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Abstract— In recent years we have witnessed a great interest
in large distributed computing platforms, also known as clouds.
While these systems offer enormous computing power, they are
however major energy consumers. In the existing data centers
CPUs are responsible for approximately half of the energy
consumed by the servers. A promising technique for saving CPU
energy consumption is dynamic speed scaling, in which the speed
at which the processor is ran is adjusted based on demand and
performance constraints. In this paper we look at the problem
of allocating the demand in the network of processors (each
being capable to perform dynamic speed scaling) to minimize
the global energy consumption/cost. The nonlinear dependence
between the energy consumption and the performance as well
as the high variability in the energy prices result in a nontrivial
resource allocation. The problem can be abstracted as a fully
distributed convex optimization with a linear constraint. On the
theoretical side, we propose two low-overhead fully decentralized
algorithms for solving the problem of interest and provide closed-
form conditions that ensure stability of the algorithms. Then we
evaluate the efficacy of the optimal solution using simulations
driven by the real-world energy prices. Our findings indicate a
possible cost reduction of 10−40% compared to power-oblivious
1/N load balancing, for a wide range of load factors.

I. INTRODUCTION

Nowadays, many internet services are structured in a
“cloud” around a large number of cloud servers that are
distributed worldwide to decrease the costs and to improve
content availability, robustness to faults, end-to-end delays,
and data transmission rates [15]. Examples include most
of Yahoo! and Google services, Amazon’s Simple Storage
Service (S3) and Elastic Compute Cloud (EC2) as well as
Akamai’s Content Delivery Network (CDN). Applications that
currently rely on these distributed platforms include content
distribution, search, remote backup, social networking, etc.
Utilizing third party resources (located in the cloud) seems to
be a major step towards the new generation of powerful and
cheap applications (particularly in enterprise environments),
often referred to as software-as-a-service (SaaS) model.

The typical size (and consequently, the power consumption)
of a network cloud is massive. The U.S. Environmental
Protection Agency estimates the energy consumption by the
nation’s servers and data centers was 61 billion kilowatt-
hours (kWh) in 2006 (1.5 percent of total U.S. electricity
consumption), and is projected to reach 100 billion kWh by
2011. It is evident that, apart from the direct costs from the
massive power consumption, the environmental cost of data
centers is abnormally high. This has led a number of research
groups to look at various approaches for reducing energy
consumption/cost [1], [8], [14], [19], [33], [36], [37], [43].

The worldwide scale1 of such systems raises important
issues as to how to efficiently control power consumption/cost
in those large distributed environments. The following rea-
sons make the design of power-aware resource-control highly
nontrivial. First, energy prices exhibit large temporal and
geographic variations2 which in turn implies that the optimal
operating point is not fixed, but rather changing based on
(hard-to-predict) energy-price dynamics, consequently requir-
ing an online solution. Second, the function that relates the
demand and power consumption is highly nonlinear, implying
that it is hard to predict what would be the global effects of
actions performed locally. Finally, the dimensionality of the
problem requires solutions that offer high scalability through
low communication overhead, high fault robustness and fast
convergence times.

In modern data centers, processors are responsible for
approximately 50% of energy consumed by high-end servers
[19], [22]. Moreover, every watt saved on the servers, re-
sults on the extra 0.5-1 watt saved on cooling and power
delivery costs. Consequently, in this paper we investigate how
balancing the load among processors with different levels of
utilization, as well as different energy prices can reduce the
overall energy-related costs. Our work is strongly motivated
by the concept of dynamic speed scaling [8]. This is a
technique that allows load-aware adaptation of the speed at
which processor is run, in order to save the energy. Namely,
in order to run a processor at speed s, one needs to supply
a power of csα, with α = 3 being the value most commonly
used in the literature [1], [8], [46]. Here we look at the problem
of demand allocation across a network of processors, with the
common goal of minimizing the total cost of power consumed.
The key factors affecting the cost gains are (1) the nonlinearity
of the performance/energy curve and (2) the large variance of
the energy prices across different sites. Thus, the presented
framework can be applied to any application that features those
two factors.
A. Problem formulation

Let D be the demand intensity (say in requests per second)
that needs to be processed by N processor clusters, with
cluster i has Pi processors capable of performing dynamic
speed scaling based on the offered load. For i ∈ {1, 2, . . . , N}

1For example, Google’s and Microsoft’s services run on up to a million
servers distributed worldwide [39], [12], [19] across dozens of data centers,
across all continents. Akamai’s content distribution network utilizes tens of
thousands of servers [15].

2For example, in the UK&Ireland energy market, the energy price is created
once every 30 minutes with the ratio of daily highest and lowest prices varying
between 3 and 10 [9].



the cluster i processes a fraction, Di ≥ 0, of total demand, so
that

N∑

i=1

Di = D. (1)

With cluster i serving a load with intensity Di, the power
consumption/cost required for ensuring certain QoS level is
a (convex) function of Di: fi(Di). Function fi depends on
the local cost of energy (in $/KWh) and the cluster structure
(eg. the number of CPUs, the type of application, etc.); see
Section II for more details. Note here that, with given temporal
and geographic diversity in the prices, the cost function fi

is location dependent and varies with time (at cluster i)
of the day, seasonal changes, etc. Our design objective is
obtaining a fully decentralized architecture for power-cost
minimization. In terms of communication infrastructure, we
allow clusters to exchange local information over the edges
of the communication (undirected) graph G = (N, E), where
N = {1, 2, . . . , N}. Given this our performance goal is to
design an algorithm that allows nodes (processors) to collab-
orate without any global information to achieve the minimum
aggregate cost:

min
Di≥0,

∑N
i=1 Di=D

V (D1, . . . , DN ) =

min
Di≥0,

∑N
i=1 Di=D

N∑

i=1

fi(Di). (2)

