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a b s t r a c t

In this note we consider the stability properties of a system class that arises in the control design problem
of switched linear systems. The control design we are studying is based on a classical pole-placement
approach.We analyse the stability of the resulting switched systemanddevelop analytic conditionswhich
reduce the complexity of the stability problem. We further consider two special cases for which strongly
simplified conditions are obtained that support the analytic controller design.
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1. Introduction

In this paper we consider the control design problem for
switched linear systems. Such systems arise in many engineer-
ing applications (Liberzon & Morse, 1999; Shorten, Wirth, Mason,
Wulff, & King, 2007). However, while the stability analysis of this
system class has been the subject of many publications (see De-
Carlo, Branicky, Pettersson, & Lennartson, 2000; Liberzon &Morse,
1999; Shorten et al., 2007), a pressing need remains for analytic
tools to support the design of stable switched systems. Our ob-
jective here is to do this and develop useful, classically inspired,
design methods. Much recent work in the control systems com-
munity is Lyapunov based where a designer uses a Lyapunov func-
tion to inform the feedback design. This approach is widespread in
the switched systems community where LMI based design meth-
ods are popular, see e.g. Daafouz and Bernussou (2002); Daafouz,
Riedinger, and Iumg (2002). While such techniques are very effec-
tive, they lack transparency and interpretability that was a feature
of classical techniques.
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In view of this, our principal contribution is to develop, at
the expense of studying a restrictive but important system class
(see Solmaz, Shorten, Wulff, and Cairbre 2008 and the references
therein), methods for the design of stable switched systems. Our
main result shows that the stability analysis of such systems
can be reduced to the study of lower dimensional systems. In
some important situations this result leads to elegant design rules.
Finally, while we present theoretical results, the control approach
has been applied to design practical control systems for switched
systems (Wulff, Wirth, & Shorten, 2005).

2. Problem statement

We consider the control of processes whose dynamics are gov-
erned by equations of the form:

y(np) =
np−1∑
l=0

ql(t)y(l) + p0(t)u (1)

where y(np) denotes the npth derivative of y(t) and p0(t), ql(t)
are piecewise constant functions taking on values in the finite
sets p0(t) ∈ {p01, . . . , p0N}, and ql(t) ∈ {ql1, . . . , qlN} ∀ l =
0, . . . , np − 1. We assume that the discontinuities occur simul-
taneously such that p0(t) = p0k whenever ql(t) = qlk for all
l = 0, . . . , np − 1 where k ∈ I = {1, . . . ,N} denotes the plant
mode.1 Thus at any time instant the plant dynamics correspond to
exactly one of the N linear systems

1 Equations of this form describe many real world processes. Despite this, their
stability properties remain unresolved for systems of dimension greater than three
(Pyatnitskii & Rapoport, 1991).
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ẋp(t) = Akxp(t)+ bku(t), k ∈ I = {1, . . . ,N} (2a)

y(t) = cT xp(t) (2b)

where xp ∈ Rnp denotes the continuous state vector of the process,

Ak =


0 1 0 · · · 0
... 0 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1
−q0,k −q1,k · · · · · · −qnp−1,k

 ,

and c = (1 0 · · · 0)T, bk = (0 · · · 0 p0k)T.
With each mode k ∈ I we associate the proper transfer

function Pk(s) = cT(sI − Ak)−1bk. For each set of fixed parameters
the control design objectives shall be similar; such applications
arise frequently in automotive control where the system dynamics
are gear dependent, but the performance objectives may be gear
independent (Shorten & ÓCairbre, 2002). We assume that these
mode switches of the process are immediately detectable as is also
the case in many applications. Given this, the objective is to design
a controller such that the closed-loop system: (1) has the target
poles Λt ⊂ C−, specified independently of mode k ∈ I; (2) is
asymptotically stable for arbitrary switching signals; and (3) has
little or no output transients induced by the switching action of
the system. In the next sectionwepropose a control designmethod
that is suitable to achieve these requirements.While this note deals
with the task of achieving objectives 1 and 2, it is shown in Wulff
et al. (2005) that the proposed methodology can be adopted to
guarantee transient-free switching between the subsystems under
certainminor additional conditions. In this sense our present work
extends the work in Shorten and ÓCairbre (2002) and in Paxman
and Vinnicombe (2003).

