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Abstract—We consider an 802.11 WLAN with lossy links and
flow delay deadlines and we derive the joint allocation of coding
rate and airtime that achieves the proportionally fair throughput
allocation. The noisy wireless links are modelled as symbol-
level binary symmetric channels (BSCs). We show that the joint
optimisation decomposes into decoupled allocation tasks, i.e.
partitioning into layers is optimal, and the optimal allocation
assigns equal total air-times to flows.

I. INTRODUCTION

Proportional fairness in 802.11 WLANs has been the sub-

ject of a considerable body of literature. The CSMA/CA

scheduling used in 802.11 differs fundamentally from wired

and TDMA wireless networks due to the carrier sense de-

ferral of contention window countdown and the occurrence

of collisions, both of which lead to the coupling of station

transmissions within a WLAN and the rate region being non-

convex. Hence, well established utility fairness techniques

from wired networks cannot be directly applied to random

access CSMA/CA wireless networks.

Recently, [8] provides the first rigorous analysis of propor-

tional fairness in 802.11 WLANs and in this paper we extend

that work in a number of different directions. Firstly, the

analysis in [8] assumes that transmissions are loss-free while

in this paper we relax this assumption. Secondly, building upon

the work in [2], we view the channel provided by the WLAN

as a binary symmetric channel (BSC), as opposed to a more

conventional packet erasure channel (PEC). That is, rather than

simply discarding corrupted frames, we consider viewing a

received frame as a binary vector in which an unknown subset

of bits have been “flipped”. Thirdly, we extend the analysis in

[8] to allow delay deadline constraints to be included. Such

delay constraints are especially relevant for delay-sensitive

traffic such as video and voice but are also important for data

traffic as delay affects flow completion times. Our analysis

builds on the approach in [6] for TDMA wireless networks.

We show that the joint optimisation of coding rate and

airtime decomposes into decoupled allocation tasks, i.e. parti-

tioning into layers is optimal. This property of 802.11 differs

from and contrasts with the results in [6] for TDMA networks.

Further, we establish that the proportional fair coding rate and

airtime allocation (i) assigns equal total airtime (i.e. airtime

including both successful and failed transmissions) to every

station in a WLAN, (ii) the station airtimes sum to unity

(ensuring operation at the rate region boundary), and (iii) the

optimal coding rate is selected to maximise goodput (treating

packets decoded after the delay deadline as losses).
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II. NETWORK MODEL

We consider an 802.11 WLAN with n ≥ 2 stations. We

consider per station throughput fairness and so define a flow

to be a sequence of packets transmitted from the same station.

Let F denote the set of flows, with |F| = n.

1) BSC channel: The channel provided by the WLAN is

modelled as a binary symmetric channel (BSC). That is, rather

than simply discarding corrupted frames at the receiver, we

view a decoded frame above PHY layer as a binary vector in

which an unknown subset of bits have been “flipped”. Let αf

denote the crossover probability for flow f , i.e. a bit of flow f
is corrupted with probability αf . For 802.11a/g, experimental

measurements [1] and theoretical analysis [2] indicate that

even with a 10-30% packet erasure rate typically only a small

fraction (usually < 1%) of bits within corrupted packets are in

error. Thus, although noisy, the corrupted packets potentially

provide a reasonable channel through which we can transmit

information.

2) Decoding error probability: To protect against errors

when recovering information symbols, a linear maximum-

distance separable (MDS) code [4] is used at the MAC layer

for additional forward error correction. Information frames of

flow f ∈ F are assumed of size kf symbols. Information

symbols are formed into blocks of Dfkf symbols, where

Df ∈ Z
+ is the number of frames that the block may

span. Each block of Dfkf information symbols is encoded

into a block of Df lf coded symbols, with the coding rate

rf = kf/lf , 0 < rf ≤ 1. lf is the number of coded symbols

in a transmitted packet, i.e. the transmitted packet size. We

assume that the network limits the packet size to be no more

than a maximal value lf e.g, the 802.11 standard limits the

maximum packet size to be 2304B. The quantity Df is a

quality of service parameter. It specifies the decoding delay

deadline for flow f , i.e. the receiving station must decode

an information packet of flow f after collecting at most Df

successive coded packets.

