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Summary

In this thesis we address dynamic systems problems that arise from the study of biochemical
networks. Here we prefer a rigorous treatment of the differential equations that govern their
spatio-temporal dynamics, at the cost of studying simplified scenarios of the biological systems
under study. Although these simplified scenarios do not model all aspects of the complex inter-
play in the biological system, they are derived to study the relationship between specific causes
and effects. However, by abstracting the systems under study, we obtain the benefit of having
models that represent a large variety of processes. For instance, a simple activation mechanism
studied here may be used to model the autoactivation of the effector caspase in the apoptosis
pathway, the activation of the Akt/mTOR complex implicated in muscular growth, and two-
species population dynamics.

In particular, we derive analytical expressions for the equilibrium points of a circular pro-
tein activation mechanism with an arbitrary number of intermediate steps and characterise its
local stability. Later we analyse the signalling progression due to a protein autoactivation in
a long cell. Furthermore, we avail of a projection method for partial differential equations to
obtain associated ordinary differential equations that will assist on the reduction of the compu-
tational load for the numerical solution of a class of reaction diffusion networks. This projection
method will also be used to compute the time-integral of some species concentration in a class
of reaction-diffusion networks.

Since we chose a theoretical approach, our results provide analytical expressions that link
the kinetic parameters and topology of the reaction network with its dynamical behaviour. These
formulas can be further studied to analyse the sensitivity of the systems characteristic with re-
spect to variation of parameters as well as explicitly unveiling the main processes that affect
the features of interest. We believe that these theoretical approaches provide a deeper insight in
selected biochemical pathways such as: the Akt/mTOR activation pathway, mediated by the IGF
receptor; the core apoptosis pathway; and Ca2+ homeostasis in non-excitable cells.
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Chapter 1
Introduction

The study of biological systems by analytical approaches is not a new idea. In the middle of the
20th century, Erwin Schrödiger posed the question: ‘Can the phenomena present in the living
matter be explained with current physical knowledge? Or are they explained with a new physical
law?’ [1]

Since that time there have been many advances in the understanding of living systems. Sev-
eral perspectives are now available to explain the different levels of interactions in biological
systems. For example, Mathematical and Theoretical Biology provide an accurate description of
complex biological processes by means of the study of the equations that describe them [2]. In
contrast, when the joint work of large-scale signalling networks is of interest, Systems Biology
links the behaviours of molecules to system functions [3, 4, 5]. Given the number of develop-
ments in this field, we have reached the possibility of theoretically design biological pathways
with a prescribed behaviour. This engineering design approach is adopted by Synthetic Biology
[6, 7], which, not forgetting the principal motivation of studying living systems, also intends to
unveil the design principles that underpin the dynamical properties of these systems.

In addition to the common objective, these disciplines are also unified by the use of math-
ematical tools to provide a deeper insight into the process under study. Just as the biological
phenomena vary over a wide range, the set of mathematical tools that describe them are also
very diverse. In this work we apply several mathematical tools that are used in Control Engi-
neering to study the differential equations that govern the dynamics of the states of the system.
From this presentation, the mathematical approaches might appear as a pure service discipline
towards the understanding of living systems. However, the analysis of such systems have posed
new theoretical problems that, in turn, enrich the mathematical machinery [8, 9].

In the biochemical context, we focus on reaction systems that can be idealised as isobaric,
isochoric, isothermal processes. This allows us to determine the state of the reaction network
by means of the concentrations of the species in the network. We focus on continuous time
differential equations that describe the variation of the species concentrations in time. In general,
these differential equations are nonlinear and their dynamical behaviour is as rich as the range
of processes that they model. This includes, but is not limited to: oscillations which define
rhythms in cellular and population systems [10, 11]; bistable behaviours [12], required to toggle
the biological state of the reaction network in a plethora of processes, such as cell death [13];
and, among many others, relaxation-oscillation mechanisms that model the spiking voltage in
neurons [14].
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CHAPTER 1. INTRODUCTION

The temporal description of the species concentrations can be understood as an average of
the effects among a population. However, a more detailed description of the process shows how
the species progress in the spatial domain in which they are constrained. This progression can
be described by differential equations that, in addition to the temporal variation, also depend
on spatial coordinates. We consider that the spatial dynamics of the species is only driven by
thermally induced random molecular vibrations in the spatial domain. This leads to reaction
diffusion systems that are described by partial differential equations, which enhance the range
of dynamics phenomena that the continuous time differential equations exhibit [15]. Foremost,
partial differential equations are capable of describing the interaction of the species in the spatial
domain with the surroundings, by means of the boundary conditions. Moreover, there are some
effects that ordinary differential equations do not produce, such as gradient and pattern formation
of species [16, 17, 2], which are of paramount importance in cell differentiation processes [18].
In addition, we can also model a sustained signal progression in the spatial domain in the form of
travelling waves and fronts. Such waves can be used in epidemiology to describe the progression
of an infectious disease [19] or to show signal progression within a cell [20], for instance.

This accurate description of biochemical processes come at the price of having nonlinear
models that are often complex and difficult to tackle by analytical methods. Towards this end,
in this work we have developed a set of mathematical tools, in a general framework, to analyse
some dynamic characteristics of the continuous time and space differential equations that arise
from the models of biochemical reaction networks. These results characterise the equilibrium
set of a reaction-diffusion network, the stability analysis of two specific reaction networks, the
reduction of the computational time in a class of reaction diffusion system, and the computation
of the time-integral of selected species.

The common objective of these results is to provide a quantitative, rather than qualitative, de-
scription of this set of characteristics. We support this quantitative approach by the derivation of
analytical expressions that link the topology and parameters of the reaction networks with their
dynamical behaviour. We believe this approach will enhance the understanding of the process
under study. Moreover, by this perspective, we can distinguish if the phenomenon under consid-
eration is a consequence of fine-tuned kinetic parameters or arise from structural properties of
the reaction system’s topology [21], assuming the caveats of the model are reasonable.

To present these ideas, we start by deriving the differential equations that describe the species
concentrations in time and space of a reaction network. In addition, in Chapter 2 we also com-
pute the equilibrium set for a general reaction network and, in particular, for a circular protein
activation mechanism. Having characterised the equilibrium set, in Chapter 3 we quantify dif-
ferent performance indices for two mechanisms of positive feedback loops that represent protein
activation. In turn, Chapter 4 avails of a projection method for partial differential equations to
derive reduced order models, which we use to perform rapid simulations of a class of reaction
diffusion systems. We also utilise this projection method to compute the time-integral of some
species in a reaction-(diffusion) network. Finally, in Chapter 5 we exemplify the use of the the-
oretical results presented in the previous chapters to selected pathways such as: the Akt/mTOR
pathway, the core of the apoptosis pathway, and calcium dynamics in non-excitable cells.

1.1 List of Contributions
The results derived in this thesis are the product of collaboration of specialists in diverse disci-
plines and are currently reported in peer-reviewed journals. Specifically, the study of a protein
autoactivation mechanism in a unidimensional spatial domain has been reported in
F. López-Caamal, M. R. García, R. H. Middleton, and H. J. Huber. Positive feedback in the

2



1.1. LIST OF CONTRIBUTIONS

Akt/mTOR pathway and its implications for growth signal progression in skeletal muscle cells:
An analytical study. Journal of Theoretical Biology, 301(0):15–27, 2012.
This analysis is motivated by the study of skeletal muscular growth, mediated by the PI3K/ Akt/
mTOR pathway. In this thesis, we present a simplified analysis of this study in Example 3.2 and
highlight some of the conclusions in Section 5.1.

As a generalisation of the pathway studied above, we analyse a circular protein activation
mechanism with an arbitrary number of intermediate steps of activation. We present these re-
sults in
F. López-Caamal, R.H. Middleton, and H.J. Huber. Equilibria and stability of a class of positive
feedback loops: Mathematical analysis and its application to caspase-dependent apoptosis, To
appear. Journal of Mathematical Biology, 2013,
where we study the local stability of the two steady states that this network exhibit by means
of the computation of the input-output gain of the subsystems that compose the pathway. In
this thesis, we show the computation of the fixed points in Example 2.2, whereas the study of
their stability is shown in Example 3.1. Some implications in the caspase-6-mediated apoptosis
pathway are presented in Section 5.2.

Moreover, in Section 2.3.1, we show that the equilibrium points of a class of reaction net-
work belongs to a lower dimensional space characterised by the orthogonal complement to the
reaction vectors associated to the nonlinear reaction rates.

Availing of a projection method for partial differential equations, we identify a class of
reaction-diffusion systems for which we can reduce the computational load to obtain their nu-
merical solutions. This is a hybrid approach that uses the analytical solution for some species
and a numerical solution of the reduced order model associated to the rest of the species. From
this study arose
López-Caamal F., M. R. García, and R. H. Middleton. Reducing computational time via order
reduction of a class of reaction-diffusion system. In Proceedings of the American Control Con-
ference, 2012.
There, we also introduce a matrix notation to handle the reduced order models that result from
the projection approach.

For a biochemical reaction network, we compute a characteristic of the cues that have been
implicated in downstream signalisation: the integral of species concentration. The computation
of the time-integral of a linear combination of species was reported in
F. López-Caamal, D. A. Oyarzún and, J. A. Moreno, and D. Kalamatianos. Control structure
and limitations of biochemical networks. In Proceedings of the American Control Conference,
pages 6668–6673, 2010.
We present this theoretical derivation in Section 4.4.1.

In turn, the computation of some species in the reaction network, reported here in Section
4.4.2, has supported the identification of a linear characteristic for signal transduction in the epi-
dermal growth factor receptor, in the paper currently under review a
D. A. Oyarzún, Jo L. Bramhall, F. López-Caamal, Duncan Jodrell, and Ben-Fillippo Krippen-
dorff. Deconvolution of growth factor signalling demonstrates linear information transmission
of the EGFR, Under review. 2012,

Finally, we present in Section 4.4.3 the computation of the time-integral of some species in
a reaction-diffusion network. These results are reported in

3



CHAPTER 1. INTRODUCTION

F López-Caamal, M. R. García, D. A. Oyarzún, and R.H. Middleton. Analytic computation of
the integrated response in nonlinear reaction-diffusion systems. In Proceedings of the 51st IEEE
Conference on Decision and Control, 2012, and
D. A. Oyarzún, F. López-Caamal, Míriam R. García, and R. H. Middleton. Cumulative signal
transmission in nonlinear reaction-diffusion networks, Under review. 2013.
Moreover, we are currently using these results to the study Ca2+ homeostasis in nonexcitable
cells as outlined in Section 5.3.

1.2 Notation
To conclude this chapter, we present the notation used throughout the thesis. We denote the set
of real numbers with R and the set of complex numbers with C. Table 1.1, shows the notation
used for scalar, vectors and matrices. Likewise Table 1.2 presents the notation for used to denote

Table 1.1: Notation for vectors and matrices

Element Notation
Real or complex number a ∈ R or ∈ C
Column vector with n real elements v ∈ Rn
Matrix with n rows and m columns N ∈ Rn×m

some characteristics of matrices, such as rank and nullity of a matrix. In turn, Table 1.3 shows

Table 1.2: Characteristics of a matrix

Characteristic Notation
Rank of N ∈ Rn×m rank (N) ∈ R
Dimension of the column null space of N ∈ Rn×m nullity (N) ∈ R
Maximum eigenvalue of A ∈ Rn×n λ̄ (A)

the notation used for operation applied to vectors and matrices. We note that the operation of
integration and differentiation of a matrix are applied element-wise.

Table 1.3: Notation for matrix operations

Operation Notation
Inverse of A ∈ Rn×n A−1 ∈ Rn×n
Transpose of P ∈ Rn×m PT ∈ Rm×n
Left Pseudo Inverse of N N+

Orthogonal complement of N’s column space N⊥

Complex conjugate of H ∈ Cn×m H∗ ∈ Cm×n
Differentiation of a scalar function f w.r.t. a vector c ∈ Rn d

dc f ∈ R1×n

Differentiation of a vector c ∈ Rn w.r.t. a scalar t d
dtc ∈ Rn

Laplacian of c ∈ Rn ∇2c ∈ Rn
Kronecker product of N ∈ Rn×m and P ∈ Rp×q N⊗P ∈ Rnp×mq
Vectorisation of N ∈ Rn×m vec (N) ∈ Rnm
Inner product of v and w 〈v,w〉 or v ·w or vTw
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Chapter 2
Models of Biochemical Reaction
Networks

Contents
2.1 Reaction Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Equilibrium Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Equilibria Set in a Lower Dimensional Space . . . . . . . . . . . . . 14
2.4 Reaction-Diffusion Systems . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Homogeneous Steady State . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Heterogeneous Steady State . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Error Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this chapter we present a constructive approach to the formulation of the dynamical mod-
els which will be analysed in the remaining chapters of this thesis. Firstly, from biomolecular
interactions we derive a set of continuous time ordinary differential equations (ODEs) that de-
scribes the variation in time of the species’ concentration. Secondly, we account for the diffusion
of the species in a given spatial domain in order to derive a set of partial differential equations
(PDEs) that govern the dynamical behaviour in both time and space. We note that these two
classes of differential equations are by no means exhaustive. There is a wide range of dynami-
cal models available in the literature to study the behaviour of biochemical reaction networks.
However, we will limit our attention to ODE and PDE formulations. To conclude this chapter,
we will comment on the equilibrium set of the reaction(-diffusion) networks. And finally, we ex-
emplify the computation of the equilibrium set of a circular protein activation of variable length.

Once a qualitative understanding of a particular biochemical process has been achieved, a
further quantitative characterisation of the systems properties helps to classify them as structural
properties of the biochemical pathway or consequences of fine-tuned kinetic parameters. Thus,
providing a clearer understanding of the process itself. A key tool to perform these quantitative

5



CHAPTER 2. MODELS OF BIOCHEMICAL REACTION NETWORKS

analyses are the mathematical models of biochemical reaction networks. In addition these pro-
vide a means to systematically propose and test hypotheses on the dynamics of the biological
process under study. The outcome of this analysis further illuminates the principles that underpin
the biochemical processes under study.

Given this twofold advantage of using mathematical models, in the remaining of this work we
present a set of analytical approaches that will assist in the study of such models. In this chapter
we present generic mathematical expressions that describe the reaction rates of the species in
a reaction network. Furthermore, from these reaction rates, we build-up models that describe
the rate of change of the species concentrations in space and/or time. Later on we provide
a general view of the equilibrium set of a reaction network and exemplify its calculation in
protein autoactivation with an arbitrary number of intermediate activation steps. To finalise, we
avail of a coordinate transformation to express the systems in the deviation coordinates from an
equilibrium point of the system.

2.1 Reaction Mechanisms
When two affine chemical species meet their electro-chemical interaction leads to the formation
of a third species. Although this simple conception of a reaction broadly describes chemical
interaction among species, it does not indicate the rich spectrum of mechanisms by which a
reaction can occur. Consequently, the mathematical laws that describe the rate at which the
reactants become products similarly follows a rich spectrum. In the rest of this section we
provide an overview of the mathematical expressions that model biochemical reaction rates.

Firstly, we note that molecular interactions behave as discrete stochastic events; that is to
say, the concentration of one species in a future time t+dt, depends on the concentration at time
t, and the probability for the reaction to occur [29]. The literature in this regard ranges from
the reduction of the computational load required to approximate the moments of the probability
density function of the concentrations in time [30], to the analytical treatment of the stochastic
differential equation that allows the inference of the properties of the system itself, such as the
identification of the systems parameters [31]. For instance, in the simple reaction

A
kf−−⇀↽−−
kb

B, (2.1)

the probability P (A, t) of a molecule being in state A at time t is determined by

d

dt
P (A, t) = kbP (B, t)− kfP (A, t).

The equation above governs the change of the probability of the reaction to happen in time.
Although an analytical treatment is possible for simple cases, for more complex reactions it is
necessary to perform a huge amount of simulations in order to determine the characteristic of the
resulting time course of the probabilities of being in states A, B. Although the molecular inter-
action is driven by the random collision of reactants, when their concentration is large enough,
we can idealise the reaction as a deterministic, continuous process. We adopt this approach in
the following. Depending on the details of the chemical interaction of the reactants there are
different mathematical models that reproduce the reaction rates behaviour.

A widely used principle that supports the mathematical model of a reaction rate under the
presence of a large enough concentration of the reactants, is the Law of Mass Action. For a
detailed treatment of this law we refer the reader to [32], where further implications about the
positivity and stability of the dynamical systems that arise from the Law of Mass Action can be

6



2.1. REACTION MECHANISMS

found. This law states that the rate at which the reacting substrates are transformed to products
is proportional to the product of the concentrations raised to the power of their molecularity. In
what follows we will denote the concentration of the species A by [A] ∈ R+. That is to say, the
reaction rate v of the reaction

aA+ bB
k−→ C (2.2)

is given by

v ∝ [A]a[B]b.

The equality is achieved by the proportionality parameter k, defined as

k(T ) = A exp

(
− Ea
RT

)
.

Where

A Arrhenius constant Reaction dependent
Ea Activation energy Reaction dependent [ kJmol ]
R Universal Gas constant 8.314× 10−3

[
kJ

molK

]
T Absolute temperature [K].

In what follows we will focus on biochemical reactions under a constant temperature environ-
ment. Consequently, we will consider the parameter k to be constant for each reaction.

Although widely used, the Law of Mass Action does not always give an accurate description
of the reaction rate, especially when a reaction comprises several intermediate chemical interac-
tions. For such a case, we can avail of a family of sigmoid curves that describe the reaction rate
[4]. Consider the reaction in (2.2) where we have set a, b = 1. Let A be the substrate that satu-
rates under the presence of the species B. Then the rate of this reaction may take the functional
form

v = k
[A]m

Km + [A]m
[B],

here m ∈ R+ is the Hill coefficient of the reaction and K ∈ R is a constant that determines the
location inflexion point of the sigmoid characteristic.

A more general reaction rate model is the Power Law [33], which is used to fit experimental
data for a broad kind of reaction. Consider again the reaction in (2.2). The reaction rate based
on the Power Law is

v = k[A]g1 [B]g2 .

Here g1 and g2 are positive real numbers that represent the cooperativity of the species in the
reaction. Although this functional form of the reaction rate v resembles that obtained with the
Mass Action Law, the coefficients g do not represent any particular characteristic of the reaction,
but combines several kinetic effects so as to reproduce the macroscopic behaviour of the reaction.

So far in this section, we considered some of the main laws that are used to model reaction
rates. However, we just focused on a single reaction. In contrast, a reaction network comprises a
relatively large number of reactions. In the following section we present the dynamical models
of reaction networks, which are widely available in the literature.

7



CHAPTER 2. MODELS OF BIOCHEMICAL REACTION NETWORKS

2.2 Reaction Networks
Once we have defined each of the reactions, a general way to express their interaction is via the
following expression for the jth reaction:

n∑
i=1

aijSi
vj−−⇀↽−−

n∑
i=1

bijSi. (2.3)

Here Si is the ith reactant or product for the jth reaction. In addition, i ∈ [1, n] and j ∈ [1,m].
The real numbers aij and bij denote the yield or stoichiometric coefficients of the corresponding
species. When a reaction can be approximated as irreversible, we will just use a forward arrow
to describe the species interaction. Note that we will focus on biological systems that can be
idealized as adiabatic and isothermal. This allows us to fully determine the state of the network
exclusively from the species’ concentration. An intuitive way to built these models up is to add
or subtract the rates at which each species is being created or consumed, in order to obtain the
differential equation that governs the concentration dynamics. That is to say

d

dt
[Si] =

∑
j

(bij − aij)vj . (2.4)

Nevertheless, this intuitive approach might require a big effort when the number of species
is large. One systematic approach to modelling the reaction network is to define a matrix N
that links the reaction rates v(c) with the change rate of the species concentration gathered in c.
Accounting for external inputs, u, a compact notation for this kind of system is given by

d

dt
c = Nv(c) + Bu. (2.5)

Here, c(t) : Rn → Rn is a vector containing the species concentrations in (2.3). The rates at
which the reactants are becoming products form the vector v(c(t)) : R+ → Rm. Apart from
simple reactions such as synthesis and degradation, these reaction rates are nonlinear functions
of the state c(t), which can be modelled by well-known principles such as the Mass Action Law,
Power Law, and Hill kinetics, defined in Section 2.1. Further, u(t) : R+ → Rq accounts for
the influx and efflux rates of the relevant species, resulting from the interaction of the reaction
network with its surroundings. Accordingly, B ∈ Rn×q shows how this interaction affects the
change rate of the species. The link from reaction rates to the actual concentration change is the
stoichiometric matrix N ∈ Rn×m, whose ijth element is defined as

Nij = bij − aij .

From the definition above, we note that each column of the matrix N is obtained by subtracting
a vector composed of the products yield coefficients minus those of the reactants. In the rest of
this work we exploit the properties of the linear map N, which has been well characterised in
the literature. For instance, the analysis of the subspaces of the stoichiometric matrix has led to
the characterisation of different influx and efflux subspaces, hence showing the role and effects
of the network with its surroundings [34]. In a related line of work, the left null space of N has
been implicated in the characterisation of achievable biological states of a network [35]. Also
a further singular value decomposition of the stoichiometric matrix, has been used to correlate
systemic properties of genome-scale reaction networks [36].

One important milestone in the analysis of the differential equations is the characterisation of
the equilibrium set. Hence, in the following section we present the definitions of the equilibrium
points and a generic approach to obtain them for the systems in (2.5).

8
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2.3 Equilibrium Set
In this section, we characterise the manifold to which the equilibrium set of the reaction network
in (2.5) belongs. Without loss of generality, we assume that the external influxes represented
by u in (2.5) equal zero. The existence of equilibrium sets has been investigated by different
approaches. The Chemical Reaction Network Theory (CRNT) of Feinberg, Horn, and Jackson
calculates the number of equilibrium points of a chemical reaction network and investigates
their local stability [37]. Likewise, in [38] the number of positive equilibrium points is studied
by means of the degree theory for general complex reaction networks. However, both approaches
fail to provide formulas to calculate equilibrium concentrations of the species, in terms of the
kinetic parameters. The equilibrium points are closely related to the column null space of the
stoichiometric matrix N. We recall that all the fixed points (denoted as c̄ ∈ Rn+) satisfy

Nv (c̄) = 0. (2.6)

Let the columns of K ∈ Rm×r form a basis for this null space. The Rank Nullity Theorem
states that the dimension of the (right) null space of a matrix X (also denoted as nullity (X)) is
the difference of the number of the columns of X and the rank of X [39]. Hence, the number of
columns of K is r = #col(N) − rank (N). Since (2.6) implies that v (c̄) ∈ Null(N), we can
express any element of a vector space as a linear combination of its basis. Hence, there exists a
vector a ∈ Rr such that

Ka = v (c̄). (2.7)

Although the solutions of the equation above for c̄ are the equilibrium points of the system, it
is necessary to invert the nonlinear map v(◦). This is a difficult task to address in a general
framework. We, furthermore, note that if the null space of N is trivial, then the equilibrium
point c̄ must comply with v(c̄) = 0. In order to exemplify the use of the null space for the
computation of the equilibrium set, let us consider a simple protein autoactivation mechanism.

