

insights for future investigations; in particular in view of identifying the worst feedback

modulation. Further, determining the transition matrix for continuously varying sys-

tems is by no means trivial. The open-loop operator could potentially be constructed

for periodic feedback modulations that are continuous since it only depends on the

frequency-spectrum of the feedback modulation signal. Thus the analysis of this chap-

ter could also be applicable to classes of continuously time-varying systems. However,

further research on this problem is needed. Last but not least, the open-loop operator

approach allows us to determine the smallest sector of nonlinearities for which peri-

odic motion is possible. Formulated as a sufficient condition for stability this yields

a certain robustness measure for the absolute stability of the Lur’e system.





Chapter 6

Control-design approach for

switched plants with N modes

In this chapter we consider the control-design for a process with switched

dynamics of arbitrary order and N modes. The approach is motivated

by the control-objective that requires the closed-loop behaviour to be simi-

lar for each mode. We propose a switched controller structure to approach

this design task. Based on the structure of the resulting closed-loop system,

sufficient conditions for stability are derived. Furthermore, the transient

behaviour of the closed-loop system at the switching instances is analysed

and design criteria for transient-free switching under certain conditions

are derived. It is shown that closed-loop stability and transient-free switch-

ing can be achieved simultaneously.

6.1 Introductory remarks

Thus far we have considered stability of several classes of switched linear systems and

used different approaches to obtain stability conditions for arbitrary switching. In this

chapter we shall move the focus from the pure analysis of the given switched system

towards a control-design procedure that ensures stability of the switched system as

well as certain design-objectives. Moreover, we extend the analysis from switched

systems with two modes to systems with a finite number of subsystems.
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The stability analysis of switched systems with N constituent systems is much more

complex than the analysis of systems with only two subsystems. Clearly, the switched

system with N constituent systems is asymptotically stable if all subsystems ΣAi
,

i ∈ I = {1, . . . , N} share a single common Lyapunov function. However it is shown

in [SN00] that the existence of a CQLF for every pair of system
(

ΣAi
,ΣAj

)

,∀ i, j ∈ I
is not sufficient for the existence of a single CQLF for all subsystems. In fact, the

authors demonstrate by example that such a switched system can even be unstable

for some switching signals and thus no common Lyapunov function exists.

Most of the available algebraic conditions for asymptotic stability of switched systems

with N subsystems depend on the structure of the constituent matrices. For exam-

ple, it is well known that the LTI systems ΣAi
, i ∈ I share a CQLF if the system

matrices Ai are symmetric or commute pairwise. Moreover, Theorem 2.17 establishes

that the LTI systems ΣAi
with Ai ∈ A have a CQLF if the matrices Ai are Hurwitz

and are simultaneously similar to triangular matrices, i.e. there exists a non-singular

matrix T such that Ãi = TAiT
−1 is in upper triangular form for all i ∈ I. Unfortu-

nately, system matrices of closed-loop control systems are in general not in such form.

Therefore, this result can only be applied to a restricted class of control systems where

the closed-loop system matrices are naturally in triangular form or are simultaneously

similar to triangular matrices. The latter is usually not easy to show (see [Laf78] for

conditions for simultaneously similar triangular matrices). In this chapter we shall

consider system matrices whose structure arises naturally from a general switched

controller architecture. The structure of the resulting closed-loop system matrices is

then exploited to derive sufficient conditions for stability.

Besides the stability problem, switched linear systems exhibit also additional transient

behaviour unknown to linear time-invariant systems. While LTI systems only have

transient responses when any of the input signals (including disturbances) changes,

switched systems can also exhibit transient behaviour at the switching instances. To

illustrate such effect consider the switched system ΣA with A =
{

A1, A2

}

where

A1 =







−1 7

−1 −9






, A2 =







−9 7

−1 −1






. (6.1)

As shown in Figure 6.1, the eigenvalue-locus of the matrix-pencil σα[A1, A2] lies com-

pletely within the 45◦-Region. (Note that the eigenvalues of A1 and A2 are identically

given by {−2 − 8}.) Hence, by Corollary 3.19 the switched system ΣA is asymptoti-
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cally stable for arbitrary switching.
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Figure 6.1: Eigenvalue-locus of the switched

system ΣA with system matrices (6.1).
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Consider now the switched input-output system (2.4) with system matrices (6.1),

input-vectors b1 = b2 =
(

0 2.2857
)T

, and output-vectors cT

1 = cT

2 =
(

1 0
)

. This

input-output system is BIBO stable, since the autonomous switched system is as-

ymptotically stable [Rug96].

The dynamics of the SISO system are identical for each mode and given by the transfer

function

G(s) =
16

s2 + 10s + 16
.

Figure 6.2 shows the output response for a unit-step input of the switched input-

output system where switching occurs every 10 time-units. We observe, that the

switched system exhibits large transient responses whenever the system mode changes.

Clearly, such behaviour is not desirable for a closed-loop control system.

Beside the stability of the closed-loop system, its transient behaviour is perhaps the

most important design criterion for the controllers for processes with switched dynam-

ics. In this chapter we consider a class of switched input-output systems and propose

a controller structure to achieve stability of the closed-loop switched system as well as

convenient transient behaviour. In the remainder for this section the control problem

considered is specified and the switched controller that we shall apply is introduced.

In the following section we analyse the stability of the resulting closed-loop system.

In Section 6.3 we derive conditions for which the closed-loop system has no transient

responses when switching in steady state. In the last section we relate the switched

controller considered in this chapter to alternative approaches.
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6.1.1 Problem description

The approach chosen in this chapter is motivated by a typical control-design task for

switched systems. For a given process with switching linear dynamics, a controller has

to be found such that the closed-loop system is stable and its dynamical behaviour

is similar in every plant-mode. Thus the mode-switches of the plant are interpreted

rather as a disturbance to the process than a change of control objectives.

We consider time-varying SISO plants with piecewise constant dynamics and N

modes. At any time-instant the dynamics are described by one of the non-autonomous

LTI systems
(

Ai, Bi, Ci

)

, i ∈ I =
{

1, . . . , N
}

. Thus the plant dynamics are given by

the non-autonomous switched system

ẋp(t) = Aσ(t)xp(t) + Bσ(t)u(t) (6.2a)

y(t) = Cσ(t)xp(t) (6.2b)

with arbitrary switching signals σ : R
+ → I. The plant-state is denoted xp ∈ R

np , the

input u(t) and output y(t) are scalar. We require that the LTI systems
(

Ai, Bi, Ci

)

of each mode i ∈ I are completely controllable and are in the control canonical form

Ai =



























0 1 0 · · · 0

... 0 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 1

−q0i −q1i · · · · · · −qnp−1,i



























, Bi =



























0

...

...

0

1



























(6.3)

and Ci =
(

p10 · · · pnp−1,i

)

.

With each mode i ∈ I we associate the transfer function

Pi(s) =
pnp−1,is

np−1 + . . . + p1is + p0i

snp + qnp−1,isnp−1 + . . . + q1is + q0i

that describes the dynamics of the LTI system
(

Ai, Bi, Ci

)

.1 We shall assume that

the mode-switches of the plant are immediately detectable such that the switching

instances can be assumed to be known for the controller.

1Note that the transfer functions are only instantaneous descriptions of the plant dynamics. They

do not represent the time-varying differential equation (6.2), but are only valid for time-instances

where the dynamics of the plant are constant. Therefore we may only use the transfer function

description for the control-design, but not for the stability analysis.
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The objective is to design a controller such that the closed-loop system

• is asymptotically stable for arbitrary switching signals,

• has the poles Λt ⊂ C−, specified independently of the plant mode i ∈ I,

• has minimal transient responses at the switching instances.

