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1. Introduction

Recent years have witnessed a huge interest in both the
analysis and design of congestion control protocols for deployment
in the internet (Low, Paganini, & Doyle, 2002). In particular,
protocols based on the Additive-Increase Multiplicative-Decrease
(AIMD) paradigm, of which TCP (Jacobson, 1988) is one, have
been the subject of much scrutiny. The study of such protocols is
interesting for a number of reasons. Clearly, given the importance
of the internet, the study of network congestion control is of
immense practical value. Secondly, network congestion control
brings together many concepts and ideas from diverse areas
of Applied Mathematics. These include (to name but a few):
Probability Theory (Barnsley, Demko, Elton, & Geronimo, 1988;
Stenflo, 2002); the theory of Stochastic Matrices (Shorten, Wirth,
& Leith, 2006); Positive Systems and Hybrid Systems (Baccelli
& Hong, 2002). Many practical problems that arise in the study
of congestion control therefore motivate mathematical questions
that are not only of interest in the context of the application,
but also merit study in a more general and abstract setting. Our
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problem is motivated by such generalisations of the Transmission
Control Protocol (TCP). Standard TCP is based on the AIMD
algorithm of Chiu and Jain. In their original paper (Chiu & Jain,
1989), Chiu and Jain consider a system in which n users compete
for a resource. The users’ actions consist of (continuously) probing
the availability of the resource by submitting requests for its use. A
key assumption in themodel is that the users do not communicate
directly and that the only information they have about the
availability of the resource is when the collective utilization of the
resource reaches some capacity constraint. At such time instances,
referred to as congestion events, some or all users are informed
through feedback and respond instantly by decentralized down-
scaling of their individual utilization rates. Given this basic setting,
the problem is then to develop an algorithm that produces probing
strategies for the users so that each user will infer its ‘‘fair’’ share of
the shared resource in a decentralized manner, while at the same
time preventing congestion collapse (Low et al., 2002).
The AIMD algorithm of Chiu and Jain describes probing strate-

gies that evolve in cycles, each cycle having two phases (Rothblum
& Shorten, 2007). The first phase is instantaneous. It occurs when
capacity is reached, a subset of users are notified, and notified users
respond by down-scaling their utilization rates (abruptly) by a
multiplicative factor. During the second phase of a cycle, each user
increases its utilization rate linearly until congestion is reached
again, at which point the first phase of the next cycle is entered.
Let wi(k) ≥ 0 be the ith user’s share of the resource at the begin-
ning of the kth cycle. Then,
wi(k+ 1) = bi(k)wi(k)+ αiT (k), (1)
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where T (k) is the time taken by the kth cycle; we call this the inter-
congestion time. The positive scalar αi is the rate of increase in the
second phase. The scalar bi(k) depends on whether or not the ith
user is informed of congestion at the kth event; if it is informed
then bi(k) equals some constant βi (call it the drop parameter)
which satisfies 0 ≤ βi < 1; if not, bi(k) = 1. If C is the total
capacity of the resource available then, at congestion,

w1(k)+ · · · + wn(k) = w1(k+ 1)+ · · · + wn(k+ 1) = C . (2)

The inter-congestion time T is determined by (1) and (2).

1.1. Previous results and contribution

A primary objective of network congestion control is to prevent
network congestion collapse, or more generally to maintain a
reasonable throughput of useful information for users (as opposed
to resending the same information that is continually being
dropped). A second, equally important, objective is to ensure a
fair and equitable allocation of network resources (bandwidth) in
a distributed manner without communication between network
users.
For this dynamical system it is essential to settle questions

such as the existence and uniqueness of a trajectory which is
independent of initial conditions, and the rate at which the system
approaches this steady state trajectory. These convergence issues
have been studied extensively for the standard AIMD-TCP model
described above, and a complete picture for thismodel is presented
in Shorten, King, and Wirth (2007). Even under very general
assumptions, questions relating to the existence and uniqueness of
network equilibria have been settled and are reported in Shorten
et al. (2007).
Our objective in the present paper is to extend these results to

generalisations of standard TCP. Such generalisations have been
motivated by the view that standard TCP is deficient in most
modern network scenarios (Floyd, 2003; Jin, Wei, & Low, 2003;
Kelly, 2002; Xu, Harfoush, & Rhee, 2004). Recently nonlinear
AIMD variants (NAIMD) have been proposed for deployment in
networks. Remarkably, despite the fact that nonlinear TCPs are
widely deployed in the internet (cubic is the default in Linux), few
mathematical results exist that characterise their behaviour (one
way or the other).
Generally speaking, NAIMD protocols differ from the standard

(linear) AIMD in the second (AI) phase, whereby the linear increase
in the utilization rate of each user i is replaced by a nonlinear
function of time that we denote by ai. Thus a user that is informed
of congestion at the kth congestion event evolves as follows:

wi(k+ 1) = βiwi(k)+ ai(T (k)). (3)

However for a user that is not informed of congestion, the future
evolution of its utilization rate depends in addition on how long it
has been growing in the second phase. Specifically let ti(k) be the
time elapsed since user i was last informed of a congestion event.
Then the evolution equation for its utilization rate is

wi(k+ 1) = wi(k)+ ai(ti(k)+ T (k))− ai(ti(k)). (4)

Thus a complete description of the state at the kth congestion event
must include the times ti as well as the utilization rates wi. So
the state X of the system at a congestion event is a vector in R2n,
namely

X = (w, t) wherew = (w1, . . . , wn) and t = (t1, . . . , tn).