Example 2.1. For this example, all superindexes will be used to denote different variables,
rather than an exponent. That is to say c11 and c21 refer to different variables. In turn, when
required, the operation of exponentiation will be denoted with round brackets, for example:
cij × cij =

(
cij
)2

. The autoactivation mechanism is represented by the interaction of a protein
P 1 with its activated version A1 to produce two molecules of A1. We also consider a turnover
for P 1 and degradation for A1. These effects can be described by the following reactions

P 1 +A1 k11−→ 2A1,

A1 k12−→ 0,

P 1
k13f−−⇀↽−−
k13b

0.

By means of the vector order c = ([P 1] [A1])T and assuming a mass-action reaction mecha-
nism, the stoichiometric matrix N and the reaction vector v (c) are

N =

(
−1 0 −1

1 −1 0

)
, (2.8)

v (c) =

 k1
1c

1
1c

1
2

k1
2c

1
2

k1
3fc

1
1 − k1

3b

 . (2.9)

9
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In particular for our case study, the dimension of the Null Space is r = 3− 2 = 1 and

K =

−1
−1

1

 . (2.10)

From (2.7) and (2.9), we conclude

k1
1 c̄

1
1c̄

1
2 = −a, (2.11a)

k1
2 c̄

1
2 = −a, (2.11b)

k1
3f c̄

1
1 − k1

3b = a. (2.11c)

In order to solve this system, we express c̄12 and c̄11 as a function of a as follows

c̄11 =
a + k1

3b

k1
3f

, (2.12a)

c̄12 = −a


k1
2

. (2.12b)

The substitution of these two expressions in (2.11a), yields

−a = − k1
1

k1
2k

1
3f

a(a + k1
3b),

0 = a

(
a −

k1
2k

1
3f − k1

1k
1
3b

k1
1

)
. (2.13)

Finally, from (2.12b) and (2.12a) we have that the two equilibrium points of this network are

Off steady state :c̄1
off =

(
k1

3b

k1
3f

0

)T
, (2.14a)

On steady state :c̄1
on =

(
k1

2

k1
1

k1
3b

k1
2

−
k1

3f

k1
1

)T
. (2.14b)

It is noteworthy that we can parametrise the solution of the augmented system (2.11) by a,
as shown in (2.13). Moreover, we remark that the dimension of the null space of N is 1,
so we only require one scalar, a, to represent the linear combination that spans Null(N). In
addition, the name off and on steady state, follows from the absence or presence of active protein
concentration in the respective equilibrium point.

In the following example, as a generalisation of the previous example, we obtain the equilib-
rium points of the circular and sequential autoactivation depicted in Figure 2.1.

Example 2.2. In this example we obtain the equilibria set for a sequential protein activation
and carry forward the notation from the previous example. Consider an activation loop of p-tier,
as shown in Figure 2.1, where the last active protein A1 activates the first inactive protein P p.
Therefore, the index i should be understood as having modulo p. In addition we will consider
that the i + 1th active protein Ai+1 activates the ith inactive protein P i, by means of the the

10
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Pp

P3

P2

P1

Figure 2.1: Sequential protein activation network. The active version of each protein Ai+1 (arrows)
activates the protein P i, as described by the reaction network (circles) in (2.15).

forthcoming reaction network

P i +Ai+1 ki1−→ Ai +Ai+1, (2.15a)

Ai
ki2−→ 0, (2.15b)

P i
ki3f−−⇀↽−−
ki3b

0. (2.15c)

By letting

c =

c

...
cp

 (2.16)

and

ci =

(
[P i]
[Ai]

)
, (2.17)

the stoichiometric matrix and reaction rate vector are given by

N =


N 0 . . . 0
0 N . . . 0
...

...
. . .

...
0 0 . . . Np

 , (2.18a)

v(c) =


v (c, c)
v (c, c)

...
v (cp, c)

 . (2.18b)

Note that the same reaction topology holds for all tiers, and therefore N = N = . . . = Np.
Moreover, N has already been defined in (2.8). In turn

v
(
ci, ci+

)
=

 ki1c
i
1c
i+1
2

ki2c
i
2

ki3fc
i
1 − ki3b.


11
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A basis for Null(N) is given by

K =


K 0 . . . 0
0 K . . . 0
...

...
. . .

...
0 0 . . . Kp

 .

Similarly to N, we note that K = K = . . . = Kp. The definition of K is given in (2.10).
Now, the equilibrium set satisfies

Nv(c̄) = 0 =⇒ Niv
(
c̄i, c̄i+

)
= 0 ∀ i ∈ [1, p],

which, in terms of the Nis null space, becomes

Kiai = v
(
c̄i, c̄i+

)
.

Or in extenso

ki1c̄
i
1c̄
i+1
2 = −ai, (2.19a)

ki2c̄
i
2 = −ai, (2.19b)

ki3f c̄
i
1 − ki3b = ai. (2.19c)

Analogously to the one-tier feedback, we conclude that the solution for the equation above can
be parametrized by ai, as follows. From (2.19c)

c̄i1 =
ai + ki3b
ki3f

, (2.20a)

and from (2.19b)

c̄i2 = − a
i

ki2
. (2.20b)

Whence, substituting (2.20) into (2.19a), we obtain

ai+ =
αiai

1 + βiai
. (2.21)

Where we have defined

αi =
ki+1

2 ki3f
ki1k

i
3b

, (2.22a)

βi =
1

ki3b
; (2.22b)

To find a closed-form expression for all ai, we note that a, a and a can be expressed in terms
of a, as follows

a = α1 a

1 + β1a
,

a = α1α2 a

1 + [β1 + α1β2] a
,

a =
a
∏3
j=1 α

j

1 + [β1 + α1β2 + α1α2β3] a
.

12
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From which we conclude

ai+ =
a
∏i
j=1 α

j

1 +
[∑i

k=1 β
k
∏k−1
j=1 α

j
]
a
. (2.23)

When i = p, the expression above becomes

a =
a
∏p
j=1 α

j

1 +
[∑p

k=1 β
k
∏k−1
j=1 α

j
]
a
. (2.24)

By letting

λ =

p∏
j=1

αj ,

σ =

p∑
k=1

βk
k−1∏
j=1

αj ,

we can rewrite (2.24) as

a
(
a − λ− 1

σ

)
= 0, (2.25)

which is a second order polynomial in a, with a trivial solution. Let n (z) and d (z) denote the
numerator and denominator of the rational term z. In term of the parameters, the non-trivial
root becomes

λ− 1

σ
=

n (λ)− d (λ)

d (λ)σ
,

λ− 1

σ
=

∏p
j=1 k

j+1
2 kj3f −

∏p
j=1 k

j
1k
j
3b∑p

k=1 k
k
1

∏k−1
j=1 k

j+1
2 kj3f

∏p
j=k+1 k

j
1k
j
3b

.

Where we have used the definition of αi in (2.22a). The solution for the remaining ais can be
found explicitly through (2.23), as follows

ai+ =
n (a)

∏i
j=1 α

j

d (a) +
[∑i

k=1 β
k
∏k−1
j=1 α

j
]

n (a)
.

Considering a’s non-trivial root in (2.25), we have

ai+ =
(λ− 1)

∏i
j=1 α

j

σ +
[∑i

k=1 β
k
∏k−1
j=1 α

j
]

(λ− 1)

=

p∏
j=1

n
(
αj
)
−

p∏
j=1

d
(
αj
)

i∏
j=1

d
(
αj
) p∑
k=i+1

kk1 k−1∏
j=i+1

n
(
αj
) p∏
j=k+1

d
(
αj
)+

+

p∏
j=i+1

n
(
αj
) i∑
k=1

kk1 k−1∏
j=1

n
(
αj
) i∏
j=k+1

d
(
αj
) . (2.26)
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Finally, to obtain a closed form expression of the equilibrium points, we substitute the former
expression in (2.20). It is noteworthy, that despite having an arbitrary number of intermediate
activation steps p, this reaction network has only two steady states, characterised by ai+ = 0
or by the expression in (2.26), respectively. From (2.20) we therefore have

Off steady state :c̄i+1
off =

(
ki+1

3b

ki+1
3f

0

)T
, (2.27a)

On steady state :c̄i+1
on =

(
ai+ + ki+1

3b

ki+1
3f

− ai+

ki+1
2

)T
, (2.27b)

Since all kinetic parameters kij are positive, all inactive proteins of the off steady state have
positive concentrations. As per definition of this state, the concentration of all active proteins
are zero. Therefore, all concentration of proteins are non-negative and this state is biologically
meaningful. The existence condition for a meaningful on steady state is more subtle and depends
on the choice of kinetic parameters. In particular, we note that from (2.19a), c̄i1 may be expressed
as the ratio of positive terms (see the definition of d

(
ai+

)
in (2.26)):

c̄i1 =
ki+1

2

ki1

ai

ai+
,

c̄i1 =
ki+1

2 d
(
ai+

)
ki1d (ai)

. (2.28)

Hence, we can assure that all concentrations of the inactive proteins for the on steady state are
positive. In turn, for all the concentrations of the active proteins to be positive, we require ai+

to be negative since the denominator of ai+ in (2.26) is positive. For every i, the numerator of
ai+ is the same. Thus, all the active proteins are positive when

p∏
j=1

kj1k
j
3b −

p∏
j=1

kj2k
j
3f > 0. (2.29)

Furthermore, this condition is independent of i, therefore unspecific for the actual protein within
the circular activation network and, consequently, a general condition for a meaningful on
steady state. In the formula above, we have also replaced j + 1 by j in the second product
by exploiting the modularity of the product with respect to p.

We conclude by stating that the existence of a biologically meaningful on steady state requires
that the product of all the synthesis and activation rates of the inactive proteins is greater than
the product of all degradation rates of the active and inactive proteins.

The previous two examples relate the equilibrium point with the null space of the stoichio-
metric matrix, yet requires the invertibility of the nonlinear map v (c̄). A different approach,
which relies on a suitable linear coordinate transformation, shows that the equilibrium set of
the reaction network in (2.5) belongs to a lower dimensional space, spanned by the columns of
the stoichiometric matrix associated to nonlinear reaction rates. We explore these ideas in the
following.

2.3.1 Equilibria Set in a Lower Dimensional Space
Here, we consider all reactions to be unidirectional. Consequently, we will represent a reversible
reaction as two different reactions. This will allow us to split the reaction vector in nonlinear,

14



2.3. EQUILIBRIUM SET

linear and constant functions, i.e.,

v(c) =

vNL

vL

v0

 : Rn+ → Rm1+m2+m3 . (2.30)

It will be convenient to express vL as a linear combination of the state c

vL = Gc, (2.31)

where G ∈ Rm2×n. The partition of the reaction rate vector v(c) induces the following order
in the stoichiometric matrix

N =
(
NNL NL N0

)
∈ Rn×(m1+m2+m3). (2.32)

We will focus on finding all states c̄ such that

Nv(c̄) + Bū = 0. (2.33)

For the sake of simplicity, in the rest of this section we assume that NNL is full column rank.
The extension otherwise, is straightforward. Consider a linear transformation z = Tc, defined
as (

z1

z2

)
=

(
NNL

⊥

NNL
T

)
c. (2.34)

Consequently
c =

(
NNL

⊥+ NL
T+
)
z. (2.35)

We note that NNL
⊥ vanishes (that is, has dimension zero), except when NNL is rank deficient.

In other words, to have a non-trivial NNL
⊥ we require that the number of species exceed the

number of nonlinear reactions (n > m1). In the z coordinates, the dynamics of the system (2.5)
takes the form

d

dt
z1 = NNL

⊥NLGT−1z + NNL
⊥N0v0 + NNL

⊥Bu, (2.36a)

d

dt
z2 = NNL

TNNLvNL(z) + NNL
TNLGT−1z + NNL

TN0v0 + NNL
TBu. (2.36b)

From (2.36a), the equilibrium for z1 satisfies

Rz̄2 + S = z̄1, (2.37)

where have been defined

q = nullity{NNL
T },

Rq×q 3 Σ = −
(
NNL

⊥NLGNNL
⊥+
)−1

,

Rq×(n−q) 3 R = ΣNNL
⊥NLGNNL

T+,

Rq 3 S = ΣNNL
⊥ (N0v0 + Bū)

By substituting (2.37) in (2.36b) and rearranging terms, we obtain

PvNL(Rz̄2 + S, z̄2) + Qz̄2 + W = 0. (2.38)
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Here

R(n−q)×(n−q) 3 P = NNL
TNNL,

R(n−q)×(n−q) 3 Q = NNL
TNLG

(
NNL

⊥+R + NL
T+
)
,

R(n−q) 3 W = NNL
T
(
NLGNNL

⊥+S + N0v0 + Bū
)
.

As we can see from (2.38), we only need to solve a system of (n− q) nonlinear equations with
(n − q) independent variables comprised in z̄2, in contrast to the original formulation in (2.33)
in which we require to solve n nonlinear equations in n variables. In the next section we will
consider the diffusion of species in a spatial domain to obtain a dynamical model that describes
the species concentration dynamics in time and space.

2.4 Reaction-Diffusion Systems
Although the solution to the model in (2.5) represents the temporal profile of a system, it fails
to reproduce some behaviours in which the parameter uncertainty [40], the spatial behaviour
[41, 2], and/or boundary conditions are of interest. All these effects can be modelled by Par-
tial Differential Equations (PDE), which, in contrast to the ODEs, are functions which include
derivatives with respect to more than one variable. Here we will focus on the spatio-temporal
behaviour of the reaction network, driven by the diffusion of species in only one spatial direc-
tion. We note that the PDE formulation and the results derived in the rest of the thesis can be
extended to more spatial coordinates. However, we prefer an unidimensional spatial approach to
ease our presentation.

The effect of diffusion will be modelled by Fick’s laws [42], which in general states that the
net flux of the species c across an area of interest is proportional to the species concentrations
gradient. Consequently its mathematical form is

J(t, x) = −D
∂

∂x
c(t, x), (2.39)

where the matrix D will be assumed to be constant in the spatial direction denoted by x ∈ Ω ⊂
R. To include the diffusion of molecules in addition to the reaction of species, consider a control
volume whose start point is 0 and end point is ξ ∈ Ω, with constant transversal area A. The time
rate of change of mass is given by

∂

∂t
mass = Net flux of mass + Rate of conversion of mass due to reaction.

Using the relationships (2.5) and (2.39)

∂

∂t
c(t, x)Aξ = (J(t, 0)− J(t, x))A+ (Nv(c(t, x)) + Bu)Aξ

∂

∂t
c(t, x)ξ ≈ D

∂2

∂x2
c(t, x)ξ + (Nv(c(t, x)) + Bu)ξ,

where the approximation J(t, x) ≈ J(t, 0) + ∂
∂xJ(t, x)ξ was used. Letting ξ → 0, the foregoing

equation becomes

∂

∂t
c(t, x)dξ = D

∂2

∂x2
c(t, x)dξ + (Nv(c(t, x)) + Bu)dξ.
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Integration over the spatial domain yields∫ x

0

∂

∂t
c(t, x)dξ =

∫ x

0

D
∂2

∂x2
c(t, x)dξ +

∫ x

0

(Nv(c(t, x)) + Bu)dξ.

Since this equation is valid for any selection of x ≤ ξ, we can conclude that the integrand
satisfies

∂

∂t
c(t, x) = D

∂2

∂x2
c(t, x) + Nv(c(t, x)) + Bu. (2.40)

In the following we will prefer the symbol ∇2 to denote the Laplacian operator ∂2

∂x2 . Of major
relevance in the modelling with PDEs is the correct selection of the boundary conditions, since
this describes the physical constrains that the surroundings exert over the system analysed. The
initial and boundary conditions may be represented by the expressions

c(0, x) = c0(x) ∀ x ∈ Ω ⊂ R, (2.41)

m(t, ∂Ω) = p(t, ∂Ω)c(t, ∂Ω) + q(t, ∂Ω)
∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

∀ t ∈ R+, (2.42)

where n is the outward normal vector to the boundary of Ω, denoted as ∂Ω. The expression in
(2.42) is the generic form of the boundary conditions (Robin boundary conditions). In partic-
ular, when q(t, ∂Ω) = 0 or p(t, ∂Ω) = 0 it used to represent Dirichlet or Neumann boundary
conditions respectively.

In Section 2.3 we considered the equilibrium points of the reaction network in (2.5). When
we account for the diffusion of species along with the reaction of the species, usually two types of
equilibrium points are considered: i) a spatially independent steady state (homogeneous steady
state) and ii) a steady state that depends on the spatial dimension (inhomogeneous or hetero-
geneous). For the first one, the steady states and the local stability analysis are the same as for
the ODE case. For the later one, the steady states are, in general, computed by the solution of a
2nth order ordinary differential equation subject to the boundary conditions of the original PDE.
For the sake of completeness, we review the definitions of both steady states from the literature
[2, 43].

2.4.1 Homogeneous Steady State
In [2] a homogeneous steady state, c̄, is defined as a state of a reaction-diffusion system that is
invariant w.r.t. time and space, i.e.,

∂

∂t
c̄ = ∇2c̄ = 0. (2.43)

From (2.40) we conclude that Nv(c̄) = 0, hence the homogeneous steady state of a reaction-
diffusion PDE coincides with those of the model for the reaction system.

2.4.2 Heterogeneous Steady State
In general, PDEs are also capable of presenting equilibria that although temporally invariant,
vary with the spatial dimension. For instance, morphogenes present a concentration gradient in
equilibrium that promote downstream protein activation or synthesis in a spatial-dependent rate,
leading to a different activation intensity in downstream pathways over all the spatial range of
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the cell [43]. This spatial-dependent steady state may be determined by assuming that there exist
c̃ = c̃(x) such that

∂

∂t
c̃ = 0.

Consequently, from (2.40) it follows that for any steady state

∇2c̃ = −D−1Nv(c̃), (2.44)

with the appropriate boundary conditions. Note that this resembles the nonhomogeneous Laplace
equation [44]. Since c̃ depends only on x, the expression in (2.44) is an ordinary differential
equation in x with boundary conditions.

d

dx
w1 = w2, (2.45a)

d

dx
w2 = −D−1Nv(w1). (2.45b)

Here w1 = c̃ and w2 = d
dx c̃, and the initial and boundary conditions are those of (2.44).

We note that, since the ODEs in (2.45) are nonlinear, an analytical description of the possible
heterogeneous steady states is in general difficult.

2.5 Error Coordinates
Having characterised the equilibrium set of the reaction(-diffusion) system, we can avail of a
translation of coordinates to express the dynamical model of the reaction network so that the
linear and nonlinear parts of the model appear explicitly. Consider the following change of
coordinates:

e(t, x) = c(t, x)− c̄. (2.46)

Differentiation with respect to time yields

∂

∂t
e(t, x) =

∂

∂t
c(t, x).

In terms of the coordinate e(t, x), the model in (2.40) is

∂

∂t
e(t, x) = D∇2 {e + c̄}+ Nv(e + c̄) + Bu.

Here we have considered, without loss of generality, that the external input in steady state is
zero. If it were not zero, we could express the input as deviation from the one in steady state
value and express the dynamical model in terms of this deviation coordinates for the input.

Accounting for the partition of the reaction rate vector v(c) and stoichiometric matrix N, as
given in (2.30) and (2.32), respectively, the foregoing equation becomes

∂

∂t
e(t, x) = D∇2 {e + c̄}+ NNLvNL (e + c̄) + NLG (e + c̄) + N0v0,

= D∇2e + NNL [vNL (e + c̄)− vNL (c̄)] + NNLGe, (2.47)

where we have exploited the definition of the equilibrium:

0 = D∇2c̄ + NNLvNL (c̄) + NNLGc̄ + N0v0.

The expression in (2.47), accounts for any nonlinear reaction rate vNL. Although we wont
consider in the rest of this thesis any prescribed form for the nonlinearities vNL, we shall use the
following assumptions to obtain a simpler form of (2.47).
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2.5. ERROR COORDINATES

Assumption 2.1. Let

A1. All the nonlinear reactions have at most two reactants;

A2. All the stoichiometric coefficients for the reactants are one; and

A3. The reaction rates vNL are modelled with the Mass Action Law.

Under these assumptions, the vector vNL is composed of monomials of order two that can
be expressed as a quadratic form, i.e.,

vNLi(c) = cTYic,

for a suitable selection of the elements in Yi = YT
i ∈ Rn×n. Hence the vector vNL(c) can be

expressed as

vNL(c) =
(
Im1
⊗ cT

)
Yc, (2.48)

where Y = (Y1 Y2 . . . Ym1
)T and ⊗ denotes the Kronecker product. The definition

and properties of this product can be found in [45, 46], for instance. Since c = e + c̄, Equation
(2.48) becomes

vNL(e + c̄) =
(
Im1 ⊗ (e + c̄)

T
)

Y (e + c̄) ,

=
(
Im1 ⊗ eT

)
Ye +

(
Im1 ⊗ c̄T

)
Yc̄ + 2

(
Im1 ⊗ eT

)
Yc̄,

vNL(e + c̄) = vNL (e) + vNL (c̄) + 2
(
Im1
⊗ c̄T

)
Ye. (2.49)

Hence, under the Assumptions 2.1, we can rewrite (2.47) as

∂

∂t
e = D∇2e + Ae + NNLvNL(e) + Bu, (2.50)

where

A = NLG + 2NNL

(
Im1
⊗ c̄T

)
Y. (2.51)

The dynamical system in (2.50) explicitly shows the linear and nonlinear terms for the special
case of the nonlinearities vNLdescribed in the Assumptions 2.1. Nevertheless, a similar form for
the dynamical system can be obtained for any kind of nonlinearities in vNL. This follows for the
Taylor expansion around c̄ of the reaction rates in v(c) in (2.40). This expansion leads to

∂

∂t
e = D∇2e + Ae + NNLg(e) + Bu. (2.52)

Here A is the Jacobian of Nv(c) and g(e) has all the higher order terms of the Taylor expansion
of vNL around c̄. Although this is not a closed form expression for the dynamical system, it
makes explicit the linear part of the model. Both expressions of the dynamical system (2.40) in
the error coordinates (2.46) will be used in the subsequent chapters, to analyse different aspects
of the reaction networks dynamics.