It is shown in [6] that in a BSC the probability of a decoding

error for flow f is upper bounded by

ef = exp(−Df lf [θfvf − log(1 − βf + βfeθf )])

where βf = 1 − (1 − αf )m is the symbol error probability

with m ≥ 1 being the number bits per MDS code symbol,

vf :=
1−rf

2 , 0 ≤ vf < 1
2 and θf > 0 is the Chernoff-bound

parameter. This bound is valid for all θf > 0, and the tightest

bound is obtained by minimising ef for θf > 0. This optimised

bound is asymptotically tight [6], and thus the network utility

maximisation problem can be posed based on this bound.

3) Station throughput: We assume that the RTS/CTS mech-

anism is used to make fast recovery from collisions. On a
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collision only a pair of RTS/CTS packets are sent. Each

802.11 MAC time slot may be a PHY idle slot, a success-

ful transmission or a colliding transmission. Let τf denote

the probability that the station carrying flow f attempts to

transmit in a given MAC slot. The probability that a time

slot is idle is Pi =
∏

f∈F(1 − τf ). The probability that the

station carrying flow f makes a successful transmission is

Ps,f = τf

∏

g∈F ,g 6=f (1 − τg) =
τf

1−τf
Pi. The probability that

a time slot is a successful transmission is Ps =
∑

f∈F Ps,f =
Pi

∑

f∈F
τf

1−τf
. The throughput of flow f is given by

sf =
Ps,f lf

σPi +
∑

f∈F Ts,fPs,f + Tc(1 − Pi − Ps)

in which σ is the duration of a PHY idle slot, Tc = TRTS +
TSIFS +TCTS +TDIFS is the duration of a collision and Ts,f

is the duration of a successful transmission by flow f . Note

that Tc is the same for all flows due to the use of RTS/CTS

handshaking but we do not assume that flows use the same

packet successful transmission duration Ts,f .

We relate packet successful transmission duration Ts,f to

the packet size lf via the PHY rate wf of flow f . Namely,

Ts,f =
lf
wf

+ To where To is the 802.11 protocol overhead

associated with each successful transmission and is given by

To = TRTS +TCTS +3×TSIFS +TPHY hdr +TACK +TDIFS

Letting xf = τf/ (1 − τf ) the throughput expression can be

rewritten as

sf =
xf lf
XTc

(1)

where X = σ
Tc

+
∑

f∈F

(

lf
wf Tc

+ To

Tc
− 1
)

xf +
∏

f∈F

(

1 +

xf

)

− 1. When all flows use the same packet size and PHY

rate, throughput expression (1) is identical to that previously

used in [3], [8].

4) Notation: We use bold notation to indicate a vector, thus

l := [lf ]f∈F is the vector of packet sizes, x := [xf ]f∈F the

vector of station attempt rates, θ := [θf ]f∈F the vector of

Chernoff parameters, v := [vf ]f∈F the vector of coding rates.

III. PROPORTIONAL FAIR ALLOCATION

We find the proportional fair rate allocation by solving

max
l,v,x,θ

U(l, v, x, θ) :=
∑

f∈F

log gf

s.t. 0 < lf ≤ lf , θf > 0, xf > 0, 0 ≤ vf < 1/2 ∀f ∈ F

where gf = sf

(

1−2vf

)(

1− ef(lf , vf , θf )
)

is the goodput of

flow f ∈ F after decoding. While the constraints are convex,

it can be verified that log(1 − ef(lf , vf , θf)) is not jointly

concave in (θf , lf , vf ) and so the maximisation problem is

not a standard convex optimisation task. We proceed by

carrying out the optimisation sequentially i.e. first finding

θ∗ = argmax
θ

U(l, v, x, θ) and then max
l,v,x

U(l, v, x, θ∗). By

[6, Lemma 3], provided U(l, v, x, θ) is concave in θ and

U(l, v, x, θ∗) is jointly concave in (log l, log v, log x), the

solution to the sequential optimisation is the unique solution

to the original optimisation.