Before we introduce the switched controller considered in this chapter a remark on the

realisation of the transfer functions is order. When discussing properties of the trans-

fer functions Pi(s) of the constituent systems we shall bear in mind that we cannot

choose their realisations
(

Ai, Bi, Ci

)

independently of each other. The realisations

are rather given by (6.3) or by simultaneous co-ordinate transformations of all modes

i ∈ I.

6.1.2 Control approach

In order to achieve the design objectives we associate an individual controller for each

plant mode i ∈ I. We choose a controller architecture where each controller is realised

as a time-invariant LTI system as depicted in Figure 6.3. We refer to this architecture

of the switched controller as local-state controller.

PSfrag replacements

C1(s)

C2(s)

CN(s)

Plant

u1

u2

uN

u yr e
Fi

SU

Figure 6.3: Local-state controller architecture.

At the switching instances of the plant the switching unit (SU) connects the plant-

input u with the respective controller-output ui of the associated controller and ad-

justs the respective pre-filter gain Fi (when applicable). Thus, at any given point in
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time, only one of the N controllers is active in the closed loop. We shall assume that

there is no time-delay between the switching of the plant and the switching action of

the control-signal such that whenever the plant is in mode i the respective controller

Ci(s) is active in the loop.

The dynamics of the individual controllers of the local-state controller are given by

ẋi(t) = Kixi(t) + Lie(t)

ui(t) = Mixi(t) + Jie(t)

where xi(t) ∈ R
nc is the state-vector of the controller associated with mode i ∈ I;

the input e(t) ∈ R is shared by all controllers i ∈ I and each controller has an

individual control signal ui(t) ∈ R. The dimensions of the controller realisations are

Ki ∈ R
nc×nc , Li,M

T

i ∈ R
nc and Ji ∈ R.

An important property of this controller architecture is that each of the individual

controllers has their own state-vector xi. Thus, the state-vector of the switched closed-

loop system consists of the plant states xp and the local states xi of the individual

controllers, i.e. x =
(

xT

p xT

1 · · · xT

N

)T

. The autonomous closed-loop system is then

given by

ẋ(t) = H(t)x(t), H(t) ∈ H =
{

H1, . . . , HN

}

⊂ R
n×n (6.4a)

where n = np +Nnc. The local-state controller yields the closed-loop system matrices

Hi =



























Ai − BiJiCi B1M1δi1 · · · · · · BNMNδiN

−L1C1 K1 0 · · · 0

−L2C2 0 K2
. . .

...
...

...
. . .

. . . 0

−LNCN 0 · · · 0 KN



























(6.4b)

for all i ∈ I, where δij is the Kronecker symbol.

Note that the last Nnc rows of Hi are equal for all i ∈ I. In fact, since the system

matrices Ai of the plant are in companion form and the vector-products BiMi have

only non-zeros entries in np-th row, all matrices Hi ∈ H are identical except for the

np-th row.

For the controller design we use the standard pole-placement technique for LTI sys-

tems. The controller for each mode i can be represented by the transfer function
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Ci(s) = Mi(sI − Ki)
−1Li + Ji. For every mode i we design the controller Ci(s) such

that the poles of the active closed-loop transfer functions

Ti(s) =
Ci(s)Gi(s)

1 + Ci(s)Gi(s)
(6.5)

are given by the set Λt = {λ1, . . . , λnp+nc
}.

We shall assume that the pole placement requirement is feasible for every mode and

that the target poles in Λt are distinct:

Assumption 6.1 The set of target-poles Λt is simple, equal for all modes i ∈ I and

are obtained for the closed-loop transfer function Ti(s), ∀ i ∈ I, by controllers Ci(s)

with distinct poles in the open left half-plane.

Thus the poles of the active closed-loop transfer function are independent of the cur-

rent mode. The main objective in this chapter is to analyse the stability of the result-

ing closed-loop switched system and to investigate whether transient-free switching is

possible.

Note that for each matrix Hi all but one of the Kronecker symbols are equal to zero.

Thus the spectrum of Hi contains the eigenvalues of all non-active controllers, i.e.

σ
(

Hi

)

⊃ σ
(

Kl

)

for l 6= i. By Assumption 6.1 the remaining np +nc eigenvalues of the

matrices Hi are given by the target-poles Λt. Therefore the spectrum of the system

matrix Hi is given by

σ
(

Hi

)

= Λt ∪
⋃

l 6=i

σ
(

Kl

)

, i ∈ I.

Before we proceed, it shall be noted that there are many other possibilities to realise a

switched feedback system. For instance, instead of using time-invariant controllers and

switching the output-signal we could also realise the controllers as a single switched

system on its own. These two control structures lead to different closed-loop systems

that can have significantly different behaviour as pointed out in [LSL+03].

6.2 Stability analysis

In this section we analyse the stability of the closed loop system. For first order

controllers we employ a result in [SOC01] to show that the closed loop system is always

stable when the pole-placement requirement is feasible. This does not generalise for
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controllers of higher order. However, we can show that the stability analysis can be

significantly simplified for these cases.

6.2.1 Stability using first-order controllers

In [SOC01] global attractivity of a class of switched systems with real eigenvalues is

proven. In this section we shall analyse to what extent this theorem can be applied

to the system class considered in this chapter.

The result in [SOC01] applies to switched systems with system matrices in Ai ∈ A ⊂
R

n×n which are constructed as follows. Given the set of n + 1 real vectors V ⊂ R
n

where any subset of n vectors are linearly independent, define the non-singular matrix

V0 ∈ R
n×n with columns v1, . . . , vn ∈ V. The columns of V0 are linearly independent

vectors and the only element in V not involved in constructing V0 is vn+1. We define

n further matrices Vi by replacing the i-th column of V0 by the left-out element vn+1.

Hence, the matrices Vi for i = 0, . . . , n are non-singular and have pairwise n − 1

columns in common. Let D be a set of diagonal matrices Dj ∈ R
n×n with negative,

real entries on the diagonal. Choosing matrices Dj and Vi we construct the system

matrices Aij = ViDjV
−1
i . The following theorem is proven in [SOC01]:

Theorem 6.2 Given the sets V,D and non-singular matrices Vi ∈ R
n×n constructed

as above. The switched system

ẋ(t) = A(t)x(t)

with A(t) ∈ A =
{

Aij

∣

∣Aij = ViDjV
−1
i , i = 1, . . . , n + 1, Dj ∈ D

}

is asymptotically

stable for arbitrary switching signals.

The proof of the theorem has some very interesting features. It does not directly

depend on the existence of any type of common Lyapunov function for the sys-

tems ΣAij
. The authors rather embed the system matrices Aij in an augmented

state-space such that one eigenvector is common to all augmented matrices Ãij . By

projecting the state-trajectories onto that common eigenvector it can be established

that the switched system is asymptotically stable.

In this section we shall show that Theorem 6.2 can be applied to establish asymp-

totic stability of a class of switched systems of the form (6.4). The conditions of

Theorem 6.2 require the following:
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• the system matrices Hi are individually diagonalisable;

• the eigenvalues of the system matrices Hi are negative real for all i ∈ I;

• every pair of system matrices (Hi, Hj) has n − 1 common eigenvectors.

Before we proceed applying Theorem 6.2 to the switched system (6.4) we shall note a

useful implication of the pole-placement approach (Assumption 6.1). A consequence

of this approach is that the subspace Hi corresponding to the target poles Λt does

not depend on i. This is the content of the following lemma.