When we consider the nonhomogeneous steady state c̃, we can derive an analogous trans-
formation to that in (2.46). In the resulting coordinates the differential equation that governs the
(spatio-)temporal dynamics has the form of (2.52), yet the matrix A and the vector g(e) will
depend on the spatial variable since the Taylor expansion will be around the space-dependent
heterogeneous steady state c̃(x). We also note that when we neglect the diffusion of species,
the models in deviation coordinates have the form of (2.50) or (2.52), by letting D = 0 and
changing the partial derivative w.r.t time to absolute derivatives.
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CHAPTER 2. MODELS OF BIOCHEMICAL REACTION NETWORKS

2.6 Summary
We conclude this chapter with a summary of the content in this chapter. Firstly, we presented
mathematical models of biochemical reaction networks and extended them to include the diffu-
sion of the species. Secondly, we characterised, in a general framework, the equilibrium set of
these reaction(-diffusion) networks. We then presented a linear transformation that allow us to
obtain a coupled linear algebraic system along with a nonlinear one. Having characterised the
equilibrium set of the reaction network, we introduced a simple coordinate transformation that
explicitly shows the linear and nonlinear terms of the dynamical model. In the following section,
we will analyse some basic dynamical properties of the reaction networks such as local stability.
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Basic Dynamical Properties
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In this chapter we analyse two biochemical networks to determine aspects of their basic dy-
namical behaviour, such as local stability. The first system is the cyclic protein autoactivation
introduced in Example 2.2. We perform a local stability analysis by representing the reaction
network as the interconnection of p linear systems. By applying the Small Gain Theorem we
derive conditions for the local stability of both fixed points of this reaction network. The second
system analysed is a single protein autoactivation, where, under a biologically-motivated sce-
nario, we derive closed-form expressions that describe its spatio-temporal evolution.

In the previous section we determined the Differential Equations (DEs) that arise from a re-
action (-diffusion) network. Although these DEs govern the rate of change of the concentrations
in space and/or time, further analysis should be performed to characterise the properties of the
solutions of such DEs.

Usually, a first attempt to analyse these dynamics is to obtain a numerical solution of the DE.
With this numerical approach we obtain the behaviour of the system under a chosen set of initial
conditions, inputs and parameters. Although shedding some light on the dynamic characteristics
of the system, it becomes difficult to determine whether the outcome of the computations is a
result of the chosen conditions for the simulation or are structural properties of the network or
consequence of fine-tuned kinetic parameters [21, 47].

Hence, to provide a deeper characterisation of the solutions we wish to analyse systems prop-
erties in terms of the parameters of the reaction network. One of the most insightful properties
in the analysis of DEs is to characterise the stability of the equilibrium set. For instance, to
determine whether or not the trajectories of the system will converge to an equilibrium point of
the system when the initial condition is close to the equilibrium.
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CHAPTER 3. BASIC DYNAMICAL PROPERTIES

In general the study of stability is a difficult task, given that we are dealing with nonlinear
differential equations. Notwithstanding this difficulty, there are results available in the literature
which deal with specific classes of systems. In our first case-study we deal with a class of block
circulant matrices. In [48] and references therein, the authors provided the ‘secant condition’ as
a necessary and sufficient condition to ensure the diagonal stability of a reaction network, whose
linear dynamical system can be described by circulant matrix. Also, [49] extended the results of
[48] to reaction diffusion systems, where they ruled out diffusion driven instability arising from
diffusion coefficients of different magnitudes [16, 2].

In the forthcoming section, we will study the ODE of the reaction network introduced in
Example 2.2, by representing it as the interconnection of p linear systems. By further compu-
tation of each system’s input-output gain, we avail of the Small Gain Theorem [50] to derive
local stability conditions. A comparable approach using the Small Gain Theorem has recently
been provided for local instability analysis to conclude periodic oscillations in a different class
of systems, namely gene regulatory networks in [51].

3.1 Local Stability Analysis of a Circular Protein Activation
In this section, we revisit the system studied in Example 2.2 and analyse the local stability of
each of its two fixed points. For this purpose, we avail of the notion of input-output stability
along with the Small Gain Theorem. These preliminaries are given below.

Firstly, we note that this analysis will be performed on the linearisation of (2.5), which is an
ODE of the form

d

dt
e = Ae + Bu, (3.1a)

y = Ce + Du. (3.1b)

Here e represents the deviation coordinates from the equilibrium point, defined as e(t) =
c(t)− c̄ : R+ → Rn and u(t) : R+ → Rw, and the matrices B, C, and D, have the ap-
propriate dimensions.

We will use an input-output approach to perform the stability analysis. When the initial
conditions are zero, the transfer function [52, 53] for the system in (3.1) is defined as

H(s) = D + C(sI−A)−1B. (3.2)

This formula arises from the Laplace transform of the linear system (3.1), representing this
model in the frequency domain s. This allows us to express the ODE (3.1) as an algebraic
relationship that describes the output of the system as a function of the input. This relation-
ship is explicitly given by the transfer function (3.2). For further discussion and details on this
derivation, we refer the interested reader to [52, 53].

The basic notion of input-output stability is that a small input u will yield a small output y.
In order to characterise the input-output properties of the system (3.1), we require a means to
measure the ‘size’ of a signal. For this purpose, we define the Lz norm of a signal as

||u||Lz
:=

(∫ ∞
0

(||u(t)||z)
z

dt

)1/z

, (3.3)

where ||u(t)||z is the z-norm of u defined as

||u(t)||z :=

(
w∑
i=1

(ui(t))
z

)1/z

.
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3.1. LOCAL STABILITY ANALYSIS OF A CIRCULAR PROTEIN ACTIVATION

When ||u||Lz
is finite , we say that this signal belongs to the Lz space. However, the definition

in (3.3) is a bit restrictive, since there are many signals (e.g. a constant function) that do not
belong to the Lz space. To consider a less restrictive space, we consider the time truncation of a
signal:

uτ (t) : =

{
u(t) : t < τ,
0 : t ≥ τ. (3.4)

If ||uτ ||Lz
<∞ ∀ τ <∞, we say that the signal belongs to the Extended Lz space: Lze.

In the remainder of this chapter, we will focus on the L2 norm of the signals for which a tight
bound on the gain γ can be readily computed. This bound is given by the following theorem.

Theorem 3.1. [50] Consider the linear time-invariant system in (3.1), where all the eigenvalues
of A have negative real part, and its transfer function H(jω) ∈ Cq×w is given in (3.2). Then
the L2 gain of the system is

γ : = sup
ω∈R+

||H(jω)||2 = sup
ω∈R+

√
λ̄ (H∗(jω)H(jω)),

where λ̄ (X) denotes the maximum eigenvalue of X.

The proof of the theorem above can be found in [50]. For a single-input single-output transfer
function, i.e. h(jω) ∈ C, its gain γ can, thus, be computed as

γ := sup
ω∈R+

|h(jω)| = sup
ω∈R+

√
h∗(jω)h(jω). (3.5)

Having characterised the input-output gain, we avail of the Small Gain Theorem below, to

+

+

−

+

w2

u1 y1

y2 u2

w1
H1

H2

Figure 3.1: Interconnection of two dynamical systems.

provide sufficient conditions for stability of an interconnection of systems, whose gain γ and
bias term β are known.

Theorem 3.2 (Small Gain Theorem). [50] Consider an interconnection of systems as depicted
in Figure 3.1, where

||y1||Lz
≤ γ1 ||u1||Lz

+ β1,

||y2||Lz
≤ γ2 ||u2||Lz

+ β2.

And assume that the signals y1,y2,u1,u2, have a finite Lz norm. Then, the feedback connec-
tion is finite gain Lz stable if

γ1γ2 < 1.
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CHAPTER 3. BASIC DYNAMICAL PROPERTIES

The proof of the two theorems above can be found in [50], for instance. Now, we revisit the
reaction network introduced in Example 2.2 to characterise the local stability of the equilibrium
set.

Example 3.1. In Example 2.2, we computed the equilibria set of the reaction network in (2.15).
Our main task here is to derive stability conditions in terms of the parameters. Although a
global characterisation of stability is desirable, in general this is very difficult to determine for
a nonlinear system with a locally Lipschitz nonlinearity. For this reason we start the stability
analysis via the linearisation of the model (2.5). This linearisation is given by

d

dt
e = Ae, (3.6)

where e = c− c̄ stands for deviation coordinates from the equilibrium, and A ∈ Rn×n is the
Jacobian of the system (2.5). With the definitions of the stoichiometric matrix and reaction rate
given in (2.18), this Jacobian is given by

A :=
d

dc
Nv(c) =


A A 0 . . . 0
0 A A . . . 0
. . .

. . .
. . .

. . .
. . .

Ap 0 0 . . . App

 , (3.7)

with the block matrices defined as

Aii :=
d

dci
Nivi

(
ci, ci+

)
=

(
−
(
ki1c̄

i+1
2 + ki3f

)
0

ki1c̄
i+1
2 −ki2

)
(3.8a)

Aii+1 :=
d

dci+
Nivi

(
ci, ci+

)
= ki1c̄

i
1

(
0 −1
0 1

)
, (3.8b)

Note that Aii+1 can be expressed as the product Aii+1 = BiC, where

Bi : = ki1c̄
i
1

(
−1

1

)
, (3.9a)

C : =
(
0 1

)
. (3.9b)

Therefore, the linearisation in (3.6) can be expressed as the interconnection of p systems of the
form (cf. Eq. (3.1))

d

dt
ei = Aiiei + Biui, (3.10a)

yi = Cei. (3.10b)

Here ei = ci − c̄i is the species concentration referred to the steady state c̄i. From the inter-
connection topology in (2.15), we note that

ui = yi+. (3.11)

By splitting the linearisation of the reaction network in (3.6) into p subsystems of the form
(3.10), we can analyse the input-output behaviour of p systems separately and, then, infer con-
ditions on the stability of each steady state of the entire interconnected system (3.6). These ideas
will lead to conditions for the L2 small gain stability of (3.6) and are summarised below in
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3.1. LOCAL STABILITY ANALYSIS OF A CIRCULAR PROTEIN ACTIVATION

Proposition 3.1. In this Proposition, for the analysis of the on steady state, we make some as-
sumptions on inequality relationships between the reaction parameters. The strategy of the proof
is to obtain the transfer function of the system (3.10) and estimate its L2 gain. Once the gain for
the p isolated systems is obtained, we avail of the Small Gain Theorem (3.2) to obtain condi-
tions on the parameters that ensure local stability of the interconnected systems. In what follows
we denote Aoff as the Jacobian in (3.7) evaluated in the off steady state, defined in (2.27). The
definition of Aon follows similarly.

Proposition 3.1. Consider the system in (3.6). For the on steady state, ∀ i ∈ [1, p] suppose that
one of the following conditions ((3.12a), (3.12b)) holds

ki3f > ki2 or (3.12a)

ki2 > ki3f , µi > ki3f , and
1(

ki3f

)2 <
1(
ki2
)2 +

1

(µi)
2 (3.12b)

with µi defined for the on steady state in (2.20) as

σi : = ki1c̄
i
1 = ki+1

2

d
(
ai+

)
d (ai)

> 0, (3.13a)

µi : = ki1c̄
i+1
2 + ki3f =

d
(
αi
)

σi
> 0. (3.13b)

These definitions follow from the expressions in (2.19). Then the system in (3.6) is L2 stable if
and only if

1. Off Steady State

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b > 0. (3.14a)

2. On Steady State

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f > 0. (3.14b)

Proof.
The closed-form expressions of det (Aoff) and det (Aon) in (3.14a) and (3.14b), respectively, are
derived in Lemma A.2 in Appendix A. The rest of the proof follows by noting that the transfer
function of the system in (3.10), as defined in (3.2), is given by

hi(s) = ki1c̄
i
1

s+ ki3f

(s+ ki1c̄
i+1
2 + ki3f )(s+ ki2)

. (3.15)

Then, from Theorem 3.1, the L2 gain of the system above is

γi =
∣∣ki1c̄i1∣∣ sup

ω∈R

√√√√√√√ ω2 +
(
ki3f

)2

[
w2 +

(
ki1c̄

i+1
2 + ki3f

)2
] [
ω2 +

(
ki2
)2] . (3.16)
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CHAPTER 3. BASIC DYNAMICAL PROPERTIES

By recalling that yi+ = ui and assuming zero initial conditions, we have the following bound

||y||L2
≤ γ1 ||u||L2

, ||y||L2
≤ γ2 ||u||L2

and

∴ ||y||L2
≤ γ1γ2 ||u||L2

.

Iterating from 1 to p− 1, we have

||y||L2
≤
p−1∏
i=1

γi
∣∣∣∣up−∣∣∣∣L2

.

In turn, the L2 gain of the pth system is also given by the expression in (3.16). Hence, by the
Small Gain Theorem 3.2, the closed loop system is finite gain stable if

p∏
i=1

γi < 1. (3.17)

The expression above, with the appropriate γi, gives a sufficient condition for either of the steady
states to be stable. For later use, we will require the closed-loop transfer function of the system,
given by:

h(s) =
hp

1−∏p
i=1 h

i(s)
. (3.18)

In the following, we derive specific expressions for each steady state.

1. Off Steady State
The off steady state is given in (2.27a). Substituting (2.27a) into (3.16) yields

γioff :=
ki1k

i
3b

ki2k
i
3f

. (3.19)

Consequently, the stability condition in (3.17) takes the form,

γoff :=

p∏
i=1

ki1k
i
3b

ki2k
i
3f

< 1, (3.20)

or equivalently:

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b > 0,

as stated in (3.14a). For the proof of the necessity, let us assume that γoff ≥ 1. From
(3.18), the characteristic equation is given by

qoff(s) : = 1−
p∏
i=1

hioff(s),

= 1−
p∏
i=1

ki1k
i
3b

ki3f

1

s+ ki2
,
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3.1. LOCAL STABILITY ANALYSIS OF A CIRCULAR PROTEIN ACTIVATION

where we have used the definition of the transfer function in (3.15), evaluated in the off
steady state. The limit of the equation above as s approaches to +∞ and 0 are

qoff(+∞) = 1

qoff(0) = 1− γoff ≤ 0.

Hence, there must be a real root of the characteristic equation with a non-negative real
part, when γoff ≥ 1.

2. On Steady State
The on steady state is given by (2.27b), which is parametrised by ai+ defined in (2.26).
Firstly, we note that (2.20b) allows us to write

ki1c̄
i+1
2 + ki3f =

ki+1
2 ki3fd

(
ai+

)
− ki1n

(
ai+

)
ki+1

2 d (ai+)
. (3.21)

Furthermore, we claim

ki+1
2 ki3fd

(
ai+

)
= d

(
αi
)

d
(
ai
)

+ ki1n
(
ai+

)
. (3.22)

We provide a proof of this statement in Claim A.1, in Appendix A. By substituting (2.28),
(3.21), (3.22), we can express the transfer function of the ith system as

hion(s) = σi
s+ ki3f

(s+ µi)
(
s+ ki2

) , (3.23)

where we used the definitions in (3.13). Moreover, the gain of the ith system in (3.16) is

γion = σi sup
ω∈R

√√√√√√ ω2 +
(
ki3f

)2

[
w2 + (µi)

2
] [
ω2 +

(
ki2
)2] . (3.24)

Now, we note that the square root function is a monotonically increasing function of its
argument. Hence, the supremum of the square root in (3.24) is given by the square root of
the supremum of the argument. That is to say,

γion = σi

√√√√√√sup
ω∈R

ω2 +
(
ki3f

)2

[
ω2 + (µi)

2
] [
ω2 +

(
ki2
)2] .

Let us define R≥0 3 Ω = ω2. In order to find the critical points Ω∗, we apply the natural
logarithm to the argument of the square root and differentiate with respect to Ω:

d

dΩ

{
ln
(

Ω +
(
ki3f
)2)− ln

(
Ω +

(
µi
)2)− ln

(
Ω +

(
ki2
)2)}∣∣∣

Ω=Ω∗
= 0.

Solving the foregoing equation for Ω∗, yields

Ω∗ = −
(
ki3f
)2 ±√[(ki3f)2

−
(
ki2
)2] [(

ki3f

)2

− (µi)
2

]
. (3.25)
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Considering the conditions in (3.12), we conclude that there is no positive real solution
for Ω∗ to the expression above. To see this, suppose that condition (3.12a) holds, then if i)
ki3f ≥ µi the radicand will be less than (ki3f )4, leading to a negative Ω∗. On the contrary,
if ii) ki3f ≤ µi the radicand in (3.25) is negative, hence leading to a complex Ω∗. On the
other hand, when ki2 > ki3f and µi > ki3f , the radicand in (3.25) is positive. However, we
note that Ω∗ is negative if

(
ki3f
)2
<

√[(
ki3f

)2

−
(
ki2
)2] [(

ki3f

)2

− (µi)
2

]
,

which is equivalent to

1(
ki3f

)2 >
1(
ki2
)2 +

1

(µi)
2 .

That is to say, under the conditions in (3.12), the supremum in equation (3.24) is obtained
for Ω = 0 or Ω = ∞. Indeed, by substitution the maximum value is achieved for Ω = 0.
From (3.24) we obtain

γion = σi

∣∣∣∣∣ ki3fµiki2

∣∣∣∣∣ .
Taking into account the definitions in (3.13), the formula for γi becomes

γion =
ki+1

2 ki3f
ki1k

i
3b

ki+1
2

ki2

[
d
(
ai+

)
d (ai)

]2

. (3.26)

We further note that

γon :=

p∏
i=1

γion =

p∏
i=1

ki+1
2 ki3f
ki1k

i
3b

. (3.27)

Consequently, the small gain stability condition in (3.17) is equivalent to
p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f > 0,

where we have taken into account the modularity of the superindex i in ki+1
2 . Finally, we

provide proof of necessity following the argument provided in the proof of the off steady
state. Now, let us assume that γon > 1. Moreover, the characteristic equation of the closed
loop transfer function in (3.18) is given by

qon(s) : = 1−
p∏
i=1

σi
s+ ki3f

(s+ µi)
(
s+ ki2

) ,
where we have used the definition of the transfer function in (3.15), evaluated in the off
steady state. The limits of the equation above as s tends to +∞ and 0 are

qon(∞) = 1

qon(0) = 1−
p∏
i=1

σi
ki3f
µiki2

= 1− γon ≤ 0.
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Hence, there must be a real root of the characteristic equation with a positive real part,
and, therefore, the system is unstable if γon ≥ 1.

The conditions for the stability of each steady state, in the proposition above, are mutually
exclusive. Hence, we can ensure that, under these conditions and for each parameter set that
satisfies (3.12), exactly one of the steady states will be stable. Moreover, we note that by com-
paring (3.14b) and (2.29), one of the conditions to ensure stability of the on steady state is the
same that is required for this state to have positive concentrations.

Although Proposition 3.1 provides full characterisation of the stability of the closed-loop
system, to obtain this result we restricted the analysis of the on steady state to the conditions on
the kinetic parameters shown in (3.12). In the Proposition 3.2 below, we relax this restriction and
derive sufficient conditions for the stability of the on steady state. The proof of this proposition
and the subsequent remark can be found in Claim A, in Appendix A. The outline of the proof
relies on the fact that when ki2 > ki3f for some i, the peak frequency Ω∗ in (3.25) might have a
positive real solution. Further analysis yields the stability results summarised in the following
proposition.

Proposition 3.2. Let for some i ∈ [1, p]

ki2 > ki3f , (3.28a)

µi > ki3f , (3.28b)
1(

ki3f

)2 >
1(
ki2
)2 +

1

(µi)
2 . (3.28c)

Then the on steady state of the system in (3.6) is L2 stable if for all i
p∏
i=1

ki+1
2 ki3f
ki1k

i
3b

<

p∏
i=1

θi, (3.29)

where

θi =

ki3f
µi

√
1−

(
ki3f
ki2

)2

+
ki3f
ki2

√
1−

(
ki3f
µi

)2

,∀ i which satisfy (3.28)

1 , otherwise.
(3.30)

Moreover, the on steady state will be unstable if (3.14b) does not hold.

The following remark presents a more conservative, yet tractable, stability criterion of the
system in (3.6).

Remark 3.1. Consider the linear system in (3.6), and let for some i ∈ [1, p] the conditions
(3.28) be satisfied, then the on steady state of the system in (3.6) is L2 stable if

p∏
i=1

ki+1
2 ki3f
ki1k

i
3b

<

p∏
i=1

νi, (3.31)

where,

νi =


(
ki3f
ki2

)2

, ∀ i which satisfy (3.28)

1, otherwise.

(3.32)
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Both conditions (3.29) and (3.31), provide a criterion for determining the stability of the on
steady state, when some of the subsystems in the loop satisfy the conditions in (3.28). However,
we remark that there exist some parameters which do not satisfy (3.29) and (3.31), and do not
violate (3.14b); that is to say, under the conditions (3.28), there are some parameters for which
we cannot determine the stabilty of (3.6), from this perspective.

Of note, when ki2 > ki3f we can use the stability criterion in (3.31) for all i. Although this
might be very conservative, it provides a straightforward stability test since we avoid checking
conditions (3.12) and (3.28) to determine which one of the propositions above we require.

Summarising, in the previous example we presented the local stability analysis of (3.6), by
considering two different cases. The one described in Proposition 3.1 provides necessary and
sufficient conditions for stability of the off and on steady state under certain restrictions on the
kinetic parameters. In turn, Proposition 3.2 present sufficient stability conditions of the on steady
state, for the cases that Proposition 3.1 does not account for. Of note, as we only performed a
local stability analysis, we have not rigorously ruled out the existence of strange attractors or
chaotic behaviours [54]. However, we did not observe such behaviour in our computational
simulations.

In the following section, we consider the characterisation of the dynamical response of PDEs.
Firstly, we obtain the closed-form expression for the solution of a linear first order PDE, so as
to study its spatio-temporal behaviour. And secondly, we present a result from the literature that
provides a means to analyse the linearisation of a PDE, which allows us to extend the results in
Example 3.1.

3.2 PDE Solutions via Green’s Functions
It is well known that the solution of an ODE exists and is unique within a non-trivial window
of time when the ODE is locally Lipschitz continuous. It is remarkable that this statement still
holds when the system analysed is nonlinear. For the PDE case, the mere proof of existence is a
more subtle topic, since there is no unifying theory that provides an easy answer to the problem.
However, there are well studied classes of PDEs for which the analytical solution may be derived
once the kernel of the solution space is found. Examples of these well characterised equations
are the Laplace, Wave and Heat Equations. The kernel that constructs the solution space, is
commonly denoted as a Green’s function.

Formally, a Green’s function is the solution to the Fredholm integral equation with the kernel
defined by the specific differential operator under study [55, 56]. Specific forms of Fremhold
integral equations are Laplace and Fourier transforms. The Green’s function has the following
property with respect to a linear differential operator L:

LG(x, ξ) = δ(x− ξ).

Here, δ(z) is the Dirac Delta. A consequence of this property is that multiplying the expression
above by a well behaved function f(ξ) and integrating over all x ∈ Ω, we note∫

Ω

LG(x, ξ)f(ξ) dξ =

∫
Ω

δ(x− ξ)f(ξ) dξ = f(x)

Let Lu(x) =
∫

Ω
LG(x, ξ)f(ξ) dξ, a possible choice for u (x) is

u(x) =

∫
Ω

G(x, ξ)f(ξ) dξ.