Also Eqs. (3) and (4) must be supplemented by the evolution
equations for ti. If user i is informed of congestion then

ti(k+ 1) = T (k) (5)
while if user i is not informed of congestion then

ti(k+ 1) = ti(k)+ T (k). (6)

Together (3)–(6) determine the evolution of the state vector
X(k) 7→ X(k+ 1) between successive congestion events.
Initial attempts to study general nonlinear AIMD models are

presented in Rothblum and Shorten (2007) and King, Shorten,
Wirth, and Akar (2008); albeit for the case of synchronised
communication networks. Motivated by the desire to ultimately
extend this work to a stochastic setting mimicking that in Shorten
et al. (2007), we present here in this present paper an initial
analysis of nonlinear AIMD protocols which we call eventually
linear. These models are characterised by growth functions ai
which become (affine) linear after some time Tmi . Specifically, such
a growth function ai satisfies

ai(τ ′) = ai(Tmi)+ αHi(τ
′
− Tmi) for τ

′
≥ Tmi (7)

where αHi is constant, and where Tmi is the ‘elbow’ in the function.
So after time Tmi in the second phase themodel reverts to standard
linear TCP with utilization rate growing at the rate αHi . For the
synchronised case it is known that all solutions converge to a
unique fixed point at a geometrical rate (Rothblum & Shorten,
2007). Here we begin the analysis of the unsynchronised case of
the eventually linear model, by addressing the question of how the
solution depends on the initial valuew(0) for the user shares.

2. Eventually linear congestion control protocols

The main motivation for moving away from linear AIMD is to
realise protocols whose properties scale with increasing network
bandwidths. This requirement suggests developing algorithms
whose probing phase is nonlinear or piecewise linear in nature,
where each linear phase is designed with a typical network
(bandwidth) scenario in mind. In this latter setting, it is entirely
reasonable to assume that it only rarely occurs that network flows
do not achieve the phase of the probing action that is suitable
for current network conditions. From a mathematical perspective,
this is a very appealing assumption. In essence, this means that
while eventually linear protocols are nonlinear and thus include all
the complexities of NAIMD, including long-term memory effects,
this latter assumption means that the nonlinear features (which
dominate only when the inter-congestion times are short) can be
treated fully without approximation in this regime. In particular,
if all inter-congestion times are greater than a certain minimum
value then the growth functions of every flow move past the
‘elbow’ before the next congestion event occurs. This latter fact
means that the equations describing the difference dynamics are
the same as in standard TCP and all our previous results apply. In
what followswe explore this intuition in amore formal setting.We
begin by defining the notion of a regular congestion event.

Definition 2.1. A congestion event k is regular if T (k) ≥ Tmi for
every user i.

Thus a regular congestion event occurs whenever the subse-
quent inter-congestion time exceeds all the times Tmi , meaning
that every flow enters its linear phase before the next conges-
tion event. The essential feature of regular events is that they en-
sure that all memory of the past is lost and the network dynamics
are in effect linear. To explore the consequences of regular events
we will compare two trajectories, both experiencing the same se-
lection of dropped flows at each congestion event, but evolving
from two different initial states. Our principal assumption is that
the congestion events are all regular for both trajectories. We de-
note the set of states of the first trajectory at successive congestion
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events by {w(0), w(1), . . . , w(k)}, where w(0) is the initial con-
dition, and the set of states associated with the second trajectory
by {v(0), v(1), . . . , v(k)}. Denote further the difference vectors by
E(k) = w(k)−v(k). Then, the assumption that all events are regu-
lar implies that the difference vectors evolve linearly between the
ti(k), that is,

Ei(k+ 1) = wi(k+ 1)− vi(k+ 1)
= bi(k)(wi(k)− vi(k))+ αHi(T (k)− S(k)) (8)

where bi(k) = β or bi(k) = 1 depending on whether or not
this flow experiences a drop at the event, and where T (k), S(k)
are the inter-congestion times for the w, v flows respectively.
Since both E(k) and E(k + 1) are perpendicular to the vector
e = [1, 1, . . . ., 1]T this set of equations determines the value of
T (k)− S(k), and leads to the linear relation

E(k+ 1) = A(k)E(k), A(k) ∈ A (9)

whereA is precisely a set of matrices obtained from the dynamics
of standard unsynchronised TCP. In particular, each A(k) is
entrywise non-negative and column stochastic and hence non-
expansive in the one-norm; thus ‖E(k + 1)‖ ≤ ‖E(k)‖ for all k.
Here and throughout the paper ‖ · ‖ denotes the one-norm of a
vector, that is, the sum of the absolute values of its components.

Definition 2.2. A drop sequence is typical if there is an integer
N such that every flow experiences at least one drop during N
successive congestion events.

We then have the following theorem.

Theorem 2.1. Let w(0), v(0) be any initial conditions, and consider
a typical drop sequence for which both flow sequences {w(k)} and
{v(k)} experience only regular congestion events. Then ‖E(k)‖ =
‖w(k) − v(k)‖ converges to zero at an exponential rate as k → ∞,
and the rate is uniform inw(0), v(0).

