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Abstract

In this paper we study communication networks that employ drop-tail
queueing and Additive-Increase Multiplicative-Decrease (AIMD) conges-
tion control algorithms. We show that the theory of nonnegative matrices
may be employed to model such networks. In particular, we show that
important network properties such as: (i) fairness; (ii) rate of convergence;
and (iii) throughput; can be characterised by certain non-negative matri-
ces that arise in the study of AIMD networks. We demonstrate that these
results can be used to develop tools for analysing the behaviour of AIMD
communication networks. The accuracy of the models is demonstrated by
means of several NS-studies.

1 Introduction

In this paper we describe a design oriented modelling approach that captures
the essential features of networks of AIMD sources that employ drop-tail queues.
The novelty of our approach lies in the fact that we are able to use the theory
of non-negative matrices and hybrid systems to build mathematical models of
communication networks. This approach is based upon a number of simple ob-
servations: (i) communication networks employing congestion control systems are
feedback systems; (ii) communication systems exhibit event driven phenomena
and may therefore be viewed as classical hybrid systems; and (iii) network states
(queue length, window size, etc.) take only non-negative values. We show that
it is possible to relate important network properties to the characteristics of the
non-negative matrices that arise in the study of such communication networks.
In particular, we will demonstrate that (i) bandwidth allocation amongst flows,
(ii) rate of network convergence, and (iii) network throughput can all be related
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to properties of sets of non-negative matrices. We defer the discussion of related
results in the literature to comments at the relevant places within the paper.

This paper is structured as follows. In Section 2 we develop a positive systems
network model that captures the essential features of communication networks
employing drop-tail queuing andAIMD congestion control algorithms. An exact
model is presented for the case where all network sources share a uniform round-
trip-time (RTT) and packet drops are synchronised. We then show how this
model may be extended to the case of sources with differing RTT’s and where
packet drops need not be synchronised. This approach gives rise to a model of
AIMD networks in which the network dynamics are described by a finite set of
non-negative matrices. The main results of this paper are presented in Section 3.
To ease exposition these results, which concern the short and long term behaviour
of AIMD networks, are simply stated in this section. The use of these results to
analyse network behaviour is illustrated by means of a number of case studies in
Section 4. Finally, in Section 5 we present the proofs of the mathematical results
as well as a number of intermediate derivations.

2 Nonnegative matrices and communication net-

works

A communication network consists of a number of sources and sinks connected
together via links and routers. We assume that these links can be modelled as
a constant propagation delay together with a queue, that the queue is operating
according to a drop-tail discipline, and that all of the sources are operating a
TCP-like congestion control algorithm. TCP (transmission control protocol) op-
erates a window based congestion control algorithm. The TCP standard defines
a variable cwnd called the congestion window. Each source uses this variable to
track the number of sent unacknowledged packets that can be in transit at any
time. When the window size is exhausted, the source must wait for an acknowl-
edgement before sending a new packet. Congestion control is achieved by dynam-
ically adapting the window size according to an additive-increase multiplicative-
decrease (AIMD) law. Roughly speaking, the basic idea is for a source to gently
probe the network for spare capacity by increasing the rate at which packets are
inserted into the network, and to rapidly back-off the number of packets trans-
mitted through the network when congestion is detected. We shall see that the
AIMD paradigm with drop-tail queuing gives rise to networks whose dynamics
can be accurately modelled as a positive linear system. While we are ultimately
interested in general communication networks, for reasons of exposition it is use-
ful to begin our discussion with a description of networks in which packet drops
are synchronised (i.e. every source sees a drop at each congestion event). We
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show that many of the properties of communication networks that are of interest
to network designers can be characterised by properties of a square matrix whose
dimension is equal to the number of sources in the network. The approach is then
extended to a model of unsynchronised networks. Even though the mathematical
details are more involved, many of the qualitative characteristics of synchronised
networks carry over to the non-synchronised case if interpreted in a stochastic
fashion.