Fully distributed algorithms for solving convex problems with
multiple linear constraints have been studied in [30]. For con-
venience, this method is described in Appendix B, and relies
on the distributed algorithm for the SUM computation from
[31], which is executed at each step of the underlying gradient
ascent algorithm. As we shall see, this distributed SUM compu-
tation step imposes a large communication overhead that may
discourage its usage in commercial settings. In the Section
III we present a method that avoids computation of aggregate
SUM, and therefore significantly reduces the communication
overhead (and consequently reduces the convergence time).

Comment 1: While here we model functions fi through
simple polynomials, in reality, these functions might not be
parameterizable through a handful of parameters. That in turn
implies that centralized approach would require each node to
continuously communicate fine-grained representation of time-
varying function fi to the centralized controller. This approach
would not scale to large number of nodes. Therefore, we seek
for decentralized solutions that scale well with large number
of nodes, through the framework described above. However,
in small networks, centralized architecture is feasible, and
would provide a solution of the optimization problem in a
straightforward manner.

Comment 2: Here we want to stress that the above model
ignores the cost of bandwidth. While this is an important con-
sideration for those applications that intensively use WAN, for
many applications such as search or media hosting, the major
computational cost comes in the CPU intensive operations

such as computing the relevant index or rendering. See [7]
for a number of case studies of various applications utilizing
Amazon’s EC2 cloud platform.

B. Our contributions

Motivated by the need for reducing power costs through
distributed speed scaling, the main concern of this paper is
investigation of the potential benefits that power-aware load
balancing can have on the electricity costs across a network
of distributed servers. In particular we seek for efficient and
fully distributed solution for minimization of the aggregate
costs (2). Briefly, the main contributions of our work are
following:

• We propose a framework for power reduction in the
cloud through distributed dynamic speed scaling that
takes into account the temporal and spatial variability of
the power prices.

• Two fully distributed algorithms (synchronous and
asynchronous) for solving the optimization problem
of interest are proposed, and sufficient conditions are
derived which guarantee that both algorithms drive
system to the desired state.

• Several illustrative simulations are presented to evaluate
the behavior of the algorithm and support our analytical
findings. In particular, we show on a synthetic example
driven by the real-world energy prices, that one can
expect a reduction of (processor energy related) costs in
the range of 10− 40%.

While the presented work has been motivated mainly by
concerns related to energy reduction in the cloud, we note
that the general problems of type (2) arise in many related
domains. In particular load-aware WLAN spectrum sharing
[13], distributed throttling of high-bandwidth aggregates for
DDoS protections [45], and cost-optimal multihoming [18]
share the same underlying problem (see Section VI).

We shall also see that dynamic system underlying our
algorithm is nonlinear and implicit. This makes the task of
analysis challenging. In particular, the standard theory of
distributed coordination algorithms (see [23] and references
therein) cannot be employed in our case. The convergence
results established in Theorems 1 and 2 are highly nontrivial
and represent the main theoretical contribution of this paper.

From the practical side, the proposed solution requires only
a few lines of code, is easy to debug, and requires config-
uration of at most one parameter (η). In contrast, the MRS
algorithm from [30] that solves the same type of problems has
a set of non-trivial rules for parameter setting, involved logic
behind it, making it hard to implement and debug in a real-
world setting. Finally because our schemes avoid computation
of the global state, the resulting communication overhead can
be several orders of magnitude smaller compared to MRS (see
Section V-C).



C. Related work

The topic of effective running cloud based services and
data centers has lately attracted significant attention in the
networking community; see [19], [4] and references therein.
A major concern of these efforts include power control as it
accounts for the largest part of the non-fixed expenses. Recent
efforts for power reduction in data centers and networked
systems include: power-aware caching and prefetching [37],
sleeping and rate-adaptation [33] and load dispatching [14]
of networked and storage systems. Recently, several proposals
have appeared promoting the use of a large number of small
(micro [21], nano [27]) data centers, instead of few large data
centers, as a means to save energy. We refer interested readers
to a nice overview of the electricity markets [36], where the
author proposes to exploit the diversity of energy prices to
save the running costs.

Most of the previous work on dynamic speed scaling
has been concerned with scheduling mechanisms needed to
efficiently run a single processor [1], [8], [46]. More recently
Gandhi et al. [17] looked at problem of load allocation
among the processors within a single cluster to maximize the
performance under a power budget. Our work in Section II
complements their results in that it derives the load allocation
that minimizes the cost under a strict performance constraint.
However, most of our paper is concerned with power aware
demand allocation in the network of processors, in the dis-
tributed setting without centralized controller. As we shall see
the problem lies in the realm discussed in [30]: namely, of
maximizing the sum of (concave) utilities with linear con-
straints under fully distributed communication infrastructure;
see Appendix B for a brief description of algorithm from [30].
In context of distributed flow rate-control, Kelly’s framework
[24], [42] solves similar problems assuming some form of
feedback (packet loss, queueing delay, packet marks, etc.) that
contains a global information that is utilized by the agents
in order to solve the optimization problem. However, here
we assume no such global feedback, and agents communicate
between each other sharing only local information.