Proof. It follows from (9) that

E(k) = A(k) A(k− 1) . . . A(0) E(0). (10)

Since the drop sequence is typical there is an integer N such that
every flow experiences a drop at least once in every N events. Let
k = κN + l where 0 ≤ l ≤ N − 1 is the remainder, and define for
j = 0, . . . , κ − 1

B(j) = A(jN + N − 1) A(jN + N − 2) . . . A(jN). (11)

Then

E(k) = A(κN + l) . . . A(κN) B(κ − 1) . . . B(1) B(0) E(0).

Each matrix A(k) is non-expansive on the hyperplane in Rn
orthogonal to [1, 1, . . . ., 1]T, that is ‖A(k)E‖ ≤ ‖E‖, for all E in this
hyperplane. Each matrix B(j) is column stochastic and entrywise
positive. This follows from the assumption that the drop sequence
is regular, and from the fact that the columns ofA(k) corresponding
to its dropped flows are entrywise positive. It therefore follows
that each matrix B(j) is a contraction on the hyperplane in Rn
orthogonal to [1, 1, . . . ., 1]T. Since the setA is finite (it has atmost
2n − 1 elements), it follows that there is there is a finite number
of different B(j)matrices (at most (2n − 1)N ). Hence there is r < 1
such that for all j and for all E orthogonal to [1, 1, . . . ., 1]T,

‖B(j)E‖ ≤ r ‖E‖. (12)

It follows that

‖E(k)‖ ≤ rκ ‖E(0)‖ ≤ rk/N−1 ‖E(0)‖. (13)

which yields exponential convergence at rate r1/N , uniform in
w(0), v(0). �
Before proceeding to the statement of our main result, we
present the following lemma (which is proven in the Appendix).

Lemma 2.1. If ti(k∗) ≥ Tmi for every user i which is not dropped at
some stage k∗ then,w(k) is independent of t(k∗) for all k ≥ k∗.

Aswe shall see in the proof of ourmain result, this lemma is central
to all that follows and with its help we shall prove that in spite of
nonlinear and long-term memory effects, trajectories of two-flow
systems starting from different initial conditions but experiencing
the same drop sequence converge to each other exponentially, and
that this is true for every possible drop sequence.

3. A convergence result for two users

We now present the main mathematical results of this paper.
Our main result says that for a two-user network, trajectories
starting from different initial conditions, but experiencing the
same set of congestion events, converge exponentially to each
other.

Setting: In what follows w = (w1, w2) and t = (t1, t2), and
the evolution of the our dynamic system is described by the four
difference equations

wi(k+ 1) = biwi + ai(diti + T )− ai(diti)
ti(k+ 1) = diti + T

i = 1, 2 (14)

where, for simplicity of presentation, we sometimes omit the
dependence on k of variables on the right-hand side of a difference
equation. The scalars bi(k) and di(k) are defined as follows: if the
ith user is dropped at event k then, (bi(k), di(k)) = (βi, 0); if the
ith user is not dropped at stage k then, (bi(k), di(k)) = (1, 1). As
usual, the time between congestion events T , is determined by the
congestion condition that

w1(k)+ w2(k) = w1(k+ 1)+ w2(k+ 1) = C

and system (14) evolves on the extended state space

Sext = {(w, t) : w ∈ S, t1, t2 ≥ 0} (15)

where

S = {w ∈ R2 : w1, w2 ≥ 0 andw1 + w2 ≤ C} (16)

is the rate space.
We assume that both users have growth rate functions which

are eventually affine as described in (7). We also assume that each
ai is increasing and convex on [0,∞), ai(0) = 0 and there exists
αLi > 0 such that ai(τ2)− ai(τ1) ≥ αLi(τ2 − τ1) for all τ2 ≥ τ1.

Statement of the main result: For the special case of two users
we show that for a given drop sequence, all trajectories converge
exponentially to a unique trajectory.
The solution of system (14) is determined by the initial state

(w(0), t(0)) and by the sequence of drops at the congestion events.
Our main result is that when the system capacity C is sufficiently
large, the long-term behaviour of w is determined solely by the
sequence of drops and is independent of the initial state.
Consider first the cases in which one of the users is never

dropped. If the first user is never dropped, one can show that,
regardless of initial conditions, limk→∞w(k) = (1, 0). For the
second user, the consequence is limk→∞w(k) = (0, 1). We call
the drop sequences corresponding to these cases trivial.
Our main result requires that C, Tm1 , Tm2 satisfy the following

condition.

C ≥ max{C0, C1, C2} (17)
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where

C0 = w1 + w2 (18)

C1 =
(αH1 + αH2)w1 + αH1a2(Tm)− αH2a1(Tm)

(1− β2)αH1
(19)

C2 =
(αH1 + αH2)w2 + αH2a1(Tm)− αH1a2(Tm)

(1− β1)αH2
(20)

with

w1 =
a1(Tm)+ αH2Tm

1− β1
, w2 =

a2(Tm)+ αH1Tm
1− β2

(21)

and

Tm = max{Tm1 , Tm2}. (22)

Note that C0, C1, C2 go to zero as Tm1 , Tm2 go to zero. Hence, for a
given systemcapacityC , condition (17) can be satisfied by choosing
Tm1 and Tm2 sufficiently small.
We now present the main result of the paper.

