
Problem Set 4

ECE567 Fall 2009
Each problem is worth 10 points. Due: Oct. 20
Do any four of the six problems.

1. Consider an N ×N VoQ switch where the arrivals into queue (i, j) are Bernoulli with mean λij .
Assume that ∑

i

λik < 1 and
∑
j

λlj < 1, ∀k, l.

Compute an upper bound on the steady-state mean of the sum of the queue lengths in the network
assuming that the max-weight scheduling algorithm discussed in class is used. Try to get as tight
a bound on the upper bound as possible. Hint: Proceed as in the Lyapunov stability proof, but
assume that the system is already in steady state.

2. In class, we showed that the max-weight algorithm which maximizes the sum of the product of
the service rates and the queue lengths, subject to scheduling constraints, achieves 100% throughput
in a high-speed switch. Instead, consider the following algorithm where the schedule {Iij} at time
slot k is chosen to maximize ∑

ij

Iijq
2
ij(k)

subject to scheduling constraints. In words, we are now choosing the link weights to be the square
of the queue lengths. Show that this algorithm achieves 100% throughput. Hint: Consider the
Lyapunov function ∑

i,j

q3
ij .

3. While the maxweight matching algorithm for bipartite is a polynomial-time algorithm, it is
still too complex to implement in a high-speed switch. An alternative is the maximal matching
algorithm which works as follows: consider only those links whose queue lengths are greater than
zero. Find a maximal matching among these links, i.e., a matching such that no more links can be
added to the schedule. Show that the maximal algorithm stabilizes the queues under the following
condition: ∑

j

λij < 1/2 ∀i and
∑

i

λij < 1/2 ∀j.

Hint:
(i) If Iij is an indicator function indicating whether link (i, j) is included in the matching, then

the maximal matching algorithm has the following property: if qij > 0, then
∑

j Iij +
∑

i Iij ≥ 1.
(ii) Define Eij = {(l, k) : l = i or k = j}, i.e., it is the set of links that are neighbors of (i, j)

including (i, j). Use the Lyapunov function

V (q) =
∑
i,j

qij

 ∑
(j,k)∈Eij

qjk

 .

(iii) When using the above Lyapunov function, it may be useful to first pretend that the queue
dynamics are given by deterministic differential equations and get a feel for the drift by differenti-
ation. Then, use Foster’s criterion to complete the proof rigorously.



4. Consider a cellular wireless network consisting of a base station and two receivers, call them A
and B. The channel from the base station to receiver A can be in one of three states: 0, 1, and 3 with
equal probability, where the index of the state is the number of packets that can be transmitted in
that channel state. Assume that the channel to receiver B is identical to and independent of the
channel state to receiver A. Further, assume that the base station can transmit to only one receiver
in each time slot. Draw the capacity region of this wireless network.

5. For the cellular network model in the previous problem, suppose that packet arrivals occur
according to two independent Bernoulli processes, with the mean arrival rate of packets intended
for receiver i equal to λi, where (λ1, λ2) lies within the capacity region. Compute an upper bound
on the sum of mean queue lengths assuming that the maxweight algorithm is used.

6. In ad hoc wireless network, recall that the throughput-optimal scheduling algorithm requires
the network to solve a maxweight independent set problem with queue lengths as weights. In
this exercise, we will show that an approximation to the maxweight independent set scheduling
algorithm is also throughput optimal. Towards this end, suppose that the scheduling algorithm is a
randomized algorithm which picks a schedule in each time slot according to some probabilistic rule.
Further, suppose that the probabilistic rule satisfies the following property: given any δ > 0 and
ε > 0, there exists a finite set Bδ,ε such that, with probability greater than or equal to (1− δ), the
randomized algorithm produces a schedule whose weight is greater than or equal to (1 − ε) times
the weight of the maxweight schedule whenever the vector of queue lengths lie in Bc. Show that
such a randomized algorithm is also throughput-optimal, i.e., it stabilizes all arrival rates within
the capacity region.