3. Preliminary discussion: Basic ideas

The controller structure considered is depicted in Fig. 1. For
each plant mode k a controller Ck(s) is designed to achieve the
specified objectives. Each controller is realised as an LTI system.
At any switching instant, the appropriate controller is deployed
by switching the process input to the respective controller output.
We shall further assume that there is no time-delay between the
switching of the process and switching of the controller output.
Further, we do not have a controller state reset as considered
in Hespanha and Morse (2002) and Paxman and Vinnicombe
(2003).
The dynamics of the individual controllers are

ẋk(t) = Kkxk(t)+ lke(t) (3a)

uk(t) = mTkxk(t)+ jke(t) (3b)

where xk(t) ∈ Rnc is the state vector of the controller associated
with mode k ∈ I; the input e(t) ∈ R is shared by all controllers
and each controller has an individual control signal uk(t) ∈ R. For
the realisation of the controllers we choose the control canonical
form with Kk ∈ Rnc×nc , lk,mTk ∈ Rnc and jk ∈ R. The respective
transfer functions are given by Ck(s) = mTk(sI − Kk)

−1lk + jk. As
a design-law for the controllers we choose a set of stable target
polesΛt and design the controllers using standard pole-placement
techniques. Our results throughout this paper are based on the
following assumption.

Assumption 3.1 (Pole-placement). For each process mode k ∈ I
the controller Ck(s) is designed such that the poles of the closed-
loop transfer function

Ck(s)Pk(s)
1+ Ck(s)Pk(s)
Fig. 1. Structure of the switched linear control system.

are simple and lie in the open left half-plane and are constant
for all k ∈ I. We denote the set of those target poles by Λt =
{λ1, . . . , λnp+nc }. The resulting controllers Ck(s) have poles in the
open left half-plane.

Comment: Stability of the switched system can only be achieved
for the control architecture in Fig. 1 if the controllers are
stable LTI systems.2 This constitutes a limitation on our design
procedure. However, it is easily verified that the parity interlacing
property (Vidyasagar, 1987) is always satisfied and so stable
controllers for each individual mode always exist.
The resulting closed-loop system dynamics are then given by

the switched linear system

ẋ(t) = H(t)x(t), (4)

where x ∈ Rn, n = np + Nnc consists of the process states xp and
the controller states xk, k ∈ I

x =
(
xTp xT1 . . . xTN

)T
,

and H(·) is a piecewise constant function H : R → H =

{H1, . . . ,HN} ⊂ Rn×n. The constituent system matrices in each
mode k ∈ I are given by

Hk =


Ak − bkjkcT b1mT1δk1 · · · bNm

T
NδkN

−l1cT K1 0
...

. . .

−lNcT 0 KN

 (5)

where δkj denotes the Kronecker symbol.
Before we present the main results we note some preliminary

observations.
Given the process (2) and controllers (3) in control canonical

form, all closed-loop system matrices Hk are identical except for
the npth row. Furthermore as all but one of the sets of Kronecker
symbols are equal to 0, we have that σ(Hk) ⊃ σ(Kl) for l 6= k. By
design (Assumption 3.1) the remaining eigenvalues are given by
Λt for all k ∈ I. Thus the spectrum of Hk is given by

σ(Hk) = Λt ∪
⋃
l6=k

σ(Kl),

accounting for multiplicities. Therefore the matrices Hk have
pairwise np + (N − 1)nc common eigenvalues.
From the design procedure in Assumption 3.1 it follows that the

controller poles are distinct from the target poles, i. e. if λ ∈ Λt
then λ 6∈ σ(Kk), k ∈ I. We can show this fact by contradiction:
consider the characteristic polynomial of the closed-loop system
in mode k