Theorem 3.1. When condition (17) is satisfied, there is a constant
r < 1 such that the following holds for every non-trivial drop
sequence. There are constants c > 0 and k∗ such that if (w, t) and
(v, s) are any two solutions of (14) then,

‖w(k)− v(k)‖ ≤ crk/2(‖w(0)− v(0)‖ + ‖t(0)− s(0)‖)

for all k ≥ k∗.

Theorem 3.1 shows that rate vector histories corresponding
to different initial conditions exponentially converge onto a
trajectory which is determined solely by the sequence of dropped
users at the congestion events. Hence the long-run behaviour of
the rate vector does not depend on the initial conditions.
Comment:Ourmain theorem does not exclude the possibility that
the long-run behaviour could depend on how the dropped users
are selected at the congestion events, since different sequences of
drops will lead to different trajectories.

4. Proof of the main result

We now present the proof of our main result. An essential
component of our proof is the existence of a reduced order dynamic
system that captures the convergence properties of the original
system.

4.1. Preamble to proof: A reduced order system

At a congestion event, there are only three possibilities: only
user one is dropped, only user two is dropped or both users are
dropped.We use the integer qk to indicate the set of users dropped
at an event k. We let qk = 1, 2, or 3 corresponding to the three
possibilities as listed in the above order. With X = (w, t), the
evolution of system (14) can then be described by

X(k+ 1) = Ψqk(X(k)) (23)

where qk = 1, 2 or 3 and themapsΨ1,Ψ2,Ψ3 are determined from
(14) by choosing appropriate values of bi and di. For example,Ψ1 is
obtained by letting (b1, d1) = (β1, 0) and (b2, d2) = (1, 1) in (14).
We also introduce the following two-step maps

Ψ4 = Ψ2 ◦ Ψ1, Ψ5 = Ψ1 ◦ Ψ2. (24)

Consider the following five subsets of the extended state space:

M1 = {X ∈ Sext : t2 ≥ Tm2} (25)

M2 = {X ∈ Sext : t1 ≥ Tm1} (26)

M3 = Sext, M4 =M1, M5 =M2. (27)
For p = 1, 2, 3, the condition that X ∈ Mp is equivalent to the
requirement that ti ≥ Tmi if the ith user is not dropped for the map
Ψp. For p = 4 or 5, X ∈Mp means that ti ≥ Tmi if the ith user is not
dropped for the first stage of the map Ψp.
Aswe have stated our objective here is to show that our original

system is equivalent in some sense to a reduced order system. We
establish this equivalence using Lemmas 4.1–4.4 and Corollaries
4.1, 4.2. When not explicitly given, proofs are presented in the
Appendix. The first of these results is an immediate consequence
of Lemma 2.1.

Lemma 4.1. For p = 1, . . . , 5, Ψp(X) is independent of t when
X ∈Mp.

Now let P be the projection of Sext onto S defined by

P(w, t) = w. (28)

For p = 1, . . . , 5, it follows from the last result that if we define
the mapΦp on the rate space S by

Φp(w) = PΨ (w, Tm, Tm) (29)

where Tm is defined in (22) then,

PΨp(X) = Φp(PX) for all X ∈Mp. (30)

Recalling (21) we have the following result and corollary.

Lemma 4.2. If a user i∗ is dropped at an event k wherewi∗(k) ≥ wi∗
then, T (k) ≥ Tm and ti(k+ 1) ≥ Tm for i = 1, 2.

In particular, the following is an immediate consequence of the
previous discussion.

Corollary 4.1. If both users are dropped at an event k then, T (k) ≥
Tm and ti(k+ 1) ≥ Tm for i = 1, 2.

Proof. Assumption (17) on C tells us that C ≥ C0 = w1+w2. Since
w1+w2 = C wemust havew1 ≥ w1 orw2 ≥ w2. Since both users
are dropped, it now follows from Lemma 4.2 that T (k) ≥ Tm and
ti(k+ 1) ≥ Tm for i = 1, 2. �

Furthermore, the following lemma and corollary also follow.

Lemma 4.3. If user i∗ is not dropped at an event k then,wi∗(k+1) ≥
wi∗ .

Corollary 4.2. If for some i∗, user i∗ is not dropped at an event k but
is dropped at event k + 1 then, T (k + 1) ≥ Tm and ti(k + 2) ≥ Tm
for i = 1, 2.

Proof. Since user i∗ is not dropped at event k, Lemma 4.3 tells
us that wi∗(k + 1) ≥ wi∗ . It now follows from Lemma 4.2 that
T (k+ 1) ≥ Tm and ti(k+ 2) ≥ Tm for i = 1, 2. �

The following result motivates the introduction ofΨ4 andΨ5; it
follows from Corollaries 4.1 and 4.2. In this result

M = {X ∈ Sext : t1, t2 ≥ Tm}. (31)

Note thatM ⊂Mp for all p.

Lemma 4.4. If p = 1, . . . , 5 then, Mp is invariant for Ψp, that is,
Ψp(X) ∈ Mp for X ∈ Mp. If p = 3, 4, 5 then, Ψp(X) ∈ M for all
X ∈ Sext.