Lemma 6.3 Let λ ∈ Λt be a simple eigenvalue of each Hi, i ∈ I, then there exists a

vector v 6= 0 such that

Hiv = λv for all i ∈ I. (6.6)

Proof. The eigenvector of Hi corresponding to the eigenvalue λ lies in the null-space

of H̃i = λI − Hi. By inspection we find that the first np − 1 rows and the last

Nnc rows of H̃i are linearly independent. Thus the eigenvector vi ∈ R
n satisfying

(

λI − Hi

)

vi = 0 is orthogonal to these n − 1 rows and therefore completely specified

in R
n. Consider now the null-space of H̃j = λI − Hj for the same eigenvalue λ ∈ Λt.

The first np −1 rows and the last Nnc rows of H̃i and H̃j are identical. Therefore the

eigenvector vj of Hj corresponding to λ is orthogonal to exactly the same n−1 linear

independent vectors as vi. Thus vi and vj are co-linear and the matrices Hi ∈ H have

the eigenvector v in common. �

The above lemma implies that the matrices Hi ∈ H have np+nc common eigenvectors

that correspond to the target poles Λt.

Using the same arguments as in the above proof it can be shown that every pair

of matrices
(

Hi, Hj

)

has also (N − 2)nc eigenvectors in common that correspond to

the common non-active controllers Kl, l 6= i, j. Thus all matrices in H have np + nc

common eigenvectors and every pair of matrices in H has n−nc common eigenvectors.

Let the eigenvalues in Λt be distinct and real and choose controllers of first order.

Under the assumption that the pole-placement problem is feasible and results in stable

controllers (Assumption 6.1), the requirements of Theorem 6.2 are satisfied.

Corollary 6.4 Consider the switched linear plant (6.2) with N modes of order np

and let Λt ⊂ R
− be the set of distinct target-poles. If there exist N stable first-
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order controllers that solve the pole-placement problem (6.5) for every mode, then the

resulting switched system (6.4) is asymptotically stable for arbitrary switching.

The corollary follows by applying Lemma 6.3 and Theorem 6.2. Since the eigenvalues

of Hi are distinct and real, the matrices can be decomposed as Hi = ViDiV
−1
i . Every

pair of matrices (Hi, Hj) has np + 1 eigenvectors in common that correspond to the

target-poles Λt and N − 2 eigenvectors corresponding to the poles of the common

non-active controllers in common. The matrices Dj in Theorem 6.2 are only required

to have real negative entries on the diagonal. Hence, we can individually arrange the

eigenvectors for all i such that the matrices Vi satisfy the structural requirements of

the Theorem. Defining the sets V =
{

Vi, i ∈ I
}

and D =
{

Di, i ∈ I
}

we can apply

Theorem 6.2.

Corollary 6.4 guarantees asymptotic stability for a class of switched systems of the

form (6.4) with an arbitrary number of subsystems. However, it is restricted by the

requirement that the controllers are of first order and the pole-placement problem is

feasible for stable controllers. Under normal circumstances, this restricts the class of

plants to order np = 2 or less [GGS01]. In the next section we shall consider switched

plants of higher order and derive conditions that guarantee stability of the switched

closed-loop system.

6.2.2 Stability for controllers of arbitrary order

In this section we extend our analysis to plants of arbitrary order np > 2. In order

to meet the pole-placement requirement we will need to apply controllers of order

up to nc = np − 1, [GGS01]. Thus the closed-loop system (6.4) is at most of order

n = np + N(np − 1).

We approach the stability analysis by considering the common subspaces of the con-

stituent system matrices in H. Recall that all matrices in H have np +nc eigenvectors

in common and every pair
(

Hi, Hj

)

has n − nc eigenvectors in common. We begin

our analysis by studying the case where only two subsystems are present (N = 2).

Two constituent systems

In this section we consider asymptotic stability of the switched system (6.4) with

i ∈ I = {1, 2} and plant dynamics ΣAi
of order np > 2. The closed-loop system
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matrices Hi are given by

H1 =













A1 − B1J1C1 B1M1 0

−L1C1 K1 0

−L2C2 0 K2













, H2 =













A2 − B2J2C2 0 B2M2

−L1C1 K1 0

−L2C2 0 K2













. (6.7)

Due to the pole-placement requirement we get for the respective spectra

σ
(

H1

)

= Λt ∪ σ
(

K2

)

σ
(

H2

)

= Λt ∪ σ
(

K1

)

.

Let the columns of Vt ∈ C
n×(np+nc) form a basis of the common subspace of H1 and

H2, and consider the matrix

T1 =
(

Vt e(np+nc+1) . . . en

)

where ek denotes the k’th unit vector in R
n. Note that T1 is invertible as the vectors

e(np+nc+1), . . . , en form a basis of an invariant subspace of H1, which does not intersect

span Vt as Λt ∩ σ
(

K2

)

= ∅.

Applying the similarity transformation T1 to our two system matrices we obtain

T−1
1 H1T1 =







Dt 0

0 K2






(6.8a)

T−1
1 H2T1 =







Dt 0

0 K2






+







0(np+nc)×(np+nc) U1

0nc×(np+nc) U2






(6.8b)

where σ
(

Dt

)

= Λt. Note that rank{U2} = 1 as we have rank
{

H1 −H2

}

= 1. Further

it follows from the spectrum of H2 that σ
(

K2 + U2

)

= σ
(

K1

)

.

The following theorem reduces the stability problem of the switched system defined

by {H1, H2} to a stability problem only involving the controllers.

Theorem 6.5 Consider the matrices H1, H2 in (6.7) and let Assumption 6.1 be sat-

isfied such that σ
(

Hi

)

= Λt ∪ σ(Kj) for i, j = 1, 2, i 6= j. Assume furthermore that

Λt ∩ σ
(

Ki

)

= ∅, i = 1, 2. Then the following statements are equivalent:

(i) the switched system given by the set of matrices {H1, H2} is asymptotically stable

for arbitrary switching signals;
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(ii) the switched system given by the set of matrices {K2,K2 +U2} is asymptotically

stable for arbitrary switching signals;

(iii) the switched system given by the set of matrices {K1,K2} is asymptotically stable

for arbitrary switching signals.

Proof. The equivalence of (i) and (ii) can be seen as follows. Firstly, the ma-

trices in (6.7) and (6.8) are obtained from one another by similarity. Thus the set

{H1, H2} defines an asymptotically stable switched system if and only if {T−1
1 H1T1,

T−1
1 H2T1} does. On the other hand Λt ⊂ C−, so that the exponential stability of

{T−1
1 H1T1, T

−1
1 H2T1} is equivalent to that of the lower diagonal block {K2,K2+U2}.

The equivalence (ii) ⇔ (iii) follows if we find a similarity transformation that trans-

forms K2 and K2 + U2 into K2 and K1 respectively. Note first, that since rank{H2 −
H1} = 1, the perturbation (UT

1 , UT

2 )T is also of rank one. Further, the block K2 + U2

is similar to K1 since the eigenvalues in Λt are generated by the closed loop system

of A2 and K2.

Consider now the matrices KT

2 and KT

2 + UT

2 . If we can find a vector x such that

xm := (KT

2 )mx = (KT

2 + UT

2 )mx , for m = 0, . . . , n − 1 , (6.9)

and so that the sequence xm,m = 0, . . . , n − 1 is linearly independent, then the

similarity transformation

T =
(

x0 . . . xn−1

)

yields

T−1KT

2 T = KT

2 and T−1(KT

2 + UT

2 )T = KT

1 ,

as the assumption (6.9) guarantees that both matrices are brought simultaneously in

transposed companion form (sometimes also known as second companion form) and

because the companion form of K2 + U2 is K1 by similarity. By taking transposes of

the previous equations we have found the desired transformation that concludes the

proof in case that (6.9) holds. Now by induction the conditions in (6.9) require that

UT

2 (KT

2 )mx = 0 for m = 0, . . . , n − 2 .