30



3.2. PDE SOLUTIONS VIA GREEN’S FUNCTIONS

This equation is known as the Fredholm integral equation. In general, this equation is difficult
to solve analytically. However, the Green’s functions associated with some well-known linear
differential operators are available in the literature, see for example [44].

As an example of the use of the Green’s functions, let us perform a simple dynamical analysis
in a simple protein activation mechanism in the presence of diffusion of the species. We will
pay special attention to the spatio-temporal evolution of the dynamical system when the initial
conditions have been represented by its Fourier representation.

Example 3.2. Consider the following reaction network

P +A
k1−→ 2A (3.33a)

A
k2−→ 0 (3.33b)

P
k3f−−⇀↽−−
k3b

0 (3.33c)

A+ I
k4−→ 0 (3.33d)

I
k5f−−⇀↽−−
k5b

0. (3.33e)

Here P represents the inactive form of a protein, whereas A is the active form. In turn, I stands
for the inhibitor of A, which avoids further reaction of A.

Defining the vector c = (c1 c2 c3)T := ([P ] [A] [I])T ∈ R3
+, and using the mass-action

reaction mechanism, we obtain the following set of coupled bilinear ODEs

ċ1 = −k3fc1 − k1c1c2 + k3b (3.34a)
ċ2 = −k2c2 + k1c1c2 − k4c2c3 (3.34b)
ċ3 = −k5fc3 − k4c2c3 + k5b. (3.34c)

Moreover, when the inhibitor’s turnover is faster than the reaction of the species rates we can
consider its concentration constant and equal to c̄3, hence we can further reduce the dynamical
system above to a two states model:

ċ1 = −k3fc1 − k1c1c2 + k3b (3.35a)
ċ2 = −k2c2 + k1c1c2. (3.35b)

We note that the system in (3.35) is the same as that studied in Example 2.1. Hence the steady
states are given by (2.14):

Off steady state :c̄off =

(
k1

3b

k1
3f

0

)T
, (3.36)

On steady state :c̄on =

(
k1

2

k1
1

k1
3b

k1
2

−
k1

3f

k1
1

)T
. (3.37)

A precise characterisation of the stability of the linearisation of (3.35) can be achieved by ex-
amining the characteristic polynomial of the Jacobian of (3.35):

p(s) = s2 + (k1 [c̄2 − c̄1] + k2 + k3f ) s+ k1 (k2c̄2 − k3f c̄1) + k2k3f .

The Routh-Hurwitz criterion applied to a second order polynomial, states that the roots of such
a polynomial are negative, when all the coefficients have the same sign [52]. From this criterion,
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we conclude that the off steady state is locally stable if and only if k1/k2 < k3f/k3b; in turn,
for the on steady state to be stable, we require k1/k2 > k3f/k3b.

Figure 3.2(a) depicts the location and stability of the steady states for c2 as a function of
k1. Similar results can be obtained for analysing the stability of both states in terms of other
kinetic parameters. We conclude that an activation of A is not always present, but requires the
condition k2/k1 < k3b/k3f to be fulfilled. Figures 3.2(b-d) show trajectories with two different
initial conditions, when the on steady state is stable. In Figure 3.2(d), the solid line represents an
orbit of the system that converges to the stable steady state. Similarly, the orbit, represented by
the dotted line, will converge to the stable steady state even if its initial condition is very close to
the unstable steady state. In contrast, the orbit whose initial condition lies in the axis c2(t) = 0
will converge to the unstable steady state. This shows that this unstable steady state is a saddle
point. In turn, the stable steady state is a focus.

Now we analyse the spatial and temporal dynamics of the active form c2(t, x). We will con-
sider a one-dimensional spatiotemporal model, which resemble a long cell, such as a skeletal
muscle cell or a neurons axon, and that the initial condition has been conveyed to the intracel-
lular domain by means of membrane receptors.

By including the diffusion of species in a unidimensional spatial domain with zero-flux
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Figure 3.2: Trajectories and phase portrait due to two different initial conditions for the system in (3.35).
Panel a) shows the fixed point loci of the active enzyme A concentration (c̄2) as a function of k1. In
turn, Panels b) and c) depict c1(t) and c2(t), respectively, with different initial conditions. Finally, d)
shows a phase portrait where we plot the active form c2(t) vs the inactive form c1(t). The dot (square)
represents (un-) stable steady state and the circles, the initial conditions for each orbit. Parameters
{k1, k2, k3f , k3b} = {0.055, 0.2, 0.01, 0.05}[(µMs)−1].
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boundary conditions, the system in (3.34) becomes the following set of PDEs:

∂

∂t
c1 = d1∇2c1 − k3fc1 − k1c1c2 + k3b, (3.38a)

∂

∂t
c2 = d2∇2c2 − k2c2 + k1c1c2 − k4c2c3, (3.38b)

∂

∂t
c3 = d3∇2c3 − k5fc3 − k4c2c3 + k5b, (3.38c)

with the diffusion constants d1, d2, d3 for inactive form, active form and inhibitor, respectively.
Firstly, we note that the homogeneous steady states are the same as for the ODE case in

(3.38). Nevertheless, the stability of such fixed points become a more subtle topic in this spa-
tiotemporal frame. We will comment on their stability, once we derive the analytical solutions.
Again, the system (3.38) is nonlinear and a straightforward analytical solution is not possible.

We therefore analyse biological scenarios that allow for an analytical solution under simpli-
fying assumptions: We will assume that a temporal profile for c1(t) is given for all time. This
can represent cases in which the synthesis rate of this protein is controlled by other processes
such as the genetic machinery or an external influx large enough so as to render the reaction
of c1(t) negligible. Moreover, for the sake of simplicity, we will assume that the concentration
of the inhibitor c3(t, x) is constant and equal to c̄3, which can represent the case in which the
turnover is faster than the reaction of the species rates. Under this assumptions, we can describe
the systems dynamics by the reduced model

∂

∂t
c2 = d2∇2c2 + α(t)c2. (3.39)

Here

α(t) = k1c1(t)− k4c̄3 − k2. (3.40)

In order to cope with the term α(t), we introduce an auxiliary variable φ(t), that satisfies

d

dt
φ(t) = α(t)φ(t), φ(0) = 1, φ(t) 6= 0 ∀ t ≥ 0. (3.41)

This allows us to define the change of variables from c2(t, x) to u(t, x) as

c2(t, x) = φ(t)u(t, x), (3.42)

which leads to the PDE

∂

∂t
{φ(t)u(t, x)} = d2∇2 {φ(t)u(t, x)}+ α(t)φ(t)u(t, x)

∂

∂t
u(t, x) = d2∇2u(t, x). (3.43)

Expressions (3.42) and (3.41) imply that the initial conditions given to u(t, x), are the same
initial conditions as those given to c2(t, x). This can be seen as follows

c2(0, x) = φ(0)u(0, x) = u(0, x). (3.44)

The equation in (3.43) is the Homogeneous Heat Equation with the given initial condition
u(0, x) = g(x) in an infinite spatial domain [55]. Using the Green’s function approach [44],
some solutions to (3.43) are given by

u(t, x) =

∫ ∞
−∞

g(ξ)G(t, x, ξ)dξ, (3.45)
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where G(t, x, ξ) is a Green’s function defined as

G(t, x, ξ) =
1

2
√
πdt

exp

(
− (x− ξ)2

4dt

)
.

We consider two initial conditions, for the reaction diffusion network in (3.38):

IC1. Gaussian initial condition: Here the initial concentration has a Gaussian shape, that is

g(x) =
k√
πσ2

exp

(
− (x− µ)

2

σ2

)
=: kN (x− µ, σ2),

where µ is the location of maximum activation and σ is the activation spread. Substitution
of this initial condition into (3.45), leads to

u(t, x) =
k

2πσ
√

2d2t

∫ ∞
−∞

k exp

(
−
[
σ2(x− ξ)2 + 2d2t(ξ − µ)2

4d2tσ2

])
dξ

u(t, x) =
k√

2π(2d2t+ σ2)
exp

(
− (x− µ)2

4d2t+ 2σ2

)
.

Substituting this last solution into (3.42), the spatio-temporal profile for c2(t, x) gives

c2(t, x) = kφ(t)N (x− µ, 2d2t+ σ2). (3.46)

We note that Equations (3.43) and (3.45) translate an initial Gaussian function into a
Gaussian with a maximum at the same location whose amplitude is modulated by φ(t).
Due to the linearity of (3.43), any composition of Gaussian functions as initial condition,
yields a composition of Gaussian functions. To show this, consider the initial condition

g(x) =

N∑
i=1

kiN (x− µi, σ2
i ).

Which leads to

c2(t, x) = φ(t)

N∑
i=1

kiN (x− µi, 2d2t+ σ2
i ). (3.47)

IC2. Periodic initiator signal: We consider an arbitrary 2π−periodic signal by means of its
Fourier series. Let this representation be given by the infinite series

g(x) =
a0

2
+

∞∑
n=1

(an cos(nx) + bn sin(nx)) , (3.48)

where the coefficients an and bn are given by

a0 =
1

π

∫ π

−π
g(ξ)dξ,

an =
1

π

∫ π

−π
g(ξ) cos(nξ)dξ,

bn =
1

π

∫ π

−π
g(ξ) sin(nξ)dξ.
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Although this specific series requires the restriction to 2π periodic signals, rescaling of
the space variable x allows us to generalise the analysis to any periodicity of the initial
signal g(x).

From (3.42) and (3.45) follows,

u(t, x) =
a0

2
+

∞∑
n=1

exp(−d2tn
2) (an cos(nx) + bn sin(nx)) ,

which leads to

c2(t, x) =
a0

2
φ(t) +

∞∑
n=1

φ(t) exp(−d2tn
2) (an cos(nx) + bn sin(nx)) . (3.49)

To depict the effect of the diffusion process in the spatio-temporal evolution of the system,
let us consider that α(t) in (3.40) is a constant over time. Hence, φ(t) in (3.41) becomes

φ(t) = exp (αt). (3.50)

Substituting the expression above in (3.49), yields

c2(t, x) =
a0

2
exp (αt) +

∞∑
n=1

exp (αt) exp(−d2tn
2) (an cos(nx) + bn sin(nx)) .

(3.51)

The solution to (3.45) driven by the initial condition in (3.48), preserves the original
infinite-series form. However, while the exponential damping factor in (3.51) varies lin-
early in time, it depends quadratically on the frequency (n). Consequently, the system
(3.39) acts as a low-pass filter. In particular, for high n (high spatial frequency), the se-
ries in (3.51) shows that these components decay rapidly with time. This filtering effect can
be seen in Figure 3.3(a) and (b), which show a low “frequency” sinusoidal signal (small
n) and a ‘noisy’ sinusoidal signal (high n), respectively. After an initial transient, we note
that they yield the same dynamical response given in Figure 3.3(c) and (d), respectively.

In turn, Figure 3.3(c) depicts a ‘noisy’ Gaussian function as an initial condition, repre-
sented as

g2(x) = N (x− µ, σ2) + 0.005 sin (10x) .

Due to the linearity of the heat equation, the solution (3.42) with the foregoing initial
condition will be the sum of two terms:

c2(t, x) = exp(αt)N (x− µ, 2d2t+ σ2) + 0.005 exp((α− 100d2)t) sin(10x).

Again, we note that the filtering effect of the heat equation will decrease the spatial fluc-
tuations, since the second element of the sum will decrease in magnitude very quickly as
time increases, as noted in the previous example. The solution for t = tf = 0.15[s] is
given in Figure 3.3(f). In all cases, we note that the effect of the high-frequency noise
vanishes, as time proceeds.

For both initial conditions, we note that the solution’s magnitude is modulated by the func-
tion φ(t). As we noted before, when α is a constant, φ(t) = exp(αt). Hence, to ensure the
boundedness of the solutions, we just require α < 0. Conditions for α < 0 are shown in Ta-
ble 3.1, which are derived from the definition of α in (3.40) and the solutions for both initial
conditions in (3.46) and (3.51).
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Figure 3.3: Initial conditions and the solution for (3.39). Panel (a) depicts a sinusoidal signal of a single
frequency; in turn, panel (b) shows a sum of low and high frequency sine functions; finally, panel (c) shows
a ‘noisy’ Gaussian function with µ = 0 and σ2 = 1.7. The panels (d-f) depict the solution to (3.39)
at t = tf = 0.15[s] for the initial conditions (a-c), respectively. Parameters: {k1, k2, k3f , k3b, k4} =
{k2/5, 0.2, 0.01, 0.05}[(µMs)−1], kin = 0.5, d2 = 24[µm2/s], σ = 1.7,α = −1.

Table 3.1: Conditions for the stability of the solutions to Equation (3.39) when α(t) = α.

Initial Condition Stability condition
Gaussian initial condition c̄1 <

k2+k4c̄3
k1

+ x2

k1(4d2t+2σ2)t

Arbitrary periodic signal c̄1 <
k2+k4c̄3

k1

In the foregoing example, we were able to determine a significant amount of dynamical
characteristics of the system by means of obtaining a closed-form expression for the solution of
the governing PDE. However, deriving a formula that represents the solutions is only possible in
some special cases; when the DE is more specific, a rigorous treatment to develop such formulas
becomes quickly intractable. Nevertheless, it is possible to deduce some dynamical behaviours,
without the need of explicitly solving the PDE set. For the sake of completeness, in the following
section, we present a result taken from the literature.

3.3 PDEs Local Stability Analysis

As in the ODE case, the linearisation of a PDE provides a means to deduce the stability in a
neighbourhood of the fixed points. The forthcoming theorem shows a criterion to determine this
local stability. Let us consider the linearisation of the of the PDE (2.40), given by

∂

∂t
e = D∇2e + Ae, (3.52)
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here e = c− c̄ and A = N∇cv(c)|c=c̄. The forthcoming Theorem relates the linearisation in
(3.52) with the local stability of a homogeneous steady state.

Theorem 3.3. [57, 19] Consider the system in (3.52) and an orthonormal set of eigenfunctions
{φi}, i ∈ N invariant w.r.t. the Laplacian operator, that is to say,

〈φi, φj〉 = δij (3.53a)

∇2φj = −λjφj , λj ∈ R+, 0 < λj < λj+1 (3.53b)

Where δij represents the Kronecker delta. We consider zero-flux boundary conditions: ∂e/∂x|x=∂Ω

= 0. Then, the steady state e = 0 of (3.52) is stable, if, for all j, all the eigenvalues of

Aj = A− λjD (3.54)

have negative real part.

From Theorem 3.3, we note that if D = d I and A is stable, the matrix Aj will always be
stable, since the eigenvalues of Aj are those of A but shifted d λj units to the left. This remark
gives us a simple, yet powerful way to extend the stability results for a linear ODE to the spatio-
temporal setup. In the following, we will avail of Theorem 3.3 to extend the results in Example
3.1, when the diffusion of the species is relevant. For this, we will also use a link between the
L2 stability of the p isolated subsystems and their open loop stability. This link is specified by

Lemma 3.1 (Bounded Real Lemma). Consider a strictly proper linear time invariant system of
the form (3.1) with D = 0, whose minimal realisation transfer function H(s) is defined in (3.2),
along with a positive constant γ > 0. Then, the following statements are equivalent

1. ||H(s)||∞ < γ,

2. ∃ P = PT > 0 such that(
PA + ATP + CTC PB

PBT −γ2I

)
< 0

We will also make use of the following theorem found in [58, p. 120], which relates the sign
definitiveness of a matrix with the sign definitiveness of the submatrices that compose it.

Theorem 3.4. [58] Let a square matrix M be defined by blocks:

M =

(
M11 M12

MT
12 M22

)
,

where M11 and M22 are symmetric. Then M is positive definite if and only if

M11 > 0, M22 > 0,

M11 −M12M−1
22 MT

12 > 0, M22 −MT
12M−1

11 M12 > 0.

Now, we revisit Example 3.1 extending its formulation to the spatio-temporal case. To in-
clude the effect of the species diffusion, it is necessary to define the diffusion matrix D in (3.52):

D = diag {D, D, . . . Dp} , (3.55a)

Di =

(
di1 0
0 di2

)
. (3.55b)
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Moreover, we assume zero-flux boundary conditions and that we have available the eigen-
functions φi and eigenvalues λi in (3.53) for a spatial domain. Let us consider the case in which
the diffusion coefficients of the ithactive and inactive species are equal, but not necessarily the
same to jth active and inactive proteins. That is to say, let the diffusion constants satisfy the
following assumption.

Assumption 3.1. Let the diffusion constant for each one of the p subsystems satisfy

di1 = di2 = di ∀ i ∈ [1, p].

With this formulation, we have the following proposition.

Proposition 3.3. Consider the matrix (3.54), where A is as in (3.7) and D has been defined in
(3.55), and satisfies Assumption 3.1. Then the stability conditions of the diffusion-less formula-
tion characterised in Propositions 3.1 and 3.2 also guarantee local stability of (3.52).

Proof. In Propositions 3.1 and 3.2, we characterised the L2 gain of the individual subsystems
that comprise the Jacobian matrix A in (3.7). Henceforth, we will consider that the gains γi,
satisfy with either of these results. Hence, the Bounded Real Lemma (3.1) guarantees that there
exists Pi =

(
Pi
)T

> 0 such that

τ̇ i(t) :=

(
ei

ui

)T (
PiAii +

(
Aii
)T

Pi + CTC PiBi(
PiBi

)T −
(
γi
)2
)(

ei

ui

)
< 0, (3.56)

where Bi, C and γi have been defined in (3.9a), (3.9b) and (3.19) and (3.26), for the on and off
steady states, respectively. From (3.56) we note that

p∑
i=1

ζiτ̇ i(t) < 0 ∀ ζi > 0. (3.57)

In addition, from Theorem 3.4 we can conclude that

PiAii +
(
Aii
)T

Pi + CTC < 0,

which implies that

PiAii +
(
Aii
)T

Pi := −Qi < 0. (3.58)

Now the time integral of (3.56) is given by

τ i(t) =
(
ei
)T

Piei +
∣∣∣∣yi∣∣∣∣2L2

−
(
γi
)2 ∣∣∣∣ui∣∣∣∣2L2

.

By recalling that ui = yi+1, we note

τ i(t) +
(
γi
)2
τ i+1(t) =(

ei
)T

Piei +
∣∣∣∣yi∣∣∣∣2L2

+
(
γi
)2 (

ei+1
)T

Pi+ei+1 −
(
γiγi+1

)2 ∣∣∣∣ui+1
∣∣∣∣2
L2

. (3.59)

Where we have defined

ζi :=

i−1∏
k=1

(
γk
)2
. (3.60)
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Iterating (3.59) from 1 to p, we have

V (t) :=

p∑
i=1

ζiτ i(t) =

p∑
i=1

ζi
(
ei
)T

Piei +

(
1−

p∏
i=1

(
γi
)2)∣∣∣∣y1

∣∣∣∣2
L2

(3.61)

>

p∑
i=1

ζi
(
ei
)T

Piei

> 0.

Where, we have considered that
∏p
i=1 γ

i < 1, to ensure stability according to Propositions 3.1
and 3.2. So far, we have shown that the functional V (t) in (3.61) is a Lyapunov function for the
Jacobian matrix A in (3.7). However, when we account for the diffusion of species, we have to
analyse the family of linear systems parametrised by the eigenvalue λj :

ėi =
(
Aii − λjDi

)
ei + Biui. (3.62)

From Theorem 3.3, we need to show the stability of the system above for all j, to ensure the
local stability of the reaction diffusion system. Differentiation in time of the functional τ i(t)
along the lines of the field (3.62) yields

τ̇ ij(t) : =

(
ei

ui

)T (−Qi + CTC PiBi(
PiBi

)T −
(
γi
)2)(ei

ui

)
− λj

(
ei
)T [

DiPi +
(
DiPi

)T ]
ei

= τ̇ i(t)− λj
(
ei
)T [

PiDi +
(
PiDi

)T ]
ei,

which is negative if PiDi +
(
PiDi

)T
> 0. In particular by considering Assumption 3.1, we

have

τ̇ ij(t) = τ̇ i(t)− 2diλj
(
ei
)T

Piei ≤ τ̇ i(t) < 0.

Hence for all j
p∑
i=1

ζiτ̇ ij(t) < 0,

where ζi has been defined in (3.60). That is to say, V (t) in (3.61) is a Lyapunov function for the
family of systems in (3.62).

In the result above, we extended the stability results in Propositions 3.1 and 3.2, by means
of assuming the relationship on the diffusion constants described in Assumption 3.1. In the
propositions below we conclude, under some conditions on the parameters, the stability for the
linearisation of the PDE in (3.52).

Proposition 3.4. Consider the matrix (3.54), where A is as in (3.7) and D has been defined in
(3.55). Moreover, let

k̃i2 := ki2 + λjd
i
2 (3.63a)

k̃i2 := ki3f + λjd
i
1. (3.63b)

In addition, assume that

k̃i3f > k̃i2 ∀ i, j and (3.64)

ki3fd
i
2 > ki2d

i
1. (3.65)

Then, the PDE in (3.52) is locally stable if the conditions in (3.14) hold.
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Proof. Under the definitions in (3.63) the matrix Aii
j comprised in (3.54) becomes

Aii
j =

(
−
(
ki1c̄

i+1
2 + k̃i3f

)
0

ki1c̄
i+1
2 −k̃i2

)
. (3.66)

Note that it has the same structure as the case in which the diffusion of species is not taken into
account (cf. (3.8a)). Hence, we will follow the main plot of Proposition 3.1. There we found an
expression for the L2 input-output gain for the ith system (3.16). Here, however, by taking the
definition of the Jacobian matrix in (3.66), this gain becomes

γ̃i =
∣∣ki1c̄i1∣∣ sup

ω∈R

√√√√√√√ ω2 +
(
k̃i3f

)2

[
ω2 +

(
ki1c̄

i+1
2 + k̃i3f

)2
] [
ω2 +

(
k̃i2

)2
] . (3.67)

Now, we consider each of the steady states.

1. Off Steady State
The off steady state is given in (2.27a). Substituting (2.27a) into (3.16) yields

γ̃ioff :=
ki1k

i
3b

k̃i2k
i
3f

.

Consequently, the stability condition in (3.17) takes the form,

p∏
i=1

ki1k
i
3b

k̃i2k
i
3f

≤
p∏
i=1

ki1k
i
3b

ki2k
i
3f

< 1.

Hence, from the equation above, we have

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b > 0. (3.14a)

Now we focus on the on steady state.