We now have the main result of this section.
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Lemma 4.5 (Reduction Lemma). Suppose (w, t) is any solution of
(14) and ti(k∗) ≥ Tm for i = 1, 2 at some event k∗. Then for any
event kf ≥ k∗, there is a subsequence {k0, k1, . . . , kl} of {k∗, k∗ +
1, . . . , kf } with k0 = k∗, kl = kf , l ≥ (kf − k∗)/2 and a sequence
{p0, p1, . . . , pl−1} such that

w(kj+1) = Φpj(w(kj)) (32)

for j = 0, . . . , l− 1.

Remark 4.1. The above lemma tells us that if t1(k∗), t2(k∗) ≥ Tm
at some event k∗ then, the resulting behaviour of the rate vectorw
for the original full order system (14) is completely determined by
the reduced order system (32).

4.2. Contractions and the proof of the main result

We now proceed to prove the main result of the paper. As
before, proofs not explicitly given, are presented in the Appendix.
Before we proceed let us now define the contraction parameter

r = max{r1, r2, r4, r5}, (33)

where

r1 =
αH1 + αL2β1

αH1 + αL2
, r2 =

αH2 + αL1β2

αH2 + αL1

r4 =
αL1(αH1β2 + αH2β1)+ αH2(αH1(1+ β1β2 − β1)+ αH2β1)

(αL1 + αH2)(αH1 + αH2)

r4 =
αL2(αH2β1 + αH1β2)+ αH1(αH2(1+ β1β2 − β2)+ αH1β2)

(αL2 + αH1)(αH1 + αH2)
.

Careful examination of the above expressions reveals that r < 1.
Our first result in this section states thatΨ1,Ψ2,Ψ3 are globally

Lipschitz andΦ1,Φ2,Φ3 are contractive.

Lemma 4.6. (i) There is a constant c1 such that, for all X, Y ∈ Sext,

‖Ψq(X)− Ψq(Y )‖ ≤ c1‖X − Y‖ for q = 1, 2, 3. (34)

(ii) For allw, v ∈ S,

‖Φq(w)− Φq(v)‖ ≤ r‖w − v‖ for q = 1, 2, 3, (35)

where r < 1 is given by (33).

The next result states that the mapsΦ4 andΦ5 are contractive.

Lemma 4.7. For allw, v ∈ S,

‖Φp(w)− Φp(v)‖ ≤ r ‖w − v‖ for p = 4, 5, (36)

where r < 1 is given by (33).

Now, armedwith these preliminary results we give the proof of
the main result of the paper.

Proof of Theorem 3.1. Let X = (w, t) and Y = (v, s) be any
two solutions of (14) corresponding to some non-trivial drop
sequence {q1, q2, . . .}. Then there exists an event k∗ such that
either qk∗−1 = 3 or {qk∗−2, qk∗−1} equals {1, 2} or {2, 1}. It follows
from Corollaries 4.1 and 4.2 that for any of the above occurrences,

ti(k∗), si(k∗) ≥ Tm

for i = 1, 2.
Consider any event k = kf > k∗. It now follows from

the Reduction Lemma (Lemma 4.5) that there is a subsequence
{k0, k1, . . . , kl} of {k∗, k∗ + 1, . . . , kf } with k0 = k∗, kl = kf ,
l ≥ (kf − k∗)/2 and a sequence {p0, . . . , pl−1} such that

w(kj+1) = Φpj(w(kj)) and v(kj+1) = Φpj(v(kj)) (37)
for j = 0, . . . , l−1. Recalling the contraction results in Lemmas 4.6
and 4.7 we now obtain that

‖w(kj+1)− v(kj+1)‖ ≤ r‖w(kj)− v(kj)‖ (38)

for j = 0, . . . , l− 1. It now follows from (38), kf = kl, k0 = k∗ and
l ≥ (kf − k∗)/2 that

‖w(kf )− v(kf )‖ = ‖w(kl)− v(kl)‖ ≤ r l‖w(k0)− v(k0)‖

≤ r (k
f
−k∗)/2

‖w(k∗)− v(k∗)‖.

Hence,

‖w(kf )− v(kf )‖ ≤ r (k
f
−k∗)/2

‖w(k∗)− v(k∗)‖. (39)

From Lemma 4.6 there exists a constant c1 independent of
w(0), v(0), t(0), s(0) such that (34) holds. Since X(k + 1) =
Ψqk(X(k)) and Y (k + 1) = Ψqk(Y (k)) where qk = 1, 2 or 3, we
have

‖X(k+ 1)− Y (k+ 1)‖ ≤ c1‖X(k)− Y (k)‖

for all k. This implies that

‖w(k∗)− v(k∗)‖ ≤ ‖X(k∗)− Y (k∗)‖ ≤ ck
∗

1 ‖X(0)− Y (0)‖

= ck
∗

1 (‖w(0)− v(0)‖ + ‖t(0)− s(0)‖).