2.1 Synchronised communication networks

We begin our discussion by considering communication networks for which the fol-
lowing assumptions are valid: (i) at congestion every source experiences a packet
drop; and (ii) each source has the same round-trip-time (RTT)1. In this case an
exact model of the network dynamics may be found as follows [1]. Let wi(k) de-
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Figure 1: Evolution of window size

note the congestion window size of source i immediately before the k’th network
congestion event is detected by the source. Over the k’th congestion epoch three
important events can be discerned: ta(k), tb(k) and tc(k); as depicted in Figure
1. The time ta(k) denotes the instant at which the number of unacknowledged
packets in flight equals βiwi(k); tb(k) is the time at which the bottleneck queue
is full; and tc(k) is the time at which packet drop is detected by the sources,
where time is measured in units of RTT2. It follows from the definition of the
AIMD algorithm that the window evolution is completely defined over all time
instants by knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k) of
each congestion epoch. We therefore only need to investigate the behaviour of
these quantities.

1One RTT is the time between sending a packet and receiving the corresponding acknowl-
edgement when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rate of increase for each of
the congestion window variables between congestion events.
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We assume that each source is informed of congestion one RTT after the queue
at the bottleneck link becomes full; that is tc(k)− tb(k) = 1. Also,

wi(k) ≥ 0,
n∑

i=1

wi(k) = P +
n∑

i=1

αi, ∀k > 0, (1)

where P is the maximum number of packets which can be in transit in the network
at any time; P is usually equal to qmax + BTd where qmax is the maximum queue
length of the congested link, B is the service rate of the congested link in packets
per second and Td is the round-trip time when the queue is empty. At the (k+1)th
congestion event

wi(k + 1) = βiwi(k) + αi[tc(k)− ta(k)]. (2)

and

tc(k)− ta(k) =
1∑n

i=1 αi

[P −
n∑

i=1

βiwi(k)] + 1. (3)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi∑n

j=1 αj

[
n∑

i=1

(1− βi)wi(k)], (4)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (5)

where W T (k) = [w1(k), · · · , wn(k)], and

A =




β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn


 +

1∑n
j=1 αj




α1

α2

· · ·
αn




[
1− β1 1− β2 · · · 1− βn

]
.(6)

The matrix A is a positive matrix (all the entries are positive real numbers) and
it follows that the synchronised network (5) is a positive linear system [2]. Many
results are known for positive matrices and we exploit some of these to char-
acterise the properties of synchronised communication networks. In particular,
from the viewpoint of designing communication networks the following properties
are important: (i) network fairness; (ii) network convergence and responsiveness;
and (iii) network throughput. While there are many interpretations of network
fairness, in this paper we concentrate on window fairness. Roughly speaking,
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window or pipe fairness refers to a steady state situation where n sources oper-
ating AIMD algorithms have an equal number of packets P/n in flight at each
congestion event; convergence refers to the existence of a unique fixed point to
which the network dynamics converge; responsiveness refers to the rate at which
the network converges to the fixed point; and throughput efficiency refers to the
objective that the network operates at close to the bottleneck-link capacity. It is
shown in [3, 4] that these properties can be deduced from the network matrix A.
We briefly summarise here the relevant results in these papers.

Theorem 2.1 [1, 4] Let A be defined as in Equation (6). Then A is a column
stochastic matrix with Perron eigenvector xT

p = [ α1

1−β1
, ..., αn

1−βn
] and whose eigen-

values are real and positive. Further, the network converges to a unique stationary
point Wss = Θxp, where Θ is a positive constant such that the constraint (1) is
satisfied; limk→∞ W (k) = Wss; and the rate of convergence of the network to Wss

is bounded by the second largest eigenvalue of A.

The following facts may be deduced from the above Theorem.

(i) Fairness: Window fairness is achieved when the Perron eigenvector xp is
a scalar multiple of the vector [1, ..., 1]; that is, when the ratio αi

1−βi
does

not depend on i. Further, since it follows for conventional TCP-flows (
α = 1, β = 1/2) that α = 2(1 − β), any new protocol operating an AIMD
variant that satisfies αi = 2(1− βi) will be TCP-fair.
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Figure 2: Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10Mb
bottleneck link, 100ms delay, queue 40 packets.)
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Figure 3: NS packet-level simulation (αi = 1, βi = 0.5, dumb-bell with 10Mbs
bottleneck bandwidth, 100ms propagation delay, 40 packet queue).