2. On Steady State
The definition of the on steady state is given in (2.27b). The argument in Proposition 3.1
showed that the gain for the ith system can be found when we evaluate (3.67) at ω2 = Ω∗,
which is the solution of

Ω∗ = −
(
k̃i3f

)2

±
√[(

k̃i3f

)2

−
(
k̃i2

)2
] [(

k̃i3f

)2

−
(
µi + λjdi1

)2]
. (3.68)

Under the assumption (3.64), we conclude that Ω∗ has no positive solution. Hence γ̃ion in
(3.67) is maximum when ω = 0:

γ̃ion = σi
k̃i3f(

µi + di1λj
)
k̃i2

=
(
σi
)2 k̃i3f(

ki1k
i
3b + di1λjσ

i
)
k̃i2
.
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Here µi and σi have been defined in (3.13). The product of all γ̃ion yields

p∏
i=1

γ̃ion =

p∏
i=1

ki3f + λjd
i
1

ki2 + λjdi2

(
ki+1

2

)2
ki3bk

i
1 + di1λjσ

i
. (3.69)

The second product of the multiplication above is a monotonically decreasing function of
λj . Whereas the derivative w.r.t. λj of the first product yields:

d

dλj

{
ki3f + λjd

i
1

ki2 + λjdi2

}
=
di1k

i
2 − di2ki3f(

ki2 + di2λj
)2 ,

which is negative for all j, when the the condition (3.65) is taken into account. This
implies that (3.69) is a monotonically decreasing function of λj . Then, the biggest γ̃ion is
obtained when j = 1 or, respectively, when λ1 = 0. Then, from the Small Gain Theorem
and (3.69), we conclude that the condition for closed-loop stability is given by

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f > 0. (3.14b)

It is important to note that the conditions for stability in the foregoing proposition are the
same as for the diffusion-less case, derived in Proposition 3.1. In fact, the previous two proposi-
tions conclude that the stability of the reaction-diffusion case is the same as the one for the ODE
one, under different conditions on the parameters. Although this might seem an intuitive con-
clusion, it is not always the case that the reaction-diffusion network inherits the stability of the
reaction network. Indeed, one of the characteristic dynamic behaviours of PDEs is the diffusion
driven instability, which is of particular relevance in pattern formation of physiological charac-
teristics [2, 16] and cell differentiation mechanisms [18]. However, it remains to be understood
whether the instability due to diffusion might arise in the reaction network studied in Example
2.2.

3.4 Summary
In this chapter we analysed basic dynamical properties of two systems. In Example 3.1 we
derived local stability conditions of a circular protein activation with an arbitrary number of in-
termediate activation steps, represented by a linear ODE set. These stability conditions are a
function of the kinetic parameters of the reaction network. At a later stage we extended these re-
sults to the case in which the species diffuse, under some assumptions in the diffusion constants.

In turn, in Example 3.2 we found closed form solutions of a first order linear PDE, by means
of the Green’s function that spans the solution space of the homogeneous Heat Equation. In par-
ticular, we were able to expose the filtering behaviour of the system that gives rise to suppression
of spatial fluctuations in species concentrations.

Up to now, all the analysis have been performed to derive closed-form expressions to quantify
a particular performance index of interest. However, the continuous dependence on the spatial
coordinate of PDEs hinder this exact analytical treatment. In the rest of this thesis, we will
consider a class of methods to approximate a PDE set as an ODE set, at the cost of increasing
the number of DE to solve, but keeping in mind the trade-off between accuracy and dimension.
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Chapter 4
Reduction of Computational Load and
Integrated Response for Classes of
Reaction-Diffusion Systems
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In this chapter we assume that the solutions to the reaction-diffusion PDEs belong to a
Hilbert space. This allows us to express these solutions as a weighted sum of the basis functions
which expand the solution space. By choosing these basis functions to be invariant with respect
to the Laplacian operator, we will be able to derive an associated ODE set to the reaction-
diffusion PDE, at the cost of increasing the number of ODEs to solve. In the first instance,
we use this associated ODE set along with the analytical solution for a linear combination of
species concentration to reduce the computational load required for the numerical solution of a
reaction diffusion network. At a later stage we avail of the projection method to derive analytical
expressions of the time-integral of selected species in a reaction-diffusion network.

In this chapter we introduce a methodology available in the literature to express a PDE set as
an infinite-dimensional ODE set. Applying this approach to reaction-diffusion models, we are
able to further reduce the order of the resulting system, preserving dynamic characteristics of the
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system with an arbitrary accuracy. The cornerstone of the aforementioned method is to assume
that the solutions to the PDE belong to a vector space. When we select the representation of
the basis elements to be invariant with respect to the Laplacian operator, we obtain an explicit
separation for the temporal and spatial dimensions of the expanded signal. This methodology is
called the Laplacian Spectral Decomposition (LSD, for short) and is introduced in Section 4.1.

In Section 4.3, we will express a general nonlinear reaction-diffusion system as the intercon-
nection of a linear and nonlinear PDEs. For the linear PDEs we are able to provide analytical
solutions via the Green’s function method, introduced in Section 3.2. Whereas the numerical
simulation is only required for the nonlinear system. Here we avail of the LSD method to per-
form this simulation, so as to reduce the computational load. To asses this reduction, we compare
the computational time required for the simulation by the methodology described above with a
pure numerical approach as well as with the pure LSD approach. For a particular reaction net-
work, the simulation results suggest that for the case of large densities in the spatial domain
we can obtain a significant reduction of the computational time. In Section 4.4, we avail of the
LSD method to compute the integral in time of the solutions of selected species in a class of
reaction-diffusion systems.

4.1 Hilbert Spaces and LSD
A Hilbert space (H) is a complete vector space endowed with an inner product. In the remaining
of this chapter we will consider the standard inner product of a function vector space:

〈f(x),g(x)〉 =

∫
Ω

gT (x)f(x) dx : H×H→ R+,

where f(x) and g(x) : Ω → H. In general we can express the elements of a vector space as a
linear combination of the elements of a basis that spans such a space. In addition, we recall that
the representation of a vector space basis is not unique. This provides us with some degree of
freedom to choose the elements of the basis.

When we focus on the reaction-diffusion equation

∂

∂t
e = D∇2e + Ae + NNLg(e) + Bu, (2.52)

with the appropriate initial and boundary conditions of the form

m(t, ∂Ω) = p(t, ∂Ω)c(t, ∂Ω) + q(t, ∂Ω)
∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

∀ t ∈ R+, (2.42)

the LSD method suggests the choice of an orthonormal basis that is also invariant w.r.t. the
Laplacian operator. In addition, the elements of the basis must comply with the boundary con-
ditions of the reaction-diffusion under consideration, to be able to reproduce the solution of the
PDE. In formal terms, we require the elements of the basis φi(x) to satisfy:

〈φi(x), φj(x)〉 = δij (4.1a)

∇2φi(x) = −λiφi(x) subject to the boundary conditions in (2.42), (4.1b)

where λi ∈ R+ is denoted as the eigenvalue of the eigenfunction φi(x). Of note, for intricate
spatial geometries the invariance condition in (4.1b) might be difficult to fulfil with an analytical
expression. In those cases we can adopt a numerical approach to find the value of the basis
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elements in a discretisation of the spatial domain Ω. We call this a local basis [59, 60]. Nev-
ertheless, in the remainder of this work we will consider simple geometries that allow for an
analytical expression of the elements φi(x) of the global basis.

Once we have characterised the elements of the basis, we remark that the completeness of H
allows us to express its elements as

ci(t, x) =

∞∑
i=1

wi(t)φi(x), (4.2)

where wi(t) is the so-called mode of the eigenfunction φi(x). Here we note that the method
proposed involves an explicit separation of the temporal and spatial dependencies [61]. In ad-
dition, as ci(t, x) is the solution of a PDE of the form (2.40) and we assume locally Lipschitz
nonlinearities, in [62, 63, 64] is shown that the eigenvalues λi diverge to infinity as i tends to
infinity. Moreover, it is also shown that 0 < λi < λj∀ i < j. This allows us to approximate the
expression in (4.2) to the first ϑ elements of the series. That is to say, in a matrix formulation:

c(t, x) ≈
ϑ∑
i=1

wi(t)φi(x) =: WT(t)φ(x), (4.3)

were WT(t) : R+ → Rn×ϑ and φ(x) : Ω → Rϑ. Of note, we require all the vectors ci(t, x)
to comply with the same boundary conditions, in order to be able to represent them with the
common basis comprised in φ(x). Furthermore, we remark that WT(t) satisfies the following
relationship, given the orthonormality of the entries in φ(x):

〈c(t, x),φ(x)〉 =
〈
WT(t)φ(x),φ(x)

〉
=

∫
Ω

WT(t)φ(x)φT (x)dx

〈c(t, x),φ(x)〉 = WT(t). (4.4)

In the following, for the sake of readability, we will frequently suppress the dependence on space
and time in W(t) and φ(x), respectively. In the next section, we avail of the explicit separation
of the spatial and temporal dependencies in (4.3) to express the reaction-diffusion equation (2.40)
as a first-order ODE set of dimension nϑ.

4.2 Associated ODE Set to a Reaction-Diffusion Equation

Here, we derive an ODE set that arises from the PDE in (2.40), when we consider the absence of
the external input u(t, x). The next proposition, which relates the interaction of the vectorisation
operation vec (◦) and the Kronecker product ⊗ will be useful in what follows.

Proposition 4.1. [45]
vec (AXB) =

(
BT ⊗A

)
vec (X) .

The properties of the operations above as well as the proof of the theorem can be found in
[45]. The following proposition shows how to express (2.52) as an associated first order ODE
of dimension nϑ. Here we do not assume that the diffusion is the same for all the species nor a
prescribed form of the nonlinear terms in vNL(c).
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Proposition 4.2. Consider the PDE defined in (2.40), with N and v(c) as defined in (2.32) and
(2.30), respectively. The weights W(t) which satisfy (4.3) are the solution of the ODE set

d

dt
vec
(
WT

)
= Acvec

(
WT

)
+ B0vec

(
WT

0

)
+ BNL

∫
Ω

vec
(
vNL

(
WTφ

)
φT
)

dx. (4.5)

Where

Ac = (−Λ⊗D) + (Iϑ ⊗NLG) , (4.6a)
B0 = Iϑ ⊗N0, (4.6b)

BNL = Iϑ ⊗NNL, (4.6c)

WT
0 = (v0 0m3×(ϑ−1)). (4.6d)

Here Λ ∈ Rϑ×ϑ is a diagonal matrix, whose iith entry is λi.

Proof. Firstly, recall that our model has the form

∂

∂t
c(t, x) = D∇2c(t, x) + Nv(c(t, x)), (2.40)

when u(t, x) = 0. Moreover, we partition the stoichiometric reaction rate vector and stoichio-
metric matrix as

v(c) =

vNL

Gc
v0

 : R+ × Rn+ → Rm1+m2+m3 , (2.30)

N =
(
NNL NL N0

)
∈ Rn×(m1+m2+m3). (2.32)

When we express the species concentration vector c(t, x) as the truncated sum in (4.3) and
postmultiply it by φT , (2.40) becomes

∂

∂t
WTφφT = DWT∇2φφT + NLGWTφφT + N0(vz 0)φφT + NNLvNL

(
WTφ

)
φT ,

= −DWTΛφφT + NLGWTφφT + N0(vz 0)φφT + NNLvNL

(
WTφ

)
φT ;

where we have used the invariance w.r.t. the Laplacian operator in (4.1b). Integrating over the
spatial domain, the equation above becomes

d

dt
WT = −DWTΛ + NLGWT + N0(vz 0) + NNL

∫
Ω

vNL

(
WTφ

)
φT dx.

Here we have used the orthonormality of the basis elements in (4.1a). Applying the vectorisation
operation to the expression above, yields

d

dt
vec
(
WT

)
= Acvec

(
WT

)
+ B0vec

(
WT

0

)
+ BNL

∫
Ω

vec
(
vNL

(
WTφ

)
φT
)

dx,

where the matrices Ac, B0 and BNL have been defined in (4.6).

When we consider that vnl(c) is a vector whose ithcomponent is a quadratic form (see
Assumptions 2.1 in Section 2.5), we can express it as

vNL(c) =
(
Im1
⊗ cT

)
Yc.
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Representing c(t, x) as (4.3) and postmultipliying by φT , the vector vnl(c) becomes

vNL(W Tφ)φT =

 φT WY1W
T

...
φT WYm1

WT

φφT

=
(
Im1
⊗ φT

) WY1W
T

...
WYm1

WT

φφT

vNL(W Tφ)φT =
(
Im1
⊗ φT

)
(Im1

⊗W) YWTφφT .

Here Y ∈ Rm1n×n has been defined in (2.48). Applying vec (◦) to the expression above, we
have

vec
(
vnl(W

Tφ)φT
)

=
(
φφT ⊗ Im1

⊗ φT
)

(W ⊗ Im1
⊗W) vec (Y) , (4.7)

from which we note an explicit separation of the spatial and temporal dependencies. In the
next section, we avail of the analytical solution of some species to reduce the number of PDEs,
required to solve numerically.

4.3 Reduced Order PDE via Analytical Solution for a Class
of Reaction-Diffusion Systems

In this section, we avail of the linear transformation presented in Section 2.3.1, which allows us
to write the system in (2.40) as an interconnection of a linear and a nonlinear system. Under some
conditions on the stoichiometric matrix and the Jacobian of the system, the analytical solution for
the former will be found for an infinite spatial domain, hence the need for a numerical solution is
only necessary for the nonlinear subsystem. Although the PDE problem might only be defined
in a finite domain, we assume that the spatial domain in which the nonlinear PDE is being
simulated is large enough so as to be able to assume it infinite. This assumption will allow us
to derive a closed-form formula for an analytical solution of the linear part of the model. This
analytical solution can be further analysed to infer some properties of the dynamics of the closed
loop system. Towards the derivation of this analytical solution and further order reduction of the
PDE, we first consider two preliminary results.

Lemma 4.1. Consider a reaction-diffusion system of the form

∂

∂t
e = d∇2

xe + Ae. (4.8)

The change of variables e = exp(At)ψ in (4.8) gives

∂

∂t
ψ = d∇2

xψ. (4.9)

The proof follows from the substitution of variables. Furthermore, we note that each element
of (4.9) is a homogeneous Heat Equation, whose solution has been analysed in Section 3.2.
Although the Heat Equation is similar to that of our interest, it does not include the nonlinearities
of the system in (2.52), repeated here, for the sake of readability:

∂

∂t
e = D∇2e + Ae + NNLg(e) + Bu. (2.52)
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The next Lemma shows how a basis of the orthogonal complement of NNL’s column space,
denoted as Q, can induce a linear transformation. The new coordinates will lead to a Heat
Equation, and, hence, to an explicit formula for the solution can be found by means of (3.45).
Let r = colrank(NNL). By the Rank-Nullity Theorem [39], Q ∈ R(n−r)×n.

Lemma 4.2. Consider the system in (2.52). If

QNLG = ΘQ, (4.10)

where Θ ∈ R(n−r)×(n−r), then the change of variables exp (Θt)η = Qe transforms (2.52)
into an associated PDE set of order n− r, composed of homogeneous heat equations

∂

∂t
η = d∇2η.

Proof. Premultiplying (2.52) by Q yields

∂

∂t
Qe = d∇2Qe + QAe.

If (4.10) holds, then
∂

∂t
Qe = d∇2Qe + ΘQe.

Finally, by Lemma 4.1, the change of variables exp (Θt)η = Qe leads to the expression

∂

∂t
η = d∇2η,

as desired.

Furthermore, we remark that the conditions under which Property (4.10) holds, can be deter-
mined by computing

Θ = QNLGQ+. (4.11)

Note that Lemma 4.2 suggest a linear transformation of the form(
y
z

)
=

(
Q
M

)
e, (4.12)

where Q ∈ R(n−r)×n and M ∈ Rr×n is a matrix composed of r linearly independent rows of
NNL

T . The dynamics in these coordinates are

∂

∂t
y = d∇2y + Θy (4.13a)

∂

∂t
z = d∇2Me + MAe+MNNLg(e). (4.13b)

By Lemma 4.2, a closed form expression for y(t, x) can be found. With the inverse transforma-
tion

e =
(
Q+ M+

)(y
z

)
,

we can express the PDE for z as

∂

∂t
z = d∇2z + MAM+z + MAQ+y + MNNLg(y, z). (4.14)

As we see from Equation (4.13a) and Lemma 4.1, we have available the analytical solution
for y(t, x). Hence it is only necessary to approximate the solution for z(t, x), in order to recon-
struct the full state c(t, x). Towards this end, the following Proposition shows how the PDE for
z(t, x) can be rewritten as a reduced order model (ROM) by means of the LSD.
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Proposition 4.3. Consider the PDE for z(t, x) as shown in (4.14). Then z(t, x) can be approx-
imated as

z(t, x) ≈WT
z (t)φ(x).

Here WT
z satisfies

d

dt
vec
(
WT

z

)
= Ãzvec

(
WT

z

)
+ B̃yvec

(
WT

y

)
+ B̃gvec

(
WT

g

)
, (4.15)

WT
g =

∫
Ω

g
(
WT

y φ,W
T
z φ
)
φT dx, (4.16)

and

Ãz = d(−Λ⊗ Ir) +
(
Iϑ ⊗MAM+

)
(4.17a)

B̃y =
(
Iϑ ⊗MAQ+

)
(4.17b)

B̃g = (Iϑ ⊗MNNL). (4.17c)

Proof. We note that postmultiplication of the l.h.s in (4.14) by φT and integration over the
spatial domain yield ∫

Ω

∂

∂t
WT

z φφ
T dx =

d

dt
WT

z .

Accordingly, the same operation applied to the r.h.s of (4.14) leads to

d

dt
WT

z = −WT
z Λ + MAM+WT

z + MAQ+WT
y + NNLWT

g ,

where the properties in (4.1a) and (4.1b) along with the definition in (4.16) have been used. We
note that d

dtW
T
z is a matrix in Rr×ϑ. Applying vec (◦) to the foregoing equation and Theorem

4.1 yield

d

dt
vec
(
WT

z

)
= Ãzvec

(
WT

z

)
+ B̃yvec

(
WT

y

)
+ B̃gvec

(
WT

g

)
which is Equation (4.15) when the definitions in (4.17) are taken into account.

Now we analyse a small reaction network. By focusing on the computational load, we give
a comparison of the pure numerical, analytical/numerical, analytical/approximated, and approx-
imated methods of solving the PDE.

Example 4.1. We use of the procedures described above applied to the following biochemical
reaction network

A+B
k1−→ 2B B

k2−→ 0 A
k3f−−⇀↽−−
k3b

0.

By letting c = ([A] [B])T , the stoichiometric matrix and the reaction rate vector, according to
the order proposed in (2.32) and (2.30), are

N =

(
−1 0 −1 1

1 −1 0 0

)
,

v(c) =
(
k1c1c2 | k2c2 k3fc1 | k3b

)T
.
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For this system, there exist two fixed points

c̄l =
(
k3b
k3f

0
)T

,

c̄h =
(
k2
k1

k3b
k2
− k3f

k1

)T
.

For simplicity, we choose to make the Taylor expansion of the model around c̄l. Hence, the
Jacobian of v(c) is

J(c̄l) =


0 k1k3b

k3f

0 k2

k3f 0
0 0

 .

In order to fully determine the PDE, we will consider that x ∈ [0, 1] = Ω ⊂ R, with the initial
condition represented by (

c1(0, x)
c2(0, x)

)
=

(
c̄1

N (x− µ, σ2)

)
.

Here N (◦) is a Gaussian function defined as

N (x− µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (4.18)

Also, we account for zero-flux boundary conditions

∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

= 0.

Reduction of Order via Analytical Solution for y(t, x)

With these definitions, the linear transformation in (4.12) becomes

T =

(
Q
M

)
=

(
1 1
−1 1

)
,

T−1 =
(
Q+ M+

)
=

1

2

(
1 | −1
1 | 1

)
,

which imply (
y(t, x)
z(t, x)

)
=

(
e1(t, x) + e2(t, x)
−e1(t, x) + e2(t, x)

)
.

Moreover, the corresponding initial conditions in the y, z variables are (recall that in this coor-
dinates, ē = 0): (

y(0, x)
z(0, x)

)
=

(
N (x− µ, σ2)
N (x− µ, σ2)

)
.

Hence Condition (4.10) becomes(
k3f k2

)
=
(

1
2 [k3f + k2] 1

2 [k3f + k2]
)
, (4.19)
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which is satisfied by letting k3f = k2 = k. Moreover, from Equation (4.11) follows Θ = −k.
As stated in Section 4.3 we can compute the spatio-temporal profile of the system by a PDE

of order r = colrank(Nnl) = 1. This reduced system is given by (4.14), which in our case is

∂

∂t
z(t, x) = d∇2

xz +

(
k1k3b

k
− k
)
z +

k1k3b

k
y +

1

2
k1

(
y2 − z2

)
. (4.20)

In turn, from Lemma 4.2 and (3.45), y(t, x) satisfies

y(t, x) = exp(−kt)
∫ ∞
−∞
N (x− µ, σ2)N (x− ξ, 2dt)dξ

y(t, x) = exp(−kt)N (x− µ, 2dt+ σ2). (4.21)

Analytical Solution & LSD

Now, in order to perform the simulation via the analytical solution & LSD approach, it is nec-
essary to compute the modes wT(t) for y(t, x) and g(y, z), as noted in Proposition 4.3. For
wT

y (t) we prefer numerical computation to avoid the evaluation of a complex function in the
code, hence reducing the computational load. In turn, from (4.16),

wT
g (t) =

∫
Ω

g(wT
y φ,w

T
z φ)φT dx

=
k1

2

∫ 1

0

(wT
y φ)2φT − (wT

z φ)2φT dx

wT
g (t) =

k1

2

∫ 1

0

φT
(
wywT

y −wzw
T
z

)
φφT dx. (4.22)

The vectorised expression of the term φT
(
wwT

)
φφT is

vec
(
φT
(
wwT

)
φφT

)
=
(
φφT ⊗ φT

)
vec
(
wwT

)
,

from which we note an explicit separation of the spatial and temporal dependency. Each of the
terms in the matrix φφT ⊗ φT is a product of three elements of the basis. Their integral over
the spatial domain have this simple expression∫ 1

0

φiφjφkdx =

{
1, i = 1, j = k ∀ j, k ∈ [1, p]

0, otherwise.
(4.23)

Then we can write the Equation (4.22) as

vec
(
wT

g

)
(t) =

k1

2

(∫ 1

0

φφT ⊗ φT dx

)[
vec
(
wy(t)wT

y (t)−wz(t)wT
z (t)

)]
. (4.24)

LSD

Finally, we assess the performance of the previous methods with the reduced order model ob-
tained from (2.40). As stated in Section 4.1, the weights for this PDE satisfy

d

dt
vec
(
WT

)
= [d (−Λ⊗ I2) + (Iϑ ⊗NLG)] vec

(
WT

)
+ (Iϑ ⊗N0) vec ((v0 0)) +

+ (Iϑ ⊗NNL)

(∫
Ω

φφT ⊗ φT dx

)
(W ⊗W) vec (Y) . (4.25)
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Implementation and Results

The simulations were performed in a PC with a processor AMD A6-4455M APU and 3GB of
RAM, running Kubuntu 12.10 64 bits and Matlab 2007b. Four different implementation were
considered in order to compare the methods:

1. Numerical Implementation. We avail of the function pdepe implemented in Matlab.

2. Analytical & Numerical. Using the expression for y(t, x) in (4.21), we simulated (4.20)
with pdepe.

3. Analytical & LSD. We implemented (4.15), where wT
g (t) have been defined in (4.24) and

wT
y (t) are computed numerically. In this case, we used the ODE15s solver.