This, combined with (39) yields

‖w(kf )− v(kf )‖ ≤ c rk
f /2(‖w(0)− v(0)‖ + ‖t(0)− s(0)‖)

where c = (c1/r1/2)k
∗

. �

5. Example

As we have already mentioned, our ultimate objective is to
demonstrate the existence of a unique stationary measure for
a wide class of nonlinear congestion control protocols. Roughly
speaking, the existence of such a measure means that the long-
term average behaviour of the network does not depend on initial
conditions. In situations, where simulation is used as the principal
tool for analysis, knowledge that the average behaviour of the
network is independent of starting condition is a fundamental
requirement. In what follows we give an example to illustrate our
basic result.
Our basic setup is as follows. Two identical NAIMD flows

compete for ten units of capacity. Upon notification of congestion
a flow reduces its rate to half the value it had achieved before
congestion. After congestion notified flows probe for available
bandwidth with piecewise linear growth rate

ai(τ ′) =
{
αLτ
′ if 0 ≤ τ ′ ≤ 1

αL + αH(τ
′
− 1) if 1 ≤ τ ′

where αL = 1 and αH = 5. In these examples, we abuse notation
and let w(τ) = (w1(τ ), w2(τ )) be the flow rate vector at time
τ ∈ [0,∞).

Example 1 (A Random Drop Sequence). Here we generate a
sequence of fifty congestion notifications using the random
number generator inMatlab.We follow the evolution of two trajec-
tories, each experiencing these identical congestion notifications,
but starting from different initial conditions. Figs. 1 and 2 depict
the evolution of w(τ) from w(0) = (2, 8) and w(0) = (5, 5), re-
spectively; in both cases t(0) = (0, 0). Finally, we show in Fig. 3
the distance between these trajectories asmeasured by the 1-norm
as a function of congestion event.
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Fig. 1. Example: Evolution ofw(τ) fromw(0) = (2, 8).

Fig. 2. Example 1: Evolution ofw(τ) fromw(0) = (5, 5).

Fig. 3. Example 1: Distance between flow trajectories. Note that the 1-norm does
not decrease monotonically; but the convergence is exponential.
6. Conclusions

In this brief paperwehavepresented initial results for nonlinear
AIMDprotocols operating in stochastic environments. Futurework
will involve extending our results to more realistic network
scenarios.
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Appendix

Proof of Lemma 2.1. For k ≥ k∗, let D(k) denote the set of users
that have been dropped at least once during the events k∗, . . . , k.
We will show by induction that for all k > k∗ and j ∈ D(k − 1),
the quantitiesw(k) and tj(k) are independent of t(k∗).
So suppose that this statement holds for some event k > k∗.

If i 6∈ D(k − 1) then, user i has not been dropped during events
k∗, . . . , k − 1 and (6) implies that ti(k) ≥ ti(k∗) ≥ Tmi . It follows
from the fact that ai is affine after Tmi (recall (7)) that

ai(ti(k)+ T (k))− ai(ti(k)) = αHiT (k). (40)

Hence Eqs. (2)–(4) are independent of ti(k). Thus, T (k) andw(k+1)
are independent of ti(k) and depend only on w(k) and tj(k)where
j ∈ D(k− 1). Since, by assumption, w(k) and tj(k) do not depend
on t(k∗) for all j ∈ D(k− 1) it follows that T (k) and w(k+ 1) are
independent of t(k∗). Consider now any user j ∈ D(k). It follows
from (5) and (6) that tj(k+1) depends only onw(k) and tj(k)where
j ∈ D(k− 1); hence tj(k+ 1) is independent of t(k∗).
We now show that the statement holds for k = k∗ + 1. If

user i is not dropped at k∗, ti(k∗) ≥ Tmi and ai(ti(k
∗) + T (k∗)) −

ai(ti(k∗)) = αHiT (k
∗). Eqs. (2)–(4) imply that T (k∗) and w(k∗ + 1)

are independent of t(k∗). If j ∈ D(k∗) then (5) now implies that
tj(k∗ + 1) is independent of t(k∗). �

Proof of Lemma 4.2. Suppose user one is dropped at an event k.
Then

w1(k+ 1) = β1w1 + a1(T ) (41)

w2(k+ 1) = b2w2 + a2(d2t2 + T )− a2(d2t2) (42)
t1(k+ 1) = T (43)
t2(k+ 1) = d2t2 + T . (44)

Here (b2, d2) = (β2, 0) if user two is dropped while (b2, d2) =
(1, 1) if user two is not dropped. Considering τ = max{Tm2 , d2t2}
and using the convexity of a yield

a2(d2t2 + T )− a2(d2t2) ≤ a2(τ + T )− a2(τ ) = αH2T . (45)

Since b2 ≤ 1, relationships (42) and (45) result in

w2(k+ 1) ≤ w2 + αH2T . (46)

Recalling thatw1(k+1)+w2(k+1) = w1+w2 = C , relationships
(41) and (46) imply that

a1(T )+ αH2T ≥ (1− β1)w1 ≥ (1− β1)w1 = a1(Tm)+ αH2Tm,

that is, a1(T )+ αH2T ≥ a1(Tm)+ αH2Tm. Since a1 is increasing and
αH2 > 0, we must have T ≥ Tm. Hence ti(k+ 1) ≥ Tm for i = 1, 2.
If user two is dropped, the proof proceeds in the same fashion. �

