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PREFACE

The first part of this set of notes reflects the contents of a course

on Discrete Event Systems that I have been teaching at TU Berlin

for a number of years. The sections on abstraction-based control

and on hierarchical control of hybrid systems are from a joint

paper [23] with Thomas Moor (Universität Erlangen-Nürnberg).

These course notes were produced with the help of Tom Brun-

sch, Behrang Monajemi Nejad and Stephanie Geist. Thanks to

all of them! As the notes were written within a very short time,

there are bound to be some errors. These are of course my re-

sponsibility. I would be grateful, if you could point out any error

that you spot.

Jörg Raisch

raisch@control.tu-berlin.de
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1
INTRODUCTION

1.1 discrete-event and hybrid systems

In “conventional” systems and control theory, signals “live” in

R
n (or some other, possibly infinite-dimensional, vector space).

Then, a signal is a map T → R
n, where T represents contin-

uous or discrete time. There are, however, numerous applica-

tion domains where signals only take values in a discrete set,

which is often finite and not endowed with mathematical struc-

ture. Examples are pedestrian lights (possible signal values are

“red” and “green”) or the qualitative state of a machine (“busy”,

“idle”, “down”). Sometimes, such discrete-valued signals are the

result of a quantisation process.

Example 1.1 Consider a water reservoir, where y : R
+ → R

+

is the (continuous-valued) signal representing the water level in

the reservoir. The quantised signal

yd : R
+ → {Hi, Med, Lo} ,

where

yd(t) =





Hi if y(t) > 2

Med if 1 < y(t) ≤ 2

Lo if y(t) ≤ 1

represents coarser, but often adequate, information on the tem-

poral evolution of the water level within the reservoir. This is

indicated in Fig. 1.1, which also shows that the discrete-valued

signal yd : R
+ → {Hi, Med, Lo} can be represented by a sequence

of timed discrete events, e.g.

(LoMed, t1), (MedHi, t2), (HiMed, t3), . . . ,

where ti ∈ R
+ are event times and the symbol LoMed denotes

the event that the value of the signal yd changes from Lo to Med.

Similarly, the symbols MedHi and HiMed represent the events that

yd changes from Med to Hi and from Hi to Med, respectively. Note

that a sequence of timed discrete events can be interpreted as a

map N → R
+ × Σ, where Σ is the event set. ♦
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1 Introduction

tt1 t2 t3

Lo

Med

Hi

yd

LoMed MedHi HiMed

t

1

2

y

Figure 1.1: Quantisation of a continuous signal.

Sometimes, even less information may be required. For example,

only the temporal ordering of events, but not the precise time of

the occurrence of events may be relevant. In this case, the signal

reduces to a sequence of logical events, e.g.

LoMed, MedHi, HiMed, . . . ,

which can be interpreted as a map N → Σ, where Σ is the event

set.

Clearly, going from the continuous-valued signal y to the discrete-

valued signal yd (or the corresponding sequence of timed dis-

crete events), and from the latter to a sequence of logical events,

involves a loss of information. This is often referred to as signal

aggregation or abstraction.

If a dynamical system can be completely described by discrete-

valued signals, or sequences of discrete events, it is said to be

a discrete-event system (DES). If time is included explicitly, it is

a timed DES, otherwise an untimed, or logical, DES. If a system

consists of interacting DES and continuous moduls, it said to be

a hybrid system.

1.2 course outline

This course is organised as follows. In Chapter 2, we start with

Petri nets, a special class of DES that has been popular since its

inception by C.A. Petri in the 1960s. We will treat modelling and

analysis aspects and discuss elementary feedback control prob-
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1.2 Course Outline

lems for Petri nets. It will become clear that under some – unfor-

tunately quite restrictive – conditions, certain optimal feedback

problems can be solved very elegantly in a Petri net framework.

For general Petri nets, only suboptimal solutions are available,

and the solution procedure is much more involved. Then, in

Chapter 3, we will investigate timed Petri nets and discuss that

a subclass, the so-called timed event graphs, can be elegantly de-

scribed in a max-plus algebraic framework. The max-plus alge-

bra is an idempotent semiring and provides powerful tools for

both the analysis and synthesis of timed event graphs. In Chap-

ter 4, we will discuss the basic aspects of supervisory control the-

ory (SCT). SCT was developed to a large extent by W.M. Wonham

and coworkers. In this framework, the DES problem is modelled

in a formal language scenario, and computational aspects are

treated on the realisation (i.e. finite state machine) level. The last

part of this course addresses hybrid systems. Roughly speaking,

hybrid dynamical systems consist of interacting continuous and

DES components. While the state sets of the former typically

possess vector space structure, the state sets of the latter are of-

ten unstructured, but finite. The state set of the hybrid system

is the Cartesian product of its component state sets. It is there-

fore in general neither finite (i.e., one “cannot enumerate”) nor

does it possess vector space structure (one “cannot compute”).

Abstraction-based approaches circumvent this problem by using

DES approximations of the continuous components. Chapter 5

describes how this can be done “properly”, such that properties

holding on the abstraction level can be guaranteed to also hold

for the underlying hybrid system.
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2
PETR I NETS

Petri nets provide an intuitive way of modelling discrete-event

systems where “counting”, i.e., the natural numbers, play a cen-

tral role. This is illustrated in the following introductory exam-

ple.

Example 2.1 Two adjacent rooms in a building are connected by

a door. Room B is initially empty, while there are three desks

and four chairs in room A. Two people, initially also in room A,

are required to carry all desks and chairs from room A to room B.

While a desk can only be moved by two people, one person is

sufficient to carry a chair. To describe this process, we define

three events: “a desk is moved from room A to room B”, “a

chair is moved from room A to room B”, and “a person walks

back from room B to room A”. Furthermore, we need to keep

track of the number of desks, chairs and people in each room.

To do this, we introduce six counters. Counters and events are

connected as shown as in Fig. 2.1. The figure is to be interpreted

1
1

2

1

1 1 1

1 1

Room A

Event

Room B

number of desks number of chairs number of persons

a desk is
moved moved

2

a person moves
from B to A

a chair is

Figure 2.1: Petri net example.

as foll0ws: an event can only occur if all its “upstream” counters

contain at least the required number of “tokens”. For example,

the event “a desk is moved from room A to room B” can only oc-

cur if there is at least one desk left in room A and if there are (at
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2 Petri Nets

least) two people in room A. If the event occurs, the respective

“upstream” counters are decreased, and the “downstream” coun-

ters increased. In the example, the event “a desk is moved from

room A to room B” obviously decreases the number of desks in

room A by one, the number of people in room A by two, and

increases the respective numbers for room B.

It will be pointed out in the sequel that the result is indeed a

(simple) Petri net. ♦

2.1 petri net graphs

Recall that a bipartite graph is a graph where the set of nodes is

partitioned into two sets. In the Petri net case, the elements of

these sets are called “places” and “transitions”.

Definition 2.1 (Petri net graph) A Petri net graph is a directed bi-

partite graph

N = (P, T, A,w) ,

where P = {p1, . . . , pn} is the (finite) set of places, T = {t1, . . . , tm}

is the (finite) set of transitions, A ⊆ (P× T) ∪ (T × P) is the set of

directed arcs from places to transitions and from transitions to places,

and w : A → N is a weight function.

The following notation is standard for Petri net graphs:

I(tj) := {pi ∈ P | (pi, tj) ∈ A} (2.1)

is the set of all input places for transition tj, i.e., the set of places

with arcs to tj.

O(tj) := {pi ∈ P | (tj, pi) ∈ A} (2.2)

denotes the set of all output places for transition tj, i.e., the set

of places with arcs from tj. Similarly,

I(pi) := {tj ∈ T | (tj, pi) ∈ A} (2.3)

is the set of all input transitions for place pi, i.e., the set of tran-

sitions with arcs to pi, and

O(pi) := {tj ∈ T | (pi, tj) ∈ A} (2.4)

denotes the set of all output transitions for place pi, i.e., the set

of transitions with arcs from pi. Obviously, pi ∈ I(tj) if and only

if tj ∈ O(pi), and tj ∈ I(pi) if and only if pi ∈ O(tj).

In graphical representations, places are shown as circles, transi-

tions as bars, and arcs as arrows. The number attached to an

arrow is the weight of the corresponding arc. Usually, weights

are only shown explicitly if they are different from one.

12



2.2 Petri Net Dynamics

Example 2.2 Figure 2.2 depicts a Petri net graph with 4 places

and 5 transitions. All arcs with the exception of (p2, t3) have

weight 1. ♦

p1 p3

p4

t1 t4

t3

t2

p2

2

t5

Figure 2.2: Petri net graph.

Remark 2.1 Often, the weight function is defined as a map

w : (P× T) ∪ (T× P) → N0 = {0, 1, 2, . . .}.

Then, the set of arcs is determined by the weight function as

A = {(pi, tj) | w(pi, tj) ≥ 1} ∪ {(tj, pi) | w(tj, pi) ≥ 1}.

2.2 petri net dynamics

Definition 2.2 (Petri net) A Petri net is a pair (N, x0) where N =

(P, T, A,w) is a Petri net graph and x0 ∈ N
n
0 , n = |P|, is a vector of

initial markings.

In graphical illustrations, the vector of initial markings is shown

by drawing x0i dots (“tokens”) within the circles representing the

places pi, i = 1, . . . , n.

A Petri net (N, x0) can be interpreted as a dynamical system

with state signal x : N0 → N
n
0 and initial state x(0) = x0. The

dynamics of the system is defined by two rules:

1. in state x(k) a transition tj can occur1 if and only if all of its

input places contain at least as many tokens as the weight

1 In the Petri net terminology, one often says “a transition can fire”.
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2 Petri Nets

of the arc from the respective place to the transition tj, i.e.,

if

xi(k) ≥ w(pi, tj) ∀pi ∈ I(tj). (2.5)

2. If a transition tj occurs, the number of tokens in all its in-

put places is decreased by the weight of the arc connecting

the respective place to the transition tj, and the number of

tokens in all its output places is increased by the weight of

the arc connecting tj to the respective place, i.e.,

xi(k + 1) = xi(k) − w(pi, tj) + w(tj, pi), i = 1, . . . , n,

(2.6)

where xi(k) and xi(k + 1) represent the numbers of tokens

in place pi before and after the firing of transition tj.

Note that a place can simultaneously be an element of I(tj) and

O(tj). Hence the number of tokens in a certain place can appear

in the firing condition for a transition whilst being unaffected

by the actual firing. It should also be noted that the fact that a

transition may fire (i.e., is enabled) does not imply it will actually

do so. In fact, it is well possible that in a certain state several

transitions are enabled simultaneously, and that the firing of one

of them will disable the other ones.

The two rules stated above define the (partial) transition function

f : N
n
0 × T → N

n
0 for the Petri net (N, x0) and hence completely

describe the dynamics of the Petri net. We can therefore compute

all possible evolutions of the state x starting in x(0) = x0. This

is illustrated in the following example.

Example 2.3 Consider the Petri net graph in Fig. 2.3 with x0 =

(2, 0, 0, 1)′.

t1

t3

t2

p1

p2

p3

p4

Figure 2.3: Petri net (N, x0).
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2.2 Petri Net Dynamics

Clearly, in state x0, transition t1 may occur, but transitions t2 or

t3 are disabled. If t1 fires, the state will change to x1 = (1, 1, 1, 1)′.

In other words: f (x0, t1) = x1 while f (x0, t2) and f (x0, t3) are un-

defined. If the system is in state x1 (Fig. 2.4), all three transitions

may occur and

f (x1, t1) = (0, 2, 2, 1)′ =: x2

f (x1, t2) = (1, 1, 0, 2)′ =: x3

f (x1, t3) = (0, 1, 0, 0)′ =: x4

It can be easiliy checked that f (x4, tj) is undefined for all three

t1

t3

t2

p1

p2

p3

p4

Figure 2.4: Petri net in state (1, 1, 1, 1)′.

transitions, i.e., the state x4 represents a deadlock, and that

f (x2, t2) = f (x3, t1) = (0, 2, 1, 2)′ =: x5,

while f (x2, t1), f (x
2, t3), f (x3, t2), and f (x3, t3) are all undefined.

Finally, in x5, only transition t2 can occur, and this will lead into

another deadlock x6 := f (x5, t2). The evolution of the state can

be conveniently represented as a reachability graph (Fig. 2.5).

x(2) = x3

x(2) = x4

x(2) = x2

x(1) = x1

x(3) = x5t2

t1t2

t1

t3

x(0) = x0 t1

x(4) = x6t2

Figure 2.5: Reachability graph for Example 2.3.

♦
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2 Petri Nets

To check whether a transition can fire in a given state and, if the

answer is affirmative, to determine the next state, it is convenient

to introduce the matrices A−, A+ ∈ N
n×m
0 by

a−ij = [A−]ij =

{
w(pi, tj) if (pi, tj) ∈ A

0 otherwise
(2.7)

a+
ij = [A+]ij =

{
w(tj, pi) if (tj, pi) ∈ A

0 otherwise.
(2.8)

The matrix

A := A+ − A− ∈ Z
n×m (2.9)

is called the incidence matrix of the Petri net graph N. Clearly,

a−ij represents the number of tokens that place pi loses when

transition tj fires, and a+
ij is the number of tokens that place pi

gains when transition tj fires. Consequently, aij is the net gain (or

loss) for place pi when transition tj occurs. We can now rephrase

(2.5) and (2.6) as follows:

1. The transition tj can fire in state x(k) if and only if

x(k) ≥ A−uj , (2.10)

where the “≥”-sign is to be interpreted elementwise and

where uj is the j-th unit vector in Z
m.

2. If transition tj fires, the state changes according to

x(k + 1) = x(k) + Auj . (2.11)

Remark 2.2 Up to now, we have identified the firing of transi-

tions and the occurrence of events. Sometimes, it may be useful

to distinguish transitions and events, for example, when differ-

ent transitions are associated with the same event. To do this,

we simply introduce a (finite) event set E and define a surjective

map λ : T → E that associates an event in E to every transition

tj ∈ T.

We close this section with two more examples to illustrate how

Petri nets model certain discrete event systems.

Example 2.4 This example is taken from [8]. We consider a sim-

ple queueing system with three events (transitions):

a . . . “customer arrives”,

s . . . “service starts”,

c . . . “service complete and customer departs”.

16



2.2 Petri Net Dynamics

Clearly, the event a corresponds to an autonomous transition,

i.e., a transition without input places. If we assume that only

one customer can be served at any instant of time, the behaviour

of the queueing system can be modelled by the Petri net shown

in Fig. 2.6. For this Petri net, the matrices A−, A+ and A are

p1

p2

p3

t3 = c

t2 = s

t1 = a

“server idle”

“server busy”

Figure 2.6: Petri net model for queueing system.

given by:

A− =




0 1 0

0 0 1

0 1 0




A+ =




1 0 0

0 1 0

0 0 1




A =




1 −1 0

0 1 −1

0 −1 1




♦

Example 2.5 We now model a candy machine. It sells three

products: “Mars” (for 80 Cents), “Bounty” (for 70 Cents) and

“Milky Way” (for 40 Cents). The machine accepts only the fol-

lowing coins: 5 Cents, 10 Cents, 20 Cents and 50 Cents. Finally,

change is only given in 10 Cents coins. The machine is sup-

posed to operate in the following way: the customer inserts coins

and requests a product; if (s)he has paid a sufficient amount of

money and the product is available, it is given to the customer.

If (s)he has paid more than the required amount and requests

change, and if 10 Cents coins are available, change will be given.

This can be modelled by the Petri net shown in Fig. 2.7.

17



2 Petri Nets

5C 10C 20C 50C

1

1 2
5

1

1

1

1

1

1

1

1
1

1

1

1
8

7

1

4

1
2

Bounty stock

Milky-Way stock

10C coins

Mars stock request Mars

dispense Mars

request Bounty

dispense Bounty

request Milky-Way

dispense Milky-Way

request change

give change (10C)

Figure 2.7: Petri net model for candy machine.

♦

2.3 special classes of petri nets

There are two important special classes of Petri nets.

Definition 2.3 (Event graph) A Petri net (N, x0) is called an event

graph (or synchronisation graph), if each place has exactly one input

transition and one output transition, i.e.

|I(pi)| = |O(pi)| = 1 ∀pi ∈ P,

and if all arcs have weight 1, i.e.

w(pi, tj) = 1 ∀(pi, tj) ∈ A

w(tj, pi) = 1 ∀(tj, pi) ∈ A .

Definition 2.4 (State machine) A Petri net (N, x0) is called a state

machine, if each transition has exactly one input place and one output

place, i.e.

|I(tj)| = |O(tj)| = 1 ∀tj ∈ T,

and if all arcs have weight 1, i.e.

w(pi, tj) = 1 ∀(pi, tj) ∈ A

w(tj, pi) = 1 ∀(tj, pi) ∈ A .

18



2.4 Analysis of Petri Nets

Figs. 2.8 and 2.9 provide examples for an event graph and a state

machine, respectively. It is obvious that an event graph cannot

model conflicts or decisions2, but it does model synchronisation

effects. A state machine, on the other hand, can model conflicts

but does not describe synchronisation effects.

Figure 2.8: Event graph example.

Figure 2.9: State machine example.

2.4 analysis of petri nets

In this section, we define a number of important properties for

Petri nets. Checking if these properties hold is in general a non-

trivial task, as the state set of a Petri net may be infinite. Clearly,

in such a case, enumeration-type methods will not work. For

this reason, the important concept of a coverability tree has be-

come popular in the Petri net community. It is a finite entity

and can be used to state conditions (not always necessary and

sufficient) for most of the properties discussed next.

2 For this reason, event graphs are sometimes also called decision free Petri nets.
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2 Petri Nets

2.4.1 Petri net properties

It will be convenient to work with the Kleene closure T∗ of the

transition set T. This is the set of all finite strings of elements

from T, including the empty string ǫ. We can then extend the

(partial) transition function f : N
n
0 × T → N

n
0 to f : N

n
0 × T∗ →

N
n
0 in a recursive fashion:

f (x0, ǫ) = x0

f (x0, stj) = f ( f (x0, s), tj) for s ∈ T∗ and tj ∈ T,

where stj is the concatenation of s and tj, i.e., the string s fol-

lowed by the transition tj.

Definition 2.5 (Reachability) A state xl ∈ N
n
0 of the Petri net

(N, x0) is said to be reachable, if there is a string s ∈ T∗ such that

xl = f (x0, s). The set of reachable states of the Petri net (N, x0) is

denoted by R(N, x0).

Definition 2.6 (Boundedness) A place pi ∈ P is bounded, if there

exists a k ∈ N0 such that xli ≤ k for all xl ∈ R(N, x0). The Petri net

(N, x0) is bounded if all its places are bounded.

It is obvious that a Petri net is bounded if and only if its reach-

able set is finite.

Example 2.6 Consider the Petri net in Fig. 2.10. It is clearly un-

p1

t1 t3

4

p2

p3

t2

Figure 2.10: An example for an unbounded Petri net.

bounded as transition t1 can fire arbitrarily often, and each firing

of t1 consumes less tokens than it generates. ♦

20



2.4 Analysis of Petri Nets

The next property we discuss is related to the question whether

we can reach a state xl where the transition tj ∈ T can fire. As

discussed earlier, tj can fire in state xl , if xli ≥ w(pi, tj) ∀pi ∈

I(tj) or, equivalently, if

xl ≥ A−uj := ξ j (2.12)

where the “≥”-sign is to be interpreted elementwise. If (2.12)

holds, we say that xl covers ξ j. This is captured in the following

definition.

Definition 2.7 (Coverability) The vector ξ ∈ N
n
0 is coverable if

there exists an xl ∈ R(N, x0) such that xli ≥ ξi, i = 1, . . . n.

Example 2.7 Consider the Petri net shown in the left part of

Fig. 2.11. Clearly,

A− =

[
1 1 1

0 1 0

]
.

Hence, to enable transition t2, it is necessary for the state ξ2 =

A−u2 = (1, 1)′ to be coverable. In other words, a state in the

t2

p1 p2 x1

x2

t3 t1

1

x0

1

Figure 2.11: Petri net for Example 2.7.

shaded area in the right part of Fig. 2.11 needs to reachable. This

is not possible, as the set of reachable states consists of only two

elements, x0 = (1, 0)′ and x1 = (0, 1)′. ♦

Definition 2.8 (Conservation) The Petri net (N, x0) is said to be

conservative with respect to γ ∈ Z
n if

γ′xi =
n

∑
j=1

γjx
i
j = const. ∀xi ∈ R(N, x0) . (2.13)

The interpretation of this property is straightforward. As the

system state x(k) will evolve within the reachable set, it will also

be restricted to the hyperplane (2.13).
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2 Petri Nets

x1

x3

x2

Figure 2.12: Conservation property.