4. LSD. The implementation of (4.25) was simulated by the ODE15s solver.

A global basis for Ω with zero-flux boundary conditions, which complies with (4.1b) and (4.1a)
is given by

φi(x) = ki cos(2π(i− 1)x),

ki =

{
1 , i = 1√
2 , i 6= 1

.

In turn, the eigenvalues are

λi = [2π(i− 1)]2 ∀ i ∈ [1, ϑ].

Figure 4.1 shows the surfaces obtained with the four different methods. In turn, Figure 4.3
shows the mean cpu time required by each solution method. To avoid variability of results, we
repeated each simulation 100 times, and we show the associated error bar also in Figure 4.3.
It is important to note that this result is for ϑ = 34 number of eigenfunctions. We selected this
number of eigenfunctions for the LSD methods as it provides an very accurate approximation
of a Gaussian function, as shown in Figure 4.2. As the number of eigenfunctinos decreases,
the LSD approach improves its performance w.r.t. the Analytical & LSD implementation and
conversely. We also note a that the time required for pure LSD and Analytical & LSD methods
tend to remain constant as the number of nodes varies, whereas the time required those method
based on the function pdepe of Matlab seems to grow linearly as the number of nodes grows.

Although obtaining a solution of a reaction-diffusion system provides all the information
about its dynamic response, the numerical solution only provides these characteristics for a par-
ticular set of initial and boundary conditions, diffusion constants, and kinetic parameters. Hence,
approaches which include the analytical solution may be used to characterise some of the dy-
namic properties in terms of the parameters of the system. In light of this analytical treatment, in
the forthcoming section, we will focus on the analytical computation of the integral of selected
species in the biochemical network.

4.4 On the Temporal Integral of Solutions of Reaction-Diffusion
Equations

The quantification of a signal’s magnitude, may serve as a measure of the influence of such a
signal in its environment. A possible choice of this magnitude quantification is the time-integral
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Figure 4.1: Comparison of the methods for solving the PDE in the case study. From left to right this figure
depicts the surface obtained by numerical, analytical/numerical, analytical/LSD, and LSD approaches,
respectively.
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Figure 4.2: Approximation of the Gaussian function in (4.18) as the number of eigenfunctions ϑ varies.
The header of each panel shows the number ϑ used as well as the Root Mean Square Error (RMSE) between
the approximation and the exact Gaussian function. Here we used σ2 = 0.01, µ = 0.5.

of the signal. In the biochemical context, the time-integral of the species concentration is one of
the ways in which a cue may propagate its information through a signalling pathway [65].

For instance, in a spatio-temporal domain, the integrated response of morphogenes has been
implicated in processes such as cellular growth and differentiation [66, 18, 43]. Moreover, by ob-
taining the integrated response of the erythropoietin receptor, a linear relationship of this receptor
signal transmission has been suggested [67, 68]. Theoretical approaches towards the analytical
computation of signal norms is presented in [69], where for a class of biochemical pathways the
L2 norm of some signals can be computed by analysing an associated linear system.

This section focuses on the analytical computation of the integral in time of the reaction
network concentrations, and its contents are a follow-up of this problem formulation originally
posed in [70, 71]. The main idea is to find subspaces of the concentration space, which are
orthogonal to the vectors associated to the nonlinear reaction rates. Once this subspace has
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Figure 4.3: CPU time assessment for the four methods to solve a PDE. The parameters used for the
simulation are: ϑ = 34, {k1, k2, k3b, k3f} = {1, 2, 2, 1}, d = 0.001, σ2 = 0.01, µ = 0.5.

been identified we derive analytical formulas for the integral of some species in the reaction
network. We organise the presentation of these ideas in three different sections. Firstly, we
show that the left null space of a matrix defined by the stoichiometric matrix and Jacobian of
the system, determines linear combinations that present an integral constrain [25]. Secondly, we
show sufficient conditions on the stoichiometric matrix, which allow us to compute the integrated
response of single species. Finally, we extend this results to the reaction-diffusion case, as
presented in [27].

Throughout this section, we will consider a reaction network expressed in terms of the error
coordinates as presented in (2.52). Moreover, we adopt the following assumptions to ensure that
the trajectories of the network have a finite integral.

Assumption 4.1. Let the reaction-diffusion PDE and the influx of species u(t, x) satisfy

A1. The model of the reaction network in (2.52) has a unique exponentially stable fixed point,

A2. moreover, the external inputs to the network u(t, x) have a finite integral, that is to say

lim
t→∞

u(t, x) = 0,∫ ∞
0

u(t, x) dt <∞.

4.4.1 Integral in Time of a Linear Combination of Species Concentration
As a motivation of the methodology to use, let us consider first the case in which the diffusion
of species is negligible. Hence, the dynamics in the error coordinates in (2.52) are:

d

dt
e = Ae + NNLg(e) + Bu, (4.26)

where g(e) comprises all the higher order terms of the Taylor expansion of the nonlinear reac-
tion rates vNL (e). We note that we have not considered any particular functional form for the
nonlinear reaction rates. Integration in time of (4.26) yields

e(∞)− e(0) = A

∫ ∞
0

e dt+ NNL

∫ ∞
0

g(e) dt+ B

∫ ∞
0

u dt.
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Assumptions 4.1 ensure that the integrals are finite and e(∞) = 0. Hence,∫ ∞
0

e dt = −A−1

(
e(0) + NNL

∫ ∞
0

g(e) dt+ B

∫ ∞
0

u dt

)
. (4.27)

Now, let us define y = Ce with C ∈ Rv×n and such that

CA−1NNL = 0. (4.28)

Then ∫ ∞
0

y dt = −CA−1

(
e(0) + B

∫ ∞
0

u dt

)
. (4.29)

Condition (4.28) indicates that all the choices of C are linear combinations of the left null space
of A−1NNL. This null space allows us to identify algebraic constraints between the integral
of the different species’ concentrations, hence suggesting the existence of a constraint in the
dynamics of the biochemical reaction network. However, this approach does not present condi-
tions to compute the integral of specific species, which might provide more valuable information
for the downstream signalling. For the ODE case, we present these conditions in the following
section.

4.4.2 Time-Integral of Selected Species Concentrations
In this section we will obtain conditions for which the analytical expression for the time-integral
of some species can be obtained. Here, we still consider that the diffusion of species is negligible,
and the dynamics of the species concentrations are governed by (4.26). Towards this end, let us
split the state vector c(t) as

c(t) =

(
cNL(t)
cL(t)

)
: R+ → Rk+(n−k). (4.30)

The vector cNL(t, x) is composed of the k species that are exclusively reactants or products
of nonlinear reactions, whereas cL(t, x) includes the rest of the species. Accordingly, the sto-
ichiometric matrix, Jacobian, diffusion matrix, and input matrix in (4.26), and the deviation
coordinate e(t), become

N =

(
N1 N3

N2 N4

)
∈ R(k+(n−k))×(m1+(m−m1)),

J =

(
J1 J2

J3 J4

)
∈ R(m1+(m−m1))×(k+(n−k)),

B =

(
B1

B2

)
∈ R(k+(n−k))×q, (4.31a)

e(t) =

(
eNL(t)
eL(t)

)
: R+ → Rk+(n−k). (4.31b)

As a consequence of the definition of eL(t), we note that J3 = N3
T = 0, so the definitions for

N and J above reduce to

N =

(
N1 0
N2 N4

)
, (4.32a)

J =

(
J1 J2

0 J4

)
. (4.32b)

Furthermore, we adopt the forthcoming assumption.
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Assumption 4.2. The number of nonlinear reaction rates equals that of elements in cNL(t).
That is to say m1 = k.

Of course, this assumption limits the application of our methodology to a rather specific class
of reaction networks. However, it allows us to obtain a closed-form expression for the integral
in time of some species’ concentrations. Under this assumption and the definitions in (4.31) and
(4.32), we can express A−1 in (4.27) as

A−1 =

(
J−1

1 N−1
1 + J−1

1 J2 (N4J4)
−1

N2N
−1
1 −J−1

1 J2 (N4J4)
−1

− (N4J4)
−1

N2N
−1
1 (N4J4)

−1

)
. (4.33)

Moreover, we note

A−1NNL =

(
J−1

1

0

)
. (4.34)

This implies that the time-integral of eL can be computed from (4.27) as∫ ∞
0

eL dt = (N4J4)
−1

H

(
e(0) + B

∫ ∞
0

u dt

)
, (4.35)

where
H =

(
N2N−1

1 −In−k
)
. (4.36)

From (4.35), we note that the integral is directly proportional to the net flux of species inte-
grated over time. The proportionality matrix is a function of the stoichiometry of the system and
of the kinetic constants in J4; typically, J4 contains the degradation rates of the species in eL(t).
In the forthcoming section, we derive in detail a similar result for the case in which the diffusion
of the species in eL(t, x) is relevant. This methodology has assisted in the characterisation of
the transduction properties of the erythropoietin membrane receptor [26].

4.4.3 Integral in Time of Selected Species Concentrations in a Reaction-
Diffusion Network

In this section we extend the results derived in the previous section to a class of reaction-diffusion
network. Here, we will make use of the LSD method introduced in Section 4.1, to derive a
formula for the time-integral of the species comprised in eL(t, x). Moreover, we consider the
expression of the reaction-diffusion model in the deviation coordinates form the homogeneous
steady state given by

∂

∂t
e = D∇2e + Ae + NNLg(e) + Bu. (2.52)

Now, we consider the diffusion of species in a spatial domain Ω. Following the vector order for
c(t, x) in (4.30), the diffusion matrix in (2.52) is

D =

(
D1 0
0 D4

)
∈ R(k+(n−k))×(k+(n−k)). (4.37)

We also note that the modes WT
e (t) are partitioned following the order given in (4.31b)

WT
e (t) =

(
WT

NL(t)
WT

L (t)

)
: R+ → R(k+(n−k)×ϑ).
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The forthcoming Proposition summarises the derivation of the time-integral of the species
in eL(t, x), when the reaction network satisfies Assumptions 4.1 and 4.2 along with assumption
of no diffusivity for the species comprised in eNL. The later assumption models biological
scenarios in which the species in eNL are very big in comparison to the rest of the species in the
network or when they are spatially fixed to the cell membrane, for instance.

Proposition 4.4. Consider a reaction-diffusion system of the form given in (2.52), that satisfy
Assumptions 4.1 and 4.2. Moreover, let the diffusion of the species in eNL be negligible:

D1 = 0, (4.38a)

and assume that all the functions in (2.52) belong to the same Hilbert space. Then, the time
integral of the species in eL(t, x) is given by

∫ ∞
0

eL(t, x) dt =

ϑ∑
i=1

(−λiD4 + N4J4)
−1

H

[
we(0)i + B

∫ ∞
0

wui dt

]
φi(x), (4.39)

provided the inverse (−λiD4 + N4J4)
−1 exists. Here H has been defined in (4.36). In addi-

tion, −λi and φi(x) are the ith eigenvalue and basis element of the Hilbert space to which the
solutions of (2.52) belong. Moreover, we(0)i and wui(t) are the weights of the initial condition
e(0) and external influxes u(t, x), referred to the basis element φi(x).

Proof. Firstly, we define

A = NJ =

(
N1J1 N1J2

N2J1 N2J2 + N4J4

)
=:

(
A11 A12

A21 A22

)
. (4.40)

Moreover, we note that, since we deal with an exponentially stable system, e(∞) = 0. Hence
integration in time of (2.52) yields

0− e0(x) = D∇2

∫ ∞
0

e dt+ A

∫ ∞
0

e dt+ NNL

∫ ∞
0

g(e) dt+ B

∫ ∞
0

u dt.

Considering the partition of the state e(t, x) in (4.30) and D1 = 0, the equation above can be
rewritten in partitioned form as:

−eNL0(x) = A11

∫ ∞
0

eNL dt+ A12

∫ ∞
0

eL dt+ N1

∫ ∞
0

g(e) dt+ B1

∫ ∞
0

u dt (4.41a)

−eL0(x) = D4∇2

∫ ∞
0

eL dt+ A21

∫ ∞
0

eNL dt+ A22

∫ ∞
0

eL dt+

+ N2

∫ ∞
0

g(e) dt+ B2

∫ ∞
0

u dt. (4.41b)

Since eNL(t, x), eL(t, x), u(t, x) belong to the same Hilbert space, we can approximate
them as a truncated series in terms of the common basis φ(x). Substituting these signals by its
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series representation and postmultiplying by φT (x), the foregoing expressions become

−WT
NL(0)φφT =A11

∫ ∞
0

WT
NL dtφφT + A12

∫ ∞
0

WT
L dtφφT + N1

∫ ∞
0

g(e) dtφT+

+ B1

∫ ∞
0

WT
u dtφφT

−WT
L (0)φφT =D4

∫ ∞
0

WT
NL dtΛφφT + A21

∫ ∞
0

WT
NL dtφφT+

+ A22

∫ ∞
0

WT
L dtφφT + N2

∫ ∞
0

g(e) dtφT + B2

∫ ∞
0

WT
u dtφφT ,

where the invariance w.r.t the Laplacian operator in (4.1b) has been used. By noting that the
orthonormality of the basis φ(x) in (4.1a) implies

∫
Ω
φφT dx = Iϑ, integration over Ω yields

−WT
NL(0) = A11

∫ ∞
0

WT
NL dt+ A12

∫ ∞
0

WT
L dt+ +N1F + B1

∫ ∞
0

WT
u dt

(4.42a)

−WT
L (0) = D4

∫ ∞
0

WT
L dtΛ + A21

∫ ∞
0

WT
NL dt+ A22

∫ ∞
0

WT
L dt+

+ N2F + B2

∫ ∞
0

WT
u dt, (4.42b)

where we have defined F =
∫

Ω

∫∞
0

g(e)φ
T

(x) dtdx. Given the stability of A, we can ensure
that its inverse exists and consequently A11 is nonsingular. Therefore, we can solve (4.42a) for∫∞

0
WT

NL(t) dt:∫ ∞
0

WT
NL dt = −A−1

11

(
WT

NL(0) + A12

∫ ∞
0

WT
L dt+ N1F + B1

∫ ∞
0

WT
u dt

)
.

Since m1 = k, A−1
11 = J1

−1N1
−1 and the equation above becomes∫ ∞

0

WT
NL dt = −

(
A−1

11 WT
NL(0) + J1

−1J2

∫ ∞
0

WT
L dt+ J1

−1F + A−1
11 B1

∫ ∞
0

WT
u dt

)
.

Substituting the equation above in (4.42b) and simplifying, yields

0n×ϑ = D4

∫ ∞
0

WT
L dtΛ + N4J4

∫ ∞
0

WT
L dt−H

(
WT

e (0) + B

∫ ∞
0

WT
u dt

)
,

where H is as in (4.36). We further consider the ith column of the matrix expression above:

0n×1 = [−λiD4 + N4J4]

∫ ∞
0

wLi dt−H

(
wei(0) + B

∫ ∞
0

wui dt

)
,

solving for
∫∞

0
wLi dt, leads to∫ ∞

0

wLi dt = [−λiD4 + N4J4]
−1

H

(
wei(0) + B

∫ ∞
0

wui dt

)
.

Multiplying each column by φi(x) and summing over all i (see Equation 4.3), gives the expres-
sion in (4.39).
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Now, we exemplify this result in a small biochemical reaction network.

Example 4.2. In this example we compute the integral of some species of a biochemical reaction
network, which represents the activation of the species S3, in the presence of S1 and S2. We
model this activation rate by means of a Power-Law reaction rate and consider a turn-over for
S2 and S3. Furthermore, we assume that S1 is a heavy molecule or that is attached to a fixed
location and hence its diffusion is negligible.

Problem Definition

Consider the following biochemical reaction network

S1 + S2
v1−−⇀↽−− S3

v2−−⇀↽−− 0
v3−−⇀↽−− S2. (4.43)

We note that S1 is the only species which reacts nonlinearly exclusively (k = 1), and fur-
ther assume that this species does not diffuse in the spatial domain [0, 1] = Ω ⊂ R. Let
c = ( [S1] [S2] [S3] )T , and v(c) = (v1 | v2 v3)

T . Then the stoichiometric matrix,
Jacobian matrix, reaction rate vector, and diffusion matrix are

N =

 −1 0 0
−1 −1 0

1 0 −1

 , (4.44a)

v(c) = (k1fc
g1
1 c

g2
2 − k1bc3 k2fc2 − k2b k3fc3 − k3b)

T
, (4.44b)

J =

 k1fg1c̄
g1−1
1 c̄g22 k1fg2c̄

g1
1 c̄

g2−1
2 −k1b

0 k2f 0
0 0 k3f

 , (4.44c)

D =

 0 0 0
0 d2 0
0 0 d3

 . (4.44d)

The partition of the matrices above, follow the order proposed in (2.30) and (4.31). From the
definitions above, the PDEs that govern the species concentration dynamics are

∂

∂t
c1 = − k1fc

g1
1 c

g2
2 + k1bc3

∂

∂t
c2 = d2∇2c2 − k1fc

g1
1 c

g2
2 + k1bc3 − k2fc2 + k2b

∂

∂t
c3 = d3∇2c3 + k1fc

g1
1 c

g2
2 − k1bc3 − k3fc3 + k3b.

We consider the initial conditionsc1(0, x)
c2(0, x)
c3(0, x)

 =

c̄1 cos(απx) + c̄1
c̄2
c̄3

 α ∈ N,

and homogeneous Neumann boundary conditions

∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

= 0.
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This reaction network only has one homogeneous equilibrium point given by

c̄ =


g1

√
k1bk3b
k1fk3f

(
k2f
k2b

)g2
k2b/k2f

k3b/k3f

 .

Integral Calculation

For the reaction network in (4.43), we have one species exclusively reacting nonlinearly and only
one nonlinear reaction (k = m1 = 1). Moreover, the species S1 is assumed to have a negligible
diffusion constant and all the species comply with homogeneous Neumann boundary conditions.
Since the all hypotheses of Proposition 4.4 are fulfilled, we can compute the temporal integral of
the species in eL(t, x).

Firstly, a global basis for Ω with homogeneous Neumann boundary conditions that complies
with (4.1b) and (4.1a) is given by

φi(x) = ki cos(π(i− 1)x),

ki =

{
1 , i = 1√
2 , i 6= 1

.

In turn

λi = [π(i− 1)]2 ∀ i ∈ [1, ϑ].

Moreover, we note that in the deviation coordinates e = c− c̄, the initial conditions aree1(0, x)
e2(0, x)
e3(0, x)

 =

c̄1 cos(απx)
0
0

 ,

and hence, all the columns of the matrix WT
e (0) are zero, except the α+ 1− th column, which

is

we(0)α+1 =

(
c̄1√

2
0 0

)T
.

From the expression above and the definitions in (4.44) and (4.36), the temporal integral of
eL(t, x) is given by (4.39):

∫ ∞
0

eL(t, x) dt =
c̄1√

2

([
(απ)2d2 + k2f

]−1[
(απ)2d3 + k3f

]−1

)
cos(απx). (4.45)

The left column of Figure 4.4 depicts the simulation of the reaction network in (4.43),
whereas the right column shows the comparison of the the numerical integration after simu-
lation and the formula in (4.45). It is noteworthy to mention that, despite having a complex
dynamical behaviour, the expression for the integral in time of e2(t, x) and e3(t, x) are simple.
Note that the magnitude of the elements in (4.45) will decrease quadratically in α. This obser-
vation has motivated the study of the filtering effect of the reaction diffusion systems, submitted
as [28].
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Figure 4.4: Dynamics of the species in the case study and their integrals in time. The left
column shows the spatio-temporal dynamics of the reactions in (4.43). The right column shows
the comparison of the analytical calculation (Continuous line) and the numerical integration after
simulation (Discontinuous line). The parameters used are {k1f , k1b, k2b, k3f , k3b, k3f , g1, g2} =
{0.01, 0.005, 0.05, 0.025, 0.03, 0.03, 2, 0.35}, {d2, d3} = {0.015, 0.0001}, α = 2.

4.5 Summary
In this section, we introduced a projection method which may be used to derive an associ-
ated ODE set from PDEs describing the dynamics of a reaction-diffusion system. In a class
of reaction-diffusion systems, by means of the analytical solution of some coordinates of the
PDE system, we were able to reduce the number of equations that require numerical solution.
For a specific case study, we note a significant reduction of the computational load. However
our methodology is based on the reduction of the number of PDEs to be solved numerically by
obtaining the the analytical solution of some species. If the evaluation of this analytical solution
represents a computational load larger than the required for obtaining the numerical solution of
the original set of equations, our methodology will fail to provide a reduction on the computa-
tional load. Hence, there is a subtle trade-off between the evaluation of the analytical solution
and the savings its use may represent. This further limits the application of our methodology,
yet an better description of the cases in which this methodology may be useful remains to be
studied.

Finally, we identified a class of reaction(-diffusion) systems for which the analytical formula
of the time-integral of some species, can be obtained as a pure algebraical problem. For the
spatio-temporal case, we stress out that the effect of the diffusion in the integrated response is
that of a low pass filter. In the following chapter, we will derive some biological conclusions
derived from the work presented up to now.
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Chapter 5
Application to Selected Biochemical
Reaction Networks
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Up to now, we have considered general problems involved in the study of the DEs that de-
scribe the dynamics of reaction networks, and illustrated these results in particular examples.
However, we haven’t been explicit about the implications of this earlier work on the underlying
biochemical systems. In this chapter, we close this gap by considering three biochemical path-
ways.

In this chapter, we present the application of the theoretical results obtained in the previ-
ous chapters to selected biochemical pathways. By linking the theoretical results with their
biological implication, we achieve one of our main goals in this work: to provide a quantita-
tive description of a particular phenomenon, as an analytical function of the parameters of the
system.

In particular, in Section 5.1 we use the results obtained in Example 3.2 to characterise the
activation of the Akt/mTOR complex via the insulin-like growth factor receptor, by identifying
biological scenarios that cast this activation in the reaction network (3.33). For a detailed discus-
sion of this pathway, we refer the interested reader to [22], from which this case study has been
extracted. In Section 5.2, we use the results derived in Examples 2.2 and 3.1 to characterise the
equilibrium set of the caspase-6 mediated core apoptosis pathway, as modelled in [72]. These
results have been reported in [23], currently under review. Finally, we present the computation
of the integrated response of calcium cues in non-excitable cells.
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5.1 Skeletal Muscle Growth
The Insulin-like growth factor (IGF-1) receptor pathway mediates cell growth and survival. In-
ternalisation of insulin cues leads to phosphorylation and activation of the pro-survival kinase
Akt and the subsequent activation of the the mammalian target of rapamycin (mTOR), which
switches on anabolic processes such as protein or nucleotide production. In turn, it has been
suggested that mTOR can phosphorylate and activate Akt [73, 74], thereby establishing a posi-
tive feedback loop (Figure 5.1.)