Load balancing is a common name for a suite of algorithms
that allocate demands among a set of servers, to equalize the
performance at each of the contributing servers. See [5], [28]
for an overview of a standard model of load balancing. Load
balancers, in the context of content delivery networks, are
described in [38]. Recently, an overlay resource control based
on two-random choice [28] load balancing has been proposed
in [34]. For load balancing techniques in distributed environ-
ments we refer readers to [2], [3]. The problem analyzed here
can be seen as an instance of distributed utility maximization
load balancing. For a related concept called distributed rate
limiting, see [39], [44].

Our method for solving the optimization problem defined
in Section I-A can be seen as an instance of the distributed
coordination. Distributed coordination has attracted significant
attention over last several years being applied in various
topics, such as flocking [41], time synchronization, multi-agent
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Fig. 1. Local load vs. optimal energy consumption.

coordination [23], sensor, peer-to-peer and ad hoc networks
[11]. In most existing applications distributed coordination
algorithms can be modeled as positive linear systems, which
then allows the elegant theory of nonnegative matrices and
Markov chains to be employed to capture the convergence
properties of the algorithms. However, little is known about
implicit nonlinear coordination problems (see [32]) and one
of the main contributions of this paper is the proof of global
stability for the implicitly given nonlinear systems describing
the dynamics of the algorithms presented in the Section III.

II. LOAD BALANCING WITHIN ONE CLUSTER

Before we proceed with the problem of distributed power-
aware load distribution, we first investigate what can be done
locally in terms of load balancing among the processors within
one cluster under standard CPU speed vs. power model. Let P
be the number of processors within a cluster, each being able
to run at speed s ∈ (0, 1]. Dynamic speed scaling literature [1],
[8], [46], models the processor power consumption running at
speed s > 0 as a function of the following form:

p(s) = γ + (1− γ)sα,

with the power exponent α > 1, most commonly the value
α = 3 is used. Note also that amortization parameter γ lies
in the interval (0, 1), as certain amount of energy is spent for
running the processor even when it is idle. We assume also
that when the processor is turned off the power consumption
is p(0) = 0. Since the capacity (maximum speed) of each
processor is one unit, the maximum processing speed of
the whole cluster is P . For D0 ∈ [0, P ], lets evaluate the
strategy of allocating the demand among those P processors,
(s1, . . . , sP ) (with si ≥ 0 and

∑P
i=1 si = D0) that minimizes

the total power:

A(s1, . . . , sP ) =
P∑

i=1

p(si).

The optimal strategy might require some of the processors
to be turned off. Let k of those P processors be switched on,
then without loss of generality we can assume that they are



ordered in the following way:

s1 ≥ s2 ≥ . . . ≥ sk > 0 = sk+1 = . . . = sP .

Then, the total power is

A(s1, . . . , sP ) =
k∑

i=1

(γ+(1−γ)sα
i ) ≥ kγ+(1−γ)k

(∑k
i=1 si

k

)α

= kγ + (1− γ)k1−αDα
0 =: b(k). (3)

In (3) we used the following lemma:
Lemma 1: For any nonnegative real numbers x1, . . . , xk the

following inequality holds:

.

∑k
i=1 xα

i

k
≥

(∑k
i=1 xi

k

)α

. (4)

Proof: Notice that d(t) = tα is a convex function on
[0,∞) for α ≥ 1. The lemma follows directly from the
Jensen’s inequality3 for the convex function d(t):

1
k

k∑

i=1

d(xi) ≥ d

(∑k
i=1 xi

k

)
.

The above function b(k) has derivative b′(k) = γ+(1−γ)(1−
α)k−αDα

0 . Therefore b(k) attains minimum on in the interval
[1, P ] for

k∗ = min(P, D0

(
(1− γ)(α− 1)

γ

) 1
α

). (5)

Therefore, we just proved the following proposition:
Proposition 1: In the model described above, the load al-

location that minimizes the consumed power at one cluster of
P processors is the one for which which k∗ (given by (5)4)
servers are turned on, and each of them processes the same
load: D

k∗ . In that case, the energy consumed by the cluster is
given by:

f̄(D0) = b(k∗) = k∗γ + (1− γ)(k∗)1−αDα
0 . (6)

The graph (D0, f̄(D0)) is depicted in Figure 1 for α = 3,
γ = 0.1 on a cluster of P = 100 processors.

The previous proposition applies to the case of homogenous
processors, for which all the processors have the same relation-
ship between power and speed. In the case of non-homogenous
processors, the appropriate load balancing needs to be scaled
to account for difference in the weights at different processors.

III. LOAD BALANCING ACROSS DISTRIBUTED CLUSTERS

In the previous section we showed how to balance the
load allocated to one cluster in order to minimize the energy
consumption at the cluster. In this section we look at the
problem formulated in Section I-A: balancing the load D

3http://en.wikipedia.org/wiki/Jensen’s−inequality
4In case k∗ is not an integer, we pick the closest integer instead.

on the set of distributed clusters to minimize the aggregate
cost of power (2). For cluster i serving load Di, the energy
consumption is given by f̄i(Di) (Proposition 1), and the cost
of unit of power is given by νi. The power cost is then
fi(Di) = νif̄i(Di). The key observation of this section is
that solving convex problem (2) can be reduced to solving
a distributed coordination problem (in which function values
among all nodes in the network need to be equalized) that
in turn helps us design algorithms with low communication
overhead and fast convergence times.