As rank{UT

2 } = 1 the kernel of UT

2 (KT

2 )m has dimension n − 1 for m = 0, . . . , n − 2

and so by dimensionality reasons the intersection of these kernels satisfies

V :=
n−2
⋂

m=0

ker UT

2 (KT

2 )m , dim V ≥ 1 .
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Choose an x ∈ V , x 6= 0. If the set of vectors {xm,m = 0, . . . , n − 1} is linearly

independent, then (6.9) holds and we are done. If this is not the case this means that

the lower-dimensional KT

2 -invariant subspace defined by

W := span
{

xm | m = 0, . . . , n − 1
}

is by definition contained in the kernel of UT

2 . Hence on this lower dimensional

subspace KT

2 is not perturbed by UT

2 . We may then repeat the argument on the

restriction of KT

2 to a complementary invariant subspace and repeat the argument

until (6.9) holds on one of this lower dimensional complementary subspaces. The

procedure terminates for reasons of dimensionality and the assertion follows. �

In the previous section it was shown that our suggested design-procedure, when fea-

sible for first-order controllers, always results in asymptotically stable systems for

arbitrary switching. Unfortunately, this does not hold for controllers of higher order.

However, Theorem 6.5 provides a convenient simplification of the stability analy-

sis. To guarantee asymptotic stability of the switched system (6.4) with N = 2 we

only need to consider the asymptotic stability for arbitrary switching signals of the

autonomous switched system given by the controller matrices:

ẋ(t) = K(t)x(t), K(t) ∈ {K1, . . . ,KN} ⊂ R
nc×nc . (6.10)

Thus, the stability problem of the switched system (6.4) of order np + 2nc is reduced

to the stability problem of a switched system of order nc.

It should be emphasised that the proof of Theorem 6.5 relies on the fact that the

controller-matrices are in companion form. At this point it is not clear what role

the specific realisation chosen for the controllers plays for the result. However, it is

obvious that the equivalence (ii) ⇔ (iii) can only be true when rank{K1 − K2} =

rank{U2} = 1.

The equivalence of the asymptotic stability of the system (6.10) and (6.4) is in actual

fact less obvious than intuition might suggest. As we shall see in the next section, the

result does not generalise for systems with more than two subsystems. In this context

it might be worth noting that the switched system (6.10) is actually not part of the

closed-loop system (6.4) – at least not explicitly. For the switched system (6.10) the

controller dynamics Ki act on the same state-space, however the controllers in the

closed-loop system (6.4) are realised as local-state controllers and therefore do not

share the states.
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Stability of N constituent systems

We shall now discuss the reduction in complexity that can be obtained for switched

systems with N > 2 modes. Unfortunately, the proof of Theorem 6.5 uses in a

very specific way the fact that only two subsystems are involved. The following

example shows that the asymptotic stability of the switched system (6.10) defined by

the controllers is not sufficient for the stability of the closed-loop system (6.4) when

N > 2 and nc > 1.

Example 6.1 (Counterexample for three subsystems) Consider the switched

plant (6.2) with A = {A1, A2, A3}, where

A1 =







0 1

−11.84 −2.4






, A2 =







0 1

−34.28 −11.6






, A3 =







0 1

−29.7 −11







and Bi =
(

0 1
)T

, Ci =
(

1 0
)

, Di = 0 for i = 1, 2, 3. And let the requested

individual closed-loop poles be given by

Λt =
{

− 1 + 3i, −1 − 3i, −1.8, −8
}

.

It can be verified that the pole-placement requirement is satisfied by the following set

of controllers

K1 =







0 1

−9.6 −9.4






, K2 =







0 1

−7.4 −0.2






, K3 =







0 1

−5.5 −0.8







and M1 =
(

30.34 − 7.536
)

, M2 =
(

− 109.7 34.1
)

, M3 =
(

− 19.35 42.54
)

, and

Li =
(

0 1
)T

, Ji = 0 for i = 1, 2, 3.

It can be numerically verified that V (x) = xTPx with

P =







3.0745 0.0671

0.0671 0.4356







is a common quadratic Lyapunov function for the LTI systems ΣK1
,ΣK2

,ΣK3
. Hence,

the switched system (6.10) consisting of the controllers is asymptotically stable for

arbitrary switching.

However we can find a switching signal for which the closed-loop switched system (6.4)

is unstable. The spectral radius

%
(

e0.22H3e0.32H2e0.72H1
)

= 1.024
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where Hi are the closed-loop system matrices (6.4b). Hence, the closed-loop system is

unstable for the periodic switching signal of period T = 1.26, where one period is de-

fined by the switching sequence (0, 1), (0.72, 2), (1.04, 3). Figure 6.4 shows a sample-

output of the unforced switched system (6.4) with initial state x =
(

0 1 0 0 0 0 0 0
)T

.

�

0 10 20 30 40 50 60 70

−0.6

−0.4

−0.2

0

0.2
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Figure 6.4: Sample-output of the system in Example 6.1 for the unstable switching sequence.

As shown by Example 6.1 asymptotic stability of the switched system (6.4) with

N > 2 is not equivalent to the asymptotic stability of the switched system (6.10)

formed by the controllers. However, it is still possible to reduce the dimension of the

stability problem.

In the spirit of the previous section we consider a basis Vt of the common subspace

of all the matrices Hi. Define the transformation matrix

T1 =
(

Vt enp+nc+1 . . . en

)

.

Applying the similarity transformation T1 to the system matrices of (6.4) gives

T−1
1 H1T1 = diag(Dt,K2, . . . ,KN )

T−1
1 H2T1 = diag(Dt,K2, . . . ,KN ) + T−1

1 (H2 − H1)T1

...

T−1
1 HNT1 = diag(Dt,K2, . . . ,KN ) + T−1

1 (HN − H1)T1

where σ
(

Dt

)

= Λt. Note that (Hi − H1) only has non-zero entries in the np-th row.

Thus, Hi − H1 = enp
h̃i where h̃i = hinp

− h1np
denotes the differences between the

np’th rows of Hi and H1.
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As implied by our construction, the differences between the matrices T−1
1 HiT1 are

all multiples of the same columns. Furthermore, inspection of the np’th rows of the

matrices Hi shows that h̃i only has nonzero entries in its first np +nc positions and in

the positions np + (i− 1)nc + 1, . . . , np + i nc. Hence, only the blocks of controller Ki

are perturbed. So that for i = 2, . . . , N the matrices after similarity transformation

are of the form

T−1
1 HiT1 =



































Dt 0 . . . U1i 0

0 K2 0 U2i 0

...
. . .

...
...

Ki + Uii

0

UNi KN



































.

Where in particular the perturbation term
(

UT

1i UT

2i . . . UT

Ni

)T

has rank one. We

denote

K̄1 := diag(K2, . . . ,KN ) ,

and for i = 2, . . . , N the lower right (N − 1)nc × (N − 1)nc-block of T−1
1 HiT1 by

K̄i :=



























K2 0 U2i 0

. . .
...

...

Ki + Uii

. . .
. . . 0

0 UNi KN



























.

We then have the following result.

Theorem 6.6 The following statements are equivalent:

(i) The switched system given by the set of matrices {H1, H2, . . . , HN} is asymp-

totically stable.

(ii) The switched system given by the set of matrices {K̄1, K̄2, . . . , K̄N} is asymp-

totically stable.

Proof. This follows from the preceding discussion. �
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The above theorem reduces the order of the system for which stability needs to be

established by np + nc. Although, we cannot achieve a similarly large reduction as

for the case of two subsystems, Theorem 6.6 can serve as a starting-point for further

analysis.