AKT/mTOR

P: Inactive pool of 

A: Active pool of 
     Akt and mTOR.

      Akt and mTOR.

Activation Signal

a)

b) c)

IGF−R

IGF−L

PI3K

mTOR

AKT
   I

   I

L >> d

d

L

Figure 5.1: AKT/mTOR pathway activation by IGF stimulation. Panel (a) shows an extended cell
(L >> d), with IGF receptors (IGF-R) that are activated by binding to IGF ligands (IGF-L). Upon
binding, the active signal that originates at the receptor propagates through the cell. The diameter d of
the cell is neglected. Panel (b) details how the receptors activation results in PI3 kinase activation and
a subsequent positive feedback loop of Akt and mTOR. Moreover, the effect of an inhibitor I of such a
pathway is considered. Panel (c) illustrates the abstraction of Akt and mTOR into one simple node which
auto-activates itself as considered in this study. This auto-feedback is assumed to convert inactive versions
of Akt/mTOR (P ) to their respective active forms (A).

Recent reports suggested the IGF-1 mediated PI3K-/Akt-/mTOR pathway is a regulator of
muscle cell growth. Overexpression of active AKT by genetic mutations or pharmacological
activation gives rise to an increase in muscle fibre diameter (muscular hypertrophy), while mus-
cle fibre diameter decreased upon inhibition of Akt or mTOR (muscular atrophy) [75, 76, 77].
Trophic factor receptors such as IGF-1 can be randomly and anisotropically distributed along the
cell surface [78, 79, 80] and activation of Akt by PI3K has been determined to be localised at the
receptors. This suggests that the Akt/mTOR positive feedback loop acts as a signal regenerator
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[81, 82, 83] in larger cells, so as to maintain a uniform signal progression.
In [22] it was shown how the IGF-1 mediated PI3K-/Akt-/mTOR pathway can be cast in

the reaction network (3.33), studied in Example 3.2. There we concluded that, under a constant
inactive concentration of the Akt/mTOR complex (c1(t, x)), we observe a localised activation of
the Akt/mTOR pool (c2(t, x)). However, the effect of diffusion might assist the signal progres-
sion of c2(t, x). To show this, consider a Gaussian initial condition for the active Akt/mTOR
pool, under constant concentrations of the inhibitor and inactive concentration of the Akt/mTOR
complex. The spatio-temporal dynamics for c2(t, x) is given by

c2(t, x) =
k√

π(4d2t+ 2σ2)
exp

(
αt− (x− µ)2

4d2t+ 2σ2

)
, (5.1)

where σ represents the spread of the initial concentration of c2(0, x), µ the localisation of its
maximum and k is the magnitude of the activation. In turn, d is the diffusion constant for the
complex.

We depict this progression in Figure 5.2, where we show the effect of the interplay of the dif-
fusion constants and Akt/mTOR inhibitors. To define the region of activation, we use a threshold
on the c2(t, x) concentration. This threshold (c̃2) might represent a value, which, if exceeded,
triggers a downstream physiological event, such as muscular growth. We can find the region that
is reached with the signal progression by comparing c̃2 with (5.1).

c̃2 ≤ k√
π(4d2t+ 2σ2)

exp

(
αt− (x− µ)2

4d2t+ 2σ2

)
.

From the equation above, we can obtain the area around the original centre of activation µ where
the threshold is exceeded at a certain time t

|x− µ| ≤
√

(4d2t+ 2σ2)

[
αt− 1

2
ln (k−2c̃22π(4d2t+ 2σ2))

]
. (5.2)

In Figure 5.2, we show the interplay of the magnitude of the diffusion constant and inhibitor
with the progression of the signal in the spatial domain. We note that in the absence of inhibitor
and high diffusion, the signal spreads in a broader range of the spatial domain (Figure 5.2.a), in
contrast to the restrained spatial signal progression in the presence of inhibitor and low diffusion
(Figure 5.2.c). In both cases, we have shown that the activation of the Akt/mTOR pool remains
localised to the original location of the initial stimulus.

For a detailed derivation of these results and further discussion, we refer the interested reader
to [22]. Having looked at an activation of the Akt/mTOR complex, modelled by a simple protein
auto-activation, we now consider a circular protein activation mechanism present in caspase-6
mediated apoptosis.

5.2 Apoptosis
Apotosis is an intracellular process that leads to cell destruction by means of the activation of
caspase-3 [84, 85]. This process can be triggered by extracellular signals, through the activation
of the Fas receptor [86], or by means of mitochondrial outer membrane permeabilization [87,
88, 89]. Moreover, many of the proteins involved in the apoptotic pathway are also related with
non-apoptotic processes [90]. This along with the fatal outcome of this process, suggests that a
tight regulation of the process is crucial for the normal cellular life cycle.
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Figure 5.2: Detecting spatial regions in which a concentration threshold (horizontal dotted line) is
exceeded. We consider a Gaussian initial condition (depicted in a dotted line) with µ = 0 and
σ2 = 1.7. The panel a) shows the behaviour of the active form c2(t1, x) in the absence of inhibitor
and with low diffusivity (dl); in turn, b) depicts c2(t1, x) without inhibitor, but with a higher diffu-
sion constant (dh). Accordingly, c) and d) represent c2(t2, x) in the presence of inhibitor with low
and high diffusion constants, respectively. The times t1 and t2, have been chosen close to the time in
which the maximal signal propagation is observed. As we can see, an increase in the diffusion con-
stant or the presence of an inhibitor lead to a decrease in the signal’s spatial spread. Parameters:
{k1, k2, k4} = {0.04, 0.2, 8.3}[(µMmin)−1]; {dl, dh} = {30, 300}[µm2/min]; {σ2, µ} = {1.7, 0};
{c̄1, c̄3} = {5, 10}[µM ]; {t1, t2} = {0.0357, 0.0035}[min].

In general, apoptosis models highlight the activation of caspase-3 by its interaction with
caspase-8/-9. However, there is evidence that in some cells the final caspase-3 activation may be
mediated by caspase-6. In this loop, caspase-3 cleaves and activates caspase-6, while caspase-6
activates caspase-8 and caspase-8 closes the feedback by cleaving caspase-3 [91, 92] (Figure
5.3A). Moreover, caspase-6 has been shown to be expressed at lower levels compared to both
other caspases [72, 93], suggesting the possibility it is a bottleneck in the loop.

This three-tier positive feedback loop, as modelled in [72], can be represented as the reaction
network (2.15), analysed in Examples 2.2 and 3.1, when p = 3. In Example 2.2 we showed
that this systems has two steady states. We denoted them as off steady state, when no activated
caspases are present, and on steady state, otherwise. In addition, Example 3.1 derived conditions
to determine the stability of each steady state.

As we mentioned above, caspase-6 might be a mediator of the final activation of the effector
caspase. We therefore envisioned that small variations in such constants heavily affect the exis-
tence and the stability properties of the on steady state and the concentration of active proteins.
In particular, we assumed that any bottleneck in this loop (such as a weak feedback link or a pro-
tein expressed at low levels) would significantly determine whether or not the loop would lead
to an activation of the entire protein chain and how extensive the protein activation would be.
To this end, we focused on apoptosis and illustrated how a three-tier feedback loop can act as a
modulator of the magnitude of the caspase-3 activation. During apoptosis execution, a three-tier

66



5.3. CALCIUM HOMEOSTASIS

positive feedback has been shown to occur downstream to caspase-3 activation [72].
Hence, in the work under review [23], we investigated how fine tuning of the caspase-6

synthesis rate (k2
3b), and therefore a small change in caspase-6 expression levels, influenced the

steady state expression levels of the major effector in this loop, the active caspase-3. We mod-
elled this caspase-3/6/8 feedback as described previously [72] taking all kinetic constants from
their supplementary data. We then varied the caspase-6 synthesis rate and studied the expression
of active caspase-3 at steady state (Figure 5.3A; dashed arrow for variation of caspase-6; solid
arrow for output of caspase-3). To calculate these equilibria we exploited our analytical formula
(2.27) leading to the following expression for steady state levels of active caspase-3,

C̄3a =
1.7843× 1025k2

3b − 1.4925× 1015

2.2122× 1026k2
3b + 4.8218

.

Figure 5.3C shows the steady state concentration of active caspase-3 (C3a) under variation of the
production rate of k2

3b, depicted in Figure 5.3B. In the first case (panels B.1 and C.1), relatively
small variation of the caspase-6 production rate k2

3b led to a pronounced change in the amount
of active caspase-3 (at steady state) C3a (Figure 5.3C.1). When the caspase-6 production rate
(k2

3b) was varied within a different, and in absolute terms even larger, concentration range Figure
5.3B.2, only a small effect in the expression levels of casapase-3 was observed. Taken together,
these results suggest that within certain parameter ranges, an intermediary node in a feedback
such as caspase-6 may act as an amplifier, similar to a molecular transistor. We finally remark
that local stability condition for the off steady state is given by (see Proposition 3.1)

k2
3b < 8.36× 10−11[µM/min].

When this threshold is exceeded, the on steady state is positive. In order to determine the stability
of the on steady state, we remark that ki2 > ki3f , as can be seen in the supplemental material
of [72]. Hence, we may use the criterion in (3.31) for all i, to determine the stability of the on
steady state. As a function of k2

3b, (3.31) becomes

k2
3b >

1

k1
3bk

3
3b

3∏
i=1

(
ki2
)3

ki1k
i
3f

= 9.0495× 10−10[µM/min]. (5.3)

As confirmed by the simulations in the panel Figure 5.3C, the variation of k2
3b proposed in panel

Figure 5.3B, in agreement with the threshold in (5.3), yield stable on steady states.
Extracellular signals or signals coming from the mitochondria are responsible for the apopto-

sis onset. Especially, for the later case, cytosolic calcium is the cue that promotes the mitochon-
drial release of apoptotic promoters. In the following section, we study one of the characteristics
of calcium cues that has been implicated in the triggering of diverse physiological processes: the
time-integral of cytosolic calcium.

5.3 Calcium Homeostasis
Calcium ions (Ca2+) are ubiquitous secondary messengers governing a large number of cellular
functions, such as cell growth and differentiation, membrane excitability, and cell death [94]. In
general, calcium-triggered-processes depend on the continuous presence of elevated cytosolic
calcium and others just require certain calcium load to trigger downstream signals [95]. These
two perspectives, are the principles of two main hypotheses suggesting how Ca2+ might trigger
downstream reactions leading to events such as apoptosis, namely: “Calcium Load Hypothe-
sis” and “Source-specificity Hypothesis” [96]. The former view suggests that degeneration is
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Figure 5.3: Dynamical response of activate caspase-3 (C3a) under variation of the synthesis of caspase-
6 (k23b), mimicking the switching behaviour of a transistor. The rest of the parameters were taken from
the supplemental material of [72]. In panel A caspase-6 (C6) activates caspase-8 (C8), which further
activates caspase-3 (C3); to complete the loop, caspase-3 activates caspase-6. The detailed mechanism
of activation for all panels is described in (2.15). The sequence of activation (superindex i in (2.15))
is represented by the number adjacent to each box. The upper panels B show two variation regimes of
synthesis rate of inactive caspase-6 k23b. The lower panels C depict the concentration over time of C3a

in response to each parameter variation. The dashed line depicts the concentration of C3a as a function
of time, whereas the solid line shows the equilibrium point during variation of k23b. Despite the absolute
variation of the the parameter k23b was lower in B.1 than in B.2, the effect of this variation was much higher
in the corresponding activation of caspase-3 C3a C.1 than in C.2. (Please, note the different scales in B.1
and B.2). As consequence, in certain ranges, a small variation of k23b yields a severe effect on the location
of the equilibrium point of C3a, similar to a ‘molecular transistor’. Hence, a fine tuning of the synthesis of
inactive caspase-6 is crucial for pronounced activation of caspase-3.

simply a function of the quantity of Ca2+ entering the cell, whereas in the latter hypothesis,
Ca2+-dependent processes are regulated separately through distinct signalling pathways linked
to specific routes of Ca2+ influx.

By building up a spatio-temporal model that accounts for the main Ca2+ fluxes, depicted in
Figure 5.4, we focus on the computation of the time-integral of [Ca2+]c. Hence, analysing how
Ca2+ signalling may trigger downstream processes in specific regions of the spatial domain. We
focus on a unidimensional spatial domain, representing a long, thin cell. In this context, we
consider the interplay of the cytosolic calcium (cc), calcium in storage (cs) and calcium buffers
(b). We model this interaction with the following PDE

∂

∂t
cs = γ

(
−k1(T + T0)(cs − cc) + V3

c2c
k2

4 + c2c

)
(5.4a)

∂

∂t
cc = d∇2cc(x)− γ−1 ∂

∂t
cs +

∂

∂t
b+ αcc + β (5.4b)

∂

∂t
b = −k2ccb+ km2(btot − b), (5.4c)
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Figure 5.4: Main Ca2+ fluxes in a non-excitable cell. Panel (A) depicts the IP3-mediated influx of Ca2+

to the intracellular domain (Jin); in turn, panel (B) shows the efflux of calcium due to membrane pumps
(Jout), triggered by the presence of Na+ (not depicted); whereas Panel (C) shows the fluxes of calcium
to/from the Endoplasmic or Sarcoplasmic Reticulum (Jserca and JIPR or JRyR). Finally, the Ca2+ buffer-
ing (Jon) and its release from the buffers (Joff ) are shown in Panel (D).

subject to Neumann boundary conditions for all the species:[
∂cs(x, t)

∂x

]
x=0,L

=

[
∂cc(x, t)

∂x

]
x=0,L

=

[
∂b(x, t)

∂x

]
x=0,L

= 0, ∀t ∈ [0,∞). (5.4d)

Where we have defined

α =
ρ

A
(k5 (T + T0) + ke) (5.5a)

β =
ρ

A
(k5 (T + T0) cout + kp) . (5.5b)

We have motivated the model (5.4) by the model in [97]. The definition of the parameters can be
found (Table 1), repeated here, for the sake of readability. However, we have extended the model

Table 5.1: Parameters definition

Parameter Definition
k1 Rate of calcium release form the store
k2 Rate of calcium association with the buffer
km2 Rate of calcium dissociation from the buffer
V3 Maximum rate of calcium pumping into the store
k4 Dissociation constant of the store calcium pump
cout Extracellular calcium concentration
btot Total concentration of the calcium buffer
T0 Basal fractional activity of the channels in the store
T Fractional activity of the channels in the store

in [97] to include the diffusion of the cytosolic calcium. By considering the spatial dynamics,
we also have to consider geometrical parameters of the spatial domain, namely L, ρ, A and
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γ represent the length, circumference, cross-sectional area, and the ratio of cytoplasmic to ER
volumes, respectively.

The model in (5.4) has only one homogeneous fixed point, whose cc coordinate is

c̄c =
β

α

Now, in order to compute the time-integral of the cytosolic calcium referred to its equilibrium
concentration, we define the deviation coordinate ec = cc − c̄c, and note that the linear combi-
nation ec + γ−1ee − eb leads to a linear PDE:

∂

∂t
ec + γ−1 ∂

∂t
ee −

∂

∂t
eb = d∇2ec − αec + g(t, x) (5.6a)

∂g

∂x
=
∂ec
∂x

= 0 at x = 0 and x = L. (5.6b)

Here, we account for a perturbation g(t, x) with a finite integral, which might arise from a
transitory perturbation of the parameters. Integrating (5.6a) over time, we have

ec(0, x) + γ−1ee(0, x)− eb(0, x) =

∫ ∞
0

(
d∇2 − α

)
ec(t, x) dt+

∫ ∞
0

g(t, x) dt. (5.7)

To find an analytical solution for the [Ca2+]c cumulative response, we exploit the LSD
method. This allows us to span each field by the same spatial basis functions which are eigen-
functions of the diffusion operator. We represent each function in terms of time-dependent
modes mi(t) and spatial-dependent functions φi(x)

ej(t, x) ≡
∞∑
i=0

φi(x)mj
i (t) for j = {c, e, b}

g(t, x) ≡
∞∑
i=0

φi(x)mg
i (t).

Using the properties of the basis elements (4.1), we can calculate the time-integral of the
modes associated with ec:∫ ∞

0

mc
i (t) dt =

mc
i (0) + γ−1me

i (0)−mb
i (0) +

∫∞
0
mg
i (t) dt

dλi + α
.

Hence the [Ca2+]c cumulative response is∫ ∞
0

ec dt =

∞∑
i=0

φi(x)

(
mc
i (0) + γ−1me

i (0)−mb
i (0) +

∫∞
0
mg
i (t) dt

dλi + α

)
. (5.8)

In the following, we will analytically derive the [Ca2+]c cumulative response under different
scenarios. In addition we validate our results numerically by calculating the integrals in two
steps: i) simulating the PDE set (5.4) in Matlab using the function pdepe and ii) performing a
trapezoidal numerical integration via the function trapz.

Although the numerical integral of the simulation will yield the spatial distribution for the
[Ca2+]c cumulative response, it is difficult, if not impossible, to identify the dependence of
the processes involved in the integrated response. That is to say, under different conditions for
simulation, we would not be able to forecast the behaviour of [Ca2+]c cumulative response.

70



5.3. CALCIUM HOMEOSTASIS

To overcome this difficulty, our analytical formulas for this integral will provide this missing
link between the initial and boundary conditions and [Ca2+]c cumulative response. In addi-
tion, our theoretical approach will overcome usual problems that arise from the the numerical
solution of PDEs, such as accuracy errors during the simulation and numerical integration and
computational load. Foremost, for our analytical approach we do not need to have available the
description of some fluxes such as the Ca2+ turnover due to the buffering and the Ca2+ cycling
to/from the extracellular domain and Endoplasmic Reticulum.

In the forthcoming section, we derive analytical formulas for the [Ca2+]c cumulative re-
sponse in two different scenarios: i) localised insult of cytosolic Ca2+; and ii) alterations of the
membrane receptor activation, due to a perturbation of IP3.

• Effect of immobile Ca2+ buffers
Proteins buffer Ca2+ faster than the ion is sequestrated by the endoplasmatic reticulum.
The former one scatters elevated Ca2+ along the spatial domains, whereas the later one
prolong the duration of the Ca2+ signal in a particular location [98], resulting in what it is
usually called a biphasic response. Buffering proteins are usually categorised depending
on their capacity to diffuse. Here we will focus in the immobile buffers and their effect in
[Ca2+]c since 75% of total cytoplasmic buffers cannot diffuse [98].

Immobile buffers, also named stationary buffers, tend to immobilise Ca2+ in localised
areas of cells. The main purpose could be to confine Ca2+ and avoid triggering unwanted
signalling routes [99]. In fact, the influence of this kind of buffers is particularly relevant
to regulation of the redistribution of Ca2+ entering the cell by ion channels via diffusion
[100]. We study this phenomenon by assessing the response of an initial condition of
[Ca2+]c representing entry of Ca2+ through ion channels membrane. We model this initial
profile as a square pulse centred in the spatial domain, whose width is 2ε and amplitude
ψ. This profile can be mathematically expressed as

cc(0, x) = c̄c + ψ
[
h
(
x−

(
L
2 − ε

))
− h

(
x−

(
L
2 + ε

))]
. (5.9)

We consider the global basis

λi =
[
(i− 1)

π

L

]2
(5.10a)

φi(x) = ki
1√
L

cos
(

(i− 1)
π

L
x
)

where ki =

{
1 if i = 1√

2 if i 6= 1
. (5.10b)

Hence, the modes mc
i (0) for this initial profile, referred to the basis in (5.10), are given by

mc
i (0) =

∫ L
2 +ε

L
2 −ε

ψki√
L

cos

(
i− 1

L
πx

)
dx

= 2
ψεki√
L

(−1)
i−1

sinc
(

2π(i− 1)
ε

L

)
.

Here sinc(x) := sin(x)/x. Moreover due to the symmetry of the initial condition, we
only consider the 2(i − 1)th elements of the basis and eigenvalues in (5.10). Hence, the
[Ca2+]c cumulative response in (5.8), due to the initial condition in (5.9) becomes∫ ∞

0

ec dt = 2
ψε

L

∞∑
i=1

(−1)
i−1

k2
i

sinc
(
2π(i− 1) εL

)
d
(
2π(i− 1) 1

L

)2
+ α

cos

(
2π(i− 1)

1

L
x

)
. (5.11)
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We note that this integrated response is directly proportional to the ratio 2ψε/L, which
is the area under the initial condition described by (5.9) referred to the steady state c̄c,
divided by the spatial length. This can be interpreted as the density of the administrated
cytosolic Ca2+ to the spatial domain at time t = 0.

In Figure 5.5, we depict the spatio-temporal and integrated response of for all the species.
The left panels (a) show the response in time and space of the species in the model (5.4).
Whereas the right panels (b) show the cumulative response of all the species. Of spe-
cial interest are the middle panels, which compare the numerically [Ca2+]c cumulative
response (dotted lines) with the analytical expression in (5.11) (continuous line). The
difference of the [Ca2+]c cumulative response, between the different methods of calcula-
tions, is due to the stiffness of the differential equation solved. From our computational
experiments, we noted that refining the temporal mesh for solving the PDE, reduces the
gap between the solution methods at the price of increasing the computational load. We
note, however, that our methodology is analytical, hence avoiding the numerical errors
that arise from the numerical solution.

Figure 5.5: Spatiotemporal and integrated responses in response to a localised initial [Ca2+]c insult. The
panels (a) represent, top to down, the concentrations of Ca2+ in store [cs], Ca2+ in the cytosol [cc] and
buffers [b]. With the same organisation, the panels (b) show the cumulative response of the concentrations.
The middle panel (b) compares the result of the numerical integration (computed for 2500[s]) and the
analytic expression for [Ca2+]c cumulative response in (5.11). The kinetic parameters are taken from [97];
{ke, kp} = {1.4953, 0.1396}, in addition, d = 250[µm2/s], {r, ρ, A} = {2[µm], rπ, πr2}, γ = 0.167
[101], {L, ε} = {100, 3.5}[µm], ψ = 0.2[µM ] and n = 15.

Moreover, Figure 5.5 shows that signalling progression of Ca2+ is confined to a vicinity of
the original location of the initiator signal. And, consequently, every physiological event
triggered by this initial Ca2+ insult will be activated close to the original location of the
initial condition. This observation supports the observation that Ca2+ acts locally, having
multiple spatially segregated Ca2+ subdomains [102, Ch.2]. This approach can be used to
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determine the spatial extension of this Ca2+ insult.