2 This restriction can be relaxed allowing for integrator control action by using
variations of the controller architecture proposed in Wulff et al. (2005).
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DCk(s)DPk(s)+ NCk(s)NPk(s) (6)
where N(s),D(s) denote the respective numerator and denomina-
tor of the transfer functions C(s) and P(s) in mode k. Let λ be a root
of the characteristic polynomial (6). If λ is also an eigenvalue of Kk,
i. e. DCk(λ) = 0, we require that either NCk(λ) = 0 or NPk(λ) = 0.
However the root inNCkwould immediately cancel with root of the
controller denominator DCk, the latter contradicts our assumption
about the plant model.
A useful consequence of this approach is that the subspace

corresponding to the target poles do not depend on k given some
mild conditions. This fact shall be useful in the following discussion
and we state it formally.

Lemma 3.1. Let λ ∈ Λt be a simple eigenvalue of each Hk, then the
Hk have a corresponding common eigenvector. That is, there exists a
vector v 6= 0 such that for all k ∈ I

Hkv = λv. (7)

Proof. As λ ∈ σ(Hk), k ∈ I the matrices λI−Hk are each singular.
Thus the rows h̃jk of λI − Hk are linearly dependent for each k. On
the other hand, using (5) and the definition of Ak and bk we see that
all the rows of Hk, but the npth are independent of k. By inspection
the set of n− 1 rows of λI − Hk obtained by omitting the npth row
is linearly independent, since λ is not an eigenvalue of one of the
controllers Kj, j ∈ I. Thus for each k there are constants γjk such
that

h̃npk =
∑
j6=np

γjkh̃jk . (8)

Now by definition an eigenvector v of H1 corresponding to the
eigenvalue λ satisfies h̃j1v = 0, j = 1, . . . , n. This implies that
h̃jkv = 0, j = 1, . . . , n, j 6= np for each k ∈ I. This, however,
implies by (8) that also h̃npkv = 0, so that we have (λI −Hk)v = 0.
This completes the proof. �

Hence, if the eigenvalues λ ∈ Λt are simple, all closed-loop
systemmatricesHk have np+nc eigenvectors in common. This fact
can be exploited to derive simple conditions for stability aswe shall
discuss in the following section.

4. Main results

In this section we derive simplified stability conditions for the
switched system resulting from the control approach described
above. We first consider the most general case where the process
consists of N subsystems of npth order. Based on this result we
subsequently consider two special cases: (i) processes with N
subsystems and first-order controllers and (ii) processes with two
subsystems and controllers of arbitrary order. For each case we
obtain simplified stability conditions.

4.1. Stability condition for N subsystems of arbitrary order

Assume thatwe are givenNmatrices of the form (5) and that the
poles of the individual systems have been placed so that Lemma3.1
is applicable. Let the columns of Vt ∈ Cn×(np+nc ) form a basis of the
common subspace of all matrices Hk ∈ H and consider the matrix

T :=
(
Vt enp+nc+1 · · · en

)
. (9)

Note that T is invertible as the vectors e(np+nc+1), . . . , en form a
basis of an invariant subspace of H1, which does not intersect
span Vt as Λt ∩ σ (Kk) = ∅∀ k ∈ I. Applying the similarity
transformation T we obtain
T−1H1T = diag (Dt , K2, . . . , KN),

T−1H2T = diag (Dt , K2, . . . , KN)+ T−1enh̃T2T ,
up to

T−1HNT = diag (Dt , K2, . . . , KN)+ T−1enh̃TNT ,
where σ(Dt) = Λt and h̃k := hknp − h1np denotes the differences
between the npth rows ofHk andH1. As implied by our construction
the differences between the matrices are all multiples of the same
columns. Furthermore inspection of the npth rows of the matrices
Hk shows that h̃k can only have nonzero entries in its first np + nc
positions and in the positions np + (k − 1)nc + 1, . . . , np + knc .
Hence, in the lower block corresponding to the controllers only the
controller Kk is perturbed. So that for k = 2, . . . ,N the matrices
after similarity transformation are of the form

T−1HkT =



Dt 0 . . . U1k 0
0 K2 0 U2k 0
...