6.2.3 Controllers with integrator

The stability results derived in the previous sections require that the constituent

closed-loop systems ΣHi
are stable LTI systems. Since the eigenvalues of the non-

active controllers are part of the spectrum of Hi, we cannot apply the stability results

when the controllers have integrators. In this section we show that this problem can

be partially resolved by choosing a variation of the local-state controller-architecture.

For this step we shall assume that the local controllers have the same number of

integrators. Then we can choose a controller-architecture where these integrators

are shared by the controllers and therefore are always active in the closed-loop. In

this section we shall investigate how the position of such joint integrator affects the

structure of the closed-loop system matrices and show that the above stability results

are applicable for a certain controller-architecture.PSfrag replacements

C1(s)

C2(s)

CN(s)

Plant

u1

u2

uN

ki

s

u yr e

Fi

SU

Figure 6.5: Local-state controller with joint integrator after the switch.

We begin with the case where the integrator is positioned after the switch of the

controller bank. The closed-loop structure of that approach is depicted Figure 6.5,

where ki denotes the (possibly time-varying) integrator gain. The dynamics of the
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additional state u are given by u̇ = kiui where

ui = Mixi − JiCixp + Jir.

Defining the state-vector of the closed-loop system x =
(

xT

p uT xT

i · · · xT

N

)T

yields

the system matrices

Hi =



























Ai Bi 0 · · · 0

−kiJiCi 0 Miδi1 · · · MNδiN

−L1C1 0 K1 0 0

...
. . .

. . .

−LNCN 0 · · · 0 KN



























, ∀ i ∈ I.

Note that the entries Miδij with the kronecker symbol are in the row of the integrator-

state u and not as before in the same row as the system matrix of the plant. Thus

the closed-loop system matrices differ by a rank of at least two, rank
{

Hi − Hj} ≥ 2.

The analysis of the previous section relies on the existence of a set of common eigen-

vectors for the closed-loop system matrices in H (Lemma 6.3). However, the proof

of the existence of such common eigenvectors depends on the fact that the matrices

Hi differ pairwise by rank one. Therefore the results of the previous section are not

applicable to the controller-structure with joint integrator after the switch.

PSfrag replacements
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Figure 6.6: Local-state controller with joint integrator before the controller bank.

In some cases, this problem can be resolved by placing the joint integrator in front

of the controller bank as shown in Figure 6.6. Define, the integrator state v where
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v̇ = ki(−Cixp + r). The controller dynamics are then given by

ẋi = Kixi + Liv

ui = Mixi + Jiv

Choosing the state-vector of the closed-loop system as x =
(

xT

p vT xT

i · · · xT

N

)T

yields the system matrices

Hi =



























Ai BiJi BiMiδi1 · · · BNMNδiN

−kiCi 0 0 · · · 0

0 L1 K1 0 0

...
... 0

. . .

0 LN 0 KN



























, ∀ i ∈ I.

Consider the case where the output-matrices of the plant are constant up to some

factor νi, i.e. Ci = νiC for all i ∈ I. When choosing the integrator gain as ki = 1
νi

,

the system matrices Hi differ by rank one.

It follows from the previous discussion that the stability results of this section are

applicable, when the output-vectors of the process realisation satisfies Ci = νiC. In

this case we can choose a joint integrator for all local controllers positioned before

the controller bank. When positioning the joint integrator after the switch we obtain

closed-loop system matrices Hi for which rank{Hi − Hj} = 2 and thus the obtained

stability results are not applicable.

6.3 Transient responses at steady-state switching

The dynamics of a switched system are given by the dynamics of the constituent

subsystems and the switching action which orchestrates between them. While the

dynamics of the constituent LTI systems are well understood, the influence of the

switching action on the dynamical behaviour is difficult to specify.

In this section we are concerned with developing a better understanding of the in-

fluence of the switching action on the dynamic behaviour of the switched system.

Therefore we eliminate the dynamics of the subsystems by considering the switching

system in steady-state where the dynamics of the subsystems have converged.

Definition 6.7 The state-vector x̂ of the LTI system with stable transfer function
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G(s) = cT
(

sI − A
)−1

b + d and a given constant reference input r(t) is called steady-

state if ˙̂x = 0.

The steady-state of the LTI system with realisation
(

A, b, cT, d
)

for the constant

reference-input r is given by

0 = Ax̂ + br

x̂ = −A−1br .

The difference of the output y = cTx̂ + dr and the constant reference-input r is

called static steady-state error. Note that the dynamics of the LTI system converge

asymptotically to the equilibrium and therefore steady-state is only attained for t →
∞. However in practice it is common to neglect the dynamics of the LTI system after

some finite settling time.

In this section we consider the input-output description of the switched closed-loop

system

ẋ(t) = Hσ(t)x(t) + B̄σ(t)r(t) (6.11a)

y(t) = C̄σ(t)x(t) (6.11b)

where σ : R
+ → I, Hi ∈ H, B̄i ∈ B and C̄i ∈ C. The matrices Hi, B̄i, C̄i depend on

the chosen controller architecture and on the realisation of the transfer functions Pi(s)

and Ci(s). Recall that we can only choose the realisations of the controller transfer

functions Ci(s) independently of each other. We shall assume that the controllers are

designed such that the static steady-state error is zero for all modes.

In this section we analyse properties of the transient behaviour of the switched system

that is induced solely by the switching action. In particular we shall consider transient

responses that occur due to switching when the subsystems have reached steady-state.

This effect is illustrated by the following example.

Example 6.2 Consider the plant (6.2) with switched linear dynamics and two modes.

The dynamics of the constituent modes are described by the transfer functions

P1(s) =
1

s + 14
, P2(s) =

1

s + 3
.

We choose first-order controllers for the control of this process. The closed-loop poles

are given by Λt =
{

− 2,−20
}

. The controllers with transfer functions

C1(s) =
−72

s + 8
, C2(s) =

s − 14

s + 18
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satisfy this pole assignment. For compensation of the static steady-state error we use

the pre-filter gains F1 = −0.5556 and F2 = −2.3529.

The resulting closed-loop system dynamics for each mode is identical and given by

the transfer function

Ti(s) =
Ci(s)Pi(s)

1 + Ci(s)Pi(s)
=

40

s2 + 22s + 40
.

According to our assumptions, the state-space description in each plant-mode is given

in control canonical form. We apply the controller in local-state architecture, choosing

also the local controllers in control canonical form. For the closed-loop system (6.11)

we obtain

H1 =













−14 −72 0

−1 −8 0

−1 0 −9













, H2 =













−3 0 −17

−1 −8 0

−1 0 −9













.

The input matrices are given by B̄1 = F1

(

0 1 1
)T

, B̄2 = F2

(

0 1 1
)T

the output

matrices are C̄i =
(

1 0 0
)

, i = 1, 2. Note, that the autonomous switched closed-

loop system is asymptotically stable for arbitrary switching signals (Corollary 6.4)

and thus the switched input-output system is bounded-input bounded-output stable

[Rug96].

Figure 6.7a shows a step response of the closed-loop system. Here a switching signal

σ(t) is chosen that changes the mode every 10 time-units. At every switching instant

we can observe a significant transient response before the output reaches its reference

value again.

Note that the switching is slow enough to allow the system to reach practically steady-

state between two consecutive switching instances, i.e. the observed transient-peaks

are not due to unsettled control signals or states. �

The closed-loop transfer functions and therefore the input-output behaviour in both

modes of the switched system are identical. Hence, the transients are clearly a result of

the different eigenvectors of the system matrices H1 and H2. Therefore we can expect

different transient behaviour depending on the realisations of the controller transfer

functions. The objective in this section is to find conditions for which transient-free

switching at steady-state can be achieved.
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Figure 6.7: Step-response of the closed-loop system in Example 6.2 with the switching instances

10, 20, 30, . . .. Part (a) shows the evolution of the output y(t), Part (b) shows the two controller-states

x1(t) and x2(t).

