Sign Patterns that Allow a Positive Left Inverse

P. van den Driessche Department of Mathematics and Statistics University of Victoria, Victoria, BC, Canada, V8W3P4

pvdd@math.uvic.ca

Abstract

An $m \times n$ sign pattern $\mathcal S$ is an $m \times n$ matrix with entries in $\{+,-,0\}$. Such a sign pattern allows a positive left inverse provided that there exist an $m \times n$ matrix A with the sign pattern $\mathcal S$ and an $n \times m$ matrix B with only positive entries satisfying BA = I where I is the $n \times n$ identity matrix. For $m > n \geq 2$, a characterization of nonsquare sign patterns with no rows of zeros that allow a positive left inverse is given. This leads to a characterization of all sign patterns with $m \geq n \geq 2$ that allow a positive left inverse, giving a generalization of the known result for the square case, which involves the related bipartite digraph. Sign patterns that allow a nonegative left inverse are also discussed.

[Joint work with In-Jae Kim, D.D. Olesky and B.L. Shader]