. . .
...

...
Kk + Ukk

0
UNk KN

 (10)

where Uk =
(
UT1k UT2k . . . UTNk

)T
∈ Rn×nc denotes the

perturbation term of the kth system. Since rank{Hj−Hk} = 1 for all
j 6= k and j, k ∈ I the perturbation term Uk has rank 1. We denote

R1 := diag (K2, . . . , KN),

and for k = 2, . . . ,N the lower right (N − 1)nc × (N − 1)nc-block
of T−1HkT by

Rk :=


K2 0 U2k 0

. . .
...

...
Kk + Ukk

. . .
. . . 0

0 UNk KN

 .
It follows that the closed-loop system is exponentially stable if and
only if the switched system formed by the matrices Rk, k ∈ I is
exponentially stable.

Lemma 4.1. Consider the switched process (2) and let Assump-
tion 3.1 be satisfied. Then the following statements are equivalent:

(1) The switched linear system (4) with H(t) ∈ H is exponentially
stable.

(2) The switched linear system ẋ = R(t)xwith R : R→ {R1, . . . , RN}
is exponentially stable.

Proof. The transformed system matrices T−1HkT in (10) are in
block triangular form with homogeneous dimensions for all k ∈
I. It is well known that switched systems of this structure are
exponentially stable if and only if the switched systems formed
from the diagonal blocks are stable.3 Since Dt is a Hurwitz matrix
byAssumption 3.1, the switched systemwith systemmatrices (10),
k ∈ I is exponentially stable if and only if the switched system
{R1, . . . , RN} is exponentially stable. �

The above lemma reduces the stability analysis of the switched
system of dimension np + Nnc to the stability of a system of di-
mension (N−1)nc . Note, that result does not resort to any specific
type of Lyapunov function. However, there exists some common
Lyapunov function for the reduced system if and only if there ex-
ists some common Lyapunov function for the original system. We
now present two situations where the above results are particu-
larly useful.
A. Processeswith N subsystems and first-order controllers applied:We
shall now consider the special case where the controllers Ck are of
first order. Thus for Assumption 3.1 to hold, the process dynamics

3 This follows e.g. from Exercise 4.13 in Rugh (1996).
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have to be of order strictly less than three. We now employ
Theorem 3.1 in Shorten and ÓCairbre (2001). Essentially, the
theorem establishes asymptotic stability of the class of switched
systems (4) with the following properties:

• every matrix inH is Hurwitz and diagonalisable;
• the eigenvectors of any matrix inH are real;
• every pair of matrices in H share at least n − 1 linearly
independent common eigenvectors.

Let the target polesΛt be distinct and real.With the assumption
that the pole-placement is feasible for all modes k ∈ I, the
resulting closed-loop system matrices Hk have pairwise n − 1
real distinct eigenvalues. By Lemma 3.1 the matrices Hk, k ∈ I,
have np + 1 common eigenvectors. Moreover, since each pair of
closed-loop system matrices Hk share N − 2 of the remaining
inactive controllers they have pairwisen−1 commoneigenvectors.
Thus the requirements for Theorem 3.1 in Shorten and ÓCairbre
(2001) are met and the closed-loop system is exponentially
stable for arbitrary switching sequences. In other words, the
switched system (4) is stable for arbitrary switching if we choose
arbitrary real negative target poles Λt such that the design-law
in Assumption 3.1 is satisfied by first-order controllers (Shorten &
ÓCairbre, 2002).
Lemma 4.1 can be used to extend this result for systems with

non-real target poles Λt . Choosing a modal-basis for Vt in (9) we
obtain a transformation matrix T with real entries. It follows that
the system matrices Rk of the reduced system are in RN−1×N−1.
Further, σ(Rk) = ∪l6=k σ(Kl). Since the controllers are of first
order, it follows that the matrices Rk also satisfy the requirement
of Theorem 3.1 in Shorten and ÓCairbre (2001).