We begin our discussion by investigating the cause of the transients that we observe in

the above example. Consider the switched system with local-state controller. Figure

6.7b shows the evolution of the controller-state x1. For the first ten time-units the

plant is in mode 1 and thus controller C1(s) is active. After roughly 1.5 time-units

the system has settled. But when the plant switches into mode 2 and controller

C2(s) is active in the closed loop, the state of the non-active controller C1(s) settles

on a different value. When the plant switches back into mode 1, the controller has

the ‘wrong’ state and we observe a transient response until the controller attains its

steady-state for that mode. Thus, the switched system has different steady-states for

each mode. In view of that one could argue that the switched closed-loop system

actually never reaches a steady-state since the controller-states alternate between

an ‘active’ steady-state and a ‘passive’ steady-state. We shall therefore define the

common steady-state for a set of LTI systems.

Definition 6.8 The stable LTI systems with realisations
(

Ai, Bi, Ci, Di

)

with i ∈ I
have the common steady-state x̂ for the constant input r if

x̂ = −A−1
i Bir = −A−1

j Bjr ∀ i, j ∈ I . (6.12)

Note, that the systems
(

Ai, Bi, Ci, Di

)

either have common steady-states for all con-

stant inputs r ∈ R or have no common steady-state.

With these observations it is not hard to show that the switched system has no

transients due to switching at steady-state if the constituent systems have a common

steady-state.
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Theorem 6.9 The switched input-output system (6.11) has no transient responses

when switching at steady-state, if and only if the constituent systems
(

Hi, B̄i, C̄i

)

have a common steady-state for all constant inputs r ∈ R.

Proof. Let tik
be the switching instant in which the system switches from mode i to

mode j and let limt→tik
x(t) = x̂(i) = −H−1

i B̄ir where x̂(i) denotes the steady-state of

the LTI system in mode i for the constant input r. During the interval tik
≤ t < tik+1

the dynamics of the switched system are given by
(

Hj , B̄j , C̄j

)

. Hence,

ẋ(tik
) = Hj x̂

(i) + B̄jr

= −HjH
−1
i B̄ir + B̄jr

The switched system shows no transient response if and only if ẋ(tik
) = 0. Thus

0 = −HjH
−1
i B̄ir + B̄jr

H−1
i B̄ir = H−1

j B̄jr

The latter equality is the condition for the exists of a common steady-state for the

systems
(

Hi, B̄i, C̄i

)

and
(

Hj , B̄j , C̄j

)

. �

A trivial requirement for transient-free switching at steady state is that the con-

trollers ensure that the closed-loop system has the same static steady-state error

e0 = limt→∞ r − y(t) for all mode i ∈ I. Without loss of generality we assume that

e0 = 0. The output at steady-state is given by y = Cix̂
(i)
p . Thus, a necessary condi-

tion for the existence of a common steady-state for all plant-modes is that the first

entry of the output-vector Ci is constant for all i.

6.3.1 Transient-free control-design for local-state controllers

In this section we derive conditions that ensure that (6.12) is satisfied, and can be

incorporated into the pole-placement design. As before we assume that the dynamics

of the plant in each mode are given in control-canonical form. Thus the system

matrices Ai are in companion form and only the np-th entry of Bi is non-zero. It

follows that only the first entry of the steady-state of each plant mode is non-zero.

In this section we focus on the control of the process with one scalar input u and one

scalar output y. The dynamics are given by linear time-varying differential equation

y(n) =

n−1
∑

k=0

qk(t)y(k) + p0(t)u (6.13)
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where p0(t), qk(t) are piecewise constant functions that can take on values in the

finite sets p0(t) ∈ {p01, . . . , p0N}, and qk(t) ∈ {qk1, . . . , qkN} ∀ k = 0, . . . , n − 1.

The discontinuities occur at the same time-instances such that p0(t) = p0σ(t) and

qk(t) = qkσ(t) with σ : R → I = {1, . . . , N}. Hence, in any given point in time, the

dynamics of the plant can be described by the transfer function

Y (s) = Pi(s)U(s) =
p0i

qi(s)
U(s), i = σ(t) ∈ I (6.14)

where qi(s) is a polynomial of the complex variable s ∈ C with corresponding coeffi-

cients qki. Note that the transfer functions Pi(s) have no zeros.

Defining the state-vector xp =
(

y ẏ . . . y(n)
)T

, we obtain the state-space represen-

tation of the switched plant

ẋp(t) = Aσ(t)xp(t) + Bσ(t)u(t)

y(t) = Cxp(t)

where C =
(

1 0 · · · 0
)

and

Ai =



























0 1 0 · · · 0

... 0 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 1

−q0i −q1i · · · · · · −qn−1i



























, Bi =



























0

...

...

0

p0i



























.

The objective is to design controllers Ci(s) for each mode such that the closed-loop

system has no transient responses at the switching instances when switching at steady-

state. For the control-design we choose the transfer function description of the con-

trollers such that the obtained conditions for transient-free switching can be combined

with the pole-placement approach.

Theorem 6.9 requires for transient-free switching that the constituent closed-loop

systems
(

Hi, B̄i, C̄
)

have a common steady-state. We reformulate this condition by

considering the states of each individual controller separately. Since we assume that

the individual controllers ensure that the static steady-state error is zero for each

mode, it follows that the steady-state x̂p of the plant is common to each subsystem
(

Hi, B̄i, C̄
)

.

Consider now the steady-state x̂j of controller Cj(s). Since we realise the trans-

fer function in control canonical form, only the first entry of x̂j is non-zero. The
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controller-output is given by uj = Mjxj , whether the controller is active in the

closed-loop or not. It follows that the steady-state of controller Cj(s) is common

to all subsystems
(

Hi, B̄i, C̄
)

i ∈ I if and only if the steady-state controller-output

ûj = limt→∞ uj(t) is independent of the active controller in the loop.

At any time-instant, the controller-output Uj(s) is given by

Uj(s) =
Cj(s)

1 + Ci(s)Pi(s)
Fi R(s)

where i is the current mode of the plant. Define gji as the steady-state gain from the

reference input r to the controller-output uj when the plant is in mode i,

gji = lim
s→0

Cj(s)

1 + Ci(s)Pi(s)
Fi .

It follows that the controller Cj(s) attains the same steady-state in each mode i ∈ I
if and only if gji = gj ∈ R for all i ∈ I.

Corollary 6.10 (Transient-free switching for local-state controllers) Given

the process (6.13) with N modes and N stable controllers such that the closed-loop

LTI systems
(

Hi, B̄i, C̄
)

are stable and have the static steady-state error e0 = 0 for

all modes i ∈ I. Let the switched system (6.11) describe the closed-loop dynamics

with local-state controller structure and the controllers be realised in control canonical

form. Then the switched closed-loop system (6.11) has no transient response when

switching at steady-state if and only if gji = gj ∈ R for all i, j ∈ I.

Integrators of the open-loop dynamics play an important role for the steady-state

behaviour of LTI feedback systems. We shall now consider three common cases and

investigate whether transient-free switching at steady-state is possible. In order to

simplify the classifications, we parameterise the transfer functions of the controllers

and plants as follows

C(s) =
NC(s)

DC(s)
KCslc (6.15)

P (s) =
NP (s)

DP (s)
KP slp (6.16)

where NC(0)
DC(0) = NP (0)

DP (0) = 1 and lc, lp ∈ Z.

Case 1 Consider the case where the plant has a pure integrator in all modes, i.e.

lp < 0, and the controllers Ci have no integrator, i.e. lc = 0. The steady-state gain
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gji is then given by

gji = lim
s→0

KCj

1 + KCiKPislp
Fi .