In order to avoid directly enforcing the nonnegativity con-
straints (Di ≥ 0 and Di ≤ Pi), we consider the cost functions
with a logarithmic barrier

hi(Di) = fi(Di)− θ log(Di)− θ log(Pi −Di),

for a small parameter θ > 0. Now, consider the following
optimization problem, parameterized with θ:

min∑N
i=1 Di=D

Vθ(D) = min∑N
i=1 Di=D

N∑

i=1

hi(Di). (7)

For the analysis of the error introduced by this logarithmic
barrier see [30]. Basically, for any θ > 0, the solution of (2) is
O(Nθ) away from solution of (7). In the evaluation section we
set θ = 10−10. For given Lagrange multiplier5 λ, the Lagrange
function is:

Λ(λ,D1, . . . , DN ) = Vθ(D1, . . . , DN )− λ(
N∑

i=1

Di −D).

Therefore the point D = (D1, . . . , DN ) that minimizes Vθ

must satisfy:

∂Λ
∂Di

= 0

for all i. The last condition is equivalent to

h′i(Di) = f ′i(Di)− θ

Di
+

θ

Pi −Di
= λ.

Thus, finding the solution of (7) is equivalent to finding
the point (D1, . . . , DN ) for which

∑N
i=1 Di = D and

∀(i, j) h′i(Di) = h′j(Dj). (8)

Now we describe a fully decentralized algorithm that allows
every cluster to obtain the optimal load it needs to process.
The observation that finding the optimal point is equivalent
to finding a point that satisfies (1) and (8) greatly simplifies
the design. The algorithm, that we call Implicit Distributed
Coordination (IDC) is given by the pseudocode in Figure 2,
and parameterized by parameter η. It is fully decentralized,
in that every agent exchanges only local information with its
neighbors and has the following logic behind it. Let i and j
be nodes connected in the communication graph G. If h′i(Di)

5http://en.wikipedia.org/wiki/Lagrange−multipliers



1 InitializeDemands()
2 for i = 1 : N
3 Di ← D Pi∑N

j=1 Pj

4 endfor

5 UpdateDemands()
6 Once every ∆ units of time do
7 for i = 1 : N
8 Di ← Di + η

∑
(i,j)∈E(h′j(Dj)− h′i(Di))

9 endfor
10 enddo

Fig. 2. Pseudo-code of IDC

is greater than h′j(Dj) then this indicates that allocating some
demand to node j from node i would potentially decrease
the difference between h′i(Di) and h′j(Dj). The parameter
η > 0 determines the responsiveness and stability properties
of IDC. While the basic algorithm makes sense intuitively,
many questions need to be answered before it can be deployed.
Paramount among these concerns under which conditions does
the IDC converge to the desired (unique) state and if so, how
fast. These questions provide the focus for the investigation
presented in the next section.

A. Model and analysis of IDC

In this section we analyze the dynamics of IDC. We
provide a bound on η that ensures the stability (convergence)
of the system, describing the dynamics of the state vector,
(D1, . . . , DN ), and show that the convergence is exponentially
fast (it converges with time t as e−at). We model the IDC
system in discrete time t. At the t-th iteration, denote by Di(t)
the fraction of load, served by processor i and by

qi(t) = h′i(Di(t)),

the value of h′i at point Di(t). Being the sum of three convex
functions, hi is itself a convex function. Therefore, h′i is an
increasing function and has a well defined inverse. Let us
denote by gi = (h′i)

−1 the inverse function of h′i. Then

Di(t) = gi(qi(t)) = gi(h′i(Di(t))). (9)

Equation (9) represents the key relationship between Di(t)
and qi(t). Given this, the dynamical system describing the
evolution of Di(t), is given by:

D1(0) = D2(0) = . . . = DN (0) = D/N, (10)

Di(t + 1) = Di(t) + η
∑

(i,j)∈E

(qj(t)− qi(t)). (11)

We also denote
m(t) = min

1≤i≤N
qi(t),

and
M(t) = max

1≤i≤N
qi(t).

The following lemma is a straightforward consequence of
the fact that G is an undirected graph.

Lemma 2: At all times t, the constraint (1) is satisfied:
D1(t) + D2(t) + . . . + DN (t) = D.

Proof: For t = 0 the statement is true from the definition.
Suppose that it is valid for t = k, then for t = k + 1:

N∑

i=1

Di(k + 1) =
N∑

i=1


Di(k) + η

∑

(i,j)∈E

(qi(k)− qj(k))


 =

=
N∑

i=1

Di(k) +
1
2
η

∑

(i,j)∈E

((qi(k)− qj(k)) + (qj(k)− qi(k)))

=
N∑

i=1

Di(k) = D.

The following theorem gives a sufficient condition under
which the system (10)-(11) converges.

Theorem 1: Let di be the degree of node i in the commu-
nication graph. If all gi are differentiable on (0,∞), then for
every η that satisfies:

0 < η ≤ 1
2

min
1≤i≤N

( inf
y∈[m(0),M(0)]

g′i(y)) min
1≤i≤N

1
di

(12)

the following limits exist

lim
t→∞

Di(t) =: D∗
i

and
lim

t→∞
h′i(Di(t)) = lim

t→∞
h′j(Dj(t)) =: q∗.