Corollary 4.1. The switched system (4) with system matrices (5)
where Assumption 3.1 is satisfied using N stable first-order controllers
is asymptotically stable.

B. Two subsystems of arbitrary order: Consider now the special case
where N = 2 and the controllers are of arbitrary order nc . Due to
the pole-placement requirement (Assumption 3.1) we obtain for
the respective spectra σ (H1) = Λt ∪σ (K2), σ (H2) = Λt ∪σ (K1).
Applying the similarity transformation T of (9) to our two system
matrices we obtain

T−1H1T =
(
Dt 0
0 K2

)
(11a)

T−1H2T =
(
Dt 0
0 K2

)
+

(
0 U1
0 U2

)
(11b)

where
(
UT1 U

T
2

)T
∈ R2nc×nc and σ (Dt) = Λt . Note that rank{U2} =

1 as we have rank {H1 − H2} = 1. Further it follows from the
spectrum of H2 that σ (K2 + U2) = σ (K1). The following theorem
reduces the stability problem of the switched system defined by
{H1,H2} to a stability problem only involving the controllers.

Theorem 4.1. Consider the matrices H1,H2 in (5) and let Assump-
tion 3.1 be satisfied such that σ (Hk) = Λt ∪ σ(Kl) for k, l =
1, 2, k 6= l. Assume furthermore that Λt ∩ σ (Kk) = ∅, k = 1, 2.
Then the following statements are equivalent: (i) The switched system
given by the set of matrices {H1,H2} is asymptotically stable for ar-
bitrary switching signals; (ii) The switched system given by the set of
matrices {K2, K2+U2} is asymptotically stable for arbitrary switching
signals; (iii) The switched system given by the set of matrices {K1, K2}
is asymptotically stable for arbitrary switching signals.

Proof. The equivalence of (i) and (ii) can be seen as follows. Firstly,
the matrices in (5) and (11) are obtained from one another by
simultaneous similarity. Thus the set {H1,H2} defines an asymp-
totically stable switched system if and only if {T−11 H1T1, T

−1
1 H2T1}

does. On the other hand σ(Dt) = Λt ⊂ C−, so that the exponential
stability of {T−11 H1T1, T

−1
1 H2T1} is equivalent to that of the lower

diagonal block {K2, K2 + U2}. The equivalence (ii)⇔ (iii) follows if
we find a similarity transformation that transforms K2 and K2+U2
intoK2 andK1 respectively. Note first, that since rank{H2−H1} = 1,
the perturbation (UT1 ,U

T
2 )
T is also of rank one. Consider now the

matrices K T2 and K
T
2 + U

T
2 and define

xm :=
(
K T2
)m
x =

(
K T2 + U

T
2

)m
x, (12)

for m ∈ {0, . . . , nc − 1} and some x ∈ Rnc . If we can find a vector
x such that the sequence xm,m = 0, . . . , nc − 1 is well defined
and linearly independent, then the similarity transformation S =(
x0 · · · xnc−1

)
yields

S−1K T2 S = K
T
2 , and S−1(K T2 + U

T
2 )S = K

T
1 .

This assertion follows since the assumption (12) guarantees that
both matrices are brought simultaneously in transposed compan-
ion form (sometimes also known as second companion form) and
because the companion form of K2+U2 is K1 since σ(K1) = σ(K2+
U2). By taking transposes of the previous equations we have found
the desired transformation that concludes the proof in case that
(12) holds. Consider the sequence of conditions form = 1, 2, . . .:

K T2 x =
(
K T2 + U

T
2

)
x,(

K T2
)2
x =

((
K T2
)2
+ K T2U

T
2 + U

T
2K
T
2 +

(
UT2
)2)
x,

... =
...

By induction these conditions require that

UT2
(
K T2
)m
x = 0, for m = 0, . . . , nc − 2.

Consider now the intersection of the kernels of UT2
(
K T2
)m for m =

0, . . . , nc − 2

V :=
nc−2⋂
m=0

kerUT2
(
K T2
)m
.