(ii) Network responsiveness: The magnitude of the second largest eigen-
value λn−1 of the matrix A bounds the convergence properties of the en-
tire network. It is shown in [4] that all the eigenvalues of A are real
and positive and lie in the interval [β1, 1], where the βi are ordered as
0 < β1 ≤ β2 ≤ .... ≤ βn−1 ≤ βn < 1. In particular, the second largest
eigenvalue is bounded by βn−1 ≤ λn−1 ≤ βn. Consequently, fast conver-
gence to the equilibrium state (the Perron eigenvector) is guaranteed if the
largest backoff factor in the network is small. Further, we show in [4] that
the network rise-time when measured in number of congestion epochs is
bounded by nr = log(0.95)/ log(λn−1). In the special case when βi = 0.5
for all i, nr ≈ 4; see for example Figure 3. Note that nr gives the number
of congestion epochs until the network dynamics have converged to 95 % of
the final network state: the actual time to reach this state depends on the
duration of the congestion epochs which is ultimately dependent on the αi.

(iii) Network throughput : At a congestion event the network bottleneck is
operating at link capacity and the total data throughput through the bot-
tleneck link is given by

R(k)− =

∑n
i wi(k)

Td + qmax

B

(7)

where B is the link capacity, qmax is the bottleneck buffer size, Td is the
round-trip-time when the bottleneck queue is empty and Td +qmax/B is the
round-trip time when the queue is full. After backoff, the data throughput
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is given by

R(k)+ =

∑n
i βiwi(k)

Td

(8)

under the assumption that the bottleneck buffer empties. It is evident that
if the sources backoff too much, data throughput will suffer as the queue
remains empty for a period of time and the link operates below its maximum
rate. A simple method to ensure maximum throughput is to equate both
rates, which may be achieved by the following choice of the βi:

βi =
Td

Td + qmax

B

=
RTTmin

RTTmax

. (9)

(iv) Maintaining fairness : Note that setting βi = RTTmin

RTTmax
requires a corre-

sponding adjustment of αi if it is not to result in unfairness. Both net-
work fairness and TCP-fairness are ensured by adjusting αi according to
αi = 2(1− βi).

Comment 1: Networks of synchronised sources and drop-tail queues have al-
ready been the subject of several studies [5, 6, 7, 8, 9]. The novelty of our
approach is that we use facts from the theory of positive matrices to analyse
not only the network steady-state behaviour but also the network dynamics, di-
rectly relating the qualitative properties of synchronised networks to source and
network parameters.

2.2 Models of unsynchronised network

The preceding discussion illustrates the relationship between important network
properties and the eigensystem of a positive matrix. Unfortunately, the assump-
tions under which these results are derived, namely of source synchronisation and
uniform RTT, are quite restrictive (although they may, for example, be valid in
many long-distance networks [10]). It is therefore of great interest to extend our
approach to more general network conditions. As we will see the model that
we obtain shares many structural and qualitative properties of the synchronized
model described above. To distinguish variables, we will from now on denote
the nominal parameters of the sources used in the previous section by αs

i , β
s
i ,

i = 1, . . . , n. Here the index s may remind the reader that these parameters
describe the synchronized case, as well as that these are the parameters that are
chosen by each source.

Consider the general case of a number of sources competing for shared bandwidth
in a generic dumbbell topology (where sources may have different round-trip
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times and drops need not be synchronised). The evolution of the cwnd of a
typical source as a function of time, over the k′th congestion epoch, is depicted
in Figure 4. As before a number of important events may be discerned, where we
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Figure 4: Evolution of window size over a congestion epoch. T (k) is the length
of the congestion epoch in seconds.

now measure time in seconds, rather than units of RTT . Denote by tai(k) the
time at which the number of packets in flight belonging to source i is equal to
βs

i wi(k); tq(k) is the time at which the bottleneck queue begins to fill; tb(k) is the
time at which the bottleneck queue is full; and tci(k) is the time at which the i’th
source is informed of congestion. In this case the evolution of the i’th congestion
window variable does not evolve linearly with time after tq seconds due to the
effect of the bottleneck queue filling and the resulting variation in RTT; namely,
the RTT of the i’th source increases according to RTTi(t) = Tdi

+ q(t)/B after
tq, where Tdi

is the RTT of source i when the bottleneck queue is empty and
0 ≤ q(t) ≤ qmax denotes the number of packets in the queue. Note also that we
do not assume that every source experiences a drop when congestion occurs. For
example, a situation is depicted in Figure 4 where the i’th source experiences
congestion at the end of the epoch whereas the j’th source does not.

