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Observations on the Stability Properties of

Cooperative Systems
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Abstract

We extend two fundamental properties of positive linear time-invariant (LTI) systems to homo-

geneous cooperative systems. Specifically, we demonstratethat such systems areD-stable, meaning

that global asymptotic stability is preserved under diagonal scaling. We also show that a delayed

homogeneous cooperative system is globally asymptotically stable (GAS) for any non-negative delay if

and only if the system is GAS for zero delay.

I. INTRODUCTION

Positive dynamical systems, in which the state variables are constrained to remain non-negative,

arise in numerous application areas. In fact, any situationin which the variables of interest only

take non-negative values gives rise to a positive dynamicalsystem. Examples of this type can

be found in areas such as Ecology (population sizes), Biology (gene/protein concentrations),

Economics (commodity prices) and Chemical Engineering (chemical concentrations).

Essentially a positive dynamical system is one for which non-negative initial conditions always

give rise to non-negative trajectories. Given their practical importance, it is not surprising that

a considerable deal of attention has been paid to the study ofpositive systems and to the

elucidation of their basic properties. At the time of writing, there is a well developed theory

of positive linear time-invariant (LTI) systems, with roots in the Perron-Frobenius theory of

non-negative matrices [6], [3]. Particular attention has been paid to questions relating to positive

reachability and observability, and the existence of positive realizations of transfer functions. As

with any system class, issues pertaining to stability and the existence and location of equilibria

are of fundamental importance. The work described here focusses on this aspect of the theory

of positive systems.
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In the linear time-invariant case, it is well known that if the origin is a globally asymptotically

stable (GAS) equilibrium of the positive LTI system_x(t) = Ax(t), then it is also a GAS

equilibrium of _x(t) = DAx(t) for all diagonal matricesD with positive elements on the diagonal.

This property is commonly referred to asD-stability. More recently, it was shown in [8] that for a

positive linear delayed system_x(t) = Ax(t)+Bx(t��), the origin is a GAS equilibrium for any� � 0 if and only if it is a GAS equilibrium of the system with zero delay _x(t) = (A+B)x(t).
The two main results of the current paper will show that thesetwo properties of positive LTI

systems naturally extend to an important class of nonlinearpositive systems.

Specifically, we shall show that these results extend to the class of homogeneous cooperative

systems. Cooperative systems are a particularly importantsubclass of nonlinear positive systems

and have been studied extensively, particularly in relation to biological applications of dynamical

systems [16], [12]. A key property of such systems, which also holds for positive LTI systems,

is that they are monotone [16], [5]. Essentially this means that if we consider two initial vectorsx0 andy0 wherex0 is less thany0 componentwise, then the trajectory starting fromx0 remains

less than that starting fromy0 (componentwise) for all subsequent times. Recently, motivated by

applications in Cell Biology, the basic theory of monotone dynamical systems has been extended

to consider interconnections of such systems and a control theory of monotone systems has

been developed in the papers [2], [1]. While the result for delayed positive linear systems in [8]

was derived using Lyapunov-Krasovskii techniques, the methods adopted here are based on the

fundamental monotonicity properties of cooperative systems. As such, in addition to extending

the result in [8], we provide an alternative view on it.

Other recent work on nonlinear positive systems has been presented in [9]. In this paper, the

stability and dissipativity properties of nonlinear, not necessarily cooperative, positive systems

have been investigated. Further, motivated by applications in anaesthesiology, adaptive control

methods for nonlinear positive systems have been proposed and analysed in [10].

The layout of the paper is as follows. In the next section, we introduce notation and some

mathematical background. In Section III we prove that homogeneous cooperative systems possess

the D-stability property. In Section IV we consider systems subject to delay and present a

nonlinear extension of the result described in the previousparagraph. Finally, in Section V we

give some concluding remarks.
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II. NOTATION AND BACKGROUND

Throughout the paper,R andRn denote the field of real numbers and the vector space of alln-tuples of real numbers respectively.Rn�n denotes the space ofn�n matrices with real entries.

For x 2 Rn and i = 1; : : : ; n , xi denotes theith coordinate ofx. Similarly, for A 2 Rn�n , aij
denotes thei; j entry ofA.