• Biphasic response: IP3 perturbations
In nonexcitable cells, Ca2+ channels mainly rely on local [Ca2+]c rises in response to
ligand binding and IP3-mediated mobilisation of [Ca2+]c from intracellular stores [99].
IP3 acts as an antagonist of Ca2+ channels, hence leading to a momentary deactivation
of these channels, both in the membrane and in the endoplasmic reticulum. We consider
the activation of the Ca2+ channels, represented as T in (5.4) suddenly changing value at
t = τ1[s] from 0 to η and remains in this new value for τ2[s]. Thereafter, it returns to its
original value T (t) = 0. We model the profile for T (t) as a combination of step functions
of the form

T (t) = η [h(t− τ1)− h(t− (τ1 + τ2))] , (5.12)

here, η is the amplitude of the pulse. This perturbation will lead to three different phases
of the spatio-temporal response of the system:

1. the system will approach to its steady state with T (t) = 0 ; once reached the equi-
librium,

2. the sudden change of the value of T (t) shifts the systems to a new steady state
concentrations. Once the perturbation has vanished,

3. the concentrations return to the original equilibrium.

These three phases are depicted in Figure 5.6(b), where, for illustration purposes, we
consider an hypothetical response for [Ca2+]c, due to the variation for T (t) proposed in
(5.12), as shown in Figure 5.6.

0

0

T(
t)

Time [a.u.]

(a)

0
Time [a.u.]

(b)

Phase 1

Phase 2

Phase 3

Figure 5.6: Hypothetical response of cytosolic Ca2+, due to the variation of the Ca2+ channels activity.
Panel (a) depicts T (t), whereas panel (b) shows the trajectories driven by temporal profile of T (t). We
distinguish three different phases of this response: 1) A transitory response, due to the initial conditions.
2) In the time interval [τ1, τ1 + τ2), the equilibrium point is shifted to Ca◦c ; consequently, [Ca2+]c reaches
this level. Finally, 3) when T (t) returns to its basal value, [Ca2+]c reaches the original equilibrium point
(Ca∗c ).

We also consider that τ1 and τ2 are large enough, to allow the concentrations to reach
the steady state in each phase. Consequently, the total [Ca2+]c cumulative response is
obtained by the addition of the areas under the surfaces for the three phases:∫ ∞

0

(Cac(t, x)− Ca∗c) dt = Area1 + Area2 + Area3. (5.13)
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The temporal profile for T (t) in (5.12) affects α and β in (5.5), which become

α(t) =
ρ

A
(k5 (T (t) + T0) + ke) (5.14)

β(t) =
ρ

A
(k5 (T (t) + T0) cout + kp) . (5.15)

Since the equilibrium point for [Ca2+]c is the ratio β/α, in each phase of the response of
the system all the concentrations in equilibrium are modified. In the expression (5.13), we
have referred the integral to the steady state Ca∗c , which is given by

Ca∗c =
k5T0cout + kp
k5T0 + ke

. (5.16)

However, during the Phase 2, the steady state is shifted due to the variation of parameters;
in the following, we will denote the equilibrium point in Phase 2 as

Ca◦c =
k5 (η + T0) cout + kp
k5 (η + T0) + ke

. (5.17)

We will avail of the expressions for the [Ca2+]c steady state above, in the computation of
the cumulative response for each one of the phases.

– Phase 1: t ∈ [0, τ1). During this interval, we consider any initial condition and influx
of species. Hence, the [Ca2+]c cumulative response is given by (5.8).

– Phase 2: t ∈ [τ1, τ1+τ2). In this phase, we assume that there are no external influxes.
Moreover, the initial conditions in this phase, are the steady states c∗, referred to the
equilibrium point c◦. That is to say

e(τ1) = c∗ − c◦, (5.18)

which is a vector whose coordinates are constants. By letting

ς = γ−1 (c∗s − c◦s) + (c∗c − c◦c)− (b∗ − b◦) , (5.19)

and from (5.8), the integral of [Ca2+]c, referred to Ca◦ is∫ τ1+τ2

τ1

(Cac(t)− Ca◦c) dt =
ς

α(t)
√
L

(5.20)

Although the expression above provides the integral for the duration in time of this
phase, we require to measure it from the steady state concentration Ca∗. Hence, we
require to compute the complement of the area during this phase, as depicted in the
Phase 2 of Figure 5.6.

Area2 =

∫ τ1+τ2

τ1

(Cac(t)− Ca◦c) dt− τ2 (Ca∗c − Ca◦c) . (5.21)

From the definitions in (5.16) and (5.17), we have

Ca∗c − Ca◦c = k5η
kp − kecout

(k5T0 + ke) (k5 (η + T0) + ke)
. (5.22)

74



5.3. CALCIUM HOMEOSTASIS

Thus, by substituting the expression above and (5.20) into (5.21), the cumulative
response during this time interval is

Area2 =
ς√

L ρ
A (k5 (η + T0) + ke)

+ τ2k5η
kecout − kp

(k5T0 + ke) (k5 (η + T0) + ke)

(5.23)

– Phase 3: t ∈ [τ1 + τ2,∞). Analogously to the previous phase, during this time
interval, the initial condition is e (τ1 + τ2) = −e(τ1), where e(τ1) has been defined
in (5.18). Moreover, from (5.8), the integrated response is

Area3 = − ς√
L ρ
A (k5T0 + ke)

. (5.24)

Here ς , has been defined in (5.19). Now, substituting the definition of the areas in eqns.
(5.23) and (5.24) into (5.13), yields∫ ∞

0

ec dt = Area1 + k5η

√
L ρ
Aτ2 (kecout − kp)− ς√

L ρ
A (k5T0 + ke) (k5 (η + T0) + ke)

(5.25)

For simplicity, we assume that the initial conditions are those in equilibrium, therefore,
Area1 = 0. Hence, the [Ca2+]c cumulative response is directly proportional to the product
of the perturbation amplitude (η) and the rate of Ca2+ influx from the extracellular domain
(k5). In addition, the duration of the perturbation τ2, plays a major role in the [Ca2+]c
cumulative response.

With the theoretical methodology reviewed in Chapter 4.4, we derived analytical expressions
that represent the integrated response of the [Ca2+]c, as a response to an initial Ca2+ insult, and
perturbation of IP3. From this theoretical study, we conclude that

1. the downstream signalling remains localised to the original location of the Ca2+ insult.
Therefore, this model gives spatially selective triggering of downstream phenomena.

2. Moreover, the effect of a step variation of IP3 on the time-integral of [Ca2+]c depends
mainly on the duration of the perturbation.

In addition we show in Figure 5.7 the [Ca2+]c cumulative response, when driven by vari-
ations of extracellular IP3. With the biological interpretations of the results derived along the
previous chapters, we have completed the study of the biological problems that motivated these
mathematical formulations. Hence we do not only provide some new mathematical results such
as i) the analytical derivation of the equilibrium set of the ODE that describes the concentrations
of a circular protein activation; ii) as well as characterising its stability; iii) also, we identified
a class of reaction networks for which their integrated response can be described analytically.
Additionally we aid to shed some light in the understanding the species’ interplay that compose
the reaction network under study. In the following chapter, we summarise the contents derived
up to now, and suggest some future work directions.
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Figure 5.7: [Ca2+]c cumulative response, under the presence of IP3. Panel (a) shows the temporal
profile for the variation of the fractional activity of Ca2+ channels (T (t)). In turn, Panel (b.1) shows the
response in time for [Ca2+]c, whereas Panel (b.2) depicts [Ca2+]c cumulative response as computed by
the analytical formula in (5.25) and via numerical integration (computed for 132000[s]). Finally, Panels
(c.1,2) show the concentration of Ca2+ in store and the concentration of the buffer, respectively. The
parameters for simulation are given in Figure 5.5 and T = 0, η = 0.8, {τ1, τ2} = {250, 7000}[s].
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Chapter 6
Conclusions and Future Work

In this work, we presented a set of mathematical problems related to the study of the differential
equations that model the dynamics of biochemical reaction (and reaction-diffusion) networks. In
particular, we analysed the equilibrium set of a class of positive feedback reaction loops (Exam-
ple 2.2) and characterised their local stability (Example 3.1). We extended these stability results
to reaction-diffusion networks, under some conditions on the diffusion constants (Example 3.3).
The results obtained in these examples were used to study the core mechanism of the apopto-
sis pathway in Section 5.2. These analyses together with computational results suggest that the
synthesis rate of caspase-6 acts a bottleneck in the final activation of the effector casapase.

In Section 5.1, we analysed the activation of the Akt/mTOR complex under some biological
scenarios, supported by the results derived in Example 3.2. Using earlier derivations of the
analytical solution of the concentrations in space and time we were able to quantify several
properties of the system such as the filtering of spatial fluctuations in the initial conditions.
One key implication of this analysis is the suggestion that the final activation of the Akt/mTOR
complex remains localised to the vicinity of the initial extracellular stimulation, for example, by
insulin. Therefore, this analysis suggests that in the scenario studied, external stimulation needs
to be distributed to have the desired spatially continuous promotion of skeletal muscular growth.

Lastly, we addressed the analytical computation of selected species time-integral in Sec-
tion 4.4, where we identified a class of reaction-diffusion networks for which the time-integral
of some of the concentrations can be obtained as a pure algebraical problem. The analytical
expression we obtain is, in general, a sum of terms that typically depend on the species degra-
dation rate along with geometric characteristics of the spatial domain. We used this approach
to study the progression of cytosolic calcium in nonexcitable cells (Section 5.3). In this case,
we concluded that the integrated response of cytosolic calcium remains localised to the original
location, due to the immobile calcium buffers.

We addressed all these problems with an analytical approach. This perspective allowed us
to obtain formulas that describe particular characteristics of the reaction-diffusion network as a
function of the systems parameters, thereby linking the processes in this reaction network with
their role in the dynamics of the species concentrations. However, this analytical treatment is
quickly hindered as the size of the reaction network increases. For instance, in Example 3.2 we
derived analytical solutions for a reaction-diffusion system only when we derived biological-
motivated scenarios that cast the nonlinear PDEs as one linear PDE. In general, to tackle these
limitations, a common approach is to analyse the numerical solutions of the reaction-diffusion
network. Nevertheless, form this approach, it becomes unclear which is the relationship between
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cause and effect, due to the nonlinear nature of these biochemical processes.
Hence, we foresee that identifying classes of biochemical reaction networks, whose underly-

ing nonlinearities are tractable, will assist a deeper understanding of such biochemical processes.
In this light, we finalise this work by suggesting some specific problems for further analysis.

6.1 Future Work
In Example 3.1, we used the Small Gain Theorem to characterise the stability of the intercon-
nection of two dynamical systems. Although we considered only linear systems, the Small Gain
Theorem can also deal with nonlinear systems, provided the nonlinear gains of the systems are
available. In the forthcoming section, we pose the problem of analysing the stability of a reaction
network, when is expressed as the interconnection of a linear and nonlinear systems.

6.1.1 Stability of Classes of Reaction Networks
In Chapter 2, we introduced a linear transformation of the state T in (2.34), to express the
dynamical system that arises from a reaction network as the interconnection of a linear and
nonlinear systems. Our goal there, was the computation of the equilibrium set, by a reduced
number of algebraic relationships. Here, however, we will consider that the equilibrium set is
already characterised, and the dynamical system is expressed in deviation coordinates, as defined
in (2.52):

d

dt
e = Ae + NNLg(e) + Bu. (6.1)

We focus on the ODE problem by neglecting the species diffusion. By applying the state trans-
formation in (2.34), the model in (6.1), becomes

ż1 = A11z1 + A12z2 (6.2a)

ż2 = A21z1 + A22z2 + NNL
TNNLg(z1, z2). (6.2b)

Where, for simplicity, we have assumed that the external input u = 0, and defined:

A11 = NNL
⊥NLGNNL

⊥+, (6.3a)

A12 = NNL
⊥NLGNNL

T+, (6.3b)

A21 = NNL
T (NNLJNL + NLG) NNL

⊥+, (6.3c)

A22 = NNL
T (NNLJNL + NLG) NNL

T+. (6.3d)

Here, JNL and G denote the Jacobian of vNL and vL, as defined in (2.30), evaluated in the
equilibrium point. Moreover, N follows the order defined in (2.32).

As noted above, the dynamical system in (6.2) is the interconnection of a linear and a non-
linear system. Depending on the studied reaction network, and on the dynamical properties of
each subsystem, we can exploit interconnection properties such as dissipativity, monotonicity or
the Small Gain Theorem, to analyse the stability of the equilibrium point.

In this direction, further work will be focused on the characterisation of classes of systems
whose dynamical properties can be exploited, in order to conclude the stability of the equilibrium
point.

Here we have not consider any particular form of the nonlinearities in g(c). In the following
section, we focus on bilinear nonlinearities.
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6.1.2 Representing the Nonlinearities as Sum of Squares
In Section 2.5 we showed that the following assumptions lead to bilinear nonlinearities.

Assumption 6.1. Let

A1. all the nonlinear reactions have at most two reactants,

A2. all the stoichiometric coefficients for the reactants be one, and

A3. the nonlinear reactions rates vNL be modelled with the Mass Action Law.

Under these assumptions, the vector vNL is composed of bilinear terms that can be expressed
as a quadratic form, i.e.,

vNLi(c) = cTYic,

for a suitable selection of the elements in Yi = YT
i ∈ Rn×n. Hence the vector vNL(c) can be

expressed as

vNL(c) =
(
Im1
⊗ cT

)
Yc, (6.4)

The study of these bilinear terms is denoted in the literature as sum of squares. We suspect
that a lifting of the state space, which includes the bilinear terms as part of the state vector,
will provide a tractable representation of the nonlinear system. That is to say, we will study
the mathematical model of a reaction network that satisfies Assumptions 6.1 in an extended
state space representation, to characterise the stability of the equilibrium set. Moreover, this
representation may be useful on the computation of the time-integral of the solution of reaction-
diffusion networks, analysed in Section 4.4, and in general in handling this kind of dynamical
systems. Now, we turn our attention to the positive feedback loop depicted in Figure 2.1.

6.1.3 Extending the Results of the Circular Protein Activation
In Proposition 3.3 we concluded that the stability results for the reaction network studied in
Example 2.2 and Example 3.1, also guarantee the local stability of the reaction-diffusion system,
when we consider that the diffusion coefficients for all the species in each subsystem are the
same. Interestingly, along the derivation of the proof of Proposition 3.3 we did not use any
specific definition of the reaction network, except for the interconnection topology and the fact
that the product of all γis is less that one.

That is to say, when we have a stable circular interconnection of systems, the extension of
the stability results to the spatio-temporal case, is always guaranteed, under the aforementioned
conditions on the diffusion constants.

In this light, an interesting problem is to identify classes of subsystems that comprise a
positive feedback loop, whose small gain γi can be characterised. Further, we seek extensions
of the stability results to the spatio-temporal set-up. A natural choice for these subsystems are
systems that comply with a Integral Quadratic Constraint, for which a clear relationship between
the input-output gain is available.

Although the extension to the reaction-diffusion case in Propositions 3.3 and 3.4 resulted
straight-forward, we considered some assumptions on the kinetic and diffusion parameters.
Thus, it remains to be analysed whether we can derive less restrictive conditions on the diffusion
coefficients and still be able to extend the ODE stability results.

Nonetheless, we would like to determine whether the circular protein activation studied in
Example 2.2 may present diffusion-driven instability, and characterise the scenarios in which
this phenomenon might appear.
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6.1.4 Calcium Homeostasis in Non-excitable Cells
Neurons are cells capable of reacting to electrical cues to propagate them and modulate specific
processes. To support this progression, a group of non-excitable cells, denominated glial cells,
provide a means to enhance such functions. Especially, the astrocytes play a major role in the
ionic balance in the extracellular space, insulating axons, controlling blood flow and provid-
ing energy and neurotransmiters to motivate the signal transmission. Due to this importance,
the astrocite-mediated synapses between neurons has been recently called “tripartite neuron.”
Malfunction of the regulation may be implicated on epilepsy, symptoms of schizophrenia. In
addition, astrocytes may become cancerous, hence leading to gliomas or can be affected by
autoimmune attacks in multiple sclerosis [103, 104].

In Section 5.3 we derived the integrated response of the spatio-temporal concentration of
cytosolic calcium ions. We are currently working to link these results with their implication on
astrocytes.
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Appendix

In this section, we present three proofs required in Section to prove the local stability of the off
and on steady states. Firstly, we present the proof of (3.22)

Claim A.1. For all i ∈ [1, p]

ki+1
2 ki3fd

(
ai+

)
= d

(
αi
)

d
(
ai
)

+ ki1n
(
ai+

)
,

where αi has been defined in (2.22a).

Proof. The strategy of the proof is to rewrite d
(
ai+

)
in terms of d

(
ai
)
. For, we note that
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Now, we provide the proof of Proposition 3.2, which determines the stability of the on steady
state under the conditions on the parameters described in (3.28).
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Proof. Accounting for the conditions (3.28), the solution for Ω∗ in (3.25) is positive and real,
for the positive sign of the square root. Let us rewrite this solution as

Ω∗ = −
(
ki3f
)2

+

√[(
ki3f

)2

−
(
ki2
)2] [(

ki3f

)2

− (µi)
2

]
:= −

(
ki3f
)2

+ φiηi, (A.1)

where

φi =

√(
ki2
)2 − (ki3f)2

, (A.2a)

ηi =

√
(µi)

2 −
(
ki3f

)2

. (A.2b)

Then, from (3.24), the gain of the system evaluated in the resonance frequency (A.1) is

γion = σi

√√√√√ φiηi[
−
(
ki3f

)2

+ φiηi + (µi)
2

] [
−
(
ki3f

)2

+ φiηi +
(
ki2
)2]

= σi

√
1

(φi)
2

+ 2φiηi + (ηi)
2

=
σi

φi + ηi

=
σi√(

ki2
)2 − (ki3f)2

+

√
(µi)

2 −
(
ki3f

)2
(A.3)

=
σiki3f
µiki2

ki2
ki3f

µi√(
ki2
)2 − (ki3f)2

+

√
(µi)

2 −
(
ki3f

)2

γion =
ki+1

2 ki3f
ki1k

i
3b

ki+1
2

ki2

[
d
(
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)
d (ai)

]2
1

ki3f
µi

√
1−

(
ki3f
ki2

)2

+
ki3f
ki2

√
1−

(
ki3f
µi

)2
.

Where we have exploited the definitions in (A.2) and (3.13). Except for the last factor, the
expression above resembles the gain for the on steady state in (3.26), analysed in Proposition
3.1. Moreover, we have just considered that for some i, the conditions in (3.28) are satisfied.
Then the stability condition form the Small Gain Theorem can be expressed as

p∏
i=1

ki+1
2 ki3f
ki1k

i
3b

(
νi
)−1

< 1

p∏
i=1

ki+1
2 ki3f
ki1k

i
3b

<

p∏
i=1

νi,

where the definition of νi is given in (3.30). Although exact, the condition above might be an
intricate function of the parameters. In the following, we pursue a tractable bound of γion. For,
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we note that (3.28c) implies

1−
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ki3f
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)2
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(
ki3f
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Using these two last inequalities in (A.3), we obtain the bound
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Where we have used the definitions of µi and σi in (3.13). Again, the expression above resembles
the gain for the on steady state in (3.26), analysed in Proposition 3.1. Since the conditions in
(3.28) just hold for some i, the stability of the closed loop is guaranteed if (3.31) holds.

Finally, the proof for the instability of this steady state, is equal to the one used in Proposition
3.1, since there we do not require any special relationship among the parameters.

In order to prove the closed-form expression of the determinant of (3.6) in Proposition 3.1,
we will exploit the following theorem, that presents a formula for the determinant of a block
matrix.

Theorem A.1. Let a square matrix M be defined by blocks:

M =

(
M11 M12

M21 M22

)
,

Provided the existence of
(
M22

)−1
, the determinant of M is given by

det (M) = det
(
M22

)
det

(
M11 −

−1

det
(
M22

)
M12AdjT

(
M22

)
M21

)
.

where AdjT (X) denotes the transpose of the Adjugate or Adjoint matrix of X.

We will also avail of the following theorem, which shows how to compute the determinant
of a sum of matrices.
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Lemma A.1 (Matrix Determinant Lemma). Let A be a non-singular square matrix and x, y be
column vectors of the dimension of A, then

det
(
A + xyT

)
= det(A) + yTAdjT (A) x.

The proof of the previous propositions can be found in [39], for example. Now, we use these
theorems to prove the forthcoming lemma.

Lemma A.2. The determinant of (3.6) is given by

1. Off Steady State

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b

2. On Steady State

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f

Proof. The strategy of the proof follows a recursive application of the Theorem A.1, finalised by
the application of Lemma A.1 to obtain a closed-form expression for the determinant. We note
that applying p− 1 times Theorem A.1, the determinant of (3.6) can be expressed as

det (A) =

p∏
i=2

det
(
Aii
)

det

(
A −

p∏
i=2

−1
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Aii
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)]
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(A.4)

Moreover, we note that

−Ap−pAdjT (App) Ap = −kp−1
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Hence [
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1
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i
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0 −1
0 1
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.

Substituting the expression above into (A.4), yields

det (A) =

p∏
i=2

det
(
Aii
)

det
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1
1
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0 1
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.

By Lemma A.1 and Aii in (3.8a), the foregoing expression becomes

det (A) =

p∏
i=2

det
(
Aii
) [

det (A)−
p∏
i=2

−1

det
(
Aii
) p∏
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,
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(
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i+1
2 + ki3f

)
−

p∏
i=1

ki3fk
i
1c̄
i
1. (A.5)

We further consider the definition of the steady states, to conclude the proof.
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1. Off Steady State
By substituting the definition of this equilibrium point in (2.20), when ai = 0, into (A.5),
we obtain the expression

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b,

as desired.

2. On Steady State
This equilibrium point is parametrised by ai+, defined in (2.26), via the relationships
(2.20a) and (2.20b). Now, we analyse the product of the main blocks determinants in
(A.5). By means of (2.20b) we can rewrite it as

det
(
Aii

on

)
= ki2

ki3fk
i+1
2 d

(
ai+

)
− ki1n

(
ai+

)
ki+1

2 d (ai+)

det
(
Aii

on

)
= d

(
αi
) ki2d

(
ai
)

ki+1
2 d (ai+)

,

where we availed of the expression in (3.22). From the expression above, we note

p∏
i=1

det
(
Aii

on

)
=

p∏
i=1

d
(
αi
) ki2d

(
ai
)
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2 d (ai+)
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)
=

p∏
i=1

ki1k
i
3b. (A.6)

Secondly, we note that, with the expressions (2.19a) and (2.20b), c̄i1 may be rewritten as

c̄i1 =
ki+1

2 d
(
ai+

)
ki1d (ai)

.

Hence the later product in (A.5) becomes

p∏
i=1

ki3fk
i
1c̄

1
i =

p∏
i=1

ki3fk
i+1
2 .

Subtraction of (A.6) and the relationship above, yields

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki3fk
i
2.

when exploiting the modularity of the product with respect to p.
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