When the open-loop transfer function Ci(s)Pi(s) has an integrator, the pre-filter gain

Fi = 1. It follows that the steady-state gain gji = 0 for all i, j ∈ I. Hence, for any

set of controllers that result in stable closed loop systems we obtain transient-free

switching at steady-state.

Case 2 Secondly, consider the case where neither the plant nor the controllers have

an integrator (lc = lp = 0). Since the open-loop has no integrator a pre-filter for each

mode is required to ensure that the static steady-state error is zero. The pre-filters

are given by Fi = 1+KCiKP i

KCiKP i
. For the steady-state gains gji we obtain

gji =
KCj

1 + KCiKPi
Fi .

Substituting Fi yields after cancellation

gji =
KCj

KCiKPi
.

In this case transient-free switching at steady-state is only guaranteed if the open-loop

steady-state gains satisfy

KCiKPi = K ∀ i ∈ I (6.17)

for some chosen K ∈ R.

Case 3 Consider the case where the plant has no integrator (lp = 0) and the con-

trollers have an integrator (lc < 0). To ensure that the controllers do not wind up

when non-active we have to use one of the joint-integrator structures as described in

Sections 6.2.3. Consider first the case where the joint integrator is positioned after

the switch, right before the plant. In terms of our steady-state analysis this case is

equivalent to the first case, where the plant has an integrator as in case 1.2 Hence,

there are no further restrictions on the controllers to ensure transient-free switching

at steady-state.

For the implementation where the joint integrator is in front of the controller bank,

we obtain

2Note that this simplification is only valid because we consider static behaviour of the system.

For the stability analysis such conclusion requires further justification.



6.3 Transient responses at steady-state switching 163

gji = lim
s→0

KCjs
lc

1 + KCislcKPi

=
KCj

KCiKPi
.

Hence, this case is equivalent to the second case. Transient-free switching is achieved

when KCiKPi = K ∈ R for all i ∈ I.

We summarise that in all considered cases we can design controllers for which the

closed-loop switched system has no transient responses when switching at steady-

state. There is no further conditions on the control-design when the plant has an

integrator or the joint controller-integrator is positioned after the switch. In the

other two cases we require that KCiKPi = KCjKPj for all i, j ∈ I.

Note that condition (6.17) only concerns a single parameter of each individual con-

troller. Therefore, we can always satisfy the pole-placement requirement and con-

dition (6.17) by simply choosing a controller with on additional degree of freedom.

Thus whenever the pole-placement is feasible, we can design controllers that result in

transient-free switching at steady-state. We shall demonstrate this by the following

example.

Example 6.3 With condition (6.17) we can design a controller for the plant in Ex-

ample 6.2 that guarantees transient-free switching. To satisfy the pole-placement

requirement simultaneously, we need to employ controllers with one more degree of

freedom, we choose Ci(s) = a1is+a0i

s+b0i
. With the same closed-loop poles required

(Λt = {−2,−20}) and choosing the constant K = 2 in (6.17) we obtain the following

controllers

C1(s) =
2.286s − 40

s + 5.714
, C2(s) =

−7.667s − 40

s + 26.67
.

with the pre-filter gains F1 = F2 = −1.

H1 =













−16.29 −53.06 0

−1.0 −5.71 0

−1.0 0 −26.67













, H2 =













4.67 0 164.44

−1.00 −5.71 0

−1.00 0 −26.67













.

The input matrices are given by B̄1 =
(

−2.2857 −1 −1
)T

,B̄2 =
(

7.6667 −1 −1
)T

the output matrices are C̄i =
(

1 0 0
)

, i = 1, 2.

Figure 6.8 shows the step-response of the switched system when switching every 10

time-units. The switching of the plant mode is not visible at the controller output.
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This is due to the fact that both controller states reach their steady-state before

the first mode-switch occurs at 10 time-units (solid lines in Figure 6.9). Since, the

steady-state of each controller is the same regardless whether the controller is active

or passive in the loop, the controller outputs remain constant. Only the plant-input

(dashed line) is switched to the correct value. �
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0.4
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1

time

y

Figure 6.8: Step response of the control system

with transient-free local-state controller (switch-

ing instances 10, 20, 30, . . .)
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Figure 6.9: Individual controller states (solid

lines) and plant-input (dashed line).

6.4 Relation to alternative approaches

For the analysis in this chapter we have chosen a particular controller-architecture,

where the controller is implemented as a set of LTI systems with individual states.

Of course, there are many other ways of implementing the constituent controllers. In

this section we shall briefly relate two alternative approaches for the implementation

of the switched controller to the results of this chapter.

Global-state architecture

A common approach in adaptive control, for example, is to realise the set of controllers

as a switched system on its own [Mor98, ABB+00, HLM+01]. The controller dynamics

are then given by

ẋc(t) = Kσ(t)xc(t) + Lσ(t)e(t) (6.18a)

u(t) = Mσ(t)xc(t) + Jσ(t)e(t) (6.18b)

where Kσ(t) ∈
{

K1, . . . ,KN

}

, Lσ(t) ∈
{

L1, . . . , LN

}

, Mσ(t) ∈
{

M1, . . . ,MN

}

, and

Jσ(t) ∈
{

J1, . . . , JN

}

. Note that the controller parameters simultaneously switch at
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the switching instances. In contrast to the local-state controller the dynamics act on

the same state xc ∈ R
nc×nc . Therefore we shall refer to this controller structure as

global-state controller.3

Applying the global-state controller to the switched plant (6.2) results in switched

closed-loop systems with state-vector x =
(

xT

p xT

c

)T ∈ R
np+nc and system matrices

Hi =







Ai − BiJiCi BiMi

−LiCi Ki






. (6.19)

The results obtained in this chapter for local-state controllers are not applicable to

this controller architecture. Since all controllers share the same state, the separation

of the subspaces used in the derivations is not possible.

A direct comparison of the stability properties of the systems with the two controller

architectures is not straight forward, since the closed-loop stability of the global-

state controller is certainly dependent on the realisation chosen for the individual

controllers. However, it should be noted that the stability of the resulting closed loop

system can be different for the two controller architectures, when the same controller-

realisations are applied [LLMS02]. For example it is not hard to find examples with

control canonical realisation of the individual controllers, for which the local-state

controller architecture results in a stable closed-loop system whereas the system with

the global-state controller is unstable.

We shall still note some important differences between the two controller architectures.

Assuming minimal controller realisations the most obvious difference of the resulting

closed-loop systems is the system order. While the local-state controller architecture

results in closed-loop systems of order np+Nnc, the system with global-state controller

has order nc+np. Thus, using the global-state controller results in closed-loop systems

whose order is independent of the number of subsystems. However, such assessment

is only valid when the realisations of the individual controllers have the same order for

the global-state and the local-state architecture. This is not necessarily given, since

different controller realisations might be preferable for each controller architecture.

Moreover, a greater system-order does not necessarily imply that the stability analysis

is more complex. Equally important is the rank of the differences of the system

3In the multiple adaptive control literature this controller architecture is also known as state-

shared multicontroller.
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matrices Hi−Hj , i 6= j. For the local-state controller architecture we obtain rank{Hi−
Hj} = 1 whereas the global-state architecture yields rank{Hi − Hj} ≥ 2, depending

on the controller-realisations. Loosely speaking, this means that the system matrices

obtained using the local-state controller are structurally more similar to each other.

That means that the differences of the vector fields are in the same one-dimensional

space. For the case of the global-state implementation, the difference of the vector

fields belong to a higher dimensional space and are therefore less structured.