Proof of Lemma 4.3. Suppose user two is not dropped. Then user
one must be dropped; hence

w1(k+ 1) = β1w1 + a1(T ) (47)

w2(k+ 1) = w2 + a2(t2 + T )− a2(t2). (48)
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Consider first the situation in which w1 ≤ w1. Since w1 + w2 =
C ≥ w1 + w2, we must have w2 ≥ w2. Clearly w2(k + 1) ≥ w2;
hencew2(k+ 1) ≥ w2.
Consider now the situation in which w1 ≥ w1. Since user one

is dropped, it follows from Lemma 4.2 that T ≥ Tm; hence (47)
implies that

w1(k+ 1) = β1w1 + a1(Tm)+ αH1(T − Tm). (49)

The convexity of a and t2 ≥ 0 implies that a2(t2 + T ) − a2(t2) ≥
a2(T )−a2(0) = a2(T ) = αH2(T−Tm)+a2(Tm); hence (48) implies
that

w2(k+ 1) ≥ w2 + a2(Tm)+ αH2(T − Tm). (50)

Combining (49) and (50) to eliminate T and using the identities
w1(k+ 1)+ w2(k+ 1) = w1 + w2 = C result in

(αH1 + αH2)w2(k+ 1) ≥ (αH1 + αH2)C
− (αH1 + β1αH2)w1 + αH1a2(Tm)− αH2a1(Tm).

Now use the inequalitiesw1 ≤ C and C ≥ C2, where C2 is given by
(20), to obtain thatw2(k+ 1) ≥ w2.
The proof proceeds in the same fashion if user one is not

dropped. �

Proof of Lemma 4.5. Consider the sequenceQ = {qk∗ , . . . , qkf−1}
in {1, 2, 3}. Using the following algorithm, we obtain a new
sequence P = {p0, p1, . . . pl−1} in {1, 2, 3, 4, 5} by replacing
selected subsequences of the form {1, 2} or {2, 1} in Q with
4 and 5, respectively. The new sequence P does not contain
the subsequences {1, 2}, {2, 1}, {1, 5} or {2, 4}. This algorithm is
illustrated in (51).
Algorithm. Starting with index K = k∗, find the first k ≥ K with
{qk, qk+1} equal to {1, 2} or {2, 1}. If {qk, qk+1} = {1, 2}, replace it
with 4; otherwise replace it with 5. Set the index K to k+ 2.

Q 11322221121 2232113
P 113222541 223513 (51)

From the above algorithm, it should be clear that there is a
subsequence {k0, k1 · · · , kl} of {k∗, k∗ + 1, . . . , kf } such that k∗ =
k0, kf = kl and

X(kj+1) = Ψpj(X(kj)) (52)

for j = 0, . . . , l− 1. We now show by induction that

X(kj) ∈Mpj for j = 0, . . . , l− 1. (53)

So suppose that X(kj) ∈Mpj for some j. If pj = 3, 4 or 5, Lemma 4.4
tells us that X(kj+1) = Ψpj(X(kj)) belongs to M; hence it is in
Mpj+1 . If pj = 1 then, X(kj) ∈ M1 and Lemma 4.4 tells us that
X(kj+1) = Ψ1(X(kj)) belongs to M1. Since P does not contain
the subsequences {1, 2} and {1, 5}, we must have pj+1 = 1, 3 or
4, and therefore X(kj+1) ∈ Mpj+1 . A similar reasoning applies if
pj = 2. Thus, X(kj) ∈ Mpj implies that X(kj+1) ∈ Mpj+1 . Since
X(k0) = X(k∗) ∈M ⊂Mp0 , we obtain (53) by induction.
It now follows from (52), (53) and (30) that, for j = 0, . . . , l−1,

PX(kj+1) = PΨpj(X(kj)) = Φpj(PX(kj)),

that is,

w(kj+1) = Φpj(w(kj)). �

Proof of Lemma 4.6. Part (i). Consider q = 1 or 3. Since user one
is dropped in either case, the map Ψq : X 7→ X ′ is given by

w′1 = β1w1 + a1(T ), t ′1 = T

w′2 = b2w2 + a2(d2t2 + T )− a2(d2t2), t ′2 = d2t2 + T
(54)
where T , the inter-congestion time associated with X , is given by
w′1 + w

′

2 = C . Here (b2, d2) = (1, 1) if q = 1 while (b2, d2) =
(β2, 0) if q = 3.
Consider any X, Y ∈ Sext. With (w, t) = X and (v, s) = Y , let

η = w−v and τ = t− s. Since η1+η2 = 0, we have ‖η‖ = 2|η1|;
hence

‖X − Y‖ = ‖η‖ + ‖τ‖ = 2|η1| + ‖τ‖. (55)

Define (η′, τ ′) = Ψq(X)− Ψq(Y ). Then, η′1 + η
′

2 = 0 implies that

‖Φq(X)− Φq(Y )‖ = 2|η′1| + ‖τ
′
‖. (56)

Let δT = T − S where T and S are the inter-congestion times
associated with X and Y , respectively. As a consequence of the
properties of a1 and a2, there exist scalars α1, α2, α3 such that

a1(T )− a1(S) = α1δT
a2(d2t2 + T )− a2(d2s2 + S) = α2(d2τ2 + δT )
a2(d2t2)− a2(d2s2) = α3d2τ2

(57)

with

αL1 ≤ α1 ≤ αH1 and αL2 ≤ α2, α3 ≤ αH2 .