Example 2.8 Consider the queueing system from Example 2.4.

The Petri net shown in Fig. 2.6 is conservative with respect to

γ = (0, 1, 1)′, and its state x will evolve on the hyperplane shown

in Fig. 2.12. ♦

Definition 2.9 (Liveness) A transition tj ∈ T of the Petri net (N, x0)

is said to be

• dead, if it can never fire, i.e., if the vector ξ j = A−uj is not

coverable by (N, x0),

• L1-live, if it can fire at least once, i.e., if ξ j = A−uj is coverable

by (N, x0),

• L3-live, if it can fire arbitrarily often, i.e., if there exists a string

s ∈ T∗ that contains tj arbitrarily often and for which f (x0, s)

is defined,

• live, if it can fire from any reachable state, i.e., if ξ j = A−uj can

be covered by (N, xi) ∀xi ∈ R(N, x0).

Example 2.9 Consider the Petri net from Example 2.7. Clearly,

t1 is L1-live (but not L3-live), transition t2 is dead, and t3 is L3-

live, but not live. The latter is obvious, as t3 may fire arbitrarily

often, but will be permanently disabled by the firing of t1. ♦

Definition 2.10 (Persistence) A Petri net (N, x0) is persistent, if,

for any pair of simultaneously enabled transitions tj1 , tj2 ∈ T, the firing

of tj1 will not disable tj2 .

Example 2.10 The Petri net from Example 2.7 is not persistent:

in state x0, both transitions t1 and t3 are enabled simultaneously,

but the firing of t1 will disable t3. ♦
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2.4 Analysis of Petri Nets

2.4.2 The coverability tree

We start with the reachability graph of the Petri net (N, x0). In

Fig. 2.5, we have already seen a specific example for this. The

nodes of the reachability graph are the reachable states of the

Petri net, the edges are the transitions that are enabled in these

states.

A different way of representing the reachable states of a Petri net

(N, x0) is the reachability tree. This is constructed as follows: one

starts with the root node x0. We then draw arcs for all transitions

tj ∈ T that can fire in the root node and draw the states xi =

f (x0, tj) as successor nodes. In each of the successor states we

repeat the process. If we encounter a state that is already a node

in the reachability tree, we stop.

Clearly, the reachability graph and the reachability tree of a Petri

net will only be finite, if the set of reachable states is finite.

Example 2.11 Consider the Petri net shown in Fig. 2.13 (taken

from [8]). Apart from the initial state x0 = (1, 1, 0)′ only the

t1

t2

p1 p2

p3

Figure 2.13: Petri net for Example 2.11.

state x1 = (0, 0, 1)′ is reachable. Hence both the reachability

graph (shown in the left part of Fig. 2.14) and the reachability

tree (shown in the right part of Fig. 2.14) are trivial. ♦

Unlike the reachability tree, the coverability tree of a Petri net

(N, x0) is finite even if its reachable state set is infinite. The un-

derlying idea is straightforward: if a place is unbounded, it is

labelled with the symbol ω. This can be thought of as “infin-

ity”, therefore the symbol ω is defined to be invariant under the

addition (or subtraction) of integers, i.e.,

ω + k = ω ∀k ∈ Z
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2 Petri Nets

x1x0 t1 t2 x0x1x0

t2

t1

Figure 2.14: Reachability graph (left) and reachability tree (right)

for Example 2.11.

and

ω > k ∀k ∈ Z .

The construction rules for the coverability tree are given below:

1. Start with the root node x0. Label it as “new”.

2. For each new node xk, evaluate f (xk, tj) for all tj ∈ T.

a) If f (xk, tj) is undefined for all tj ∈ T, the node xk is a

terminal node (deadlock).

b) If f (xk, tj) is defined for some tj, create a new node xl .

i. If xki = ω, set xli = ω.

ii. Examine the path from the root node to xk. If

there exists a node ξ in this path which is covered

by, but not equal to, f (xk, tj), set x
l
i = ω for all i

such that fi(x
k, tj) > ξi.

iii. Otherwise, set xli = fi(x
k, tj).

c) Label xk as “old”.

3. If all new nodes are terminal nodes or duplicates of exist-

ing nodes, stop.

Example 2.12 This example is taken from [8]. We investigate

the Petri net shown in Fig. 2.15. It has an infinite set of reachable

states, hence its reachability tree is also infinite. We now deter-

mine the coverability tree. According to the construction rules,

the root node is x0 = (1, 0, 0, 0)′. The only transition enabled

in this state is t1. Hence, we have to create one new node x1.

We now examine the rules 2.a)i.–iii. to determine the elements

of x1: as its predecessor node x0 does not contain any ω-symbol,

rule i. does not apply. For rule ii., we investigate the path from

the root node to the predecessor node x0. This is trivial , as the

path only consists of the root node itself. As the root node is

not covered by f (x0, t1) = (0, 1, 1, 0)′, rule ii. does also not apply,

and therefore, according to rule iii., x1 = f (x0, t1) = (0, 1, 1, 0)′

(see Fig. 2.16).
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p4
t1

t2

p3

p1

t3

p2

Figure 2.15: Petri net for Example 2.12.
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Figure 2.16: Coverability tree for Example 2.12.

In node x1, transitions t2 and t3 are enabled. Hence, we have

to generate two new nodes, x2, corresponding to f (x1, t2), and

x3, corresponding to f (x1, t3). For x2, rule ii. applies, as the path

from the root node x0 to the predecessor node x1 contains a node

ξ that is covered by, but is not equal to, f (x1, t2) = (1, 0, 1, 0)′.

This is the root node itself, i.e., ξ = (1, 0, 0, 0)′. We therefore

set x23 = ω. For the other elements in x2 we have according to

rule iii. x2i = fi(x
1, t2), i = 1, 2, 4. Hence, x2 = (1, 0,ω, 0)′. For

x3 neither rule i., or ii. applies. Therefore, according to rule iii.,

x3 = f (x1, t3) = (0, 0, 1, 1).

In node x2, only transition t1 may fire, and we have to create one

new node, x4. Now, rule i. applies, and we set x43 = ω. Rule ii.

also applies, but this provides the same information, i.e., x43 = ω.

The other elements of x4 are determined according to rule iii.,

therefore x4 = (0, 1,ω, 0)′. In node x3, no transition is enabled –

this node represents a deadlock and is therefore a terminal node.

By the same reasoning, we determine two successor nodes for x4,

namely x5 = (1, 0,ω, 0)′ and x6 = (0, 0,ω, 1)′. The former is a

duplicate of x2, and x6 is a deadlock. Therefore, the construction

is finished. ♦
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2 Petri Nets

Let s = ti1 . . . tiN be a string of transitions from T. We say that

s is compatible with the coverability tree, if there exist nodes

xi1 , . . . xiN+1 such that xi1 is the root node and xij
tij
→ xij+1 are tran-

sitions in the tree, j = 1, . . . ,N. Note that duplicate nodes are

considered to be identical, hence the string s can contain more

transitions than there are nodes in the coverability tree.

Example 2.13 In Example 2.12, the string s = t1t2t1t2t1t2t1 is

compatible with the coverability tree. ♦

The coverability tree has a number of properties which make it

a convenient tool for analysis:

1. The coverability tree of a Petri net (N, x0) with a finite num-

ber of places and transitions is finite.

2. If f (x0, s), s ∈ T∗, is defined for the Petri net (N, x0), the

string s is also compatible with the coverability tree.

3. The Petri net state xi = f (x0, s), s ∈ T∗, is covered by the

node in the coverability tree that is reached from the root

node via the string s of transitions.

The converse of item 2. above does not hold in general. This is

illustrated by the following example.

Example 2.14 Consider the Petri net in the left part of Fig. 2.17.

Its coverability tree is shown in the right part of the same figure.

t2t1

1

2
1 ω

p1

ω

ω

t1

t2

t1
2

Figure 2.17: Counter example.

Clearly, a string of transitions beginning with t1t2t1 is not possi-

ble for the Petri net, while it is compatible with the coverability

tree. ♦

The following statements follow from the construction and the

properties of the coverability tree discussed above:

reachability : A necessary condition for ξ to be reachable in

(N, x0) is that there exists a node xk in the coverability tree

such that ξi ≤ xki , i = 1, . . . , n.

boundedness: A place pi ∈ P of the Petri net (N, x0) is bound-

ed if and only if xki 6= ω for all nodes xk of the coverability
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2.5 Control of Petri Nets

tree. The Petri net (N, x0) is bounded if and only if the

symbol ω does not appear in any node of its coverability

tree.

coverability : The vector ξ is coverable by the Petri net (N, x0)

if and only if there exists a node xk in the coverability tree

such that ξi ≤ xki , i = 1, . . . , n.

conservation: A necessary condition for (N, x0) to be conser-

vative with respect to γ ∈ Z
n is that γi = 0 if there exists a

node xk in the coverability tree with xki = ω. If, in addition,

γ′xk = const. for all nodes xk in the coverability tree, the

Petri net is conservative with respect to γ.

dead transitions: A transition tj of the Petri net (N, x0) is

dead if and only if no edge in the coverability tree is la-

belled by tj.

However, on the basis of the coverability tree we cannot decide

about liveness of transitions or the persistence of the Petri net

(N, x0). This is again illustrated by a simple example:

Example 2.15 Consider the Petri nets in Figure 2.18. They have

the same coverability tree (shown in Fig. 2.17). For the Petri net

t2t1

1

2
p1

2

2

t2t1

1

2
p1

2

Figure 2.18: Counter example.

shown in the left part of Fig. 2.18, transition t1 is not live, and

the net is not persistent. For the Petri net shown in the right part

of the figure, t1 is live, and the net is persistent. ♦

2.5 control of petri nets

We start the investigation of control topics for Petri nets with a

simple example.

Example 2.16 Suppose that the plant to be controlled is mod-

elled by the Petri net (N, x0) shown in Fig. 2.19. Suppose fur-

thermore that we want to make sure that the following inequal-

ity holds for the plant state x at all times k:

x2(k) + 3x4(k) ≤ 3 , (2.14)
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t1

t2

t3

p3p1

p2

t4 p4

Figure 2.19: Plant for control problem in Example 2.16.

i.e., we want to restrict the plant state to a subset of N
4
0. Without

control the specification (2.14) cannot be guaranteed to hold as

there are reachable states violating this inequality. However, it is

easy to see how we can modify (N, x0) appropriately. Intuitively,

the problem is the following: t1 can fire arbitrarily often, with

the corresponding number of tokens being deposited in place

p2. If subsequently t2 and t4 fire, we will have a token in place

p4, while there are still a large number of tokens in place p2.

Hence the specification will be violated. To avoid this, we add

restrictions for the firing of transitions t1 and t4. This is done by

introducing an additional place, pc, with initially three tokens.

It is conncected to t1 by an arc of weight 1, and to t4 by an

arc of weight 3 (see Fig. 2.20). This will certainly enforce the

t1

t2

t3

p3p1

p2

t4 p4

pc

3

Figure 2.20: Plant with controller.

specification (2.14), as it either allows t1 to fire (three times at

the most) or t4 (once). However, this solution is unnecessarily

conservative: we can add another arc (with weight 1) from t3 to

the new place pc to increase the number of tokens in pc without

affecting (2.14).
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2.5 Control of Petri Nets

The number of tokens in the new place pc can be seen as the

controller state, which affects (and is affected by) the firing of

the transitions in the plant Petri net (N, x0). ♦

In the following, we will formalise the procedure indicated in

the example above.

2.5.1 State based control – the ideal case

Assume that the plant model is given as a Petri net (N, x0),

where N = (P, T, A,w) is the corresponding Petri net graph.

Assume furthermore that the aim of control is to restrict the evo-

lution of the plant state x to a specified subset of N
n
0 . This subset

is given by a number of linear inequalities:

γ′
1x(k) ≤ b1

...

γ′
qx(k) ≤ bq

where γi ∈ Z
n, bi ∈ Z, i = 1, . . . , q. This can be written more

compactly as 


γ′
1
...

γ′
q




︸ ︷︷ ︸
:=Γ

x(k) ≤




b1
...

bq




︸ ︷︷ ︸
:=b

, (2.15)

where Γ ∈ Z
q×n, b ∈ Z

n, and the “≤”-sign is to be interpreted

elementwise.

The mechanism of control is to prevent the firing of certain tran-

sitions. For the time being, we assume that the controller to be

synthesised can observe and – if necessary – prevent the firing of

all transitions in the plant. This is clearly an idealised case. We

will discuss later how to modify the control concept to handle

nonobservable and/or nonpreventable transitions.

In this framework, control is implemented by creating new places

pc1, . . . pcq (“controller places”). The corresponding vector of

markings, xc(k) ∈ N
q
0, can be interpreted as the controller state.

We still have to specify the initial marking of the controller places

and how controller places are connected to plant transitions. To

do this, consider the extended Petri net with state (x′, x′c)
′. If

a transition tj fires, the state of the extended Petri net changes

according to

[
x(k + 1)

xc(k + 1)

]
=

[
x(k)

xc(k)

]
+

[
A

Ac

]
uj, (2.16)

29



2 Petri Nets

where uj is the j-th unit-vector in Z
m and Ac is the yet unknown

part of the incidence matrix. In the following, we adopt the

convention that for any pair pci and tj, i = 1, . . . q, j = 1, . . .m,

we either have an arc from pci to tj or from tj to pci (or no arc at

all). Then, the matrix Ac completely specifies the interconnection

structure between controller places and plant transitions, as the

non-zero entries of A+
c are the positive entries of Ac and the

non-zero entries of −A−
c are the negative entries of Ac.

To determine the yet unknown entities, x0c = xc(0) and Ac, we

argue as follows: the specification (2.15) holds if

Γx(k) + xc(k) = b, k = 0, 1, 2, . . . (2.17)

or, equivalently,

[
Γ I

] [
x(k)

xc(k)

]
= b, k = 0, 1, 2, . . . (2.18)

as xc(k) is a nonnegative vector of integers. For k = 0, Eqn. (2.17)

provides the vector of initial markings for the controller states:

x0c = xc(0) = b− Γx(0)

= b− Γx0 . (2.19)

Inserting (2.16) into (2.18) and taking into account that (2.18) also

has to hold for the argument k + 1 results in

[
Γ I

] [
A

Ac

]
uj = 0, j = 1, . . . q,

and therefore

Ac = −ΓA . (2.20)

(2.19) and (2.20) solve our control problem: (2.19) provides the

initial value for the controller state, and (2.20) provides informa-

tion on how controller places and plant transitions are connected.

The following important result can be easily shown.

Theorem 2.1 (2.19) and (2.20) is the least restrictive, or maximally

permissive, control for the Petri net (N, x0) and the specification (2.15).

Proof Recall that for the closed-loop system, by construction,

(2.17) holds. Now assume that the closed-loop system is in state

(x′(k), x′c(k))
′, and that transition tj is disabled, i.e.

[
x(k)

xc(k)

]
≥

[
A−

A−
c

]
uj

does not hold. This implies that either

30



2.5 Control of Petri Nets

• xi(k) < (A−uj)i for some i ∈ {1, . . . , n}, i.e., the transition

is disabled in the uncontrolled Petri net (N, x0), or

• for some i ∈ {1, . . . , q}

xci(k) < (A−
c uj)i = (A−

c )ij (2.21)

and therefore3

xci(k) < (−Ac)ij

= (−Acuj)i

= γ′
iAuj.

Because of (2.17), xci(k) = bi − γ′
ix(k) and therefore

bi < γ′
i(x(k) + Auj).

This means that if transition tj could fire in state x(k) of the

open-loop Petri net (N, x0), the resulting state x(k + 1) =

x(k) + Auj would violate the specification (2.15).

Hence, we have shown that a transition tj will be disabled in

state (x′(k), x′c(k))
′ of the closed-loop system if and only if it is

disabled in state x(k) of the uncontrolled Petri net (N, x0) or if

its firing would violate the specifications.

Example 2.17 Let’s reconsider Example 2.16, but with a slightly

more general specification. We now require that

x2(k) + Mx4(k) ≤ M, k = 0, 1, . . . ,

where M represents a positive integer. As there is only one scalar

constraint, we have q = 1, Γ is a row vector, and b is a scalar.

We now apply our solution procedure for Γ = [0 1 0 M]

and b = M. We get one additional (controller) place pc with

initial marking x0c = b− Γx0 = M. The connection structure is

determined by Ac = −ΓA = [−1 0 1 −M], i.e., we have an arc

from pc to t1 with weight 1, an arc from pc to t4 with weight M,

and an arc from t3 to pc with weight 1. For M = 3 this solution

reduces to the extended Petri net shown in Fig. 2.20. ♦

2.5.2 State based control – the nonideal case

Up to now we have examined the ideal case where the controller

could directly observe and prevent, or control, all plant transi-

tions. It is much more realistic, however, to drop this assump-

tion. Hence,

3 (2.21) implies that (A−
c )ij is positive. Therefore, by assumption, (A+

c )ij = 0

and (A−
c )ij = −(Ac)ij.
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• a transition tj may be uncontrollable, i.e., the controller will

not be able to directly prevent the transition from firing,

i.e., there will be no arc from any controller place to tj ∈ T;

• a transition tj ∈ T may be unobservable, i.e., the controller

will not be able to directly notice the firing of the transition.

This means that the firing of tj may not affect the number

of tokens in any controller place. As we still assume that

for any pair pci and tj, i = 1, . . . q, j = 1, . . .m, we either

have an arc from pci to tj or from tj to pci (or no arc at all),

this implies that there are no arcs from an unobservable

transition tj to any controller place or from any controller

place to tj.

Then, obviously, a transition being unobservable implies that it

is also uncontrollable, and controllability of a transition implies

its observability. We therefore have to distinguish three differ-

ent kinds of transitions: (i) controllable transitions, (ii) uncon-

trollable but observable transitions, and (iii) uncontrollable and

unobservable transitions. We partition the set T accordingly:

T = Toc ∪ Touc ∪ Tuouc︸ ︷︷ ︸
Tuc

, (2.22)

where Toc and Tuc are the sets of controllable and uncontrollable

transitions, respectively. Touc represents the set of uncontrollable

but observable transitions, while Tuouc contains all transitions

that are both uncontrollable and unobservable.

Without loss of generality, we assume that the transitions are or-

dered as indicated by the partition (2.22), i.e. t1, . . . , tmc are con-

trollable (and observable), tmc+1, . . . , tmc+mo are uncontrollable

but observable, and tmc+mo+1, . . . , tm are uncontrollable and un-

observable transitions. This implies that the incidence matrix A

of the plant Petri net (N, x0) has the form

A = [Aoc Aouc Auouc︸ ︷︷ ︸
Auc

],

where the n × mc matrix Aoc corresponds to controllable (and

observable) transitions etc.

Definition 2.11 (Ideal Enforceability) The specification (2.18) is said

to be ideally enforceable, if the (ideal) controller (2.19), (2.20) can be

realised, i.e., if there are no arcs from controller places to transitions in

Tuc and no arcs from transitions in Tuouc to controller places.
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Ideal enforceability is easily checked: we just need to compute

the controller incidence matrix

Ac = −ΓA

= [−ΓAoc −ΓAouc − ΓAuouc︸ ︷︷ ︸
−ΓAuc

].

Ideal enforceability of (2.18) is then equivalent to the following

three requirements:

− ΓAouc ≥ 0 (2.23)

−ΓAuouc = 0 (2.24)

Γx0 ≤ b (2.25)

where the inequality-signs are to be interpreted elementwise.

(2.23) says that the firing of any uncontrollable but observable

transition will not depend on the number of tokens in a

controller place, but may increase this number.

(2.24) means that the firing of any uncontrollable and unobserv-

able transition will not affect the number of tokens in a

controller place.

(2.25) says that there is a vector of initial controller markings that

satisfies (2.18).

If a specification is ideally enforceable, the presence of uncontrol-

lable and/or unobservable transitions does not pose any prob-

lem, as the controller (2.19), (2.20) respects the observability and

controllability constraints.

If (2.18) is not ideally enforceable, the following procedure [16]

can be used:

1. Find a specification

Γx(k) ≤ b, k = 0, 1, . . . (2.26)

which is ideally enforceable and at least as strict as (2.18).

This means that Γξ ≤ b implies Γξ ≤ b for all ξ ∈ R(N, x0).

2. Compute the controller (2.19), (2.20) for the new specifica-

tion (2.26), i.e.

Ac = −ΓA (2.27)

x0c = b− Γx0. (2.28)
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Clearly, if we succeed in finding a suitable specification (2.26),

the problem is solved. However, the solution will in general not

be least restrictive in terms of the original specification.