Given these general features it is clear that the modelling task is more involved
than in the synchronised case. Nonetheless, it is possible to relate wi(k) and
wi(k +1) using a similar approach to the synchronised case by accounting for the
effect of non-uniform RTT’s and unsynchronised packet drops as follows.
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(i) Unsynchronised source drops : Consider again the situation depicted in
Figure 4. Here, the i’th source experiences congestion at the end of the
epoch whereas the j’th source does not. This corresponds to the i’th source
reducing its congestion window by the factor βs

i after the k +1’th congestion
event, and the j’th source not adjusting its window size at the congestion
event. We therefore allow the back-off factor of the i’th source to take one of
two values at the k’th congestion event.

βi(k) ∈ {βs
i , 1} , (10)

corresponding to whether the source experiences a packet loss or not.

(ii) Non-uniform RTT : Due to the variation in round trip time, the conges-
tion window of a flow does not evolve linearly with time over a congestion
epoch. Nevertheless, we may relate wi(k) and wi(k + 1) linearly by defining
an average rate αi(k) depending on the k’th congestion epoch:

αi(k) :=
wi(k + 1)− βi(k)w(k)

T (k)
, (11)

where T (k) is the duration of the k’th epoch measured in seconds. Equiva-
lently we have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) . (12)

In the case when qmax << BTdi
, i = 1, . . . , n, the average αi are (almost)

independent of k and given by αi(k) ≈ αs
i/Tdi

for all k ∈ N, i = 1, . . . , n.

The situation when

αi ≈ αs
i

Tdi

, i = 1, . . . , n (13)

is of considerable practical importance and such networks are the principal con-
cern of this paper. This corresponds to the case of a network whose bottleneck
buffer is small compared with the delay-bandwidth product for all sources utilising
the congested link. Such conditions prevail on a variety of networks; for example
networks with large delay-bandwidth products, and networks where large jitter
and/or latency cannot be tolerated. In view of (10) and (12) a convenient rep-
resentation of the network dynamics is obtained as follows. At congestion the
bottleneck link is operating at its capacity B, i.e.,

n∑
i=1

wi(k)− αi

RTTi,max

= B, (14)

where RTTi,max is the RTT experienced by the i’th flow when the bottleneck
queue is full. Note, that RTTi,max is independent of k. Setting γi := (RTTi,max)

−1
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we have that

n∑
i=1

γiwi(k) = B +
n∑

i=1

γiαi . (15)

By interpreting (15) at k+1 and inserting (12) for wi(k+1) it follows furthermore
that

n∑
i=1

γiβi(k)wi(k) + γiαiT (k) = B +
n∑

i=1

γiαi . (16)

Using (15) again it follows that

T (k) =
1∑n

i=1 γiαi

(
n∑

i=1

γi(1− βi(k))wi(k)

)
. (17)

Inserting this expression into (12) we finally obtain

wi(k + 1) = βi(k)wi(k) +
αi∑n

j=1 γjαj

(
n∑

j=1

γj(1− βj(k))wj(k)

)
. (18)

and the dynamics of the entire network of sources at the k-th congestion event
are described by

W (k + 1) = A(k)W (k), A(k) ∈ {A1, ..., Am}. (19)

where

A(k) =




β1(k) 0 · · · 0
0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)


 (20)

+
1∑n

j=1 γjαj




α1

α2

· · ·
αn




[
γ1(1− β1(k)), . . . , γn(1− βn(k))

]
,

and where βi(k) is either 1 or βs
i . The non-negative matrices A2, .., Am are con-

structed by taking the matrix A1,

A1 =




βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n


 +

1∑n
j=1 γjαj




α1

α2

· · ·
αn




[
γ1(1− βs

1), . . . , γn(1− βs
n)

]
,
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and setting some, but not all, of the βi to 1. This gives rise to m = 2n−1 matrices
associated with the system (19) that correspond to the different combinations of
source drops that are possible. We denote the set of these matrices by A.