A. Optimal Chernoff parameter θ∗f

We begin by considering the optimisation

max
θ

U(l, v, x, θ) s. t. θf > 0 ∀f ∈ F

It can be verified that U is concave in θ (U is separable in

the θf ’s and it can be verified by inspection of the second

derivative that U is concave for each θf ). Hence, the problem

is a convex and from the KKT conditions the optimal θf is

θ∗f (vf ) = log

(

vf

βf

)

− log

(

1 − vf

1 − βf

)

Observe that when vf ≤ βf , θf ≤ 0. To ensure θf > 0, it is

required that vf > βf .

B. Optimal airtime, coding rate and transmit rate l∗f ,v∗f ,x∗
f

We now solve

max
l,v,x

U(l, v, x, θ∗(v))

s.t 0 < lf ≤ lf , xf > 0, βf < vf < 1/2 ∀f ∈ F

Unfortunately U(l, v, x, θ∗) is not jointly concave in l, v, x.

We therefore change to work in terms of log-transformed

variables l̃f = log(lf ), Ĩf = log(If ) and x̃f = log(xf ) where

If (vf ) := vf log

(

vf

βf

)

+ (1 − vf ) log

(

1 − vf

1 − βf

)

Since Ĩf (vf ) is a monotone increasing function of vf (verified

by inspection of first derivative), the inverse mapping from Ĩf

to vf exists and is one-to-one i.e. we can work interchangeably

with either vf or Ĩf . With the obvious abuse of notation we

use vf (Ĩf ) to denote the vf value corresponding to a value

of Ĩf . Note that If arises naturally in our problem since

ef(lf , vf , θ∗f (vf )) = e−Df lf If (vf ). The optimisation becomes

max
l̃,Ĩ,x̃

U1(̃l, Ĩ, x̃) := U(el̃, v(Ĩ), ex̃, θ∗(v(Ĩ)))

s.t l̃f ≤ log lf , βf < vf (Ĩf ) < 1/2 ∀f ∈ F

Importantly, we have the following lemma:

Lemma 1: U1(̃l, Ĩ, x̃) is jointly concave in l̃, Ĩ, x̃.

Proof:

U1 (̃l, Ĩ , x̃) =
X

f∈F

log sf + log(1 − 2vf ) + log(1 − ef )

=
X

f∈F

x̃f − log X + l̃f − log Tc + log(1 − 2vf (Ĩf ))

+ log(1 − e−Df e
l̃f +Ĩf

)
By [6, Lemma 4], the last two terms in U1 are jointly concave

in (l̃f , Ĩf ). It remains to show that log X is jointly convex in

l̃, x̃. Now,

X =
σ

Tc

+
X

f∈F

“ el̃

Tcwf

+
To

Tc

− 1
”

ex̃f +
Y

f∈F

`
1 + ex̃f

´
− 1

=
σ

Tc

+
1

Tcwf

X

f∈F

el̃ex̃f +
To

Tc

X

f∈F

ex̃f +
NX

k=2

X

A⊆F,|A|=k

Y

j∈A

ex̃j
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Since the logarithm of a sum of exponentials is a convex

function [7], it follows that log X is convex in the transformed

variables l̃, x̃.