For the actual construction of a suitable new specification, [16]

suggests the following:

Define:

Γ := R1 + R2Γ

b := R2(b + v) − v

where

v := (1, . . . , 1)′

R1 ∈ Z
q×n such that R1ξ ≥ 0 ∀ξ ∈ R(N, x0)

R2 = diag (r2i) with r2i ∈ N, i = 1, . . . , q

Then, it can be easily shown that (2.26) is at least as strict as

(2.18):

Γξ ≤ b ⇔ (R1 + R2Γ)ξ ≤ R2(b + v) − v

⇔ (R1 + R2Γ)ξ < R2(b + v)

⇔ R−1
2 R1ξ + Γξ < b + v

⇒ Γξ < b + v ∀ξ ∈ R(N, x0)

⇔ Γξ ≤ b

We can now choose the entries fo R1 and R2 to ensure ideal

enforceability of (2.26). According to (2.23), (2.24) and (2.25),

this implies

(R1 + R2Γ)Aouc ≤ 0

(R1 + R2Γ)Auouc = 0

(R1 + R2Γ)x0 ≤ R2(b + v) − v

or, equivalently,

[
R1 R2

] [
Aouc Auouc −Auouc x0

ΓAouc ΓAuouc −ΓAuouc Γx0 − b− v

]

≤
[
0 0 0 −v

]
,

where the “≤”-sign is again to be interpreted elementwise.

Example 2.18 Reconsider the Petri net from Example 2.16. Let’s

assume that the specification is still given by

x2(k) + 3x4(k) ≤ 3 , k = 0, 1, . . .
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2.5 Control of Petri Nets

but that transition t4 is now uncontrollable. Hence

A = [Aoc Aouc]

=




0 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 0 1


 .

Clearly, the specification is not ideally enforceable as (2.23) is vio-

lated. We therefore try to come up with a stricter and ideally en-

forceable specification using the procedure outlined above. For

R1 =
[
0 0 3 0

]

and

R2 = 1

the required conditions hold, and the “new” specification is given

by

Γ =
[
0 1 3 3

]
,

b = 3 .

Fig. 2.21 illustrates that the new specification is indeed stricter

than the original one. The ideal controller for the new specifica-

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

x2

x3

Γx = b

Γx = b
x4

Figure 2.21: “Old” and “new” specification.

tion is given by

x0c = b− Γx0

= 3

and

Ac = −ΓA

=
[
−1 − 3 1 0

]
.
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2 Petri Nets

As (Ac)14 = 0, there is no arc from the controller place to the

uncontrollable transition t4, indicating that the new specification

is indeed ideally enforceable. The resulting closed-loop system

is shown in Fig. 2.22. ♦

t1

t2

t3

p3p1

p2

t4 p4

pc

3

Figure 2.22: Closed loop for Example 2.18.

36



3
T IMED PETR I NETS

A Petri net (N, x0), as discussed in the previous chapter, only

models the ordering of the firings of transitions, but not the ac-

tual firing time. If timing information is deemed important, we

have to “attach” it to the “logical” DES model (N, x0). This can

be done in two ways: we can associate time information with

transitions or with places.

3.1 timed petri nets with transition delays

In this framework, the set of transitions, T, is partitioned as

T = TW ∪ TD.

A transition tj ∈ TW can fire without delay once the respective

“logical” firing condition is satisfied, i.e., if (2.10) holds. A transi-

tion from TD can only fire if both the “logical” firing condition is

satisfied and a certain delay has occurred. The delay for the k-th

firing of tj ∈ TD is denoted by vjk , and the sequence of delays by

vj := vj1 vj2 . . .

Definition 3.1 A timed Petri net with transition delays is a triple

(N, x0,V), where

(N, x0) . . . a Petri net

T = TW ∪ TD . . . a partitioned set of transitions

V = {v1, . . . , vmD
} . . . a set of sequences of time delays

mD = |TD| . . . number of delayed transitions

If the delays for all firings of a transition tj are identical, the

sequence vj reduces to a constant.

To distinguish delayed and undelayed transitions in graphical

representations of the Petri net, the former are depicted by boxes

instead of bars (see Figure 3.1).
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3 Timed Petri Nets

t j ∈ TD t j ∈ TW

v j1 , v j2 , . . .

Figure 3.1: Graphical representation of delayed (left) and unde-

layed (right) transitions

3.2 timed event graphs with transition delays

Recall that event graphs represent a special class of Petri nets.

They are characterised by the fact that each place has exactly

one input transition and one output transition and that all arcs

have weight 1. For timed event graphs, we can give an explicit

equation relating subsequent firing instants of transitions. To see

this, consider Figure 3.2, which shows part of a general timed

event graph. Let’s introduce the following additional notation:

v j1 , v j2 , . . .vr1 , vr2 , . . .

tr t j
pi

Figure 3.2: Part of a general timed event graph.

τj(k) . . . earliest possible time for the k-th firing

of transition tj

πi(k) . . . earliest possible time for place pi to

receive its k-th token.

Then:

πi(k + x0i ) = τr(k), tr ∈ I(pi), k = 1, 2, . . . (3.1)

τj(k) = max
pi∈I(tj)

(
πi(k) + vjk

)
, k = 1, 2, . . . (3.2)

(3.1) says that, because of the initial marking x0i , the place pi
will receive its (k + x0i )-th token when its input transition

tr fires for the k-th time. The earliest time instant for this

to happen is τr(k).
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3.2 Timed Event Graphs with Transition Delays

(3.2) says that transition tj cannot fire the k-th time before all its

input places have received their k-th token and the delay

vjk has passed.

We can now eliminate πi(k), i = 1, . . . , n from (3.1) and (3.2)

to get the desired relation. This is illustrated in the following

example.

Example 3.1 Consider the timed event graph shown in Fig. 3.3.

p2p1

p3

t2t1

v21 , v22 , . . .

Figure 3.3: Example of a timed event graph with transition de-

lays.

We get:

τ1(k) = max(π1(k),π3(k)) (3.3)

τ2(k) = π2(k) + v2k (3.4)

π1(k + 1) = τ1(k) (3.5)

π2(k + 1) = τ1(k) (3.6)

π3(k) = τ2(k) . (3.7)

We can now eliminate π1,π2, and π3 from (3.3)–(3.7). We first

insert (3.5) and (3.7) in (3.3) to give

τ1(k + 1) = max(τ1(k), τ2(k + 1)).

Inserting (3.4) and subsequently (3.6) results in

τ1(k + 1) = max
(
τ1(k), τ1(k) + v2k+1

)

= τ1(k) + v2k+1
.

Inserting (3.6) into (3.4) gives

τ2(k + 1) = τ1(k) + v2k+1

Note that the initial condition for the above difference equation

is τ1(1) = τ2(1) = v21 . ♦
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3 Timed Petri Nets

3.3 timed petri nets with holding times

Now, we consider a different way of associating time with a Petri

net. We partition the set of places, P, as

P = PW ∪ PD.

A token in a place pi ∈ PW contributes without delay towards

satisfying (2.10). In contrast, tokens in a place pi ∈ PD have to be

held for a certain time (“holding time”) before they contribute

to enabling output transitions of pi. We denote the holding time

for the k-th token in place pi by wik , and the sequence of holding

times

wi := wi1 wi2 . . .

Definition 3.2 A timed Petri net with holding times is a triple (N, x0,W),

where

(N, x0) . . . a Petri net

P = PW ∪ PD . . . a partitioned set of places

W = {w1, . . . ,wnD} . . . a set of sequences of holding times

nD = |PD| . . . number of places with delays

If the holding time for all tokens in a place pi are identical, the

sequence wi reduces to a constant.

In graphical representations, places with and without holding

times are distinguished as indicated in Figure 3.4.

pi ∈ PD pi ∈ PW

wi1 ,wi2 , . . .

Figure 3.4: Graphical representation of places with holding

times (left) and places without delays (right)

3.4 timed event graphs with holding times

For timed event graphs with transition delays, we could explic-

itly relate the times of subsequent firings of transitions. This is

also possible for timed event graphs with holding times. To see
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3.4 Timed Event Graphs with Holding Times

pitr t j

wi1 ,wi2 , . . .

Figure 3.5: Part of a general timed event graph with holding

times

this, consider Figure 3.5 which shows a part of a general timed

event graph with holding times.

We now have

πi(k + x0i ) = τr(k), tr ∈ I(pi), k = 1, 2, . . . (3.8)

τj(k) = max
pi∈I(tj)

(πi(k) + wik) , k = 1, 2, . . . (3.9)

(3.9) says that the earliest possible instant of the k-th firing for

transition tj is when all its input places have received their

k-th token and the corresponding holding times wik have

passed.

(3.8) says that place pi will receive its (k+ x0i )-th token when its

input transition tr fires for the k-th time.

As in Section 3.2, we can eliminate the πi(k), i = 1, . . . , n, from

(3.8) and (3.9) to provide the desired explicit relation between

subsequent firing instants of transitions.

Remark 3.1 In timed event graphs, transition delays can always

be “transformed” into holding times (but not necessarily the

other way around). It is easy to see how this can be done: we just

“shift” each transition delay vj to all the input places of the cor-

responding transition tj. As each place has exactly one output

transition, this will not cause any conflict.

Example 3.2 Consider the timed event graph with transition de-

lays in Figure 3.3. Applying the procedure described above

provides the timed event graph with holding times w2i = v2i ,

i = 1, 2, . . ., shown in Figure 3.6. It is a simple exercise to deter-

mine the recursive equations for the earliest firing times of tran-

sitions, τ1(k), τ2(k), k = 1, 2, . . ., for this graph. Not surprisingly

we get the same equations as in Example 3.1, indicating that the

obtained timed event graph with holding times is indeed equiv-

alent to the original timed event graph with transition delays.

♦

41



3 Timed Petri Nets

p2p1

p3

t2t1

w21 ,w22 , . . .

Figure 3.6: Equivalent timed event graph with holding times.

3.5 the max-plus algebra

From the discussion in Section 3.2 and 3.4 it is clear that we can

recursively compute the earliest possible firing times for tran-

sitions in timed event graphs. In the corresponding equations,

two operations were needed: max and addition. This fact was

the motivation for the development of a systems and control the-

ory for a specific algebra, the so called max-plus algebra, where

these equations become linear. A good survey on this topic is

[9] and the book [3] 1. We start with an introductory example,

which is taken from [7].

3.5.1 Introductory example

Imagine a simple public transport system with three lines (see

Fig: 3.7): an inner loop and two outer loops. There are two

travel time: 2 travel time: 5

travel time: 3 travel time: 3

Station 1 Station 2

Figure 3.7: Simple train example (from [7]).

stations where passengers can change lines, and four rail tracks

connecting the stations. Initially, we assume that the transport

company operates one train on each track. A train needs 3 time

units to travel on the inner loop from station 1 to station 2, 5 time

1 A pdf-version of this book is available for free on the web at

http://cermics.enpc.fr/~cohen-g//SED/book-online.html
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3.5 The Max-Plus Algebra

units for the track from station 2 to station 1, and 2 and 3 time

units for the outer loops, respectively. We want to implement

a user-friendly policy where trains wait for each other at the

stations to allow passengers to change lines without delay.

This can be easily represented in a timed event, or synchronisa-

tion, graph with holding times (Figure 3.8). It is now straightfor-

3

3

p2

p4

p3

t1

5

t2

p1

2

Figure 3.8: Timed event graph representing train example.

ward to determine the recursive equations for the firing instants

of transitions t1 and t2. These are the times when trains may

leave the respective stations and can therefore be interpreted as

the “time table” for our simple public transport system. We get

τ1(k) = max (π1(k) + 2,π4(k) + 5) (3.10)

τ2(k) = max (π2(k) + 3,π3(k) + 3) (3.11)

and

π1

(
k + x01

)
= π1(k + 1) = τ1(k) (3.12)

π2

(
k + x02

)
= π2(k + 1) = τ1(k) (3.13)

π3

(
k + x03

)
= π3(k + 1) = τ2(k) (3.14)

π4

(
k + x04

)
= π4(k + 1) = τ2(k) . (3.15)

Inserting (3.12)–(3.15) into (3.10), (3.11) gives

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (3.16)

τ2(k + 1) = max (τ1(k) + 3, τ2(k) + 3) (3.17)

for k = 1, 2, . . . . Let’s assume τ1(1) = τ2(1) = 0, i.e., trains

leave both stations 1 and 2 at time 0 for the first time. Then,

subsequent departure times are
(

0

0

)
,

(
5

3

)
,

(
8

8

)
,

(
13

11

)
,

(
16

16

)
, . . .

On the other hand, if the initial departure times are τ1(1) = 1

and τ2(1) = 0, we get the sequence
(

1

0

)
,

(
5

4

)
,

(
9

8

)
,

(
13

12

)
,

(
17

16

)
, . . .
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3 Timed Petri Nets

Hence, in the second case, trains leave every 4 time units from

both stations (1-periodic behaviour), whereas in the first case the

interval between subsequent departures changes between 3 and

5 time units (2-periodic behaviour). In both cases, the average

departure interval is 4. This is of course not surprising, because

a train needs 8 time units to complete the inner loop, and we

operate two trains in this loop. Hence, it is obvious what to do

if we want to realise shorter departure intervals: we add another

train on the inner loop, initially, e.g. on the track connecting

station 1 to station 2. This changes the initial marking of the

timed event graph in Figure 3.8 to x0 = (1, 2, 1, 1)′. Equation 3.13

is now replaced by

π2(k + x02) = π2(k + 2) = τ1(k) (3.18)

and the resulting difference equations for the transition firing

times are

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (3.19)

τ2(k + 2) = max (τ1(k) + 3, τ2(k + 1) + 3) (3.20)

for k = 1, 2, . . . . By introducing the new variable τ3, with τ3(k +

1) := τ1(k), we transform (3.19), (3.20) again into a system of

first order difference equations:

τ1(k + 1) = max (τ1(k) + 2, τ2(k) + 5) (3.21)

τ2(k + 1) = max (τ3(k) + 3, τ2(k) + 3) (3.22)

τ3(k + 1) = max (τ1(k)) . (3.23)

If we initialise this system with τ1(1) = τ2(1) = τ3(1) = 0, we

get the following evolution:




0

0

0


 ,




5

3

0


 ,




8

6

5


 ,




11

9

8


 ,




14

12

11


 , . . .

We observe that after a short transient period, trains depart from

both stations in intervals of three time units. Obviously, shorter

intervals cannot be reached for this configuration, as now the

right outer loop represents the “bottleneck”.

In this simple example, we have encountered a number of differ-

ent phenomena: 1-periodic solutions (for τ1(1) = 1, τ2(1) = 0),

2-periodic solutions (for τ1(1) = τ2(1) = 0) and a transient phase

(for the extended system). These phenomena (and more) can be

conveniently analysed and explained within the formal frame-

work of max-plus algebra. ♦
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3.5.2 Max-Plus Basics

Definition 3.3 (Max-Plus Algebra) The max-plus algebra consists

of the set R := R ∪ {−∞} and two binary operations on R:

⊕ is called the addition of max-plus algebra and is defined by

a⊕ b = max(a, b) ∀a, b ∈ R.

⊗ is called multiplication of the max-plus algebra and is defined by

a⊗ b = a + b ∀a, b ∈ R.

The following properties are obvious:

• ⊕ and ⊗ are commutative, i.e.

a⊕ b = b⊕ a ∀a, b ∈ R

a⊗ b = b⊗ a ∀a, b ∈ R.

• ⊕ and ⊗ are associative, i.e.

(a⊕ b) ⊕ c = a⊕ (b⊕ c) ∀a, b, c ∈ R

(a⊗ b) ⊗ c = a⊗ (b⊗ c) ∀a, b, c ∈ R.

• ⊗ is distributive over ⊕, i.e.

(a⊕ b) ⊗ c = (a⊗ c) ⊕ (b⊗ c) ∀a, b, c ∈ R.

• ε := −∞ is the neutral element w.r.t. ⊕, i.e.

a⊕ ε = a ∀a ∈ R.

ε is also called the zero-element of max-plus algebra.

• e := 0 is the neutral element w.r.t. ⊗, i.e.

a⊗ e = a ∀a ∈ R.

e is also called the one-element of max-plus algebra.

• ε is absorbing for ⊗, i.e.

a⊗ ε = ε ∀a ∈ R.

• ⊕ is idempotent, i.e.

a⊕ a = a ∀a ∈ R.
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3 Timed Petri Nets

This makes the max-plus algebra an idempotent semi-ring.

It is straightforward to extend both ⊕ and ⊗ to matrices with

elements in R:

• matrix addition: let A, B ∈ Rm×n with elements aij, bij.

Then,

(A⊕ B)ij := aij ⊕ bij

= max
(
aij, bij

)

• matrix multiplication: let A ∈ Rm×n, B ∈ Rn×q. Then,

(A⊗ B)ij :=
n⊕

k=1

(
aik ⊗ bkj

)

= max
k=1,...,n

(
aik + bkj

)

• multiplication with a scalar: let A ∈ Rm×n, α ∈ R. Then,

(α ⊗ A)ij := α ⊗ aij

= α + aij

• null and identity matrix:

N :=




ε · · · ε
...

...

ε · · · ε


 is the null matrix and

E :=




e ε · · · ε

ε e
...

...
. . . ε

ε · · · ε e




is the identity matrix.

As in standard algebra, we will often omit the multiplication

symbol, i.e., AB will mean A⊗ B.

3.5.3 Max-plus algebra and precedence graphs

With each square matrix with elements in R we can uniquely

associate its precedence graph.

Definition 3.4 (Precedence Graph) Let A ∈ Rn×n. Its precedence

graph G(A) is a weighted directed graph with n nodes, labelled 1, . . . , n,

with an arc from node j to node i if aij 6= ε; i, j = 1, . . . , n. If an arc

from node j to node i exists, its weight is aij.
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3.5 The Max-Plus Algebra

Example 3.3 Consider the 5× 5 matrix

A =




ε 5 ε 2 ε

ε ε 8 ε 2

ε ε ε ε ε

ε 3 7 ε 4

ε ε 4 ε ε




. (3.24)

The precedence graph has 5 nodes, and the i-th row of A repre-

sents the arcs ending in node i (Figure 3.9). ♦

2

4

4

5 8

2
3 7

1 2 3

54

Figure 3.9: Precedence graph for (3.24).

Definition 3.5 (Path) A path ρ in G(A) is a sequence of nodes

i1, . . . , ip, p > 1, with arcs from node ij to node ij+1, j = 1, . . . , p− 1.

The length of a path ρ = i1, . . . , ip, denoted by |ρ|L, is the number of

its arcs. Its weight, denoted by |ρ|W , is the sum of the weights of its

arcs, i.e.,

|ρ|L = p− 1

|ρ|W =
p−1

∑
j=1

aij+1ij

A path is called elementary, if all its nodes are distinct.

Definition 3.6 (Circuit) A path ρ = i1, . . . , ip, p > 1, is called a

circuit, if its initial and its final node coincide, i.e., if i1 = ip. A

circuit ρ = i1, . . . , ip is called elementary, if the path ρ̃ = i1, . . . , ip−1

is elementary.

Example 3.4 Consider the graph in Figure 3.9. Clearly, ρ =

3, 5, 4, 1 is a path with length 3 and weight 10. The graph does

not contain any circuits. ♦

For large graphs, it may be quite cumbersome to check “by in-

spection” whether circuits exist. Fortunately, this is straightfor-

ward in the max-plus framework. To see this, consider the prod-

uct

A2 := A⊗ A.
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3 Timed Petri Nets

By definition, (A2)ij = maxk(aik + akj), i.e., the (i, j)-element of

A2 represents the maximal weight of all paths of length 2 from

node j to node i in G(A). More generally, (Ak)ij is the maximal

weight of all paths of length k from node j to node i in G(A).

Then it is easy to prove the following:

Theorem 3.1 G(A) does not contain any circuits if and only if Ak =

N ∀k ≥ n.

Proof First assume that there are no circuits in G(A). As G(A)

has n nodes, this implies that there is no path of length k ≥ n,

hence Ak = N ∀k ≥ n. Now assume that Ak = N ∀k ≥ n, i.e.,

there exists no path in G(A) with length k ≥ n. As a circuit can

always be extended to an arbitrarily long path, this implies the

absence of circuits. ¤

Example 3.5 Consider the 5× 5-matrix A from Example 3.3 and

its associated precedence graph G(A). Matrix multiplication pro-

vides

A2 =




ε 5 13 ε 7

ε ε 6 ε ε

ε ε ε ε ε

ε ε 11 ε 5

ε ε ε ε ε




A3 =




ε ε 13 ε 7

ε ε ε ε ε

ε ε ε ε ε

ε ε 9 ε ε

ε ε ε ε ε




A4 =




ε ε 11 ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε




A5 = N.