As rank
{
UT2
}
= 1, the kernel of UT2

(
K T2
)m has dimension nc −1

for m = 0, . . . , nc − 2 and so by dimensionality reasons we find
that dim V ≥ 1. Choose an x ∈ V , x 6= 0. If the set of vectors
{xm,m = 0, . . . , nc − 1} is linearly independent, then (12) holds
and we are done. If this is not the case this means that the lower
dimensional subspace

W := span {xm | m = 0, . . . , nc − 1}

is K T2 -invariant and by definition is contained in the kernel of U
T
2 .

Hence on this lower dimensional subspace K T2 is not perturbed by
UT2 . We may then repeat the argument on the restriction of K

T
2 to

an invariant subspace complementary to W . This procedure can
be iterated until (12) holds on one any of these lower dimensional
complementary subspaces. For reasons of dimensionality this pro-
cedure terminates and the assertion follows. �

Theorem 4.1 reduces the complexity of the stability analysis
of the switched system considerably. To guarantee asymptotic
stability of the switched system (4) with N = 2 we only need to
consider the asymptotic stability of the switched system given by

ẋ = K(t)x, K(t) ∈ {K1, . . . , KN} ⊂ Rnc×nc (13)
for arbitrary switching signals. Thus, the stability problem of the
switched system (4) of order np + 2nc is reduced to the stability
problem of a switched system of order nc .
Comment: This finding is useful as it implies that control design
methods for lower dimensional systems can sometimes be applied



2596 K. Wulff et al. / Automatica 45 (2009) 2592–2596
to higher dimensional ones. For example, in Wulff et al. (2005) we
use a third-order design procedure to guarantee stability of a sixth-
order switched system.
Finally, we note that the equivalence of the asymptotic stability

of the system (4) and (13) is less obvious than intuition might
suggest. In this context it is worth noting that the switched
system (13) is not explicitly part of the closed-loop system (4).
For the switched system (13) the controller dynamics Kk act on
the same state-space; however the controllers in the closed-loop
system (4) are realised as individual LTI systems and therefore do
not share the states. Finally, the above algebra suggests that the
switched closed-loop system (4) is stable if and only if the switched
system (13) consisting of the controllers form a stable system. We
conclude our paper by noting that, unfortunately, that is generally
not true as the following example shows.

Example 4.1. Consider the switched process (2) with N = 3,
where

A1 =
(

0 1
−11.84 −2.4

)
, A2 =

(
0 1

−34.28 −11.6

)
,

A3 =
(
0 1
−29.7 −11

)
and bk = (0 1)T , cTk = (1 0) for k = 1, 2, 3, and let the requested
target poles be given by Λt = {−1 ± 3i,−1.8,−8}. It can be
verified that the pole-placement requirement is satisfied by the
following set of controllers (3) with

K1 =
(
0 1
−9.6 −9.4

)
, K2 =

(
0 1
−7.4 −0.2

)
,

K3 =
(
0 1
−5.5 −0.8

)
,

and mT1 = (30.34 − 7.536), mT2 = (−109.7 34.1), mT3 =
(−19.35 42.54), and lTk = (0 1), jk = 0 for k = 1, 2, 3. It can
be numerically verified that the lower dimensional system is
quadratically stable. However, the periodic switching signal asso-
ciatedwith themonodromymatrixΦ(t+T , t) = eH3T3eH2T2eH1T1 is
unstable for T = T1+T2+T3 and T1 = 0.72, T2 = 0.32, T3 = 0.22.

5. Conclusions

In this paperwe consider feedback design for SISO switched lin-
ear systems based on analytic control design methods. We investi-
gate the stability properties of the resulting closed-loop switched
system and show in our main results that the complexity of this
analytic design process can be significantly reduced by exploiting
the structure of the closed-loop system. This reduction expands the
range of applications of available analytic tools for switched sys-
tems of low order. The application of our results may e.g. allow
for the analysis of switched control systems with standard con-
trollers such as PID controllers, by resorting to stability conditions
for second-order switched systems. The analytic nature of these
conditions supports the classical control design.
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