In the interest of brevity, we shall slightly abuse notationand refer to a system as being GAS

when the origin is a GAS equilibrium of the system. Also, as weare dealing with positive

systems throughout, when we refer to a system as GAS, it is with respect to initial conditions

in Rn+ , whereRn+ is the set of all vectors inRn with non-negative entries,Rn+ := fx 2 Rn : xi � 0; 1 � i � ng:
For vectorsx; y 2 Rn , we write: x � y if xi � yi for 1 � i � n; x > y if x � y andx 6= y;x� y if xi > yi; 1 � i � n.

A matrix A 2 Rn�n is said to be non-negative ifaij � 0 for 1 � i; j � n. Similarly, a vector

field g : Rn ! Rn is non-negative ifg(x) � 0 for all x 2 Rn+ .

For a real interval[a; b℄, C([a; b℄;Rn+) denotes the space of all real-valued continuous functions

on [a; b℄ taking values inRn+ . For functionsf; g 2 C([a; b℄;Rn+) we write f � g if f(s) �g(s); 8s 2 [a; b℄.
Throughout the paper, for a vectorx 2 Rn , kxk denotes the usual Euclidean norm ofx. For a

matrix A 2 Rn�n , kAk denotes the matrix norm induced by the Euclidean norm. Finally, ford = (d1; : : : ; dn)T in Rn , diag(d1; : : : ; dn) denotes the diagonal matrix inRn�n in which theith
entry on its main diagonal isdi.
A. Positive linear systems

In this subsection, we recall some basic facts concerning positive LTI systems.

Definition 2.1: The LTI system _x(t) = Ax(t) (1)

is positiveif x0 � 0) x(t; x0) � 0 for all t � 0, wherex(�; x0) denotes the unique solution of

(1) satisfyingx(0; x0) = x0.
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It is well known and easily verified that an LTI system is positive if and only if its system matrixA satisfiesaij � 0 for i 6= j. Matrices of this form are said to beMetzler. Positive LTI systems

are automatically monotone due to linearity. Formally, ifx0 � y0, thenx(t; x0) � x(t; y0) for

all t � 0.

For convenience, we collect some standard facts concerningthe stability of positive LTI systems

in the following result.

Theorem 2.1:Consider the positive LTI system (1). The following statements are equivalent:

(i) The system (1) is globally asymptotically stable;

(ii) There is some vectorv � 0 such thatAv � 0;

(iii) _x(t) = DAx(t) is globally asymptotically stable for all diagonal matricesD = diag(d1; : : : ; dn)
with di > 0 for 1 � i � n.

The property described by point (iii) above is usually referred to asD-stability.

In the recent papers [8], [14] the stability properties of delayed positive linear systems were

studied. Formally, consider the system_x(t) = Ax(t) +Bx(t� �); � > 0: (2)

Recall that for delay systems of this form [11], for any initial conditions given by a function� 2 C([��; 0℄;Rn+) there exists a unique solutionx(t; �) defined fort 2 [��;1), satisfying (2)

andx(s; �) = �(s) for s 2 [��; 0℄. Typically, the history segmentxt : [��; 0℄ ! Rn given byxt(s) = x(t� s) for �� � s � 0 is referred to as the state of the system at timet.
As with LTI systems, the system (2) is positive if� � 0 implies x(t; �) � 0 for all t � 0. It

has been shown in [8] that (2) is positive if and only ifA is Metzler andB is non-negative. As

in the undelayed case, it follows from linearity that the flows generated by a positive delayed

linear system are monotone meaning that� �  implies x(t; �) � x(t;  ) for all t � 0.

The following result from [8] shows that (2) is globally asymptotically stable for any� � 0 if

and only if the undelayed system with� = 0 is globally asymptotically stable.

Theorem 2.2:The time-delayed positive linear system (2) is globally asymptotically stable for

any � � 0 if and only if _x(t) = (A +B)x(t) (3)

is globally asymptotically stable.
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Remark: Theorem 2.2 is a slight rewording of Theorem 3.1 of [8]. A corresponding result for

exponential stability of delay systems was subsequently established in Theorem 4.1 of [14].