This implies that there are only three pairs of nodes between

which paths of length 3 exist. For example, such paths exist

from node 3 to node 1, and the one with maximal length (13) is

ρ = 3, 2, 4, 1. As expected, there is no path of length 5 or greater,

hence no circuits exist in G(A). ♦
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3.5.4 Linear implicit equations in max-plus

In the following we will often encounter equations of the form

x = Ax⊕ b, (3.25)

where A ∈ Rn×n and b ∈ Rn are given and a solution for x is

sought. We will distinguish three cases:

1. G(A) does not contain any circuits. Repeatedly inserting

(3.25) into itself provides

x = A(Ax⊕ b) ⊕ b = A2x⊕ Ab⊕ b

= A2(Ax⊕ b) ⊕ Ab⊕ b = A3x⊕ A2b⊕ Ab⊕ b

...

x = Anx⊕ An−1b⊕ . . .⊕ Ab⊕ b.

As An = N, we get the unique solution

x =
(
E⊕ A⊕ . . .⊕ An−1

)
b. (3.26)

2. All circuits in G(A) have negative weight. As before, we

repeatedly insert (3.25) into itself. Unlike in the previous

case, we do not have An = N, hence we keep inserting:

x =

(
lim
k→∞

Ak

)
x⊕

(
E⊕ A⊕ A2 ⊕ . . .

)
︸ ︷︷ ︸

:=A∗

b

Note that
(
limk→∞ Ak

)
ij
represents the maximum weight

of infinite-length paths from node j to node i in G(A).

Clearly, such paths, if they exist, have to contain an infi-

nite number of elementary circuits. As all these circuits

have negative weight, we get

lim
k→∞

Ak = N. (3.27)

With a similar argument, it can be shown that in this case

A∗ = E⊕ A⊕ . . .⊕ An−1. (3.28)

To see this, assume that
(
Ak

)
ij
6= ε for some i, j and some

k ≥ n, i.e., there exists a path ρ of length k ≥ n from node

j to node i. Clearly, this path must contain at least one cir-

cuit and can therefore be decomposed into an elementary

path ρ̃ of length l < n from j to i and one or more circuits.

As all circuits have negative weights, we have for all k ≥ n(
Ak

)
ij

= |ρ|W < |ρ̃|W =
(
Al

)
ij
for some l < n. (3.28) fol-

lows immediately. Hence, (3.26) is also the unique solution

if all circuits in G(A) have negative weight.
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3. All circuits in G(A) have non-positive weights. We repeat

the argument from the previous case and decompose any

path ρ of length k ≥ n into an elementary path ρ̃ and at

least one circuit. We get that for all k ≥ n
(
Ak

)
ij

= |ρ|W ≤ |ρ̃|W =
(
Al

)
ij

for some l < n

and therefore, in this case also,

A∗ = E⊕ A⊕ . . .⊕ An−1

Furthermore, it can be easily shown that x = A∗b repre-

sents a (not necessarily unique) solution to (3.25). To see

this we just insert x = A∗b into (3.25) to get

A∗b = A(A∗b) ⊕ b

= (E⊕ AA∗)b

= (E⊕ A⊕ A2 ⊕ . . .)b

= A∗b

In summary, if the graph G(A) does not contain any circuits

with positive weights, (3.26) represents a solution for (3.25). If

all circuits have negative weights or if no circuits exist, this is the

unique solution.

3.5.5 State equations in max-plus

We now discuss how timed event graphs with some autonomous

transitions can be modelled by state equations in the max-plus

algebra. We will do this for an example which is taken from [3].

Example 3.6 Consider the timed event graph with holding times

in Figure 3.10. t1 and t2 are autonomous transitions, i.e., their fir-

ing does not depend on the marking of the Petri net. The firing

of these transitions can therefore be interpreted as an input, and

the firing times are denoted by u1(k), u2(k), k = 1, 2, . . ., respec-

tively. The firing times of transition t6 are considered to be an

output and therefore denoted y(k). Finally, we denote the k-th

firing times of transitions t3, t4 and t5 by x1(k), x2(k) and x3(k),

respectively.

As discussed in Section 3.4, we can explicitly relate the firing

times of the transitions:

x1(k + 1) = max (u1(k + 1) + 1, x2(k) + 4)

x2(k + 1) = max (u2(k) + 5, x1(k + 1) + 3)

x3(k + 1) = max (x3(k− 1) + 2, x2(k + 1) + 4, x1(k + 1) + 3)

y(k + 1) = max (x2(k), x3(k + 1) + 2)
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t2

t4

5

3

4

4

t6

t5

2

2

3

t3

1

t1

Figure 3.10: Timed event graph with holding times and au-

tonomous transitions (from [3]).

In vector notation, i.e.,

x(k) := (x1(k), x2(k), x3(k))
′

u(k) := (u1(k), u2(k))
′ ,

this translates into the following max-plus equations:

x(k + 1) =




ε ε ε

3 ε ε

3 4 ε




︸ ︷︷ ︸
:=A0

x(k + 1) ⊕




ε 4 ε

ε ε ε

ε ε ε




︸ ︷︷ ︸
:=A1

x(k)

⊕




ε ε ε

ε ε ε

ε ε 2




︸ ︷︷ ︸
:=A2

x(k− 1) ⊕




1 ε

ε ε

ε ε




︸ ︷︷ ︸
:=B0

u(k + 1)

⊕




ε ε

ε 5

ε ε




︸ ︷︷ ︸
:=B1

u(k)

(3.29)

51



3 Timed Petri Nets

y(k) =
(

ε ε 2
)

︸ ︷︷ ︸
:=C0

x(k) ⊕
(

ε e ε
)

︸ ︷︷ ︸
:=C1

x(k− 1) (3.30)

In a first step, we convert (3.29) into explicit form. Clearly, G(A0)

does not contain any circuits (see Fig. 3.11), therefore A∗
0 = E⊕

A0 ⊕ A2
0 and

x(k + 1) = A∗
0 (A1x(k) ⊕ A2x(k− 1) ⊕ B0u(k + 1) ⊕ B1u(k))

=




ε 4 ε

ε 7 ε

ε 11 ε




︸ ︷︷ ︸
:=A1

x(k) ⊕




ε ε ε

ε ε ε

ε ε 2




︸ ︷︷ ︸
:=A2

x(k− 1)

⊕




1 ε

4 ε

8 ε




︸ ︷︷ ︸
:=B0

u(k + 1) ⊕




ε ε

ε 5

ε 9




︸ ︷︷ ︸
:=B1

u(k)

is the desired explicit form. In a second step, we define an

1 2

3

3

43

Figure 3.11: G(A0) for Example 3.6.

extended vector x̃(k) := (x′(k), x′(k− 1), u′(k))′ and a vector

ũ(k) := u(k + 1) to get

x̃(k + 1) =




A1 A2 B1

E N N

N N N




︸ ︷︷ ︸
:=A

x̃(k) ⊕




B0

N

E




︸ ︷︷ ︸
:=B

ũ(k)

y(k) =
(
C0 C1 N

)
︸ ︷︷ ︸

:=C

x̃(k) .

♦

3.5.6 The max-plus eigenproblem

Recall the introductory example in Section 3.5.1. Depending on

the vector of initial firing times, we observed a number of differ-

ent phenomena: 1- and 2-periodic behaviour with and without
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3.5 The Max-Plus Algebra

an initial transient phase. For many application scenarios as, e.g.,

the one envisaged in the example, a 1-periodic solution is desir-

able. It is therefore natural to ask, which initial firing vectors

will indeed generate 1-periodic solutions and what the duration

for one period is.

Consider a timed event graph without autonomous transitions

and assume that we have already converted the equations de-

scribing the firing times into a system of explicit first order dif-

ference equations (see Section 3.5.5), i.e.,

x(k + 1) = Ax(k), k = 1, 2, . . . (3.31)

As x(k) represents the (extended) vector of firing times, the re-

quirement for a 1-periodic solution means in conventional alge-

bra that

xi(k + 1) = λ + xi(k),
k = 1, 2, . . .

i = 1, 2, . . . , n .

In the max-plus context this reads as

xi(k + 1) = λ ⊗ xi(k),
k = 1, 2, . . .

i = 1, 2, . . . , n

or, equivalently,

x(k + 1) = λ ⊗ x(k), k = 1, 2, . . . . (3.32)

Let us now consider the eigenproblem in the max-plus algebra.

If, for a given A ∈ Rn×n, there exists ξ ∈ Rn and λ ∈ R such that

Aξ = λξ, (3.33)

we call λ eigenvalue and ξ eigenvector of the matrix A. If we

choose the vector of initial firing times, x(1), as an eigenvector,

we get

x(2) = Ax(1) = λx(1)

and therefore

x(k) = λk−1x(1), k = 1, 2, . . . .

This is the desired 1-periodic behaviour and the period length is

the eigenvalue λ.

To solve the max-plus eigenproblem, we need the notions of ma-

trix (ir)reducibility and strong connectedness of graphs.
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3 Timed Petri Nets

Definition 3.7 ((Ir)reducibility) The matrix A ∈ Rn×n is called re-

ducible, if there exists a permutation matrix2 P such that

Ã = PAP′

is upper block-triangular. Otherwise, A is called irreducible.

Definition 3.8 (Strongly connected graph) A directed graph is

strongly connected, if there exists a path from any node i to any

other node j in the graph.

Remark 3.2 Definition 3.7 can be rephrased to say that the ma-

trix A is reducible if it can be transformed to upper block-triangular

form by simultaneously permuting rows and columns. Hence,

A is reducible if and only if the index set I = {1, . . . , n} can be

partitioned as

I = {i1, . . . , ik}︸ ︷︷ ︸
I1

∪ {ik+1, . . . , in}︸ ︷︷ ︸
I2

such that

aij = ε ∀i ∈ I1, j ∈ I2.

This is equivalent to the fact that in the precedence graph G(A)

there is no arc from any node j ∈ I2 to any node i ∈ I1. We

therefore have the following result.

Theorem 3.2 The matrix A ∈ Rn×n is irreducible if and only if its

precedence graph G(A) is strongly connected.

Example 3.7 Consider the matrix

A =




1 2 3

ε 4 ε

5 6 7


 .

For

P =




e ε ε

ε ε e

ε e ε




we get

Ã = PAP′ =




1 3 2

5 7 6

ε ε 4


 ,

which is clearly in upper block-triangular form. A is therefore re-

ducible, and its precedence graph G(A) not strongly connected.

Indeed, there is no path from either node 1 or node 3 to node 2

(Figure 3.12). ♦

2 Recall that a permution matrix is obtained by permuting the rows of the n× n-

identity matrix. In the max-plus context, this is of course the matrix E (Sec-

tion 3.5.2).
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1

2

3

5

1

3

4

6

7

2

Figure 3.12: Precedence graph for Example 3.7.

Theorem 3.3 If A ∈ Rn×n is irreducible, there exists precisely one

eigenvalue. It is given by

λ =
n⊕

j=1

(
tr

(
Aj

))1/j

, (3.34)

where “trace” and the j-th root are defined as in conventional algebra,

i.e., for any B ∈ Rn×n,

tr(B) =
n⊕

i=1

bii

and for any α ∈ R,

(
α
1/j

)j
= α.

Proof See, e.g. [3].

Remark 3.3 (3.34) can also be interpreted in terms of the prece-

dence graph G(A): to do this, recall that
(
Aj

)
ii
is the maximal

weight of all circuits of length j starting and ending in node i of

G(A). Then,

tr
(
Aj

)
=

n⊕

i=1

(
Aj

)
ii

represents the maximumweight of all circuits of length j in G(A).

Moreover, taking the j-th root in max-plus algebra corresponds

to dividing by j in conventional algebra, therefore

(
tr

(
Aj

))1/j
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3 Timed Petri Nets

is the maximum mean weight (i.e. weight divided by length) of

all circuits of length j. Finally, recall that the maximum length of

any elementary circuit in G(A) is n, and that the mean weight of

any circuit can never be greater than the maximal mean weight

of all elementary circuits. Therefore, (3.34) represents the max-

imal mean weight of all circuits in G(A), or the maximal cycle

mean, for short:

n⊕

j=1

(
tr

(
Aj

))1/j

= max
ρ∈S

|ρ|W
|ρ|L

,

where S is the set of all circuits in G(A).

Whereas an irreducible matrix A ∈ Rn×n has a unique eigen-

value λ, it may possess several distinct eigenvectors. In the fol-

lowing, we provide a scheme to compute them:

step 1 Scale the matrix A by multiplying it with the inverse of

its eigenvalue λ, i.e.,

Q := inv⊗(λ) ⊗ A.

Hence, in conventional algebra, we get Q by subtracting λ

from every element of A. This implies that G(A) and G(Q)

are identical up to the weights of their arcs. In particular, ρ

is a path (circuit) in G(A) if and only if it is a path (circuit)

in G(Q). Let’s denote the weight of ρ in G(A) and in G(Q)

by |ρ|W,A and |ρ|W,Q, respectively. Then, for any circuit ρ,

|ρ|W,Q = |ρ|W,A − |ρ|L · λ

=

(
|ρ|W,A

|ρ|L
− λ

)
|ρ|L (3.35)

≤ 0 (3.36)

as λ is the maximum mean weight of all circuits in G(A).

Hence, by construction, all circuits in G(Q) have nonposi-

tive weight.

step 2 As shown in Section 3.5.4 (3.36) implies that

Q∗ = E⊕Q⊕Q2 ⊕ . . .

= E⊕Q⊕ . . .⊕Qn−1

step 3 The matrix

Q+ :=Q⊗Q∗ (3.37)

=Q⊕Q2 ⊕ . . .⊕Qn
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3.5 The Max-Plus Algebra

contains at least one diagonal element q+
ii = e. To see this,

choose an elementary circuit ρ̃ in G(A) with maximal mean

weight. Then (3.35) implies that the weight of ρ̃ in G(Q) is

0, i.e., e. Now choose any node i in ρ̃. As the maximum

length of any elementary circuit in Q is n, q+
ii represents the

maximal weight of all elementary circuits in G(Q) starting

and ending in node i. Therefore, q+
ii = e.

step 4 If q+
ii = e, the corresponding column vector of Q+, i.e.,

q+
i , is an eigenvector of A. To see this, observe that

Q∗ = E⊕Q+,

hence, the j-th entry of q∗i is

q∗ji =

{
ε ⊕ q+

ji for j 6= i

e⊕ q+
ji for j = i

= q+
ji j = 1, . . . , n .

as q+
ii is assumed to be e. Therefore, q∗i = q+

i . Furthermore,

because of (3.37), we have

q+
i = Q⊗ q∗i

= Q⊗ q+
i

= inv⊗λ ⊗ A⊗ q+
i

or, equivalently,

λ ⊗ q+
i = A⊗ q+

i .

Example 3.8 Consider the matrix

A =




ε 5 ε

3 ε 1

ε 1 4


 (3.38)

As the corresponding precedence graph G(A) is strongly con-

nected (see Figure 3.13), A is irreducible. Therefore,

1 2 3

3 1

15

4

Figure 3.13: Precedence graph for Example 3.8.
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λ =
3⊕

j=1

tr
(
Aj

)1/j

= 4

is the unique eigenvalue of A. To compute the eigenvectors, we

follow the procedure outlined on the previous pages:

Q = inv⊗ (λ) ⊗ A

=




ε 1 ε

−1 ε −3

ε −3 e




Q∗ = E⊗Q⊗Q2

=




e 1 −2

−1 e −3

−4 −3 e




Q+ = Q⊗Q∗

=




e 1 −2

−1 e −3

−4 −3 e


 .

As all three diagonal elements of Q+ are identical to e, all three

columns are eigenvectors, i.e.

ξ1 =




e

−1

−4


 , ξ2 =




1

e

−3


 , ξ3 =




−2

−3

e


 .

Apparently,

ξ2 = 1⊗ ξ1,

i.e. the eigenvectors ξ2 and ξ1 are linearly dependent, while ξ3
and ξ1 are not. ♦

3.5.7 Linear independence of eigenvectors

Before we can clarify the phenomena of linear (in)dependence of

eigenvectors, we need additional terminology from graph theory.

Definition 3.9 (Critical circuit, critical graph) A circuit ρ in a

weighted directed graph G is called critical, if it has maximal mean

weight of all circuits in G. The critical graph Gc consists of all nodes

and all arcs of all critical circuits in G.
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Definition 3.10 (Maximal strongly connected subgraph) Let G

be a weighted directed graph with I as set of nodes and A as set of arcs.

A graph G ′ with node set I ′ and arc set A′ is a (proper) subgraph of

G, if I ′ ⊆ I (I ′ ⊂ I) and if A′ = {(i, j)|(i, j) ∈ A, i, j ∈ I ′}. A

subgraph G ′ of G is a maximal strongly connected (m.s.c.) subgraph,

if it is strongly connected, and if it is not a proper subgraph of another

strongly connected subgraph of G.

Example 3.9 Consider the matrix

A =




4 5 ε

3 ε 1

ε 1 4


 .

Its precedence graph G(A) is shown in Figure 3.14. The maxi-

1 2 3

3 1

15

4
4

Figure 3.14: Precedence graph G(A) for Example 3.9.

mal mean weight of circuits is 4, hence the critical graph Gc(A)

consists of all circuits of mean weight 4 (Figure 3.15). Clearly,

1 2 3

3

5

4
4

Gc1(A)
Gc2(A)

Figure 3.15: Critical graph Gc(A) for Example 3.9.

Gc(A) has two m.s.c. subgraphs, Gc1(A) and Gc2(A). ♦

We can now explain the phenomenon of linearly independent

eigenvectors. Assume that A ∈ Rn×n is irreducible and there-

fore possesses precisely one eigenvalue λ. Using the procedure

described in Section 3.5.6, we get a set of m ≤ n eigenvectors.

More precisely, column q+
i of matrix Q+ = Q ⊕ . . . ⊕ Qn is an

eigenvector of A, if its i-th entry is e.
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Theorem 3.4 Let A ∈ Rn×n be irreducible and let the critical graph

Gc(A) consist of N m.s.c. subgraphs Gcj(A) with node sets Ij, j =

1, . . . ,N. Then the following holds:

(i) If i ∈ I :=
N⋃

j=1

Ij, then q+
i is an eigenvector of A.

(ii) If i1, i2 ∈ Ij, then q+
i1
and q+

i2
are linearly dependent eigen-

vectors, i.e. ∃α ∈ R s.t. q+
i1

= α ⊗ q+
i2
.

(iii) If i ∈ Ip, then q+
i 6=

⊕

j∈I\Ip

αj ⊗ q+
j for any set of αj ∈ R.

Proof See, e.g., [3].

Example 3.10 Let’s reconsider the Example 3.8 where we deter-

mined three eigenvectors for (3.38). The critical graph for (3.38)

is shown in Figure 3.16. It contains two m.s.c. subgraphs with

1 2 3

3

5

4

Gc1(A)
Gc2(A)

Figure 3.16: Critical graph Gc(A) for (3.38).

node sets I1 = {1, 2} and I2 = {3}. Hence,

ξ1 = q+
1 =




e

−1

−4


 and ξ2 = q+

2 =




1

e

−3




are linearly dependent eigenvectors, whereas

ξ3 = q+
3 =




−2

−3

e




cannot be written as a linear combination of q+
1 and q+

2 . ♦

3.5.8 Cyclicity

We have seen in the previous sections that the vectors of firing

times in a timed event graph form a regular (1-periodic) be-

haviour, if the initial firing vector is an eigenvector of the matrix
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A. We also know from the motivating example (Section 3.5.1)

that a transient phase and/or k-periodic (k > 1) behaviour may

occur if the vector of initial firing times is not an eigenvector of

A. To explain this, we need to introduce the notion of cyclicity

of matrices in Rn×n.

Definition 3.11 (Cyclicity) Let A ∈ Rn×n and let λ be the maximal

mean weight of all circuits in G(A). If there exist positive integers

M, d such that

Am+d = λd ⊗ Am ∀m ∈ N, m ≥ M (3.39)

the matrix A is called cyclic. The smallest d for which (3.39) holds is

called the cyclicity of A.

Remark 3.4 If x(k + 1) = Ax(k), with x(k) the vector of the k-th

firing instants, and if A has cyclicity dwe will eventually observe

d-periodic behaviour, irrespective of x(1).

Theorem 3.5 Each irreducible matrix A is cyclic. If its critical graph

Gc(A) consists of N m.s.c. subgraphs Gcj(A), the cyclicity of A is

given by

cyc(A) = lcm
j=1,...,N


 gcd

ρ∈S
(
Gcj

(A)
) (|ρ|L)


 (3.40)

where S
(
Gcj(A)

)
is the set of all circuits of Gcj(A), gcdmeans “great-

est common divisor” and lcm is “least common multiple”.

Proof See, e.g., [3].

Example 3.11 Consider the matrix

A =




ε 5 ε

3 ε 6

ε 2 4


 (3.41)

with precedence graph G(A) shown in Figure 3.17. Clearly, the

1 2 3

3

5

4

2

6

Figure 3.17: Precedence graph G(A) for (3.41).
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maximal mean circuit weight is 4, and all circuits are critical.