The convergence is exponential: there exist real numbers θ1 >
0, θ2 > 0 such that

0 ≤ M(t)−m(t) < θ1e
−tθ2

Proof: See Appendix.
Comment 3: The presented algorithm, IDC, can be seen as

an instance of distributed equation solving. Suppose that N
agents want to solve the following equation in a distributed
manner

G(x) =
N∑

i=1

gi(x) = D.

If each agent i is able to solve the equation gi(x) = y for
every y then IDC-like algorithm with appropriate η converges
to the solution of the above equation.

B. Asynchronous algorithm

Suppose that nodes i and j, have associated values h′i(Di)
and h′j(Dj). If we want to find β for which h′i(Di + β) ≈
h′j(Dj − β), then the first order approximation (using the
Taylor series expansion) would be



1 InitializeDemands()
2 for i = 1 : N
3 Di ← D Pi∑N

j=1 Pj

4 endfor

5 UpdateDemands()
6 for every edge (i, j) ∈ E
7 Once per time interval ∆ do
8 β ← h′j(Dj)−h′i(Di)

h′′j (Dj)+h′′i (Di)

9 Pick η according to the Theorem 2
10 Di ← Di + ηβ
11 Dj ← Dj − ηβ
12 enddo
12 endfor

Fig. 3. Pseudo-code of Asynchronous-IDC

β =
h′j(Dj)− h′i(Di)
h′′j (Dj) + h′′i (Di)

.

Now, the update step emerges directly from the above
approximation, and the pseudocode for the Asynchronous-IDC
(A-IDC) is given in Figure 3. However, we need to introduce
a gain parameter η ≤ 1 that protects the algorithm from
overshooting, and ensures stability. Once the system is close
to the steady state, the parameter η is close to 1 (this follows
from eq. (13)), meaning that the parameter η is effective
mainly in transient periods of searching for steady state. Note
that the moment, at which the update over the edge (i, j) is
performed, is not pre-specified, and can be anywhere in the
interval (n∆, (n + 1)∆).

The following theorem establishes the convergence of A-
IDC scheme. The proof can be derived using the same
arguments as those from Theorem 1 and only an outline is
sketched here.

Theorem 2: Let Di(t) be the value of Di after t edges
performed updates in A-IDC. Denote by η(t) the value of
η at time step t at which the updates over edge (i, j) takes
place, and by mij(t) and Mij(t) the minimum and maximum
of numbers h′i(Di(t)), h′j(Dj(t)), respectively. If η(t) satisfies

η(t) = min
s∈{i,j}

inf
y1,y2∈[mij(t),Mij(t)]

h′′s (y1)
h′′s (y2)

, (13)

then the following limits exist:

lim
t→∞

Di(t) = D∗
i

and
lim

t→∞
h′i(Di(t)) = lim

t→∞
h′j(Dj(t)) =: q∗.

Proof: As in synchronous case, we define the minimum
and maximum of h′1(D1(t)), . . . , h′N (DN (t)): m(t) and M(t),
respectively. The condition (13) ensures that [m(t),M(t)] is
a nested sequence of intervals. Once this is established, then

following the same lines of the proof of the Theorem 1 one
can show that limt→∞m(t) = limt→∞M(t).

IV. IMPLEMENTATION ISSUES

Comment 4: Here we assume that power management
primitives that perform dynamic speed scaling locally are in
place at each node. We also assume that there is network in-
frastructure that would allow shift of load between processors
when needed.

Comment 5: The message passing between two nodes can
cause some communication delay on a time scale from few
milliseconds up to a couple of hundreds of milliseconds. These
communication delays could cause some issues related to the
stability of the distributed algorithms if the update interval is
on some small time scale. However, the time between updates,
given by ∆, should be on the order of magnitude of several
seconds. This resulting separation of time-scales ensures that
effects of the communication delays on the stability of our
algorithms may be neglected. Notwithstanding this fact, the
issue of delays is a topic for future research.

Comment 6: In our model, we assume that the set of job
requests can be split in arbitrary manner. However, in the case
where additional constraints exist (eg. certain subset of the
demand set must be served by a particular cluster, or the
location of clusters is important constraint for serving the
requests (like in interactive applications), etc) the extension
of the framework presented here to these domain is an open
problem.

Comment 7: The presented work does not take into ac-
count effects of virtualization. Namely, if one runs several
applications on the same hardware, the performance versus
power curve becomes much harder to predict and control [43].
Therefore even though the algorithms for cost reduction are
directly applicable in this context we are unable to evaluate the
potential benefit of the framework presented here in virtualized
environments.

Comment 8: Communication between servers is performed
via small UDP packets. Each of those packets should contain
a field for measuring the performance at the particular cluster,
as well as some control overhead to ensure that if a loss of
a communication packet occurs no node gains or loses extra
demand, and that the constraint (1) is not violated.

V. EVALUATION

In this section we present results from several represen-
tative simulations to illustrate the behavior of the algorithms
discussed above. In particular we investigate the following: (1)
The potential benefits in terms of cost reduction of the power-
aware load balancing compared to oblivious 1

N load balancing;
(2) The relationship between the aggregate load of the system
and the cost reduction; (3) Scalability to large networks of
IDC, A-IDC and MRS.