The proof in [8] relies on the theory of Lyapunov-Krasovskiifunctionals, while the proof for

exponential stability in [14] is based on analysing the characteristic function of the delayed

system. The primary contribution of the present paper is to extend both Theorem 2.2 and Theorem

2.1 to a class of nonlinear positive systems using differentmethods which rely directly on a

key property of the system class; namely the monotonicity ofsolutions with respect to initial

conditions. As such, we also provide an alternative perspective on the results in [8], [14].

B. Homogeneous cooperative systems

In the study of nonlinear positive systems, the class of co-operative systems is of particular

importance for numerous applications in Economics, Biology and Ecology and has attracted a

considerable deal of attention in the past [16]. The definition of a cooperative vector field is as

follows.

Definition 2.2: A continuous vector fieldf : Rn ! Rn , which isC1 on Rnnf0g is said to be

cooperative if the jacobian�f�x(a) is a Metzler matrix for alla 2 Rn+nf0g.
The results presented later in the paper are concerned with cooperative systems whose vector

fields are homogeneous in the sense of the following definition.

Definition 2.3: f : Rn ! Rn is said to be homogeneous if for allx 2 Rn and all real� > 0,f(�x) = �f(x).
Let the vector fieldf : Rn ! Rn be continuous onRn andC1 on Rnnf0g. If f is homogeneous

then it follows easily that for anya 2 Rnnf0g and any� > 0,�f�x (�a) = �f�x (a) (4)

This immediately allows us to conclude the following result, whose proof we include in the

interest of completeness.

Lemma 2.1:Let f : Rn ! Rn be continuous onRn , C1 on Rnnf0g and homogeneous. Then

there existsK > 0 such thatkf(x)� f(y)k � Kkx� yk for all x; y 2 Rn .

Proof: As f is C1, it follows that there is someK1 > 0 such that�f�x (a) � K1
September 5, 2008 DRAFT
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for all a with kak = 1. But (4) then implies that this inequality must hold for alla 6= 0. Now

pick anyx 6= 0 in Rn . It follows from the mean value theorem that for anyy 2 Rnnftx : t � 0g,kf(x)� f(y)k � K1kx� yk: (5)

It now follows from the continuity off that this inequality must hold for ally 2 Rn . As x
was an arbitrary non-zero vector, it follows that (5) holds for all x 2 Rnnf0g, y 2 Rn . It now

follows again by continuity that the inequality must hold for all x; y 2 Rn .

If f : Rn ! Rn is homogeneous, the previous lemma immediately implies theexistence and

uniqueness of solutions to the system_x(t) = f(x(t)) for any initial conditions inRn .

We next collect some well-established facts concerning dynamical systems defined by coopera-

tive, homogeneous vector fields. Before stating the result,note that Lemma 5.1 of [5] established

the existence of solutions to systems with cooperative, homogeneous right hand sides for allt � 0.

Theorem 2.3:Let f : Rn ! Rn be a vector field that is continuous onRn andC1 on Rnnf0g
and suppose thatf is homogeneous and cooperative. Consider the associated dynamical system_x(t) = f(x(t)) (6)

and forx0 2 Rn+ , let x(�; x0) denote the solution of (6) satisfyingx(0; x0) = x0. Then:

(i) For any real number� > 0 and anyx0 2 Rn+ , x(t; �x0) = �x(t; x0) for any t � 0;

(ii) For any x0; x1 2 Rn+ , if x0 � x1, it follows thatx(t; x0) � x(t; x1) for any t � 0.

Proof: Under the hypotheses of the theorem, for anyx0 2 Rn+ , there exists a unique solution of

(6) throughx0. This together with the homogeneity off implies (i). The statement in (ii) was

proven in Proposition 4.3 of [5].

Finally for this section, we state a result for delayed systems that corresponds to point (ii) of

Theorem 2.3 above. For details consult [16]. First of all, werecall the definition of an order

preserving vector field.

Definition 2.4: g : Rn ! Rn is order-preserving onRn+ if g(x) � g(y) for any x; y 2 Rn+ such

that x � y .