Hence, G(A) = Gc(A). Obviously Gc(A) is strongly connected,

i.e., there is only one m.s.c. subgraph Gc1(A), which is Gc(A)

itself. We can then deduce from (3.40) that

cyc(A) = 1.

Indeed, if we initialise the recursion x(k + 1) = Ax(k) with a

non-eigenvector of A, e.g., x(1) = (0 1 2)′, we get the following

sequence of firing vectors:




0

1

2


 Ã




6

8

6


 Ã




13

12

10


 Ã




17

16

14


 Ã




21

20

18


 .

Clearly, after a short transient phase, we get a 1-periodic be-

haviour where the period length is the maximal mean weight

of all circuits in G(A), i.e., the eigenvalue of A. ♦

Example 3.12 Let’s reconsider our simple public transport sys-

tem from Section 3.5.1. Figure 3.18 shows the precedence graph

of the matrix

A =

(
2 5

3 3

)
.

Clearly, the maximal mean circuit weight is 4, therefore the crit-

1 2

3

5

2
3

Figure 3.18: Precedence graph for Example 3.12.

ical graph Gc(A) consists of only one elementary circuit (Fig-

ure 3.19). Obviously, Gc(A) is strongly connected and therefore

1 2

3

5

Figure 3.19: Critical graph Gc(A) for Example 3.12.

the only m.s.c. subgraph. Hence,

cyc(A) = 2.
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This explains the 2-periodic behaviour that we observed in Sec-

tion 3.5.1.

63



3 Timed Petri Nets

64



4
SUPERVISORY CONTROL

The control of untimed (logical) DES has been an active area of

research since the mid 1980s. It was shaped to a large extent

by P.J. Ramadge and W.M. Wonham’s seminal work, e.g. [25]

and [26]. Since then, numerous researchers have contributed to

this area, which has come to be known as “Supervisory Control

Theory (SCT)”. Standard references are [13], [8] and [29].

In this chapter, we will summarise the very basics of SCT. Briefly,

the plant to be controlled is modelled as an untimed DES, and

the controller design philosophy is language-based. This means

that one is primarily interested in the set of event strings (“lan-

guage”) that the plant can generate. It is then the aim of control

to suitably restrict this set such that strings of events that are

deemed to be undesirable cannot occur. At the same time, one

wants to “keep” as many other strings of events as possible. In

other words, the controller should only act if things (threaten to)

go wrong. Although the philosophy of SCT is language-based,

we have to keep in mind that control also needs to be realised.

Hence, we will have to discuss finite state machines, or finite

automata, as generators of languages.

4.1 sct basics

Let’s assume that there is a finite set of discrete events

Σ = {σ1, . . . , σN} . (4.1)

The events σi, i = 1, . . . ,N, are also called symbols, and Σ is called

an alphabet. Furthermore, denote the set of all finite strings of

elements of Σ, including ε (the string of length 0), by Σ∗, i.e.

Σ∗ = {ε, σ1, . . . , σN , σ1σ2, σ1σ3, . . .} . (4.2)

(4.2) is called the Kleene-closure of Σ. Strings can be concatenated,

i.e., if s, t ∈ Σ∗, st ∈ Σ∗ represents a string s followed by a string

t. Clearly, ε is the neutral element of concatenation, i.e.,

sε = εs = s ∀s ∈ Σ∗ . (4.3)
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Finally, a subset L ⊆ Σ∗ is called a language over the alphabet Σ,

and an element s ∈ L is a word.

We can now define the concept of prefix and prefix-closure:

Definition 4.1 (Prefix, prefix-closure) s′ ∈ Σ∗ is a prefix of a word

s ∈ L, if there exists a string t ∈ Σ∗ such that s′t = s. The set of all

prefixes of all words in L is called prefix-closure of L:

L := {s′ ∈ Σ∗ | ∃t ∈ Σ∗ such that s′t ∈ L} .

By definition, every prefix can be extended into a word by ap-

pending suitable symbols from the alphabet. Note that every

word s ∈ L is a prefix of itself, as sε = s, but, in general, a prefix

of a word is not a word. Therefore,

L ⊆ L .

If L = L, the language L is called closed. Hence, in a closed

language every prefix of a word is a word.

4.2 plant model

A plant model has to provide the following information:

possible future system evolution: In the context of un-

timed DES, this is the language L. Of course, a meaningful

model will never allow all possible strings of events, and

therefore L will in practice always be a proper subset of Σ∗.

control mechanism : In the context of SCT, the mechanism

that a controller can use to affect the plant evolution is

modelled by partitioning the event set Σ into a set of events

that can be disabled by a controller, Σc, and a set of events

which cannot be directly prohibited, Σuc:

Σ = Σc ∪ Σuc ; Σc ∩ Σuc = ∅ .

Σc is often called the set of controllable events, whereas

events in Σuc are called uncontrollable.

terminal conditions: As in “conventional” continuous con-

trol, it has become customary to include terminal condi-

tions for the system evolution in the plant model. Of course,

we could also interpret terminal conditions as specifica-

tions that a controller has to enforce. In the SCT con-

text, such terminal conditions are modelled by a so-called

marked language Lm ⊆ L, which contains all strings of events

that meet these conditions. These strings are called marked

strings. In practice, one thinks of such strings as tasks that

have successfully terminated.
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4.3 Plant Controller Interaction

In summary, the plant model is completely defined by

P = (Σ = Σc ∪ Σuc, L ⊆ Σ∗, Lm ⊆ L) .

In the following, we will always assume that the plant language

L is closed, i.e.,

L = L .

Note that the plant may generate strings of events that cannot be

extended to form a marked string. This phenomenon is called

blocking. To clarify this issue, observe that for a plant model

(Σ, L, Lm) with closed L, we always have the following relation

(see Figure 4.1):

Lm ⊆ Lm ⊆ L .
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Figure 4.1: Illustration of blocking phenomenon.

Lm contains all marked strings, i.e., all strings that meet the ter-

minal conditions (“have terminated successfully”). Lm \ Lm con-

tains all strings that have not terminated successfully yet, but can

still be extended into a marked string. Finally, L \ Lm contains all

strings in L that cannot be extended into a marked string. The

plant model (Σ, L, Lm) is called non-blocking if L = Lm, i.e., if no

such strings exist.

4.3 plant controller interaction

Before we discuss closed loop specifications and how to find a

controller that will enforce them, we need to clarify the mode

of interaction between plant and controller. For this, we assume

that the controller is another DES defined on the same alphabet

Σ as the plant but, of course, exhibits different dynamics. The

latter is captured by the controller language Lc ⊆ Σ∗. We also as-

sume that the controller will not introduce any further marking,
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hence its marked language is identical to its language. Therefore,

the controller is completely described by

C = (Σ, Lc, Lcm = Lc) . (4.4)

We will later realise the controller DES by a finite automaton. As

the language generated by an automaton is always closed (see

Section 4.5), we will henceforth also assume that Lc is closed,

i.e., Lc = Lc. It is obvious that the controller DES has to satisfy

another (implementability) requirement. Namely, it can only dis-

able events in the controllable subset Σc of Σ:

Definition 4.2 (Implementable controller) The controller (4.4) is

implementable for the plant model P if

LcΣuc ∩ L ⊆ Lc .

This means that for any string s ∈ Lc, if s is followed by an uncon-

trollable event σ and if the extended string sσ can be generated

by the plant, sσ must also be a string in Lc. In other words: an

implementable controller accepts all uncontrollable events that

the plant produces.

If the implementability requirement is satisfied, the interaction

between plant and controller is simply to agree on strings that

are both in L and in Lc. Hence, the closed loop language is

Lcl = L ∩ Lc .

Similarly, a string of the closed loop system is marked if and

only if it is marked by both the plant and the controller, i.e.,

Lcl,m = Lm ∩ Lc

= Lm ∩ L ∩ Lc

= Lm ∩ Lcl .

Let us now rephrase our problem and ask which closed loop

language can be achieved by a controller satisfying the imple-

mentability constraints discussed above. The answer is not sur-

prising:

Theorem 4.1 There exists an implementable controller with closed

language Lc such that

Lc ∩ L = K , (4.5)

if and only if

(i) K is closed ,

(ii) K ⊆ L ,

(iii) KΣuc ∩ L ⊆ K . (4.6)
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Proof Sufficiency is straightforward, as (i)–(iii) imply that Lc =

K is a suitable controller language: it is closed because of (i);

because of (ii) it satisfies K ∩ L = K, and because of (iii) it is im-

plementable for L. Necessity of (i) and (ii) follows immediately

from (4.5) and the fact that Lc and L are both closed languages.

To show the necessity of (iii), assume that there exist s ∈ K,

σ ∈ Σuc such that sσ ∈ L, sσ /∈ K, i.e., (iii) does not hold. Then,

because of (4.5), s ∈ Lc and sσ /∈ Lc, i.e., the controller is not

implementable for L.

Remark 4.1 (4.6) is called the controllability condition for the

closed language K.

4.4 specifications

The closed loop specifications are twofold:

(a) The closed loop language Lcl has to be a subset of a given

specification language Lspec, which is assumed to be closed:

Lcl
!
⊆ Lspec with Lspec = Lspec . (4.7)

It is therefore the task of control to prevent undesirable

strings from occurring.

(b) The closed loop must be nonblocking, i.e.,

Lcl,m = Lcl ∩ Lm
!
= Lcl . (4.8)

This means that any closed loop string must be extendable

to form a marked string.

It is obvious that (4.7) implies

Lcl,m = Lcl ∩ Lm
!
⊆ Lspec ∩ Lm . (4.9)

As the following argument shows, (4.8) and (4.9) also imply (4.7):

Lcl = Lcl,m (because of (4.8))

⊆ Lspec ∩ Lm (because of (4.9))

⊆ Lspec ∩ Lm (always true)

⊆ Lspec (always true)

= Lspec (as Lspec is closed).

Instead of (4.7) and (4.8), we can therefore work with (4.8) and

(4.9) as closed loop specifications. This, however does not com-

pletely specify the closed loop. We therefore add the require-

ment that Lcl,m should be as large as possible. In other words,
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we want control to be least restrictive or, equivalently, maximally

permissive.

In summary, our control problem is to find an implementable

controller

C = (Σ, Lc, Lc) ,

such that

1. the marked closed loop language satisfies (4.9)

2. the closed loop is nonblocking, i.e., (4.8) holds

3. control is maximally permissive.

This naturally leads to the question which nonblocking marked

closed loop languages K can be achieved by an implementable

controller. The answer is provided by the following theorem:

Theorem 4.2 There exists an implementable controller with closed

language Lc such that

Lc ∩ Lm︸ ︷︷ ︸
Lcl,m

= K (4.10)

and

Lc ∩ L︸ ︷︷ ︸
Lcl

= K︸︷︷︸
Lcl,m

(4.11)

if and only if

(i) K ⊆ Lm ,

(ii) KΣuc ∩ L ⊆ K , (4.12)

(iii) K = K ∩ Lm . (4.13)

Proof Sufficiency is straightforward as (i)–(iii) imply that Lc =

K is a suitable controller language: first, Lc is obviously closed.

Then, because of (iii), we have Lc ∩ Lm = K ∩ Lm = K, i.e., (4.10)

holds. Furthermore, (i) and the fact that L is closed implies

K ⊆ L. Therefore, Lcl = Lc ∩ L = K ∩ L = K, i.e., (4.11) holds.

Finally, (ii) says that Lc = K is implementable for L.

Necessity of (i) and (iii) follows directly from (4.10) and (4.11).

To show necessity of (ii), assume that there exist s ∈ K, σ ∈

Σuc such that sσ ∈ L, sσ /∈ K, i.e., (iii) does not hold. Then,

because of (4.11), s ∈ Lc and sσ /∈ Lc, i.e., the controller is not

implementable for L.

Remark 4.2 (4.12) is called the controllability condition for K,

and (4.13) is known as the Lm-closedness condition.
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Theorem 4.2 tells us whether we can achieve a nonblocking closed

loop with a given marked language K. Recall that we want

the maximal K that satisfies K ⊆ Lspec ∩ Lm. Hence we check

whether

K̂ := Lspec ∩ Lm (4.14)

satisfies condition (ii) of Theorem 4.2. Note that (i) holds by

definition for K̂. As the following argument shows, (iii) also

holds for K̂:

K̂ = Lm ∩ Lspec

= Lm ∩ Lspec ∩ Lm

⊆ Lm ∩ Lspec ∩ Lm

= K̂ ∩ Lm

and

K̂ ∩ Lm = Lm ∩ Lspec ∩ Lm

⊆ Lm ∩ Lspec ∩ Lm

= Lm ∩ Lspec

= Lm ∩ Lspec

as Lspec is a closed language. Hence, if (ii) also holds, K̂ is the

desired maximally permissive marked closed loop language and

K̂ is a correponding controller language. If the condition does

not hold, we seek the least restrictive controllable sublanguage

of K̂, i.e.,

K̂↑ := sup{K ⊆ K̂ | (4.12) holds } .

Using set-theoretic arguments, it can be easily shown that K̂↑

uniquely exists and is indeed controllable, i.e., satisfies Condi-

tion (ii) in Theorem 4.2. As K̂↑ ⊆ K̂, (i) holds automatically.

Furthermore, it can be shown (e.g., [8]) that K̂↑ also satisfies (iii).

Hence, K̂↑ is the desired maximally permissive marked closed

loop language and K̂↑ is a suitable controller language.

Example 4.1 Consider the following exceedingly simple DES. Its

purpose is to qualitatively model the water level in a reservoir.

To do this, we introduce two threshold values for the (real-valued)

level signal x, and four events:

Σ = {o, o, e, e} .

The event o (“overflow”) denotes that the water level crosses the

upper threshold from below. The event o denotes that x crosses

this threshold from above. Similarly, e (“empty”) means that x
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crosses the lower threshold from above, and e that x crosses this

threshold from below. We assume that initially the water level x

is between the two thresholds, implying that the first event will

either be o or e. In our fictitious reservoir, we have no control

over water consumption. The source for the reservoir is also

unpredictable, but we can always close the pipe from the source

to the reservoir (Figure 4.2) to shut down the feed.

source

consumer

valve "open" or "closed"

x(t)

o

exl

xu ō

ē

Figure 4.2: Water reservoir example.

This implies that o and e are controllable events (they can be

prohibited by control), whereas o and e are not:

Σc = {o, e} ,

Σuc = {o, e} .

The plant language is easily described in words: the first event is

o or e. After o, only o can occur. After e, only e can occur. After

o and e, either o or e may occur:

L = {ε, o, e, oo, ee, ooo, ooe, . . .} . (4.15)

Clearly, L is a closed language, i.e., L = L.

We consider those strings marked that correspond to a current

value of x between the lower and upper threshold:

Lm = {ε, oo, ee, . . .} , (4.16)

i.e., all strings that end with an o or an e event plus ε, the string

of length 0. To complete the example, suppose that the specifica-
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tion requires that strings may not begin with ooe (although this

does not make any physical sense). Hence,

Lspec = Σ∗ \ {ooe . . .} , (4.17)

and Lspec is a closed language.

We can now, at least in principle, use the approach outlined in

the previous pages to determine the least restrictive control strat-

egy. First, we need to check whether K̂ = Lm ∩ Lspec can be

achieved by means of an implementable controller. This is not

possible, as condition (ii) in Theorem 4.2 is violated for K̂. To

see this, consider the string oo. Clearly, oo ∈ Lm ∩ Lspec = K̂.

Therefore, ooe ∈ K̂Σu ∩ L, but ooe /∈ K̂. Hence, (4.12) does not

hold. This is also clear from Figure 4.3, which visualises the

plant language L as a tree.
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o, ōe, ē

. . .

. . .

. . .

. . .

ε

e, ē

o, ō

e, ē

Figure 4.3: Illustration for Example 4.1.

From the figure, it is obvious that to enforce K̂ as marked closed

loop language, the controller would have to disable the event e

after the string oo has occurred. This is of course not possible

as e ∈ Σuc. From the figure, it is also obvious what the least

restrictive controller sublanguage of K̂ is: We need to prohibit

that the first event is o (by closing the pipe from the source to

the reservoir). Once e has occurred, o can be enabled again. ♦

This example is meant to illustrate the basic idea in SCT. It also

demonstrates, however, that we need a mechanism, i.e., a finite

algorithm, to realise the required computations on the language

level. This will be described in Section 4.5.

4.5 controller realisation

We first introduce finite automata as state models for both plant

and specification. We then discuss a number of operations on
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automata that will allow us to compute another finite automaton

that realises the least restrictive controller.

4.5.1 Finite automata with marked states

Definition 4.3 (Finite deterministic automaton) A finite determin-

istic automaton with marked states is a quintuple

Aut = (Q,Σ, f , qo,Qm), (4.18)

where Q is a finite set of states, Σ is a finite event set, f : Q×Σ → Q is

a (partial) transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q

is the set of marked states.

To discuss the language and the marked language generated by

Aut, it is convenient to extend the transition function f : Q ×

Σ → Q to f : Q× Σ∗ → Q. This is done in a recursive way:

f (q, ε) = q ,

f (q, sσ) = f ( f (q, s), σ) for s ∈ Σ∗ and σ ∈ Σ .

Then, the language generated by Aut is

L(Aut) := {s ∈ Σ∗ | f (q0, s) exists} .

The marked language generated by Aut (sometimes also called

the language marked by Aut) is

Lm(Aut) := {s ∈ Σ∗ | f (q0, s) ∈ Qm} .

Hence, L(Aut) is the set of strings that the automaton Aut can

produce from its initial state q0, and Lm(Aut) is the subset of

strings that take the automaton from q0 into a marked state.

Clearly, the language generated by Aut is closed, i.e.

L(Aut) = L(Aut).

In general, this is not true for the language marked by Aut, i.e.

Lm(Aut) ⊆ Lm(Aut).

We say that Aut realises the plant model P = (Σ, L, Lm) if

L(Aut) = L ,

Lm(Aut) = Lm .
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Example 4.2 Let us reconsider the plant model from Example 4.1.

The plant model (Σ, L, Lm) is realised by Aut = (Q,Σ, f , q0,Qm)

with

Q = {Hi,Med, Lo} ,

q0 = Med ,

Qm = {Med} ,

Σ = {o, o, e, e} ,

and f defined by the following table, where “–” means “unde-

fined”.

o o e e

Hi – Med – –

Med Hi – Lo –

Lo – – – Med

The resulting automaton is depicted in Figure 4.4. There, we

use the following convention. The initial state is indicated by

an arrow pointing “from the outside” to q0; marked states are

indicated by arrows pointing from elements in Qm “outside”;

and controllable events can be recognised by a small bar added

to the corresponding transition.

Hi

Mid

Lo

e

o

ē

ō

Figure 4.4: Automaton realisation for water reservoir system.

Clearly,

L(Aut) = {ε, o, e, oo, ee, ooo, ooe, . . .} ,

and

Lm(Aut) = {ε, oo, ee, . . .} .

♦

Remark 4.3 A language that is marked by a finite deterministic

automaton is called regular.
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Remark 4.4 Aut is called non-blocking if the system (Σ, L(Aut),

Lm(Aut)) is non-blocking, i.e., if

L(Aut) = Lm(Aut).

This implies that from any reachable state q of a non-blocking

automaton, we can always get into a marked state. If in a block-

ing automaton, we get into a state q from which we cannot reach

a marked state, we distinguish two situations: if there is no tran-

sition possible, i.e., if f (q, σ) is undefined ∀σ ∈ Σ, we are in a

deadlock situation, otherwise the automaton is said to be livelocked

(Figure 4.5).

Figure 4.5: Deadlock (left) and livelock (right).

4.5.2 Unary operations on automata

We will need the following unary operations on automata, i.e.,

operations that take one finite deterministic automaton with mark-

ed states as an argument.

The first operation, Ac(Aut), removes all states that are not

reachable (accessible) and all transitions originating from those

states: for Aut given in (4.18),

Ac(Aut) := (Qac,Σ, fac, q0,Qac,m) ,

where

Qac := {q ∈ Q | ∃s ∈ Σ∗ such that f (q0, s) = q} ,

Qac,m := {q ∈ Qm | ∃s ∈ Σ∗ such that f (q0, s) = q} ,

fac : Qac × Σ → Qac is the restriction of f : Q× Σ → Q to Qac .

Clearly, this operation neither changes the language nor the mark-

ed language generated by Aut:

L(Aut) = L(Ac(Aut))

Lm(Aut) = Lm(Ac(Aut)).
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Example 4.3 Consider the automaton depicted in the left part

of Figure 4.6. Clearly, there is only one state that is not reach-

able. This state (and the two transitions originating from it) are

removed by the Ac-operation to provide Ac(Aut) (right part of

Figure 4.6).