State-reset approach

An interesting extension of these controller architectures has been recently suggested

in [HM02]. Here the authors consider a global-state controller where the controller

state is reset to a desired value whenever its dynamics change. This could be inter-

preted as a mixture of the global- and the local-state architecture. While the indi-

vidual controllers share the same state space, their dynamics are to a certain degree

decoupled since at any switching instant the initial state can be chosen freely. Clearly,

such approach allows more control over the transient behaviour of the switched sys-

tem. This problem has been considered in [PV03]. The results in both publications

consider the control of a time-invariant plant and are therefore not applicable for the

case considered in this chapter. However, the approach appears to be very effective

and suitable to be adopted for our problem.

6.5 Conclusions

In this chapter we considered a typical control problem for a class of switched single-

input single-output systems with N subsystems. For the control-design we focussed on

two important objectives: firstly, the stability of the closed-loop system for arbitrary

switching, and secondly the transient behaviour of the closed-loop system at the

switching instances.

For the control of the process we have chosen a switched controller with local-states.

This controller architecture has the conceptional advantage that the resulting close-

loop system matrices have differences Hi − Hj of rank one for all i, j ∈ I, i 6= j,

which simplifies the stability analysis of the switched system. In conjunction with

the assumption that the poles of the closed-loop transfer function are constant for
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all modes, we derived conditions for the stability of the switched system. For the

case that the pole-placement requirement is feasible for first-order controllers and the

target-poles are real we have shown that the resulting closed loop system is always

stable given that the first-order controllers have poles in the open left half-plane. For

systems with controllers of arbitrary order and two subsystems, the stability analysis

reduces to the analysis of the autonomous switched system whose constituent system

matrices are the system matrices K1,K2 of the controllers. This is a significant

simplification. For example, in the context of this chapter we apply the matrix-pencil

results of Chapter 3 to design switched control systems of order up to five.

For systems with more than two subsystems which require controllers of order greater

than one, it was shown that such simplification is in general not possible. In this case

the asymptotic stability of the n-th order closed-loop system reduces to the asymptotic

stability of order n−(np +nc). However, the system matrices of the reduced switched

system have a significant structure that might prove beneficial for further research.

In the second part of this chapter we analysed the transient behaviour of the closed-

loop system that is induced by the switching action. We have derived conditions

for the design of the individual controllers that guarantee transient-free switching

when the system is in steady-state. These conditions can be incorporated into the

design procedure of the controllers. Increasing the order of the controllers by one,

we can achieve transient-free switching and satisfy the pole-placement requirement

simultaneously. This allows to design controllers that achieve both, stability and

transient-free switching at steady-state, using the design methods proposed in this

chapter.

The stability analysis in this chapter depends fundamentally on the assumption that

the poles of the closed-loop transfer function are invariant while switching. This re-

quires that the respective controller outputs are instantaneously activated whenever

the plant-mode changes. From a practical point of view this is an unrealistic assump-

tion. In most applications there will be a certain time-delay between the mode-switch

of the plant and the switching of the control signal. The impact of such delays on

the stability of the closed-loop system are an important problem and are subject of

future research.

An open question is also how the realisations of the transfer functions effect the results

in this chapter. Throughout this chapter we assume that the individual controllers
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are realised in control canonical form. In particular the derivation of the result for two

subsystems relies on this fact. While this is a realistic assumption a different choice

of the realisation might provide better performance or stability properties. It is well

known that the eigenvectors of the constituent system matrices play an important

role for the stability of a switched linear system. Since we can choose the controller

realisations independently of each other, it might be possible to find conditions on

the realisations that simplify the stability analysis.



Chapter 7

Conclusions

In this final chapter we present some brief concluding remarks, summarise

the work of earlier chapters, and highlight the main contributions made in

the course of the thesis.

Switched linear systems exhibit complex dynamical behaviour which can be critical

for their stability properties. In this thesis we analyse the stability of several classes

of switched linear systems and contribute to a better understanding of their stability

properties.

In Chapter 3 we introduced a novel type of piecewise linear Lyapunov function that

is more suitable for the analysis of a certain class of switched system. In conjunction

with quadratic Lyapunov functions we derive a compact stability condition that is

readily applicable and provides some insight into the dynamical behaviour of the

switched linear system. When there exists a common unic Lyapunov function, this

Lyapunov function is directly available and can therefore be used as a guideline for

the control design.

In Chapter 4 we established the relation of the asymptotic stability of switched sys-

tems with arbitrary switching signals and the robust control problem of the Lur’e

system. We generalised a result in [SN03a] to derive spectral conditions of classical

stability results for Lur’e systems. This result can be applied for a large number of

conditions, some of which are briefly discussed in the chapter. In particular, we have

demonstrated that the spectral formulation of the frequency-domain conditions can

simplify the control design under constraint conditions.
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Chapter 5 is dedicated to finding non-conservative stability conditions for switched

SISO systems (and by equivalence, absolute stability of SISO Lur’e systems). The

approach here is to identify the existence of a periodic solution and to infer asymp-

totic stability of the system from its absence. While the review of the literature on

this problem reveals that this implication is true for systems of order up to three, its

validity for higher order systems remains an open problem. However, it is shown that

the largest range of parameter variation for which a given nominal system is stable can

be approximated arbitrarily closely. Unfortunately, this requires the determination of

the supremum of the real spectrum of an infinite set of operators which is infeasible

in practice. An attempt to resolve this problem is to approximate the operators by

truncated matrices. It is demonstrated that this method can yield good approxima-

tions for the existence of periodic solution for a given switching signal. The pertinent

problem in this context is to identify a class of switching signals that is necessary and

sufficient for the asymptotic stability of the system with arbitrary switching signals.

For second- and third-order systems such a class is given by periodic signals with

two discontinuities per period. This restriction makes the derived stability condition

computational feasible. There are some indications that this class of signals is also

sufficient for determining asymptotic stability of higher order systems . However, the

generalisation of this result remains an open problem.

In the last chapter we consider a typical control task for switched processes and suggest

a method for the design of a switched controller. We show that the stability analysis

of the closed-loop system can be significantly simplified when using the proposed

switched controller structure. Moreover, we derive conditions that ensure transient-

free switching at steady-state. These conditions can be applied to several types of

stable controllers for the system, i.e. whenever there is a set of controllers such that

the closed-loop system is stable we can also achieve transient-free switching.



Notations and Abbreviations

Notations

R
+ set of non-negative real numbers

AT, cT transpose of the matrix A, transpose of the vector c

I identity matrix of appropriate dimension

Re{x} real part of the complex number x

Im{x} imaginary part of the complex number x

trA trace of the matrix A

tr2A square of the trace of the matrix A, (trA)2

tri trAi (only used for some calculations in Chapter 3)

∆i det Ai (only used for some calculations in Chapter 3)

Q < 0, (Q > 0) matrix Q is positive (negative) definite

Q ≤ 0, (Q ≤ 0) matrix Q is positive (negative) semi-definite

σ(A) spectrum of the matrix A

%(A) spectral radius of the matrix A, i.e. max
∣

∣σ(A)
∣

∣

diag(A,B,C) block diagonal matrix with blocks given by the square matrices A,B,C

σα[A1, A2] matrix pencil αA1 + (1 − α)A2, where α ∈ [0, 1]

σγ [A1, A2] matrix pencil A1 + γA2, where γ ≥ 0

ΣA linear time-invariant system ẋ(t) = Ax(t)

ΣA switched linear system with the set of system matrices A
and arbitrary switching signals

ΣA,S switched linear system with the set of system matrices A
and the set of switching signals in S

co(A) convex hull of A
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Abbreviations

CLF common Lyapunov function

CQLF common quadratic Lyapunov function

CULF common unic Lyapunov function

LTI linear time-invariant

PLF piecewise linear Lyapunov function

LMI linear matrix inequality

SISO single-input single-output

BIBO bounded-input bounded-output
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