As we shall only be interested in vector fields that are order-preserving onRn+ , we shall usually

refer to such vector fields as simply order-preserving.
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Theorem 2.4:Let f; g : Rn ! Rn be continuous onRn andC1 on Rnnf0g. Further assume thatf is cooperative and homogeneous whileg is order-preserving and homogeneous. Letx(�; �)
denote the solution of the delayed system_x(t) = f(x(t)) + g(x(t� �)) (7)

corresponding to the initial condition� 2 C([��; 0℄;Rn+). Then for any�;  2 C([��; 0℄;Rn+)
with � �  , we have thatx(t; �) � x(t;  ) for all t � 0 for which both solutions are defined.

Comment: As in the case of undelayed systems, the existence and uniqueness of solutions to

(7) is implied by Lemma 2.1 (see Chapter 2 of [11]). With regard to continuation of solutions

for the delayed case, we can conclude from Theorem 2.3.2 of [11] that if each trajectory of (7)

remains in a compact set in each finite time interval, then thesolutions of (7) can be continued

to [0;1). We shall make use of this fact in the proof of Theorem 4.1 below.

C. A nonlinear Perron Frobenius Theorem

Many of the stability properties of positive linear systemsare natural consequences of the Perron-

Frobenius theorem for non-negative matrices. Numerous authors have considered the problem of

extending the Perron-Frobenius Theorem to nonlinear positive systems. The appendix in [13] is

an excellent early reference on this topic (in finite dimensions), while further and more general

results were subsequently reported in [15], [7], [5]. We shall only require a particular case of a

recent result presented in [5] for irreducible, homogeneous cooperative systems.

Definition 2.5: f : Rn ! Rn is said to be irreducible onRn+ if:

(i) �f�x(a) is an irreducible matrix for alla in the interior ofRn+ ;

(ii) for non-zeroa in the boundary ofRn+ , either�f�x(a) is irreducible orai = 0 impliesfi(a) > 0.

The paper [5] contains a variety of interesting technical results concerning the asymptotic

properties of homogeneous cooperative systems but, for ourpurposes, the facts collected in

the following theorem will prove sufficient.

Theorem 2.5:Let f : Rn ! Rn be continuous, andC1 on Rnnf0g. Further, assume thatf is

cooperative, homogeneous and irreducible. Then there exists a unique vectorv � 0 and a real

numberv such thatf(v) = vv. Moreover the system_x(t) = f(x(t)) is globally asymptotically

stable if and only ifv < 0.
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III. STABILITY AND D-STABILITY FOR HOMOGENEOUS COOPERATIVE SYSTEMS

In this section, we shall extend Theorem 2.1 to homogeneous cooperative systems. Firstly, we

shall demonstrate the equivalence of (i) and (ii) for this system class. Throughout this section,

unless stated otherwise, all vector fields are continuous onthe whole ofRn andC1 on Rnnf0g.
In proving the main result of this section, we shall need the following technical lemma.

Lemma 3.1:Let f : Rn ! Rn be cooperative and homogeneous and suppose the associated

system _x(t) = f(x(t)) (8)

is globally asymptotically stable. Then there exists someirreducible cooperative, homogeneous

vector fieldf1 : Rn ! Rn such that:

(i) f1(x) � f(x) for all x � 0;

(ii) _x(t) = f1(x(t)) is globally asymptotically stable.

Proof: Choose any homogeneous, irreducible, order-preserving vector field g : Rn ! Rn . Note

that for all � > 0, f + �g is cooperative, homogeneous and irreducible. We claim thatfor � > 0
sufficiently small, the system_x(t) = (f+�g)(x(t)) will be globally asymptotically stable (GAS).

Suppose this is not true. Then we can choose a sequence of positive real numbers�n such that�n ! 0 asn!1 for which f + �ng is not GAS for anyn. It follows from Theorem 2.5 that

there exist vectorsvn � 0 with kvnk = 1, and real numbersn � 0 such that for alln(f + �ng)vn = nvn: (9)

As f and g are continuous andkvnk = 1 for all n, it follows that there is some positive

constantM such thatk(f + �ng)vnk �M for all n. Hence the sequencen is bounded. As the

sequencesvn andn are bounded, by passing to subsequences if necessary, we canassume thatvn ! v for somev � 0, kvk = 1 and thatn !  for some � 0. This together with the

continuity off andg implies thatf(v) = v. This implies that the solutionx(�; v) of the system_x(t) = f(x(t)) with x(0) = v cannot tend to the equilibrium at0 as t!1, which contradicts

our assumption that this original system is GAS. This shows that there must be some�1 > 0 for

which _x(t) = (f + �1g)(x(t)) is GAS. It follows immediately thatf1 = f + �1g satisfies (i) and

(ii).
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From Theorem 2.1 we know that a positive LTI system_x(t) = Ax(t) is globally asymptotically

stable if and only if there is somev � 0 such thatAv � 0. Theorem 2.5 shows that for

irreducible homogeneous cooperative systems, global asymptotic stability is equivalent to the

existence of an eigenvector with negative eigenvalue. In the next result we show that the result

of Theorem 2.1 extends to homogeneous cooperative systems without requiring irreducibility.