Ac(Aut)Aut

Figure 4.6: Illustration of Ac-operation.

♦

Another operation, CoAc(Aut), provides the “co-accessible” part

of Aut. It removes all states from which we cannot reach a

marked state and all transitions originating from and ending in

such states. For Aut given in (4.18),

CoAc(Aut) := (Qcoac,Σ, fcoac, q̃0,Qm) ,

where

Qcoac := {q ∈ Q | ∃s ∈ Σ∗ such that f (q, s) ∈ Qm}

q̃0 :=

{
q0, if q0 ∈ Qcoac

undefined else

fcoac : Qcoac × Σ → Qcoac

is the restriction of f : Q× Σ → Q to Qcoac.

Clearly, this operation does not change the language marked by

Aut, i.e.,

Lm(Aut) = Lm(CoAc(Aut))

but will, in general, affect the language generated by Aut:

L(CoAc(Aut)) ⊆ L(Aut).

Note that, by construction, CoAc(Aut) is non-blocking, i.e.,

Lm(CoAc(Aut)) = L(CoAc(Aut)).

Example 4.4 Consider the automaton depicted in the left part of

Figure 4.7. Clearly, there are two states from which it is impos-

sible to reach the marked state. These (plus the corresponding
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Aut CoAc(Aut)

Figure 4.7: Illustration of CoAc-operation.

transitions) are removed by the CoAc-operation to provide the

nonblocking automaton shown in the right part of Figure 4.7.

♦

Remark 4.5 The Ac- and the CoAc-operation commute, i.e.,

Ac(CoAc(Aut)) = CoAc(Ac(Aut)).

4.5.3 Binary operations on automata

The product operation, denoted by “×”, forces two automata to

synchronise all events. For

Aut1 = (Q1,Σ, f1, q10,Q1m)

Aut2 = (Q2,Σ, f2, q20,Q2m) ,

it is defined by

Aut1 × Aut2 := Ac(Q1 ×Q2,Σ, f , (q10, q20),Q1m ×Q2m) , (4.19)

where Q1 × Q2 and Q1m × Q2m denote Cartesian products, i.e.,

the sets of all ordered pairs from Q1 and Q2 and from Q1m and

Q2m, respectively. The transition function f of Aut1 × Aut2 is

defined as follows:

f ((q1, q2), σ) =





( f1(q1, σ), f2(q2, σ)) if both f1(q1, σ) and

f2(q2, σ) are defined,

undefined else.

(4.20)

Hence, in a state (q1, q2) of the product automaton Aut1 × Aut2,

an event σ ∈ Σ can only be generated if both Aut1 and Aut2 can

generate σ in their respective states q1 and q2. In other words:

the two constituent automata have to agree on, or synchronise,

events. It follows from the definition (4.19) that the initial state

of Aut1 × Aut2 is the pair of initial states of Aut1 and Aut2, and
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that a state (q1, q2) is marked in Aut1 × Aut2 if q1 is marked in

Aut1 and q2 is marked in Aut2.

Note that, for convenience, we have included the Ac-operation

into the product definition to remove non-reachable states.

The definition (4.19) implies the following properties:

L(Aut1 × Aut2) ={s ∈ Σ∗ | f (q10, q20), s) exists}

={s ∈ Σ∗ | f1(q10, s) and f2(q20, s) exist}

={s ∈ Σ∗ | f1(q10, s) exists} ∩

{s ∈ Σ∗ | f2(q20, s) exists}

=L(Aut1) ∩ L(Aut2) ,

Lm(Aut1 × Aut2) ={s ∈ Σ∗ | f (q10, q20), s) ∈ Qm}

={s ∈ Σ∗ | f1(q10, s) ∈ Q1m and

f2(q20, s) ∈ Q2m}

={s ∈ Σ∗ | f1(q10, s) ∈ Q1m} ∩

{s ∈ Σ∗ | f2(q20, s) ∈ Q2m}

=Lm(Aut1) ∩ Lm(Aut2) .

Another operation on two automata is parallel composition, de-

noted by “‖”. It is used to force synchronisation when the two

constituent DESs (and therefore the two realising automata) are

defined on different event sets. For

Aut1 = (Q1,Σ1, f1, q10,Q1m)

and

Aut2 = (Q2,Σ2, f2, q20,Q2m) ,

Aut1 ‖ Aut2 := Ac(Q1 ×Q2,Σ1 ∪ Σ2, f , (q10, q20),Q1m ×Q2m) ,

(4.21)

where

f ((q1, q2), σ) =





( f1(q1, σ), f2(q2, σ)) if σ ∈ Σ1 ∩ Σ2, and

both f1(q1, σ) and f2(q2, σ) are defined,

( f1(q1, σ), q2) if σ ∈ Σ1 \ Σ2 and

f1(q1, σ) is defined,

(q1, f2(q2, σ)) if σ ∈ Σ2 \ Σ1 and

f2(q2, σ) is defined,

undefined else.

(4.22)
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This implies that the automata Aut1 and Aut2 only have to agree

on events that are elements of both Σ1 and Σ2. Each automaton

can generate an event without consent from the other automaton,

if this event is not in the event set of the latter. In the special

case where Σ1 ∩ Σ2 = ∅, parallel composition is also called the

“shuffle product”.

To discuss the effect of parallel composition on languages, we

need to introduce projections. The projection operation

Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i , i = 1, 2,

is defined recursively as

Pi(ε) = ε

Pi(sσ) =

{
Pi(s)σ if σ ∈ Σi,

Pi(s) otherwise .

Hence, the effect of Pi on a string s ∈ (Σ1 ∪ Σ2)∗ is to remove all

symbols that are not contained in Σi.

The inverse projection P−1
i : Σ∗

i → 2(Σ1∪Σ2)
∗
is defined as

P−1
i (s) = {t ∈ (Σ1 ∪ Σ2)

∗ | Pi(t) = s} .

With these definitions, we can write

L(Aut1 ‖ Aut2) ={s ∈ (Σ1 ∪ Σ2)
∗ | f ((q10, q20), s) exists }

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) and

f2(q20, P2(s)) exists}

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) exists} ∩

{s ∈ (Σ1 ∪ Σ2)
∗ | f2(q20, P2(s)) exists}

=P−1
1 ({t ∈ Σ∗

1 | f1(q10, t)) exists}) ∩

P−1
2 ({t̃ ∈ Σ∗

2 | f2(q20, t̃) exists})

=P−1
1 (L(Aut1)) ∩ P−1

2 (L(Aut2)).

Similarly, we can show

Lm(Aut1 ‖ Aut2) ={s ∈ (Σ1 ∪ Σ2)
∗ | f ((q10, q20), s) ∈ Qm}

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) ∈ Q1m

and f2(q20, P2(s)) ∈ Q2m}

={s ∈ (Σ1 ∪ Σ2)
∗ | f1(q10, P1(s)) ∈ Q1m} ∩

{s ∈ (Σ1 ∪ Σ2)
∗ | f2(q20, P2(s)) ∈ Q2m}

=P−1
1 ({t ∈ Σ∗

1 | f1(q10, t)) ∈ Q1m}) ∩

P−1
2 ({t̃ ∈ Σ∗

2 | f2(q20, t̃) ∈ Q2m})

=P−1
1 (Lm(Aut1)) ∩ P−1

2 (Lm(Aut2)).
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The parallel composition operation is particularly useful in the

following scenario. Often, the specifications can be formulated

in terms of a subset Σspec ⊂ Σ, i.e., L̃spec ⊆ Σ∗
spec. Recall that

a crucial step when computing the least restrictive controller is

to perform the language intersection (4.14). As L̃spec and Lm are

now defined on different alphabets, we cannot directly intersect

these languages. In this situation, we have two options:

(i) Use inverse projection

P−1
spec : Σ∗

spec → Σ∗

to introduce

Lspec = P−1
spec(L̃spec).

Then, Lspec ∩ Lm is well defined and can be computed by

finding finite automata realisations

Autp = (Qp,Σ, fp, qp0,Qpm)

for the plant model (Σ, L, Lm) and

Autspec = (Qspec,Σ, fspec, qspec0,Qspec)

for the specification (Σ, Lspec, Lspec), respectively. Then,

Lspec ∩ Lm = Lm(Autp × Autspec).

(ii) Alternatively, we can directly work with the language L̃spec
and define an automaton realisation

Ãutspec = (Q̃spec,Σspec, f̃spec, q̃spec0, Q̃spec).

The desired language intersection is then generated by

Lm ∩ P−1
spec(L̃spec) = Lm(Autp ‖ Ãutspec).

Clearly, this option is much more economical, as the num-

ber of transitions in Ãutspec will in general be much less

than in Autspec.

Example 4.5 Let us reconsider the simple water reservoir from

Example 4.1 with event set Σ = {o, o, e, e}. A finite automaton

realisation

Autp = (Qp,Σp, fp, qp0,Qpm) (4.23)

for the plant model has already been determined in Example 4.2.

Recall that the specification is that strings beginning with ooe are

not allowed, i.e., the specification language is

Lspec = Σ∗ \ {ooe . . .} . (4.24)

81



4 Supervisory Control

ō, e, ē

o, ō, e, ē

o ō

o, e, ē

ē, o, ō

α β γ δ

Figure 4.8: Automaton realisation for Lspec.

We can easily find a finite automaton Autspec generating Lspec.

It is depicted in Figure 4.8 and works as follows: The state δ

can be interpreted as a “safe state”. Once this is reached, all

strings from Σ∗ are possible. Clearly, if the first event is not

o, it can be followed by any string in Σ∗ without violating the

specifications. Hence, o, e, e will take us from the initial state α

to the “safe state” δ. If the first event is an o, this will take us to

state β. There, we have to distinguish whether o occurs (this will

result in a transition to γ), or any other event. In the latter case,

violation of the specification is not possible any more, hence this

takes us to the safe state δ. Finally, in γ, anything is allowed

apart from e. As the specification is not supposed to introduce

any additional marking, we set Qspec,m = Qspec = {α, β,γ, δ}.

The desired language intersection is then provided by

Lm ∩ Lspec = Lm(Autp × Autspec) , (4.25)

and the product automaton Autp×Autspec is shown in Figure 4.9.

o
ō

o

ē

o ō

ee

Figure 4.9: Autp × Autspec for Example 4.5.
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Note that we could also express our specification on the reduced

event set Σspec = {o, e}. The specification language would then

be

L̃spec = Σ∗
spec \ {oe . . .} . (4.26)

An automaton realisation Ãutspec for L̃spec is shown in Figure 4.10.

The desired language intersection is now provided by

o o

e

o, e

Figure 4.10: Automaton realisation for L̃spec.

Lm ∩ P−1
spec(L̃spec) = Lm(Autp ‖ Ãutspec) , (4.27)

and the parallel composition Autp ‖ Ãutspec is shown in Fig-

ure 4.11. ♦

ē

o

e

ō o

o

ō

e

Figure 4.11: Autp ‖ Ãutspec for Example 4.5.

4.5.4 Realising least restrictive implementable control

Recall that, on the basis of a finite automaton Autp realising the

plant model P = (Σ, L, Lm) and a finite automaton Autspec real-

ising the specifications (Σ, Lspec, Lspec), or, equivalently, Ãutspec
realising (Σspec ⊆ Σ, L̃spec, L̃spec)), we can compute

Autps := Autp × Autspec

= Autp ‖ Ãutspec

= (Qps,Σ, fps, qps0,Qpsm)
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with

K̂ = Lm(Autps)

= Lm ∩ Lspec (4.28)

= Lm ∩ P−1
spec(L̃spec)

as the potentially least restrictive marked closed loop language

and K̂ as the potentially least restrictive closed loop (and con-

troller) language. Note that a realisation of (Σ, K̂, K̂) is provided

by

AutK̂ := CoAc(Autps)

= (QK̂,Σ, fK̂, qK̂0,QK̂m)

as Autps may be blocking.

We now need a mechanism to decide whether K̂ can be achieved

by an implementable controller. If yes, K̂ = L(AutK̂) is the least

restrictive (or maximally permissive) implementable controller.

If not, we will need an algorithm to determine a realisation for

the least restrictive controllable sublanguage K̂↑ of K̂.

We know that K̂ can be achieved by an implementable controller

if and only if conditions (i), (ii) and (iii) in Theorem 4.2 hold

for K = K̂. Because of the specific form (4.28) of the target

language K̂, (i) and (iii) hold (see Section 4.4). Hence, we only

need an algorithm to check condition (ii) in Theorem 4.2. For

this, introduce

ΓK̂((q1, q2)) := {σ ∈ Σ | fK̂((q1, q2), σ) is defined}

Γp(q1) := {σ ∈ Σ | fp(q1, σ) is defined} ,

where fK̂ and fp are the transition functions of the automata

AutK̂ and Autp, respectively. Then, (ii) holds for K̂ if and only if

Γp(q1) \ ΓK̂((q1, q2)) ⊆ Σc (4.29)

for all (q1, q2) ∈ QK̂. If (4.29) is not true for some (q1, q2) ∈ QK̂,

this state and all the transitions originating in and ending in it

are removed to give an automaton AutK̃ with marked language

K̃ = Lm(AutK̃) .

We apply the procedure consisting of CoAc- and Ac-operations1

and the subsequent removal of states that violate (4.29) recur-

sively, until

Γp(q1) \ ΓK̃((q1, q2)) ⊆ Σc

1 The Ac-operation can always be included, as it does neither affect the language

nor the marked language.
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4.6 Control of a Manufacturing Cell

holds for all (q1, q2) ∈ AutK̃. The resulting (non-blocking) au-

tomaton is AutK̂↑ , and its marked language is

K̂↑ = Lm(AutK̂↑) .

Example 4.6 We now apply this procedure to the automaton

Autps = (Autp × Autspec)

from Example 4.5. As this Autps is nonblocking, we have

AutK̂ = Autps .

Clearly, (4.29) does not hold for state (Med,γ) in QK̂. There,

Γp(Med) = {o, e}

ΓK̂(Med,γ) = {o}

and therefore

Γp(Med) \ ΓK̂(Med,γ) = {e} * Σc .

Removing this state (plus the corresponding transitions) pro-

vides AutK̃ as shown in Figure 4.12. Applying the CoAc-operation

o o

ē

ō

ee

Figure 4.12: AutK̃ for Example 4.6.

results in the automaton shown in Figure 4.13. Now (4.29) is sat-

isfied for all (q1, q2) in the state set of CoAc(AutK̃). Hence

AutK̂ = CoAc(AutK̃)

is the desired controller realisation. ♦

4.6 control of a manufacturing cell

In this section, the main idea of SCT will be illustrated by means

of a simple, but nontrivial, example. The example is adopted
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o

ē

ō

ee

Figure 4.13: CoAc(AutK̃) for Example 4.6.

from [26]. The manufacturing cell consists of two machines and

an autonomous guided vehicle (AGV). Machine 1 can take a

workpiece from a storage and do some preliminary processing.

Before it can take another workpiece from the storage, it has to

transfer the processed workpiece to the AGV. Machine 2 will

then take the pre-processed workpiece from the AGV and add

more processing steps. The finished workpiece then has again

to be transferred to the AGV, which will finally deliver it to a

conveyor belt. From a high-level point of view, we need the fol-

lowing events to describe the operation of the machines and the

AGV.

The event set for machine 1 is ΣM1 = {M1T,M1P}, where M1T

signifies the event that a workpiece is being taken from the stor-

age, and M1P is the event that a workpiece is transferred from

machine 1 to the AGV. M1T is a controllable event, whereas

M1P is not controllable: if machine 1 is finished with a work-

piece it will have to transfer it to the AGV. An automaton model

for machine 1 is shown in Fig. 4.14.

M1P

M1T

Figure 4.14: Automaton model M1 for machine 1.

The event set for machine 2 is ΣM2 = {M2T,M2P}, where M2T

represents the event that a preprocessed workpiece is transferred

from the AGV to machine 2, and M2P signifies that the finished

workpiece is put from machine 2 to the AGV. As for machine

1, M2T is a controllable event, whereas M2P is not controllable.

The automaton M2 (Fig. 4.15) models machine 2.
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M2T

M2P

Figure 4.15: Automaton model M2 for machine 2.

The event set for the AGV consists of four elements: ΣAGV =

{M1P,M2T,M2P,CB}, where CB represents the event that a

finished workpiece is being transferred from the AGV to the

conveyor belt. CB is not controllable. We assume that the AGV

has capacity one, i.e., it can only hold one workpiece at any in-

stant of time. A suitable automaton model, VEH, is shown in

Figure 4.16.

M1P

M2P

CB

γ

M2T

α
β

Figure 4.16: Automaton model VEH for the autonomous guided

vehicle.

In state β, the AGV is not loaded; in state α, it is loaded with a

preprocessed workpiece from machine 1; in γ, it is loaded with

a finished workpiece from machine 2.

In a first step, we set up the plant model by parallel composition

of the three automata M1, M2, and VEH. As ΣM1 ∩ ΣM2 = ∅,

the parallel composition M := M1 ‖ M2 reduces to the “shuffle

product”. This is shown in Figure 4.17, and Autp = M ‖ VEH

is depicted in Figure 4.18.

Let’s first assume that the only requirement is that the closed

loop is non-blocking, i.e., Lspec = (ΣM1 ∪ ΣM2 ∪ ΣAGV)∗. It is

indeed easy to see from Figure 4.18 that the uncontrolled plant,

Autp, may block. An example for a string of events that takes

the plant state from its initial value into a blocking state is

M1T, M1P, M1T, M2T, M1P, M1T .

In the state reached by this string, both machines are loaded with

workpieces, and the AGV is also loaded with a preprocessed

workpiece, i.e., a workpiece which is not ready to be delivered

to the conveyor belt.
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M1T

M1P

M2PM2T

M1T

M1P

M2T M2P

Figure 4.17: M = M1 ‖ M2.

M1T

M2P

M1T

M1P

M1T

M2TM1T

M1TM2T

M1P

CB

M2P
CB

Figure 4.18: Realisation of plant model, Autp = M ‖ VEH.

Note that an automaton realisation Autspec for Lspec is trivial. Its

state set is a singleton, and in this single state all events from

Σ = ΣM1 ∪ ΣM2 ∪ ΣAGV can occur.

The finite step in the controller synthesis procedure outlined in

the previous section is to compute

AutK̂ = CoAc(Autp × Autspec)

= CoAc(Autp) .
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This is shown in Figure 4.19. When investigating AutK̂, we find

M1T

M2P

M1T

M1P

M2TM1T

M1TM2T

CB

M2P
CB

Figure 4.19: AutK̂ = CoAc(Autp).

that (4.29) is violated in the state indicated by ¥, as a transi-

tion corresponding to an uncontrollable event has been removed.

Hence, we remove ¥ (plus all transitions originating and end-

ing there). This, however, gives rise to a blocking automaton.

Applying the CoAc-operation for a second time results in the

automaton shown in Figure 4.20. For this automaton, (4.29) is

satisfied in all states; it is therefore the desired controller realisa-

tion AutK̂↑ .

Let us assume that apart from non-blocking, we have another

specification. Namely, it is required that each M2P event is im-

mediately followed by a CB event. The corresponding specifi-

cation can be realised by the automaton Autspec shown in Fig-

ure 4.21.

The corresponding automaton Autps = Autp × Autspec is de-

picted in Figure 4.22. We then compute AutK̂ = CoAc(Autp ×

Autspec) and perform the discussed controller synthesis proce-

dure. The resulting AutK̂↑ is shown in Figure 4.23.
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M1T

M2P

M1T

CB

M2P
CB

M2T

M1P

Figure 4.20: Least restrictive controller realisation AutK̂↑ .

CB

M2P

M1T, M1P, M2T, CB

Figure 4.21: Specification automaton Autspec.
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M2P

M1T

M1P

M1T

M2TM1T

M1TM2T

M1P

CB

M2P
CB

Figure 4.22: Autp × Autspec.

M1T

M2T

M2P

CB

M1P

Figure 4.23: AutK̂ = CoAc(Autp).
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5
HYBRID SYSTEMS

This chapter is co-authored with Thomas Moor (Universität Er-

langen).

5.1 introduction

In hybrid dynamical systems, discrete-event components (real-

ised, e.g., by finite automata) and continuous components (re-

alised, e.g., by ordinary differential equations) interact in a non-

trivial way. The fundamental problems in analysing and syn-

thesing such systems stem from the nature of their state sets.

While the state space of a continuous system usually exhibits

vector space structure, and the state set of a discrete event sys-

tem (DES) is often finite, the state set of the overall system in-

herits none of theses amenities: as a product of the constitut-

ing state sets, it is neither finite nor does it exhibit vector space

structure. Hence, neither methods from discrete event systems

theory, which rely on exploiting finiteness, nor concepts from

continuous control theory carry over readily to hybrid problems.