A. Potential benefits

In our first simulation, we look at potential savings that can
be expected if the cloud-based service providers employed



N number of servers
Pi number of CPUs per server i
D aggregate demand
Di demand allocated to cluster i
νi cost of unit of power

f̄i(Di) energy consumed by cluster i
fi(Di) cost of energy consumed by cluster i

µ aggregate load (D/(
∑N

i=1 Pi))
α exponent in dynamic speed scaling
γ amortization parameter
η gain parameter in IDC
c overhead factor in MRS

TABLE I
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Fig. 4. Bottom: energy prices in GBP per MWh. Top: aggregate cost of
running IDC algorithm compared to the aggregate cost of the dynamic speed
scaling with 1

N
-load balancing (top). Time span of one week, 168 hours,

from Monday 19/01/2009, 00:00:00 (GMT) to Sunday 26/01/2009 23:59:59
(GMT).

power-aware distributed speed scaling. Figure 4 (bottom)
contains the graph of energy prices in (GBP per MWh) UK
for a week in January 2009 [9]. Energy prices are formed once
every 30 minutes, based on the demand and available supply.
The setup is following. We consider N = 12 identical server
clusters, with Pi = P = 100 CPUs at each cluster, located
in even time zones (GMT, GMT+2,..., GMT+22) serving a
constant load D = 600. We assume also that the energy-price
at local time t is the same across all time zones and are driven
by the values depicted in Figure 4 (bottom). We use the cubic
power/speed dependance (α = 3), with amortization factor
γ = 0.1, with cost at each location being simply the product
of energy consumed and power price. We compare the cost
of the optimal operating point with the cost of the oblivious
load balancing where each location processes 1

N of the total
demand. The offered load is µ = D

NP = 50%. The results are
depicted in Figure 4 (top).

To illustrate how the load allocated to a cluster evolves with
time, and variable energy prices, we plot the load allocated to
cluster 1 (located in GMT time zone) in Figure 5 (top). At the
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Fig. 5. Bottom: energy prices in GBP per MWh. Top: load allocated to
cluster 1 (located in GMT time zone).

same figure (bottom), we depict the local cost of energy. As
expected, the low energy price result in the high load allocated
to the cluster, and the higher energy prices imply the lower
amount of demand allocated to the cluster.

B. Aggregate load vs. cost reduction

In this subsection we evaluate the relationship between
the aggregate load and the cost reduction compared to the
oblivious 1

N load balancing in which each cluster processes
1/N of the total demand. For the setup described in Section
V-A, we vary the aggregate load µ and plot it against the cost
reduction defined as

CR(µ) = 1− V (D∗(µ))

V (Dµ

N , . . . ,
Dµ

N )
,

where D∗(µ) is the optimal operating point (solution of (2))
and (Dµ

N , . . . ,
Dµ

N ) is the point corresponding to the power-
oblivious 1/N load allocation. The value of CR(µ), for
scenario described in previous subsection, is depicted in Figure
6 for two values of amortization parameter: γ = 0.1 and
γ = 0.5. As expected, we can see that for low loads, the
improvements are greater than for heavy loads, as in low-
load cases, there is more space for balancing and (almost
fully) avoiding the expensive clusters. However, we observe
a non-monotonic dependance between the load and the cost
reduction (in γ = 0.1 case) for which we do not have an
analytic explanation.

C. Communication overhead

In this subsection, we compare the communication overhead
of the three fully decentralized schemes that solve (2): MRS,
IDC and A-IDC. The setup is following: N clusters process
the load D with the communication graph being a 3-regular
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Fig. 6. Cost reduction vs. the aggregate load.

graph6. The cost functions7 used here are

fi(Di) = νiD
3
i ,

where νi is drawn uniformly from the interval (1, 5). The
parameter η in IDC algorithm is set to the upper bound
(12) that guarantees stability. The MRS parameter c, that
controls the variance of the algorithm8, is set to the value
that corresponds to the expected relative error ε = 0.01, and
the remaining parameters of MRS are set following the rules
from [30].

We vary the number of nodes in the network N from 10
to 104, and evaluate the communication overhead for MRS,
IDC and A-IDC, defined as:

overhead = Number of IDC-messages exchanged to reach
1%-neighborhood of the optimal state.

We plot our findings in Figure 7. We can observe that
the communication overhead of MRS is orders of magnitude
greater than in the case of IDC and A-IDC. As we discussed in
the previous subsections, the savings in IDC and A-IDC come
from the fact that they completely avoid computation of the
global state (sum of values from all nodes) which significantly
reduces the communication overhead making them feasible for
large-scale problems of type (2).

6d-regular graph is a graph in which every node has d neighbors.
7We stress that the objective here is not to apply algorithms proposed

above in the power-minimization framework, but rather to compare the
communication overhead of the decentralized control algorithms for one
choice of cost functions.

8The parameter c represents the number of random variables sent in a single
MRS-message used to reduce the variance of the sum estimator. Therefore,
for header size of h = 40, one MRS-message has amortized cost of (c +
h)/(1 + h) IDC messages, that exchange a single value between two nodes.
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Fig. 7. Communication overhead versus network size, for MRS, IDC and
A-IDC.

VI. CONCLUSIONS

Issues related to service reliability, service availability, and
fault tolerance, have encouraged many service providers in
the Internet to shift from traditional centric services to cloud
based services. This trend appears to be a sustained mechanism
for ensuring robustness of internet services with many “big
players”, such as Google, Yahoo!, Akamai, Amazon, already
offering a suit of cloud-based services.