Theorem 3.1:Let f : Rn ! Rn be cooperative and homogeneous. Then the system_x(t) = f(x(t)); (10)

is globally asymptotically stable if and only if there is some v � 0 such thatf(v)� 0.

Proof: Suppose thatv � 0 satisfiesf(v) � 0. We shall first show that the trajectoryx(t; v)
starting from the initial statev tends to the equilibrium at zero ast tends to infinity. Asf(v)� 0
it follows that �dxdt (t; v)� jt=0 � 0
and hence there is someÆ > 0 such thatx(t)� x(0) = v for all t 2 (0; Æ℄: (11)

In particular,x(Æ; v) � v and thus there exists a real number� with 0 < � < 1 such thatx(Æ; v) � �v.

Now as asf is cooperative it follows from Theorem 2.3 thatx(2Æ; v) = x(Æ; x(Æ; v))� x(Æ; �v):
Further, asf is homogeneous this in turn implies thatx(2Æ; v) � x(Æ; �v)= �x(Æ; v) � �2v:
Moreover, we can also conclude from the cooperativity off and (11) thatx(t) � �v for allt 2 (Æ; 2Æ). Iterating, we see that forp = 2; 3; : : :x(pÆ) � �pvx(t) � �p�1v for t 2 ((p� 1)Æ; pÆ):
September 5, 2008 DRAFT
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and hencex(t; v)! 0 as t!1 as claimed.

Now, let x0 2 Rn+ be given. Asv � 0, we can always choose some positive real numberK
such thatx0 � Kv. As f is assumed to be cooperative inRn+ , it follows from Theorem 2.3 thatx(t; x0) � x(t;Kv) = Kx(t; v) for all t � 0. But it now follows from the above argument thatx(t; x0)! 0 as t!1. Hence, the system (10) is globally asymptotically stable as claimed.

Conversely, suppose that (10) is globally asymptotically stable. By Lemma 3.1, we can choose

some irreducible, homogeneous, cooperative mappingf1 : Rn ! Rn , satisfyingf1(x) � f(x) for all x 2 Rn+ ;
such that the system_x(t) = f1(x(t)) is GAS. Theorem 2.5 then implies that there is some vectorv � 0 such thatf1(v)� 0. But f(v) � f1(v) and hencef(v)� 0 as well. This completes the

proof.

Comment: In [4], a result similar to Theorem 3.1 for discrete-time systems has been presented.

The authors of this manuscript have shown, under the assumption thatf : Rn ! Rn is irreducible

and order-preserving, thatx(k+1) = f(x(k)) is GAS if and only if there is no non-zerow 2 Rn+
satisfyingf(w) � w. Note that Theorem 3.1 combined with Proposition 3.1 establishes that in

the continuous-time case, GAS is equivalent to there being no non-zerow 2 Rn+ satisfyingf(w) � 0.

Example 3.1:Consider the system_x(t) = f(x(t)) defined onR2 wheref(x1; x2) := 0� 2x2 � x1 �px21 + x222x1 � 2x2 �px21 + x22 1A :
A phase portrait of this system is given in Figure 2 below. Twotrajectories of the system are

also illustrated, starting from the respective initial conditions x(1) := (x(1)1 ; x(1)2 ) = (0:2; 0:8)
(solid line) andx(2) := (x(2)1 ; x(2)2 ) = (0:8; 0:2) (dashed line). Note thatf(x(i)) 6� 0 for i = 1; 2.

However, it is clear from the figure that there exist(x1; x2) such thatf(x1; x2) � 0 (take for

instancex1 = x2 = 12 ). Hence by Theorem 3.1, the system_x = f(x) is GAS.