Nevertheless, as inherently hybrid application problems are very

common, hybrid control systems have become an increasingly

popular subject during the last decade. The reader is referred to

a number of special issues and dedicated proceedings volumes,

e.g. [2, 1, 4, 11], for a survey on research trends in this area. A

considerable part of hybrid systems research has gone into inves-

tigating approximation-based approaches (e.g. [12, 10, 24, 15]).

There, the core idea is to approximate continuous dynamics by

discrete event systems, and hence to transform the hybrid con-

trol problem into a purely discrete one. Of course, care has to be

taken to guarantee that the resulting (discrete event) control sys-

tem enforces the specifications not only for the discrete approxi-

mation but also for the underlying hybrid system. In [17, 21], the

authors of this chapter developed an approximation-based syn-

thesis approach which is set within J.C. Willems’ behavioural

framework (e.g. [27]) and which is based on the notion of l-
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complete abstractions. This approach will be described in Sec-

tion 5.2.

Like other approximation-based methods, our approach suffers

from the “curse of complexity”: state sets of approximating

DESs may become very large, and, as the subsequent control

synthesis step involves forming the product of approximating

DESs and a realisation of the specifications, computational effort

can become excessive even for seemingly “small” applications.

Obviously, complexity also represents a major problem in other

control contexts, and it is common engineering knowledge that

suitable decomposition techniques form a necessary ingredient

for any systematic treatment of complex control problems. Hi-

erarchical approaches, where several control layers interact, are

a particularly attractive way of problem decomposition as they

provide an extremely intuitive control architecture.

Section 5.3 presents a hierarchical synthesis framework which

is general enough to encompass both continuous and discrete

levels and is therefore especially suited for hybrid control prob-

lems. It is based on two previous (rather technical) conference

papers [20, 19]. To keep exposition reasonably straightforward,

we focus on the case of two control layers. Unlike heuristic

approaches, our synthesis framework guarantees that the con-

trol layers interact “properly” and do indeed enforce the overall

specifications for the considered plant model. Its elegance stems

from the fact that the specifications for the lower control level

can be considered a suitable abstraction which may be used as a

basis for the synthesis of the high-level controller. Formulating

specifications for the lower control level may rely on engineer-

ing intuition. In fact, our approach allows to encapsulate engi-

neering intuition within a formal framework, hence exploiting

positive aspects of intuition while preventing misguided aspects

from causing havoc within the synthesis step.

In the context of discrete event and hybrid systems, where the

“curse of dimensionality” seems to be particularly prohibitive,

a number of hierarchical concepts have been discussed in the

literature. Our approach has been inspired by the hierarchical

DES theory developed in [28], but is technically quite different

because we employ an input/output structure to adequately rep-

resent both time and event driven dynamics for hybrid systems.

There is also a strong conceptual link to [14], where, as in [22, 6]

and in our work, the preservation of fundamental properties

across levels of abstraction is of prime concern.

In Section 5.4, we demonstrate the potential of our hierarchical

synthesis framework by applying it to a multiproduct batch con-

trol problem, where the specification is to produce the desired
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product volumes with minimal cost subject to quality and safety

constraints. The problem is simple enough to serve as illustra-

tion for our main ideas, but of enough complexity to make it

hard to handle for unstructured synthesis methods.

5.2 abstraction based supervisory control

The purpose of this section is to briefly summarise key results

from our earlier work [17, 21]. They apply to the scenario de-

picted in Fig. 5.1. There, the plant model is continuous, realised,

�
�
�
�

discrete event controller
(e.g. finite automaton)

y(k) ∈ Yu(k) ∈ U

continuous plant model
(e.g. ODEs)

quantisation

cont. dynamics with discrete external behaviour

ξ(t) ∈ Rp

Figure 5.1: Continuous plant under discrete control.

e.g., by a set of ODEs, but communicates with its environment

exclusively via discrete events. Input events from the set U may

switch the continuous dynamics, and output events from a set

Y are typically generated by some sort of quantisation mecha-

nism. Hence both the input and the output signal are sequences

of discrete events, denoted by u and y, respectively. Note that

we do not need to specify at this point whether events occur

at equidistant instants of time (“time-driven sampling”, “clock

time”) or at instants of time that are defined by the plant dy-

namics, e.g., by continuous signals crossing certain thresholds

(“event-driven sampling”, “logic time”). In J.C. Willems’ termi-

nology, the (external) behaviour of a dynamic system is the set

of external signals that the system can evolve on. Hence, with

w := (u, y) and W := U × Y, the external plant behaviour Bp is

a set of maps w : N0 → W; i.e. Bp ⊆ WN0 , where N0 is the set

of nonnegative integers and WN0 := {w : N0 → W} represents

the set of all sequences in W.

To clarify the input/output structure, we use a slightly weak-

ened version of Willems’ I/O-behaviours:
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Definition 5.1 A behaviour B ⊆ WN0 is said to be a (strict) I/-

behaviour with respect to (U, Y), if

(i) the input is free, i.e. PUB = UN0 and

(ii) the output does (strictly) not anticipate the input1, i.e.

PUw̃|[0,k] = PUŵ|[0,k]

⇒ (∃w ∈ B)PYw|[0,k] = PYw̃|[0,k] and PUw = PUŵ

for all k ∈ N0, w̃, ŵ ∈ B; for the strict case the premiss on the

l.h.s. is weakened to PUw̃|[0,k) = PUŵ|[0,k).

Loosely speaking, item (ii) in Def. 5.1 says that we can change the

future (and, in the strict case, the present) of the input without

affecting present and past of the output.

We now focus on the role of a controller, or supervisor, evolv-

ing on the same signal space as the plant model. Adopting the

concepts of supervisory control theory for DESs [26] to the be-

havioural framework, the task of a supervisor Bsup ⊆ WN0 is to

restrict the plant behaviour Bp ⊆ WN0 such that the closed loop

behaviour contains only acceptable signals. The closed loop be-

haviour Bcl is Bp ∩ Bsup, because a signal w ∈ Bp “survives”

closing the loop if and only if it is also in Bsup. We collect all

acceptable signals in the specification behaviour Bspec and say

that the supervisor Bsup enforces the specification if Bcl ⊆ Bspec.

It is immediately clear that any supervisor must exhibit two ad-

ditional properties: (i) it must respect the I/O structure of the

plant, i.e., it may restrict the plant input but then has to accept

whatever output event the plant generates; (ii) it must ensure

that, at any instant of time, there is a possible future evolution

for the closed loop. This is formalised by the following defini-

tion:

Definition 5.2 A supervisor Bsup ⊆ WN0 is admissible to the plant

Bp ⊆ WN0 if

(i) Bsup is generically implementable, i.e. k ∈ N0, w|[0,k] ∈

Bsup|[0,k], w̃|[0,k] ∈ Wk+1, w̃|[0,k] ≈y w|[0,k] implies w̃|[0,k] ∈

Bsup|[0,k]; and

1 The restriction operator ( · )|[k1,k2) maps sequences w ∈ WN0 to finite strings

w|[k1,k2) := w(k1)w(k1 + 1) · · · w(k2 − 1) ∈ Wk2−k1 , where we use W0 := {ǫ}
and ǫ denotes the empty string. For closed intervals, the operator ( · )|[k1,k2] is
defined accordingly.

ForW = U×Y, the symbols PU and PY denote the natural projection operators

to the respective component, i.e. PUw = u and PYw = y for w = (u, y),
u ∈ UN0 , y ∈ YN0 . We use w̃|[0,k] ≈y w|[0,k] as an abbreviation for the two

strings to be identical up to the last output event, i.e. PUw̃|[0,k] = PUw|[0,k]
and PYw̃|[0,k) = PYw|[0,k).
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(ii) Bp and Bsup are non-conflicting, i.e. Bp|[0,k] ∩ Bsup|[0,k] =

(Bp ∩Bsup)|[0,k] for all k ∈ N0.

This leads to the following formulation of supervisory control

problems.

Definition 5.3 Given a plant Bp ⊆ WN0 , W = U × Y, and a speci-

fication Bspec ⊆ WN0 , the pair (Bp, Bspec)cp is a supervisory con-

trol problem. A supervisor Bsup ⊆ WN0 that is admissible to Bp

and that enforces Bspec is said to be a solution of (Bp, Bspec)cp.

In [17, 18], we adapt the set-theoretic argument of [26] to show

the unique existence of the least restrictive solution for our class

of supervisory control problems. Note that the least restrictive

solution may be trivial, i.e. Bsup = ∅, as this is admissible to the

plant and, because of Bp ∩∅ ⊆ Bspec, enforces the specifications.

Obviously, only nontrivial solutions are of interest. Therefore, if

∅ turns out to be the least restrictive solution of (Bp, Bspec)cp,

one would conclude that the specifications are “too strict” for

the given plant model.

If both Bp and Bspec could be realised by finite automata, we

could easily compute (a realisation of) the least restrictive solu-

tion of (Bp, Bspec)cp by appropriately modifying standard DES

tools. While a finite automaton realisation of Bspec ∈ WN0 is

quite common for finiteW, the hybrid plant is in general not real-

isable on a finite state space. In [24, 17], we suggest to approach

this problem by replacing Bp with an abstraction2
Bca that is re-

alised by a finite automaton. We can then readily establish a solu-

tion Bsup of the (purely discrete) control problem (Bca, Bspec)cp.

Clearly, because of Bp ∩ Bsup ⊆ Bca ∩ Bsup ⊆ Bspec, the result-

ing supervisor also enforces the specifications for the original

plant Bp. To show that Bsup is also admissible to Bp and hence

solves the original (hybrid) control problem (Bp, Bspec)cp, we

employ the notion of completeness:

Definition 5.4 [27] A behaviour B ⊆ WN0 is complete if

w ∈ B ⇔ ∀ k ∈ N0 : w|[0,k] ∈ B|[0,k] .

Hence, to decide whether a signal w belongs to a complete be-

haviour, it is sufficient to look at “finite length portions” of

w. The external behaviour induced by a finite state machine

is an example for completeness. Another example is the be-

haviour induced by a finite-dimensional discrete-time linear sys-

tem. B = {w ∈ R
N0 | limk→∞ w(k) = 0}, on the other hand, is

not complete.

2 Bca is said to be an abstraction of Bp, if Bp ⊆ Bca.
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As a consequence of the following proposition, admissibility of

a supervisor is independent of the particular plant dynamics

provided that all involved behaviours are complete:

Proposition 5.1 [18] Let Bp ⊆ WN0 be a complete I/- behaviour and

Bsup ⊆ WN0 be complete and generically implementable. Then Bp

and Bsup are non-conflicting.

For the remainder of this chapter, we restrict consideration to

complete behaviours. Theorem 5.1 then follows immediately

from Proposition 5.1.

Theorem 5.1 Let Bca ⊆ WN0 , W = U × Y, be an abstraction of an

I/- behaviour Bp ⊆ WN0 , let Bspec ⊆ WN0 , and let Bsup ⊆ WN0 be a

nontrivial solution of the supervisory control problem (Bca, Bspec)cp.

If Bp and Bsup are complete then Bsup is a nontrivial solution of

(Bp, Bspec)cp.

In practice, to make our approach work, a sequence of increas-

ingly refined abstractions Bl , l = 1, 2, . . ., of Bp, i.e. Bp ⊆

. . .Bl+1 ⊆ Bl . . . ⊆ B1, is employed. In [24, 17], we suggest

l-complete approximations as candidate abstractions Bl . One

then begins with the “least accurate” abstraction B1, checks

whether a non-trivial solution of (B1, Bspec)cp exists and, if this

is not the case, turns to the refined abstraction B2. In this

way, refinement and discrete control synthesis steps alternate

until either a nontrivial solution to (Bl , Bspec)cp and hence to

(Bp, Bspec)cp is found or computational resources are exhausted.

Unfortunately, the latter case often turns out be true. This is the

motivation for a hierarchical extension of our approach.

5.3 hierarchical control

5.3.1 Control architecture

To simplify exposition, we concentrate on the two-level control

architecture shown in Fig. 5.2. Low-level control is implemented

by an intermediate layer Bım communicating with the plant3 B
L
p

via low-level signals uL and yL and with the high-level supervisor

B
H
sup via high-level signals uH and yH. Apart from implementing

3 To make notation easier to read, all high-level signals, signal sets and be-

haviours will be indicated by a sub- or superscript “H”, while low-level en-

tities will be characterised by a sub- or superscript “L”. As the plant evolves

on a physical, i.e. low-level signal set, its behaviour will be denoted by B
L
p

from now on.
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B
L
p: low-level plant model

B
H
sup: high-level supervisor

Bım: aggregation & low-level control

uL yL

B
L
ım[BH

sup]

uH yH

B
H
ım[BL

p]

Figure 5.2: Plant perspective (dashed) and supervisor perspec-

tive (dotted).

low-level control mechanisms corresponding to high-level com-

mands uH, the intermediate layer Bım aggregates low-level mea-

surement information yL to provide high-level information yH to

B
H
sup. Aggregation may be both in signal space and in time, i.e.

the time axis for high-level signals may be “coarser” than for

low-level signals. Note that in this scenario Bım is a behaviour

on WH ×WL, where WH := UH ×YH and WL := UL ×YL represent

the high and low-level signal sets.

From the perspective of the (low-level) plant B
L
p, interconnect-

ing Bım and B
H
sup provides the overall controller. Its external be-

haviour is denoted by B
L
ım[BH

sup] and, as indicated by the dashed

box in Figure 5.2, evolves on the low-level signal space WL. The

behaviour B
L
ım[BH

sup] is given by the projection of Bım into WN0
L

with the internal high-level signal restricted to B
H
sup:

B
L
ım[BH

sup] := {wL| (∃wH ∈ B
H
sup)[ (w

H, wL) ∈ Bım ]}. (5.2)

Clearly, we require the overall controller B
L
ım[BH

sup] to be a (non-

trivial) solution of the original control problem (BL
p, B

L
spec)cp. In

particular, the overall controller is required to enforce the speci-

fication, i.e. we need

B
L
p ∩B

L
ım[BH

sup] ⊆ B
L
spec . (5.3)

We now re-examine Fig. 5.2: from the perspective of the high-

level supervisor B
H
sup, interconnecting the intermediate layer Bım

with the (low-level) plant model B
L
p provides a compound high-

level plant model. Its external behaviour is denoted by B
H
ım[BL

p]

and, as indicated by the dotted box in Fig. 5.2, evolves on the

high-level signal set WH. The behaviour B
H
ım[BL

p] is the projec-

tion of Bım intoWN0
H with the internal low-level signal restricted

to B
L
p:

B
H
ım[BL

p] := {wH| (∃wL ∈ B
L
p)[ (w

H, wL) ∈ Bım ]} . (5.4)
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By the same argument as before, the high-level supervisor B
H
sup

is required to be admissible to the compound high-level plant

model B
H
ım[BL

p], i.e. B
H
sup must be generically implementable,

and B
H
ım[BL

p] and B
H
sup must be non-conflicting.

We summarise our discussion of Figure 5.2 in the following def-

inition.

Definition 5.5 The pair (Bım, B
H
sup)tl is a two-level hierarchical

solution of the supervisory control problem (BL
p, B

L
spec)cp if

(i) B
L
p ∩B

L
ım[BH

sup] ⊆ B
L
spec, and

(iia) B
L
ım[BH

sup] is admissible to B
L
p, and

(iib) B
H
sup is admissible to B

H
ım[BL

p].

We will now investigate how to make sure that the admissibility

conditions (iia) and (iib) in Definition 5.5 hold. More precisely,

we will discuss which property of Bım will help to enforce these

conditions. To structure the discussion, we will first address the

case of uniform time scales on both signal levels. A layer suit-

ably mediating between different time scales will be investigated

subsequently.

Uniform time scales – type I intermediate layer

From Fig. 5.2 it is obvious that uH and yL can be interpreted

as inputs of the intermediate layer Bım, while uL and yH are

outputs. It is therefore natural to require that Bım is a (strict)

I/- behaviour w.r.t. (UH × YL, YH ×UL). If it is also complete, I/-

and completeness properties are passed from B
L
p to to B

H
ım[BL

p].

Formally, this can be stated as

Lemma 5.1 If Bım is a complete strict I/- behaviour w.r.t. (UH ×

YL, YH × UL), and if B
L
p is a complete I/- behaviour w.r.t. (UL, YL),

then B
H
ım[BL

p] is a complete I/- behaviour w.r.t. (UH, YH).

The same property of Bım ensures that completeness and generic

implementability carry over from B
H
sup to B

L
ım[BH

sup]. Formally:

Lemma 5.2 If Bım is a complete strict I/- behaviour w.r.t. (UH ×

YL, YH ×UL), and if B
H
sup is complete and generically implementable,

then B
L
ım[BH

sup] is complete and generically implementable.

From Lemma 5.1 and 5.2, we can immediately deduce the fol-

lowing important statement: if the plant model B
L
p is a com-

plete I/- behaviour, if the intermediate layer Bım is a complete

strict I/-behaviour, and if the high-level supervisor is both com-

plete and generically implementable, then the admissibility Con-

ditions (iia) and (iib) are satisfied.
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Multiple time scales – type II intermediate layer

In many cases, high-level and low-level signals will be defined

on different time scales. Typically, in technical realisations, low-

level signals “live” on a discrete time axis that is obtained by

(fast) equidistant sampling. High-level signals mostly live on

a time axis that is generated by low-level signals. A common

scenario is that yL produces events, e.g. when certain thresholds

are crossed. The high-level signal yH is then a sequence of these

events, and its time axis is constituted by the event times. We

assume that high-level commands are immediately issued after

the occurrence of a high-level measurement event, hence uH lives

on the same time axis as yH. This scenario is illustrated in Fig. 5.3.

We call the resulting high-level time a dynamic time scale and

formally define this notion as follows:

uL( j)

uH(k)

yL( j)

yH(k)

high-level time scale

low-level time scale j ∈ N0

k ∈ N0

Figure 5.3: Two time scales.

Definition 5.6 Let T : YN0
L → N0

N0 . The operator T is said to be a

dynamic time scale if T is strictly causal4 and if the time transfor-

mation T(yL) : N0 → N0 is surjective and monotonically increasing

for all yL ∈ YN0
L .

For a fixed low-level signal yL, the time transformation T(yL)

maps low-level time j ∈ N0 to high-level time k ∈ N0. By re-

quiring that T itself is a strictly causal operator, we ensure that

at any instant of time the transformation T(yL) only depends on

the strict past of yL.

We focus on measurement aggregation operators that are causal

with respect to a dynamic time scale:

4 Recall that an operator H : UN0 → YN0 , i.e. an operator mapping signals u to

signals y, is called strictly causal if ũ|[0,k) = û|[0,k) ⇒ H(ũ)|[0,k] = H(û)|[0,k]
for all k ∈ N0, ũ, û ∈ UN0 .
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Definition 5.7 The operator F : YN0
L → YN0

H is said to be causal w.r.t.

T if T is a dynamic time scale and if

ỹL|[0,j] = ŷL|[0,j] ⇒ F(ỹL)|[0,k] = F(ŷL)|[0,k] (5.5)

for k = T(ỹL)(j) and all j ∈ N0, ỹ
L, ŷL ∈ YN0

L .

We still have to link high-level control signals uH to low-level con-

trol signals uL. This is done via a sample-and-hold device that is

triggered by the time transformation T(yL), i.e. successive high-

level control actions are passed on to the lower level whenever a

high-level measurement is generated. Formally, this is expressed

by uL = uH ◦ T(yL).

In summary, an intermediate layer Bım mediating between low-

level and high-level time is completely defined by a dynamic

time scale T and a measurement aggregation operator F that is

causal w.r.t. T:

Bım := {(uH, yH, uL, yL)| yH = F(yL) and uL = uH ◦ T(yL)} .

(5.6)

It can be shown that (5.6) represents a complete behaviour and,

like the intermediate layer discussed in the previous section, pre-

serves the input/output structure of the plant and generic imple-

mentability of the supervisor.

Lemma 5.3 For Bım given by (5.6) and B
L
p a complete I/- behaviour

w.r.t. (UL, YL), it follows that B
H
ım[BL

p] is a complete I/- behaviour

w.r.t. (UH, YH).

Lemma 5.4 If Bım is given by (5.6), and if B
H
sup is complete and

generically implementable, it follows that B
L
ım[BH

sup] is complete and

generically implementable.

In most practical situations, we will have to combine the two

types of intermediate layers discussed on the previous pages. It

is intuitively clear that combinations of type I and type II layers

will also preserve the input/output structure of B
L
p and generic

implementability of B
H
sup across the resulting intermediate layer.

We will therefore omit a formal treatment (for this, the inter-

ested reader is referred to [20]) and conclude the discussion on

structural properties of Bım by collecting the relevant facts in the

following proposition.