To see this consider, for example,

α1 =

{a1(T )− a1(S)
T − S

if T 6= S

αH1 if T = S.
(58)

The convexity of a2 implies that α3 ≤ α2. It now follows from
description (54) of Ψq that

η′1 = β1η1 + α1δT , τ ′1 = δT

η′2 = b2η2 + α2δT + γ d2τ2, τ ′2 = d2τ2 + δT
(59)

where γ = α2 − α3 ≥ 0. Since η′1 + η
′

2 = η1 + η2 = 0, δT is given
by

(β1 − b2)η1 + (α1 + α2)δT + γ d2τ2 = 0.

Solving for δT and substituting into (59) yield

η′1 =

(
α2β1 + α1b2
α1 + α2

)
η1 − d2

(
γα1

α1 + α2

)
τ2 (60)

τ ′1 =

(
b2 − β1
α1 + α2

)
η1 (61)

τ ′2 =

(
b2 − β1
α1 + α2

)
η1 + d2

(
1−

γ

α1 + α2

)
τ2. (62)

As a consequence of the upper and lower bounds on α1, α2, α3
there exists a constant c13 independent of X and Y such that

2|η′1| + ‖τ
′
‖ ≤ c13(2|η1| + ‖τ‖). (63)

Hence, ‖Ψq(X) − Ψq(X)‖ ≤ c13‖X − Y‖. One can follow the same
procedure to obtain a corresponding constant c23 for q = 2, 3.
Finally, let c1 = max{c13, c23} to obtain the desired result.
Part (ii). Consider first q = 1 or 3 and recall that Φq(w) =

PΨq(w, Tm, Tm). Hence ‖Φq(w) − Φq(v)‖ = ‖η′‖ = 2|η′1|. When
q = 3 we have d2 = 0. When q = 1, d2 = 1. Recall that a2
is affine with slope αH2 after Tm2 ≤ Tm. Hence, when q = 1 and
t2 = s2 = Tm, Eq. (57) tells us that α2 = α3 = αH2 ; hence γ = 0.
In either case, it follows from (60) that

η′1 =

(
α2β1 + α1b2
α1 + α2

)
η1. (64)
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Since b2 ≤ 1, β1 < 1, 0 < α1 ≤ αH1 and 0 < αL2 ≤ α2, we must
have
α2β1 + α1b2
α1 + α2

≤
α2β1 + α1

α1 + α2
≤
αL2β1 + αH1

αH1 + αL2
≤ r

and it follows from (64) that |η′1| ≤ r|η1|. Since‖Φq(w)−Φq(v)‖ =
2|η′1| and ‖w − v‖ = 2|η1|, we obtain the desired result that
‖Φq(w)−Φq(v)‖ ≤ r‖w− v‖. The proof for q = 2 or 3 is similar.

�

Proof of Lemma 4.7. The mapΦ4 : w 7→ w′′ is given by

w′1 = β1w1 + a1(T ), w′′1 = w
′

1 + a1(T
′
+ T )− a1(T )

w′2 = w2 + αH2T , w′′2 = β2w
′

2 + a2(T
′)

(65)

where the inter-congestion times T and T ′ are calculated by
imposing the conditions w′1 + w′2 = w′′1 + w′′2 = C . Also,
Corollary 4.2 tells us that T ′ ≥ Tm. For anyw, v ∈ S, let η = w− v
and η′′ = Φ4(w) − Φ4(v). The conditions η1 + η2 = 0 and
η′′1 + η

′′

2 = 0 yield

‖w − v‖ = 2|η1| and ‖Φ4(w)− Φ4(v)‖ = 2|η′′1 |. (66)

Let α1 be given by (58) where T , T ′ and S, S ′ are the inter-
congestion times associated withw and v, respectively. Convexity
of a(·) implies that α1 ≤ αH . The description of Φ4 in (65) now
yields

η′1 = β1η1 + α1δT (67)

η′2 = η2 + αH2δT (68)

η′′1 = η
′

1 + αH1(δT
′
+ δT )− α1δT (69)

η′′2 = β2η
′

2 + αH2δT
′ (70)

where δT := T −S and δT ′ = T ′−S ′. Since η1+η2 = η′1+η
′

2 = 0,
Eqs. (67) and (68) imply that

δT =
(
1− β1
α1 + αH2

)
η1, η′1 =

(
α1 + αH2β1

α1 + αH2

)
η1. (71)

Using η′1 + η
′

2 = η
′′

1 + η
′′

2 = 0, Eqs. (69) and (70) result in

η′′1 =

(
αH2 + αH1β2

αH1 + αH2

)
η′1 +

(
αH2(αH1 − α1)

αH1 + αH2

)
δT .

Substituting the previously obtained expressions (71) for η′1 and δT
results in η′′1 = ρη1 where

ρ =
α1(αH1β2 + αH2β1)+ αH2(αH1(1+ β1β2 − β1)+ αH2β1)

(α1 + αH2)(αH1 + αH2)
.

Since 1 + β1β2 − β1 ≥ β2, the above expression for ρ achieves
it maximum value when α1 is at its minimum value of αL1 ; the
corresponding maximum value of ρ is r4. Hence |η′′1 | ≤ r4|η1| ≤
r|η1|. Thus ‖Φ4(w)−Φ4(v)‖ ≤ r‖w− v‖. The mapΦ5 is handled
similarly. �
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