While offering a huge computational power, those systems
are major energy consumers. One of the techniques for CPU
energy reduction is dynamic speed scaling, that adjusts the
speed at which the processor is run based on current load.
In this paper we propose a framework for utilizing dynamic
speed scaling in a distributed setting. We propose a distributed
algorithm for solving the optimization problem arising in this
context that has significantly smaller communication over-
head compared to state-of-the-art. Our evaluation supports
our analytical findings and shows promise in non-negligible
cost savings possible with schemes that exploit temporal and
geographical diversity of energy prices and nonlinearity of the
performance/power curve. However, the presented evaluation
is limited to synthetic scenarios, and for better understanding
of the benefits of large scale power-aware load-balancing, we
need some realistic traffic models of load/power dependence
in real-world implementations of dynamic speed scaling.

We conclude the paper with two recent ideas from two
not directly related areas of computer networking, that can
benefit from the distributed algorithm proposed here. The
first one is load-aware channel width adaptation in wireless
LANs. The basic idea is that with existing variability of
demand in wireless LANs, allocating wider channels to access
points with higher demand can dramatically improve WLAN
performance. In the case of full mesh interference graph, the
problem of load-aware spectrum allocation can be modeled as
the following optimization problem



min
Wi≥0,

∑N
i=1 Wi=W

N∑

i=1

Ui(Wi). (14)

where Wi is the channel width devoted to access point i, W
the total available spectrum, and Ui utility function that relates
the demand at access point i to Wi. The existing solutions
are centralized and are based on combinatorial heuristics for
maximizing some specific performance objectives [29], [20].

The second proposal with a similar underlying problem can
be found in the security literature. The distributed throttling
for protection against DDoS attacks discussed in [45]. Relies
on the concept of k-maxmin fairness that partitions the server
capacity C among all routers that are k-hops away, such that
specific performance goal is met (that can be reformulated as
a convex problem of type (2)). The solution proposed there
relies on a centralized controller. However we believe that the
scheme proposed in this paper can be applied in that context,
providing a fully decentralized solution for the problem of
distributed throttling.
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APPENDIX

Appendix A: Proof of Theorem 1.

We find it more convenient to write the dynamics of (11)
in terms of qi(t):

gi(qi(t + 1)) = gi(qi(t)) + η
∑

(i,j)∈E

(qj(t)− qi(t)), (15)

Step 1. First we prove that under condition (12) the
sequence m(t) is nondecreasing and the sequence M(t) is
nonincreasing. Let qi(t) = m(t) + λ, for some λ ≥ 0. Then
from the equation (15) we have:

gi(qi(t + 1)) = gi(qi(t)) + η
∑

(i,j)∈E

(qj(t)−m(t)− λ) ≥

gi(qi(t))−η
∑

(i,j)∈E

λ = gi(qi(t))−ηλdi = gi(m(t)+λ)−ηλdi.

(16)
Since gi is a differentiable, function from the mean value
theorem, there exists q∗i (t) ∈ (m(t),m(t)+λ) ⊂ (m(t), M(t))
such that

gi(m(t) + λ) = gi(m(t)) + g′i(q
∗
i (t))λ

Combining the last inequality with (16) we get

gi(qi(t + 1)) ≥ gi(m(t)) + g′i(q
∗
i (t))λ− diηλ. (17)

For t = 0, the condition (12) implies that g′i(m(0))λ ≥ diηλ
implying that gi(qi(1)) ≥ gi(m(0). Since gi is increasing, we
have qi(1) ≥ m(0) for all i and thus m(1) ≥ m(0). Now we
prove, using mathematical induction, that m(t+1) ≥ m(t), for

all t. For t = 0 we just shoved that m(1) ≥ m(0). Suppose
that for all k < t: m(k + 1) ≥ m(k). Then, for k = t,
m(t) ≥ m(0). Now, the condition (12) and the bound (17)
imply:

gi(qi(t + 1)) ≥ gi(m(t)) + g′i(q
∗
i (t)))λ− diηλ ≥

gi(m(t)) + diηλ− diηλ = gi(m(t)).

The last inequality, together with the fact that gi is a decreasing
function implies

m(t + 1) = min
1≤i≤N

qi(t + 1) ≥ m(t).

One can conclude using similar arguments that for all t ≥ 0

M(t + 1) = max
1≤i≤N

qi(t + 1) ≤ M(t).

Thus the range of qi’s: [m(t), M(t)] is a nested sequence
of closed bounded intervals. In the next step of the proof
we use this information to write the dynamics in the more
compact form. Step 2. In this step we rewrite the dynamics
of qi(t) in a more practical form. Consider the representation
of the dynamics of qi(t) given by (15). From the Lagrange’s
mean value theorem there exist ri(t) ∈ (qi(t), qi(t + 1)) ⊂
(m(0),M(0)) such that

gi(qi(t + 1))− gi(qi(t)) = (qi(t + 1))− qi(t))g′i(ri(t)).

Thus the recurrence equation (15) can be rewritten as

qi(t + 1) = qi(t) +
η

g′i(ri(t))

∑

(i,j)∈E

(qj(t)− qi(t)).

Therefore, the evolution of the state-vector q(t) =
(q1(t), . . . , qN (t)) can be written as:

q(t + 1) = B(t)q(t),

where the matrix B(t) is given by

B(t) =




1− d1η
g′1(r1(t))

η
g′1(r1(t))

e1,2 · · · η
g′1(r1(t))

e1,N

η
g′2(r2(t))

e2,1 1− d2η
g′2(r2(t))

· · · η
g′2(r2(t))

e2,N

...
...