Proposition 5.2 If the plant model B
L
p is a complete I/- behaviour, if

the intermediate layer Bım is an arbitrary combination of type I lay-

ers (i.e. complete strict I/-behaviours) and of type II layers (i.e. given

by (5.6)), and if the high-level supervisor is both complete and gener-

ically implementable, then the admissibility Conditions (iia) and (iib)

are satisfied.
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We are now in a position to discuss how to design Bım and B
H
sup

(subject to the above constraints) such that B
L
p ∩ B

L
ım[BH

sup] ⊆

B
L
spec, the last remaining condition from Definition 5.5, is also

satisfied and (Bım, B
H
sup)tl therefore forms a two-level hierarchi-

cal solution of the control problem (BL
p, B

L
spec)cp.

5.3.2 A bottom-up design procedure

We suggest an intuitive bottom-up procedure where we first de-

sign appropriate low-level control Bım and then proceed to find

a suitable high-level supervisor B
H
sup.

In a first step, we formalise the intended relation between high-

level and low-level signals by the specification B
HL
spec ⊆ (WH ×

WL)N0 . Hence B
HL
spec denotes the set of all signal pairs (wH, wL)

that represent the desired effect of high-level control actions on

the low-level plant B
L
p and, by implication, on the high-level

measurement. To ensure that wH and wL are indeed related in the

intended way, we require the intermediate layer Bım to enforce

the specification B
HL
spec when connected to the low-level plant B

L
p.

This condition is expressed by the following inclusion:

{(wH, wL) ∈ Bım| w
L ∈ B

L
p} ⊆ B

HL
spec . (5.7)

Suppose we have designed Bım to enforce (5.7), perhaps based

on classical continuous control methods appropriate for the con-

tinuous dynamics of the low-level plant. In principle, we could

then base the design of B
H
sup on the compound high-level plant

B
H
ım[BL

p]. However, from a computational point of view — par-

ticularly for hybrid systems — it is preferable to use an abstrac-

tion B̃
H
p of B

H
ım[BL

p] that does not explicitly depend on the low-

level dynamics or the precise nature of the implemented low-

level control scheme. A suitable abstraction B̃
H
p and a high-level

specification B̃
H
spec expressing B

L
spec in terms of high-level sig-

nals can be derived from (5.7):

B̃
H
p := {wH| (∃wL)[ (wH, wL) ∈ B

HL
spec] } ; (5.8)

B̃
H
spec := {wH| (∀ wL) [ (wH, wL) ∈ B

HL
spec ⇒ wL ∈ B

L
spec ] } .(5.9)

In other words, the abstraction B̃
H
p of the compound high-level

plant model is just the projection of the specification B
HL
spec onto

its high-level signal components. Then, as desired, the result-

ing high-level control problem (B̃H
p, B̃

H
spec)cp does not depend

on the actual low-level plant under low-level control, B
H
ım[BL

p],

but only on the specification B
HL
spec of the preceeding low-level

design step.
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It follows immediately that any (nontrivial) solution B
H
sup of the

high-level control problem (B̃H
p, B̃

H
spec)cp will enforce the orig-

inal low-level specification B
L
spec when connected to B

H
ım[BL

p],

the plant model under low-level control:

B̃
H
p ∩B

H
sup ⊆ B̃

H
spec =⇒ B

L
p ∩B

L
ım[BH

sup] ⊆ B
L
spec .

(5.10)

Hence Condition (i) from Definition 5.5 also holds, and the pair

(Bım, B
H
sup)tl is therefore a two-level hierarchical solution of the

overall control problem (BL
p, B

L
spec)cp.

If B̃
H
p and B̃

H
spec can be realised by finite automata, a slight mod-

ification of standard DES methods, e.g. [26], may be used to

synthesise B
H
sup. Such a situation is to be expected when all con-

tinuous signals are “handled” by the lower-level control scheme

within Bım. Otherwise, another abstraction step is required; see

e.g. [17].

The “degree of freedom” in the proposed bottom-up approach

is the specification B
HL
spec. In general, its choice can be guided

by the same engineering intuition that we would use in a hierar-

chical ad hoc design. However, unlike heuristic approaches, our

method encapsulates intuition in a formal framework where we

can prove that the composition of high-level controller and inter-

mediate layer forms a valid solution of the original problem.

5.3.3 Minimising the cost of closed-loop operation

In addition to a “hard” specification (i.e., a specification that

must hold), many applications come with the control objective

of minimising a certain cost function. To address this issue, we

describe a straightforward extension of the hierarchical frame-

work outlined in Section 5.3.1 and 5.3.2.

From the low-level perspective, we want to solve the control

problem:

min
BLsup

max
wL

γL(wL) s.t. BL
sup solves (BL

p, B
L
spec)cp , w

L ∈ B
L
p∩B

L
sup ,

(5.11)

where γL : B
L
p ∩B

L
spec → R is a (typically additive over time and

positive) function to associate the cost γL(wL) with each low-level

plant signal wL that satisfies the “hard” specification B
L
spec. Note

that when the initial state of the plant is given and the supervisor

is sufficiently restrictive, the closed-loop trajectory is unique and

the maximum in (5.11) becomes obsolete. This will be the case

in our multiproduct batch application; see also Section 5.4.
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Suppose that the intermediate layer Bım has been designed as

outlined in Sections 5.3.1 and 5.3.2. We then define a pessimistic

high-level cost function by

γH(wH) := max
wL

{γL(wL)| (wH, wL) ∈ Bım, w
L ∈ B

L
p} , (5.12)

and seek an optimal solution B
H
sup for the high-level min-max

problem

min
BHsup

max
wH

γH(wH) s.t. BH
sup solves (B̃H

p, B̃
H
spec)cp

and wH ∈ B̃
H
p ∩B

H
sup .

(5.13)

Note that the overall controller, i.e. the interconnection B
L
ım[BH

sup]

of Bım and the optimal B
H
sup does not necessarily form an op-

timal solution to the original problem (5.11). This is for two

reasons: (i) the introduction of Bım reduces the available de-

grees of freedom; (ii) in the high-level control problem (5.13),

the behaviour B
H
ım[BL

p] has been replaced by its abstraction B̃
H
p,

resulting in over-approximation of actual costs. On the posi-

tive side, we expect the problem (5.13) to be computationally

tractable in situations where (5.11) is not. We want to empha-

sise that, despite the tradeoff between computational effort and

closed-loop performance, our bottom-up design method guaran-

tees the “hard” specification B
L
spec to hold.

We now apply our hierarchical hybrid control synthesis proce-

dure to an important chemical engineering problem.

5.4 control of multiproduct batch plant

In the chemical industries, discontinuously operated multiprod-

uct plants are widely used for the production of fine, or specialty,

chemicals. In the sequel, we describe a specific example for a

multiproduct batch control problem. The example is idealised

to a certain extent but is general enough to capture most of the

problems that characterise multiproduct batch plants. The plant

is used to produce three kinds of colour pigments, using simi-

lar production methods (Fig. 5.4): from one of the storage tanks

B1, B2, or B3, solvent is pumped into either a large reactor R1

or a small reactor R2. Reactant Ai, i = 1, 2, 3, is added to start

reaction i delivering the desired product: Ai
kPi−→ Pi. It is accom-

panied by a parallel reaction Ai
kWi−→ Wi resulting in the waste

product Wi. If, at the end of the reaction step, concentration of

Wi is above a given threshold Wi,max, product quality is unac-

ceptable and the batch is spoilt. For the duration of the reaction,
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there are two control inputs: the feed rate of the reactant and the

heating/cooling rate for the reactor.

Filter-
systemsF1

Vacuum

A1 A3A2

R1
R2

B1 F2 B2 F3 B3

Feed tanks

Reactors

Products Products Products

Figure 5.4: Example plant.

After the reaction is finished, the contents of the reactors is fil-

tered through either F1, F2, or F3, and the solvent is collected

in the corresponding tank B1, B2, or B3. The solvent can sub-

sequently be fed back into either of the two reactors. If, in any

of the filters, darker colours are filtered before lighter ones (say

P3 before P1 or P2, and P2 before P1), an additional cleaning

process between the two filtration tasks is needed, taking time tc.

The feed rates into the reactors are discrete-valued control inputs

as are the decision variables (realised by discrete valve positions)

that determine whether a particular reactor is emptied through

a particular filter system. Heating/cooling rates for R1 and R2

are continuous-valued control inputs. A typical overall aim is

to produce the demanded product volumes with minimal oper-

ating costs, while satisfying quality constraints (upper bounds

for the concentration of waste products) and safety constraints

(upper bounds for reactor temperatures).

For simplicity, the following assumptions are made for the reac-

tions involved:

1. all reactions are first order.

2. the volume of reactant Ai, product Pi and waste product

Wi, i = 1, 2, 3, is negligible compared to overall reactor

volume. The latter can therefore be considered constant

during dosing and reaction.

3. the time constants for heating/cooling of the reactors are

small compared to the reaction time constants. The (scaled)
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reactor temperatures can therefore be considered to be the

manipulated variables.

With these assumptions, the model equations can be easily de-

rived from component balances:

d

dt
cAi

(t) =
q(t)

V
− (kPi(t) + kWi(t)) cAi

(t), (5.14)

d

dt
cPi(t) = kPi(t)cAi

(t), (5.15)

d

dt
cWi

(t) = kWi(t)cAi
(t), (5.16)

where V is the volume of the considered reactor, q is the corre-

sponding dosing rate (in kmol/h), and cAi
, cPi , cWi

are reactant,

product and waste concentration in the ith production process

(in kmol/m3), i = 1, 2, 3, and the reaction kinetics

kPi(t) = kPi0e
−

EPi
Rθ(t) , (5.17)

kWi(t) = kWi0e
−

EWi
Rθ(t) (5.18)

are determined by temperature θ. Defining u(t) := kW1(t), βi :=

EPi/EW1, δi := EWi/EW1, αi := kPi0/k
βi

W10
, and γi := kWi0/k

δi
W10

,

we can rewrite (5.14) – (5.16) as

d

dt
cAi

(t) =
q(t)

V
−

(
αiu(t)βi + γiu(t)δi

)
cAi

(t), (5.19)

d

dt
cPi(t) = αiu(t)βicAi

(t), (5.20)

d

dt
cWi

(t) = γiu(t)δicAi
(t). (5.21)

Note that, by definition, δ1 = γ1 = 1, and that u is a strictly

monotonically increasing function in θ and can therefore be con-

sidered as scaled temperature with unit [1/h] .

5.4.1 Low-level plant model

The low-level plant model represents the continuous dynamics

of filter and reaction processes in the various modes of opera-

tion. We consider low-level signals to evolve w.r.t. clock time,

generated from a suitably small sampling period ∆ > 0.

Note that after a reaction is finished, the respective reactor has to

be emptied, i.e., its contents has to be filtered before the reactor

can be reused in another production step. Neglecting the time

required to fill a reactor, there are at most two concurrent oper-

ations performed by the plant. Thus, our low-level plant model
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consists of two subsystems, each of which is being used for one

out of three chemical reaction schemes or a subsequent filtering

process. As a low-level signal space we choose WL = WL1 ×WL2,

where each component corresponds to one subsystem.

The possible modes of operation for the subsystem j ∈ {1, 2}

consists of the three chemical reactions and the filtering pro-

cesses. The latter can use any nontrivial combination of the three

filters. Including a filter cleaning mode and an “idle” mode, this

gives a total of 3 + 2 + 7 = 12 possible modes for each subsys-

tem; they can be conveniently encoded as a discrete event input

uDj, j = 1, 2, with range

UDj = {P1, P2, P3, Clean, Idle, F001, F010, F011, . . . , F111} .

(5.22)

While in one of the reaction modes Pi, low-level dynamics is

modelled by a sampled version of the ODEs (5.19), (5.20), (5.21).

The parameters are as follows: β1 = 0.5, α1 = 2.0h−0.5, β2 = 0.4,

α2 = 2.0h−0.6, β3 = 0.5, α3 = 3.0h−0.5, δi = γi = 1, i = 1, 2, 3; the

initial concentrations at the beginning of each reaction are all

zero: cAi0 = cPi0 = cWi0 = 0, i = 1, 2, 3. The product concentra-

tions required at the end of each reaction are cP1e = 10kmol/m3,

cP2e = 8kmol/m3, cP3e = 12kmol/m3, and the bounds for the

waste concentrations cW1
, cW2

, cW3
are 2kmol/m3, 1.5kmol/m3,

and 3kmol/m3, respectively. The volumes of reactor R1 and R2

are 5m3 and 2.5m3, respectively. The (on/off) dosing signal qj
can take values in the set {0, 12kmol/h}, and the control sig-

nal uj is required to “live” within the interval [0.01h−1, 3.0h−1],

where the upper bound results from safety requirements. The

signal (qj, uj) is seen as an additional low-level input uCj with

range UCj ⊆ R
2. We assume the continuous state is measured as

a plant output yCj with range YCj ⊆ R
3.

For filtering, an integrator models the progress of time, where

the integration constant depends on the number of filters used

and the volume of the respective reactor. The time to empty the

smaller of the two reactors through one filter is ctf = 6h. If two

or three filters are being used simultaneously, this reduces to 3h

and 2h. For the larger reactor, filtering takes twice as long. The

continuous input uCj is ignored in filtering mode.

The completion of either operation corresponds to reaching a

target region within the continuous state space. This is indi-

cated by a discrete low-level output yDj which can take values in

{Busy, Done}. The signal space of subsystem j ∈ {1, 2} is then

given by the product

WLj = ULj ×YLj , ULj = UDj ×UCj , YLj = YDj ×YCj .
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This is illustrated in Fig. 5.5, which summarises the overall con-

trol architecture. Note that in Fig. 5.5, the two subsystems are

shown merged. With the above parameters, the typical time to

finish a reaction step is between 5h and 10h, with filtering taking

at least another two hours.

switching strategy (DES)

completion
detection

controller 1

controller 2

controllerm

logic time
convert to

uD τ yD

yDuD uC yC

operation 1

operation 2

operationm

Bım

B
H
sup: high-level supervisor

B
L
p: low-level plant

Figure 5.5: Control architecture (subsystems merged).

5.4.2 Low-level specification and cost function

The low-level specification B
L
spec for the multiproduct batch ex-

ample includes the following requirements: (i) the mode of oper-

ation may only change immediately after the previous operation

has been completed; (ii) chemical reactions and filtering alter-

nate in each subsystem; (iii) each filter can only be used by one

subsystem at a time; (iv) the filters have to be cleaned when need

arises; (v) the demanded product volumes are produced. Note

that B
L
spec contains only discrete requirements and therefore rep-

resents a typical discrete event specification, albeit in clock time.

Formally, we therefore have B
L
spec = B

D
spec × (UC × YC)N0 for

some behaviour B
D
spec over UD × YD, implying that the continu-

ous low-level signals are not restricted5 by B
L
spec.

5 Note that safety and quality restrictions are imposed indirectly – the former

via the restricted range for uCj = (qj, uj), the latter via the completion signals

yDj, which are linked to the yCj reaching their target regions.
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For a finite automaton realisation of B
D
spec, the state needs to

keep track of the following: the current major mode of opera-

tion (52 possibilities: three reactions, filtering, or cleaning in both

subsystems); the current allocation of the filters (23 possibilities:

three filters which can be allocated to either subsystem); the re-

cent usage of the filters (33 possibilities: three filters, each of

which could have been used for either of three products); prod-

uct volumes produced so far (63 possibilities: this number re-

sults from the additional assumption that only integer multiples

of a minimum batch size are allowed and that the maximum de-

mand for each of the three products is known. For our example

we chose 2.5m3 as minimum batch size and 12.5m3 as maximum

demand.) This amounts to an overall of 1.16× 106 states.

The integral cost function γL only refers to the UCj components

of the low-level signal. It includes energy cost (heating), material

cost (feed rates) and an overhead cost depending on time spent.

For a low-level signal wL, let

γL(wL) :=
∫ Tf

0
(u1(t) + 0.05q1(t))dt+

∫ Tf

0
(u2(t) + 0.05q2(t))dt +

∫ Tf

0
0.15dt ,

(5.23)

where Tf denotes the time when all demanded products have

been delivered.

Given the low-level plant model, the specification and the cost

function, one could try to solve the optimisation problem (5.11)

as it stands. This amounts to a nonlinear mixed discrete-continuous

dynamic program with 2 continuous input signals (u1, u2), dis-

crete input signals (uDj, qj, j = 1, 2) that altogether can take

(12× 2)2 = 576 values, 6 continuous state variables, and a dis-

crete state set with 1.16× 106 elements. Over an adequate time

horizon (about 50h), we found this computationally intractable

for off-the-shelf optimisation software. Instead we apply the hi-

erarchical bottom-up design procedure outlined in Section 5.3.2.

5.4.3 Hierarchical design – low-level control

Recall that low-level control is based on the specification B
HL
spec

representing the intended relation between high-level and low-

level signals. For example, we introduce high-level control sym-

bols signifying the commands “run reaction i in subsystem j

such that the batch is finished at minimal cost within time τj ∈

T = {1h, 2h, . . . 10h}”. This is implemented by 3× 2× 10 = 60

low-level controllers that can be selected by high-level control

(see Fig. 5.5). Obviously, low-level controller design is local in
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the sense that it only refers to one individual reaction process

and one individual subsystem at a time. The corresponding dy-

namic program has 1 binary input signal (qj), 1 continuous input

(uj) and 3 continuous state variables (concentrations). It can be

solved numerically by standard optimisation software. As an

illustration, the minimal cost γ1,i(τ1) for reactor R1 to produce

one batch of the product Pi is given in Table 5.1. Obviously, low-

level optimisation does not depend on the demanded overall

amount of products. Consequently, this design step only needs

to be performed once over the life-cycle of the plant.

Table 5.1: Minimal cost for reactor R1 to produce one batch.

τ1 < 5h 5h 6h 7h 8h 9h 10h

γ1,1 ∞ ∞ 3.70 3.42 3.28 3.21 3.17

γ1,2 ∞ 2.81 2.58 2.46 2.40 2.36 2.32

γ1,3 ∞ ∞ 4.16 3.71 3.58 3.51 3.49

As indicated above, high-level control actions consist of modes

from UDi and timing parameters from T. Because the timing for

the filter process and the idle operation are determined by the

mode, there are 3× 10 + 9 = 39 relevant high-level control ac-

tions per subsystem to be encoded in UH. As high-level measure-

ment, we choose the completion component from the low-level

subsystems, i.e. YH = {Busy, Done1, Done2}. While low-level

signals “live” on clock time, high-level signals evolve on logic

(event-driven) time, where events are triggered by changes in

the YDj-components.

5.4.4 Hierarchical design – high-level control

Connecting the intermediate layer (i.e., the low-level control and

measurement aggregation mechanism described in the previous

section) to the plant model, results in a hybrid system with ex-

ternal behaviour B
H
ım[BL

p]. To design a suitable high-level su-

pervisor, we need a discrete abstraction of B
H
ım[BL

p], a high-level

“image” of the original specification B
L
spec, and a high-level cost

function γH.

As pointed out in Section 5.3.2, we can derive a suitable ab-

straction B̃
H
p directly from the intermediate layer specification

B
HL
spec. The specified external behaviour of each subsystem un-

der low-level control (w.r.t. the discrete variables uDj and yDj) can

be modelled as a timed discrete event system (TDES, see e.g. [5]),

where time is still clock time. To obtain a DES realisation of an

abstraction B̃
H
p of B

H
ım[BL

p], we form the synchronous product

of the individual TDESs and remove tick events (which “count”
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the progress of clock time) by language projection. Note that in

our design the first instance where a composition of subsystems

needs to be computed occurs after the individual subsystems

have undergone considerable simplification.

According to (5.9), the high-level-specification B̃
H
spec can be di-

rectly obtained from B
D
spec by transforming clock time to logic

time. Together with the high-level abstraction B̃
H
p, we obtain a

transition system with 17 × 106 states and an average of 13.1

relevant input events per state. Since every high-level input

event corresponds to a low-level mode (either chemical reaction

or filtering) that will be completed at a known cost, the high-

level cost function γH is additive over high-level logic time (i.e.

cost per transitions). Thus, the high-level optimisation problem

(5.13) can be solved using standard methods from dynamic pro-

gramming. On a decent desktop computer, the synthesis of the

high-level supervisor takes 61 minutes, and, hence, can be inte-

grated in an automated production environment. For illustra-

tion, Fig. 5.6 shows the obtained closed-loop operation to pro-

duce 12.5m3, 12.5m3 and 7.5m3 of the products P1, P2 and P3,

respectively. The overall cost amounts to 27.5.

P1

P1 P2

P1 P1 P2 P3

P2 P3

time 0 40h20h

SubSys1:

SubSys2:

Figure 5.6: Optimal schedule (filter processes grey, cleaning

black).
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