Comment: For positive LTI systems it is well known that if_x(t) = Ax(t) is globally asymptot-

ically stable, then_x(t) = Bx(t) will also be GAS for all Metzler matricesB with B � A.

The above result allows us to immediately draw the corresponding, known, conclusion for

homogeneous cooperative systems.
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0 1
1

x1 !
x 2!

Fig. 1. Phase portrait off(x1; x2) := (2x2 � x1 �px21 + x22; 2x1 � 2x2 �px21 + x22)T .

Corollary 3.1: Let f; g : Rn ! Rn be cooperative, homogeneous vector fields such thatg(x) �f(x) for all x 2 Rn+ . If _x(t) = f(x(t))
is globally asymptotically stable, then the system_x(t) = g(x(t))
is also globally asymptotically stable.

Proof: As _x(t) = f(x(t)) is GAS, it follows from Theorem 3.1 that there is somev � 0 withf(v) � 0. But then,g(v) � f(v) � 0 and hence from Theorem 3.1,_x(t) = g(x(t)) is GAS

also.

For a positive LTI system_x(t) = Ax(t), it is well known that global asymptotic stability implies

that the diagonal entries ofA are all negative. The following simple corollary can be seenas an

extension of this fact to homogeneous systems.

Corollary 3.2: Let f : Rn 7! Rn be cooperative and homogeneous and suppose the system_x = f(x) is globally asymptotically stable. Then there existsw such that�fi(�)��i ����=w < 0 for alli.
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Proof:Suppose the system is GAS; that is, suppose there existsv � 0 such thatf(v)� 0. Then

by Euler’s Homogeneous Function Theorem we have that�Xj 6=i �fi(�)��j �����=v vj� + �fi(�)��i �����=v vi = fi(v) (12)

Note that the first term on the left hand side of (12) is nonnegative by assumption of cooperativity.

Now suppose�fi(�)��i ����=w � 0 for all w . Then it follows thatfi(v) � 0, which is a contradiction.

This completes the proof.

Comment: Theorem 3.1 provides a test for the global asymptotic stability of a homogeneous

cooperative system; If we can demonstrate the existence of avector v � 0 with f(v) � 0,

then the associated system is GAS. Conversely if no such vector exists, then the system is not

GAS. However, it is typically much harder to show conclusively that no vectorv � 0 satisfyingf(v) � 0 exists. The following result, which can be thought of as a nonlinear theorem of the

alternative for our situation, provides a way of demonstrating that a system is definitely not

GAS.

Proposition 3.1:Let f : Rn ! Rn be homogeneous and cooperative. Then exactly one of the

following statements is true.

(i) There is somev � 0 with f(v)� 0;

(ii) There is some non-zerow � 0 with f(w) � 0.

Proof: We first show that at most one of these statements can be true. By way of contradiction,

assume that there is somev � 0 such thatf(v)� 0 and some non-zerow � 0 with f(w) � 0.

Now let � = max1�i�n(wi=vi). As w 6= 0, � > 0. Moreover, if we definev0 = �v, it follows

that f(v0)� 0, v0 � w and that there is some indexp for which wp = v0p. Then for thisp,fp(v0)� fp(w) = Z 10 dds(fp(sv0 + (1� s)w))ds= Z 10  nXj=1 �fp�xj (sv0 + (1� s)w)(v0j � wj)! ds� 0;
where the final inequality follows from the cooperativity off , v0 � w andwp = v0p. But the

above implies that 0 > fp(v0) � fp(w) � 0;
which is a contradiction.
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Theorem 3.1 established that condition (i) is equivalent to_x(t) = f(x(t)) being GAS. Suppose

that _x(t) = f(x(t)) is not GAS. The proof will be complete if we can show that underthis

assumption, there is some non-zerow � 0 with f(w) � 0. Let g : Rn ! Rn be an irreducible,

homogeneous, order-preserving vector field. Then it follows immediately from Corollary 3.1

that for any� > 0, the system_x(t) = (f + �g)(x(t)) is not GAS. Now applying Theorem 2.5

and suitably adapting the argument of Lemma 3.1, we can conclude that there must exist some

non-zerow � 0 with f(w) � 0.