By Lemma 1, the transformed maximisation problem is a

convex optimisation problem. The Lagrangian is

L = U1 −
∑

f∈F

pf

(

l̃f − log lf

)

where multiplier pf ≥ 0 and we have dropped terms involving

the constraints on vf in order to streamline notation and

because these are almost never active in practical cases. The

KKT optimality conditions corresponding to x̃f , Ĩf and l̃f are

nxf

X





lf
Tcwf

+
To

Tc

− 1 +
∏

g∈F ,g 6=f

(1 + xg)



 = 1 (2)

2

1 − 2vf

=
ef (lf , vf )

1 − ef (lf , vf )
Df lfθ∗f (vf ) (3)

1 −
nxf

X

lf
Tcwf

+
ef(lf , vf )

1 − ef (lf , vf )
Df lfIf (vf ) − pf = 0 (4)

1) Optimal packet size l∗f and coding rate v∗f : Combining

Eqns. (2), (3) and (4), the optimal solution satisfies

(

1 +
2If

(1 − 2vf )θf

− pf

)

(5)

×



1 +

(

To

Tc

− 1 +
∏

g∈F ,g 6=f

(1 + xg)

)

wfTc

lf



 = 1

In (5),
(

To

Tc
−1+

∏

g∈F ,g 6=f

(1+xg)
)

wf Tc

lf
> 0 and

2If

(1−2vf )θf
>

0. Hence at the optimum we must have pf > 0. By comple-

mentary slackness, the constraint on the flow packet size must

therefore be tight, i.e. the optimal packet size is

l∗f = lf

The optimal coding rate v∗f can now be found by solving (3).

2) Optimal transmission attempt parameter x∗
f : It remains

to determine the optimal station transmission rate x∗
f . This can

be found using standard subgradient descent techniques, e.g.

using the algorithm detailed in Alg. 1.

Algorithm 1 Calculate optimal x

1: Initialise x(1) = [x
(1)
1 , x

(1)
2 , · · · , x

(1)
n ], t = 1.

2: repeat
3: a(t) = 1/t2.
4: ∀f ∈ F , calculate

y
(t)
f = 1 −

nx
(t)
f

X(l, v∗)

„
lf

Tcwf

+
To

Tc

− 1 +
Y

g∈F,g 6=f

(1 + x(t)
g )

«

x
(t+1)
f =

“

x
(t)
f + a(t)y

(t)
f

”+

5: t = t + 1.
6: until |y

(t)
f | ≤ ǫ ∀f ∈ F , where ǫ > 0.

IV. DISCUSSION

A. Equal air-time

Due to the presence of collision losses and the coupling

of station transmissions via carrier sense, the flow air-time in

a WLAN is not simply the successful transmission duration

but also includes airtime expended in collisions. Following

[8], define the flow total air-time as the fraction of time

used for transmissions by flow f , including both successful

transmissions and collisions, which is given by

tf =
Ps,fTs,f + (1 − Ps,f )Tc

σPi +
∑

f∈F Ts,fPs,f + Tc(1 − Pi − Ps)

=
1

X

(

τf

Pi

+ xf

(

Ts,f

Tc

− 1

)

)

KKT condition (2) can be rewritten as

1

X

(

τf

Pi

+ xf

(

Ts,f

Tc

− 1

))

=
1

n

Hence, the proportional fair allocation assigns equal flow total

air-times amongst flows, and the flow total air-times sum to

unity. It is worth pointing out that since the flow air-time usage

overlaps due to collisions, the flow total air-times summing to

unity does not imply that the channel idle probability Pi = 0.

B. Decoupled allocation tasks

It is the packet size lf that acts to couple the flow coding

rate and transmission rate in the optimisation in objective U1,

U1 (̃l, Ĩ , x̃) =
X

f∈F

x̃f − log X (̃l, x̃) + l̃f
| {z }

x̃,̃l

− log Tc

+ log(1 − 2vf (Ĩ)) + log(1 − e−Df e
l̃f +Ĩf

)
| {z }

Ĩ ,̃l

Our analysis establishes that the optimal choice is to select

the maximum possible packet size l∗f = lf . Substituting for

this known value, U1 separates into a term in x̃ and a term

in Ĩ. That is, the optimisation problem decomposes into

decoupled flow transmission rate and coding rate allocation

tasks. Inspection of KKT condition (3) reveals that the

optimal I is dependent on channel condition parameter β and

delay requirement D, while from KKT condition (2) it can

be seen that the optimal x is dependent on PHY rate w and

the number of stations n in the WLAN. Therefore a layered

approach that separates MAC scheduling and packet coding

rate selection is optimal.