. . .
...

η
g′N (rN (t))eN,1 · · · · · · 1− dN η

g′N (rN (t))




with ei,j being the elements of the adjacency matrix of G, ie.
if (i, j) ∈ E, then ei,j = 1 otherwise ei,j = 0.

Step 3. We now use the monotonicity of the sequences M(t)
and m(t) that was shown in Step 1, to prove that nonzero
elements of B(t) are positive and uniformly bounded away
from zero. Indeed, recall that ri(t) ∈ (qi(t), qi(t + 1)), and
therefore ri(t) ≥ min(m(t), m(t + 1)) ≥ m(0), and therefore
for the diagonal entries we have that

1− diη

g′i(ri(t))
≥ 1− η

min1≤i≤N (di)
infy∈[m(0),M(0)] g

′
i(y)

≥ 1− 1
2

=
1
2
.

For nonzero off-diagonal entries note that ri(t) ≤



max(M(t),M(t + 1)) ≤ M(0) and thus
η

g′i(ri(t))
≥ η

supy∈[m(0),M(0)] g
′
i(y)

=: δi > 0.

Take δ = min{1
2 , δ1, . . . , δN} > 0. Then, for all t, all nonzero

elements of B(t) are not smaller than δ.
Step 4. Finally, we use the fact that G is connected to

show that M(t) − m(t) converges to zero. This will imply
that limt→∞m(t) = limt→∞M(t) = limt→∞ qi(t) = q∗.
Let k be the diameter of graph G, i.e. the smallest integer
such that there exist a path in G between each two nodes of
length not greater than k. Then, for all t:

C(t) = B(t + k − 1)B(t + k − 2) · · ·B(t)

is a stochastic matrix9 with strictly positive entries and each
entry of C(t) is greater or equal than δk. Denote by j0 the
index for which qj0(t) = m(t). Then

qi(t + k) =
N∑

j=1

Cij(t)qj(t) =
∑

j 6=j0

Cij(t)qj(t) + Cij0(t)m(t)

≤
∑

j 6=j0

CijM(t) + Cij0(t)m(t) =

(1−Cij0(t))M(t) + Cij0(t)m(t) ≤ M(t)(1− δk) + m(t)δk.

And similarly

qi(t + k) =
N∑

j=1

Cij(t)qj(t) ≥ m(t)(1− δk) + M(t)δk.

Thus

M(t + k)−m(t + k) ≤ (1− 2δk)(M(t)−m(t)). (18)

Since M(t) − m(t) is a nonincreasing sequence and δ > 0
is independent of t, we conclude that M(t) −m(t) → 0, as
t →∞. Thus

lim
t→∞

M(t) = lim
t→∞

m(t) = lim
t→∞

qi(t) = q∗.

Now, the convergence of Di(t) follows directly from (9) and
the continuity of the mappings gi.

Comment 9: From the bound (18), we can observe that the
system converges to the equilibrium exponentially, with a rate
bounded above by (1 − 2δk)

1
k . Indeed, let us introduce the

following quantity:

θ =
1

1− 2δk
max

0≤s≤k
(M(s)−m(s)).

Then from (18):

M(t)−m(t) ≤ (1− 2δk)b
t
k c(M(s)−m(s)) ≤

(1− 2δk)
t
k

1
1− 2δk

(M(s)−m(s)) ≤ θ
(
(1− 2δk)

1
k

)t

.

9A stochastic matrix is a square matrix with nonnegative entries and where
sum of each row is 1. Since each of B(t) is stochastic, their product is
stochastic as well [10].

Appendix B: A short description of the MRS algorithm.

Here we will briefly describe the main idea of the MRS
algorithm [30]. While the basic algorithm is concerned with
the case of arbitrary number of linear constraints, here we
focus on the problem (2) with a single linear constraint.
Basically it is a dual ascent method, relying on the distributed
aggregate SUM subroutine for the update step.

The MRS method works as follows. Each node i, tracks the
dual variable λ. Let λ(k) be the value of the dual variable at
the k-th iteration. Then Di(k), the value of the primal variable
at k-th iteration is given by.

Di(k) = arg inf
Di>0

(fi(Di)− θ ln(Di) + λ(k)Di).

A calculation then shows that the gradient:

∇g(λ(k)) =
N∑

i=1

Di(k)−D.

To compute
∑N

i=1 Di(k), authors use fully distributed algo-
rithm from [31], that produces an (unbiased) estimate ŝ(k)
of the sum

∑N
i=1 Di(k), with variance that is a decreasing

function of the overhead factor c. The dual variable, is then
updated using the following rule, and the iterative process
proceeds

λ(k + 1) = λ(k) + t(ŝ(k)−D),

where the step size t is governed by the variation in curvature
of the Lagrange dual function.

Comment 10: The MRS method has the flavor very simi-
lar of the Kempe&McSherry (KM) algorithm for distributed
spectrum computation [26]. Basically both MRS and KM are
incarnations of well known iterative algorithms: dual ascent in
case of MRS and QR algorithm for eigenvalue problem in case
of KM. Then in the iterative update step both algorithms use
subroutines for aggregate sum computation: MRS uses method
from [31], while KM uses [25]. And finally, in both MRS and
KM the main technical difficulty arises from the analysis of the
conditions that ensure that error induced by the (randomized)
aggregate sum subroutine, does not harm the convergence of
the iterative algorithms.
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