Comment: The previous result provides a means of demonstrating that ahomogeneous cooper-

ative system is not GAS by showing the existence of a non-zerow � 0 with f(w) � 0.

The so-called D-stability property of positive LTI systemsasserts that the global asymptotic

stability of such systems is preserved under positive diagonal scaling. Theorem 3.1 allows us to

immediately show that this property extends to homogeneouscooperative systems.

Theorem 3.2:Let f : Rn ! Rn be cooperative and homogeneous. The system_x(t) = f(x(t)) (13)

is globally asymptotically stable if and only if_x(t) = Df(x(t)) (14)

is globally asymptotically stable for every diagonal matrix D = diag(d1; : : : ; dn) with di > 0
for 1 � i � n.

Proof: Suppose that (13) is globally asymptotically stable and letthe diagonal matrixD =diag(d1; : : : ; dn) with di > 0 for 1 � i � n be given. Then by Theorem 3.1 it follows that there

is somev � 0 such thatf(v)� 0. But it is immediate thatDf(v)� 0 and asDf : Rn ! Rn is

also homogeneous and cooperative it follows from Theorem 3.1 that the system (14) is globally

asymptotically stable also. The converse direction is immediate.

IV. STABILITY OF DELAYED COOPERATIVE SYSTEMS

In this section, we shall focus on extending the property of positive LTI systems described in

Theorem 2.2 to cooperative homogeneous systems. As in the last section, unless explicitly stated

otherwise, all vector fields are assumed to be continuous onRn andC1 on Rnnf0g.
The next result, which is the main result of this section is a direct extension of Theorem 2.2

to homogeneous systems. As it also immediately applies to positive linear systems, it provides
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an alternative view on the result of [8], which was established using a Lyapunov-Krasovskii

functional. Our argument is based on the fundamental monotonicity property of the trajectories

of the system.

Theorem 4.1:Let f : Rn ! Rn and g : Rn ! Rn be homogeneous and assume thatf is

cooperative andg is order-preserving. Then the time-delay system_x(t) = f(x(t)) + g(x(t� �)) (15)

is globally asymptotically stable for any� � 0 if and only if the undelayed system_x(t) = f(x(t)) + g(x(t)) (16)

is globally asymptotically stable.

Proof: If the system (15) is globally asymptotically stable (GAS) for any� � 0 then obviously

it is GAS for � = 0.

Conversely, suppose that (16) is GAS. Let� � 0 be given and for any� 2 C([��; 0℄;Rn+),
let x(�; �) denote the solution of (15) corresponding to the initial condition �. It follows from

Theorem 3.1 that there is some vectorv � 0 such that(f+g)(v)� 0. Let v̂ denote the element

of C([��; 0℄;Rn+) given by v̂(s) = v for � � � s � 0:
The first step in the proof is to show that the solutionx(t; v̂) of (15) corresponding to the initial

condition v̂ converges asymptotically to the equilibrium point0 as t!1.

Now as ddt(x(t; v̂))jt=0 � 0;
as in the proof of Theorem 3.1, it follows that there is someÆ > 0 such thatx(t; v̂)� v for allt 2 (0; Æ℄. Further, if we writexÆ;v̂ for the element inC([��; 0℄;Rn+) given byxÆ;v̂(s) = x(Æ � s; v̂) for � � � s � 0;
we can conclude thatxÆ;v̂ � v̂.
Now asf is cooperative andg is order-preserving, it follows from Theorem 2.4 and the above

observations that for alls 2 (0; Æ℄x(s+ Æ; v̂) = x(s; xÆ;v̂) � x(s; v̂)� v̂: (17)
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Repeating this process, we can conclude that fork = 2; 3; : : : and for alls 2 (0; Æ℄,x(s+ kÆ; v̂)� v̂: (18)

If we choosek large enough to ensure thatt1 = kÆ > � , then it follows thatx(s; v̂) � v fors 2 [t1 � �; t1℄. Hence, as[t1 � �; t1℄ is compact, there is some� with 0 < � < 1 such thatx(s; v̂) � �v (19)

for all s 2 [t1 � �; t1℄. In other words,xt1;v̂ � �v̂. Moreover,x(s; v̂) � v̂ for all s 2 [0; t1℄.
It now follows from Theorem 2.4 and the homogeneity off andg that for s 2 [0; t1℄,x(s+ t1; v̂) = x(s; xt1;v̂) � x(s; �v̂) = �x(s; v̂):
Hence,x2t1;v̂ � �xt1;v̂ � �2v̂. Iterating, we get that forp = 2; 3; 4; : : :xpt1;v̂ � �pv̂; (20)

and hence as0 < � < 1, it follows thatx(t; v̂)! 0 as t!1.