C. Decentralised 802.11 implementation

The optimal l∗f ,v∗f ,x∗
f can be determined by the station

carrying flow f without the need for any message passing.

Solving (3) to find optimal v∗f requires only local information

which is available at each station. In Alg. 1 observe that (i)

the flow throughput sf can be measured by station f , and the

quantity X can then be computed based on (1); (ii) the channel

idle probability Pi can be observed by all stations in a WLAN

(via carrier sense, see for example in [9]), and hence we have

the quantity
∏

g∈F ,g 6=f(1 + xg) = 1
Pi

· 1
1+xf

. Therefore, the

update of xf in Alg. 1 can also be carried out locally at each

station.
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Fig. 1. Single WLAN with 2 flows, packet size l1 = l2 = 8000 bits, PHY
rates w1 = w2 = 54Mbps

V. EXAMPLES

A. Impact of BER

Consider a WLAN with two stations with equal transmitted

packet sizes l1 = l2 and PHY rates w1 = w2. The proportional

fair allocation assigns equal attempt probabilities to both

stations. Fig. 1 plots the optimal coding rates for both flows as

the symbol error rate β2 of flow 2 is varied while keeping β1 of

flow 1 fixed. It can be seen that when the flows have the same

delay deadlines, the flow with poorer channel conditions is

allocated with a lower coding rate. When the delay deadline

for flow 2 is increased to infinity, corresponding to delay-

insensitive applications, the coding rate of flow 2 increases.

That is, a tighter delay deadline comes at the cost of using

a lower coding rate and so lower throughtput – this is to be

expected since delay insensitive flows can use a larger code

block size and so gain more efficient error protection. It can be

also seen that changing the symbol error rate or delay threshold

for flow 2 does not affect the coding rate of flow 1. This is

because the optimal coding rate for a flow is only dependent

on its own symbol error rate and delay deadline.

B. Impact of packet size

Now consider a WLAN with 6 flows which have identical

delay deadlines, symbols error rates and PHY rates, but each

flow has a different maximum transmitted packet length.

Fig. 2(a) plots the optimal station attempt probability versus

the successful transmission durations Ts,f . Fig. 2(b) plots the

corresponding successful flow air-times and flow total air-

times. It can be seen that the proportional fair allocation

assigns equal flow total air-times but unequal successful flow

air-times. Although flows with longer successful transmission

durations are allocated with lower attempt probabilities, they

still have longer successful flow air-times. The optimal coding

rate for each flow is also different, since the different packet

sizes yield different code block sizes (recall the delay dead-

lines are the same for all flows). That is, neither the optimal

coding rate nor the optimal attempt probability is the same for

each flow. Similar behaviour occurs when the packet sizes for

flows are the same but the PHY rates wf differ.
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Fig. 2. Single WLAN with 6 flows. For each flow, the PHY rate w =

54Mbps, delay deadline D = 1 and BSC crossover probability α = 10−3.

VI. CONCLUSION

We derive the joint allocation of coding rate and airtime

that achieves the proportionally fair throughput allocation in

an 802.11 WLAN. We show that the joint optimisation decom-

poses into decoupled allocation tasks and (i) assigns equal total

airtime to stations, (ii) selects the station transmission attempt

probabilities such that the airtimes sum to unity, (iii) selects the

optimal coding to maximise goodput (treating packets decoded

after the delay deadline as losses).
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