To complete the proof, suppose we are given an initial condition � 2 C+([��; 0℄;Rn+). As �
is continuous and hence bounded on[��; 0℄, by choosingM sufficiently large, we can ensure

that � � Mv̂. As f is cooperative andg is order-preserving, it follows from Theorem 2.4

that x(t; �) � x(t;Mv̂). Moreover asf and g are homogeneous,x(t;Mv̂) = Mx(t; v̂). It now

follows immediately from the argument in the previous paragraph thatx(t; �) ! 0 as t ! 1.

Note that the argument given above also establishes that thesystem (15) is GAS if and only if

there is some vectorv � 0 such that(f + g)(v)� 0. In analogy with the undelayed case, this

allows us to conclude the following.

Corollary 4.1: Let f; f1 : Rn ! Rn and g; g1 : Rn ! Rn be homogeneous vector fields.

Assume thatf and f1 are cooperative and thatg; g1 are order-preserving. Further assume that(f1 + g1)(x) � (f + g)(x) for all x 2 Rn+ . Then if the system_x(t) = f(x(t)) + g(x(t� �))
is globally asymptotically stable, then the system_x(t) = f1(x(t)) + g1(x(t� �))
September 5, 2008 DRAFT



16

0 1
1

x1 !
x 2!

0 1
1

x1 !
x 2!

(a) � = 1 (b) � = 2
Fig. 2. Trajectories of the system (21) for different state histories and different values of the delay parameter� .

is globally asymptotically stable also.

Example 4.1:Consider the delayed system:_x(t) = f(x(t)) + g(x(t� �)); (21)

where� � 0 is a delay parameter,f(x1; x2) := 0��3 62 �21A0�x1x21A�qx21 + x220�311A ; (22)

and g(x1; x2) := 0B� x1x2px21+x22x1x2p2x21+3x221CA : (23)

It is straightforward to verify that this system satisfies the conditions of Theorem 4.1. Moreover,(f + g)(1; 1)� 0. Hence, we can conclude the the origin is a GAS equilibrium ofthis system

for any � � 0.

Several sample trajectories of the system (21) are shown in Figure 2.
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For i = 1; : : : ; 6, let the initial conditionsx(a, i) andx(b, i) be defined as follows:x(a, i)(s) := 0�1:1 os( �14 i) + 0:1 os(2�(t+ 32)� �14 i)1:1 sin( �14 i)� 0:1 sin(2�(t+ 32)� �14 i)1A ; s 2 [�1; 0℄; (24)x(b, i)(s) := 0� os( �14 i) + 0:1 s (s+ 2)sin( �14 i)� 0:1 s (s+ 2)21A ; s 2 [�2; 0℄: (25)

The panel on the left shows 6 trajectories of the system (21) with � = 1, corresponding to the

initial conditions given by (24). The panel on the right shows 6 trajectories of the system (21)

with � = 2, corresponding to the initial conditions given by (25). It can be seen from the the

figure that all trajectories converge to the origin as expected.

V. CONCLUSIONS

In this paper we have presented a number of results that extend fundamental properties of

positive linear time-invariant (LTI) systems to a significant class of nonlinear positive systems.

Specifically, we have shown that for homogeneous, cooperative systems, the D-stability property

of positive LTI systems also holds. In addition, we have demonstrated that a homogeneous

cooperative system subject to delay is globally asymptotically stable (GAS) for any non-negative

delay if and only if it GAS for zero delay. This extends a result concerning the stability properties

of delayed positive LTI systems recently published in [8]. While the result in this previous paper

was derived using Lyapunov-Krasovskii arguments, our approach reveals the key role played by

the monotonicity properties of the system trajectories. Examples have been presented to illustrate

the main results. Future work will focus on extending the results here to broader classes of

nonlinear positive systems.
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