Example 1 (Two Unsynchronised Flows) We illustrate the application of
the model (19) for a network of two TCP flows. Possible combinations of packet
drops are: (i) both flows experience a packet drop at a congestion event; (ii) flow 1
experiences a drop only; and (iii) flow 2 experiences a drop only . The associated
set A is {A1, A2, A3} with

A1 =

[
βs

1 + γ1α1

γ1α1+γ2α2
(1− βs

1)
γ1α1

γ1α1+γ2α2
(1− βs

2)
γ2α2

γ1α1+γ2α2
(1− βs

1) βs
2 + γ2α2

γ1α1+γ2α2
(1− βs

2)

]

A2 =

[
βs

1 + γ1α1

γ1α1+γ2α2
(1− βs

1) 0
γ2α2

γ1α1+γ2α2
(1− βs

1) 1

]

A3 =

[
1 γ1α1

γ1α1+γ2α2
(1− βs

2)

0 βs
2 + γ2α2

γ1α1+γ2α2
(1− βs

2)

]

Finally we note that another, sometimes very useful, representation of the net-
work dynamics can be obtained by considering the evolution of scaled window
sizes at congestion; namely, by considering the evolution of W T

γ (k) = [γ1w1(k)
, γ2w2(k), ...., γnwn(k)]. Here one obtains the following description of the network
dynamics:

Wγ(k + 1) = Ā(k)Wγ(k), Ā(k) ∈ Ā = {Ā1, ..., Ām}, m = 2n − 1, (21)

where the Āi are obtained by the similarity transformation associated with the
change of variables, in particular

Ā1 =




βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n


 +

1∑n
j=1 γjαj




γ1α1

γ2α2

· · ·
γnαn




[
1− βs

1 1− βs
2 · · · 1− βs

n

]
.

As before the non-negative matrices Ā2, .., Ām are constructed by taking the
matrix Ā1 and setting some, but not all, of the βs

i to 1. All of the matrices in the
set Ā are now column stochastic; for convenience we use this representation of
the network dynamics to prove the main mathematical results presented in this
paper.

Comment 2: Before proceeding we note that networks of unsynchronised sources
have also been the subject of wide study in the TCP community: see [11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 20] and the accompanying references for further
details. While most of this work has concentrated on developing and analysing
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TCP models that are based upon fluid analogies, several authors have recently
developed hybrid systems models of networks with a single bottleneck link which
employ AIMD congestion control mechanisms: most notably by Hespanha [22]
and Baccelli and Hong [23]. We note that the model derived in [23] is similar
to the model presented here. In particular, under mild assumptions, the sets
of solutions of the model in [23] and of (19) coincide, so that the results of
that reference are immediately applicable to the model presented here. However,
whereas the model derived by Baccelli and Hong is also a random matrix model,
their model is both affine and the homogeneous (linear) part is characterised
by general matrices (namely, not by non-negative matrices). We will shall see
in Section 3 that the properties of linearity (no affine term) and nonnegativity
are useful in characterising and interpreting the asymptotic properties of AIMD
networks.

3 Main results

The ultimate objective of our work is to use the network model developed in
Section 2 to establish design principles for the realisation ofAIMD networks. In
this section we present two results, both of which are derived from our network
model in Section 2, which in a sense characterise the asymptotic behaviour of
both long and short lived flows.

Preamble to main results

It follows from (19) that W (k) = Π(k)W (0), where Π(k) = A(k)A(k− 1)....A(0).
Consequently, the behaviour of W (k), as well as the network fairness and con-
vergence properties, are governed by the properties of the matrix product Π(k).
The objective of this section is to analyse the average behaviour of Π(k) with a
view to making concrete statements about these network properties. To facilitate
analytical tractability we will make two mild simplifying assumptions.

Assumption 3.1 The probability that A(k) = Ai in (19) is independent of k
and equals ρi.

Comment 3: In other words Assumption 3.1 says that the probability that the
network dynamics are described by W (k + 1) = A(k)W (k), A(k) = Ai over
the k’th congestion epoch is ρi and that the random variables A(k), k ∈ N are
independent and identically distributed (i.i.d.).

Given the probabilities ρi for i ∈ {1, ..., 2n − 1}, one may then define the prob-
ability λj that source j experiences a backoff at the k’th congestion event as
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follows:

λj =
∑

ρi ,

where the summation is taken over those i which correspond to a matrix in which
the j’th source sees a drop. Or to put it another way, the summation is over those
indices i for which the matrix Ai is defined with a value of βj 6= 1.

Assumption 3.2 We assume that λj > 0 for all j ∈ {1, ..., n}.

Simply stated, Assumption 3.2 states that almost surely all flows must see a drop
at some time (provided that they live for a long enough time).

Comment 4: A consequence of the above assumptions is that the probability
that source j experiences a drop at the k’th congestion event is not independent
of the other sources. For example, if the first n − 1 sources do not see a drop
then this implies that source n must see a drop (in accordance with the usual
notion of a congestion event, we require at least one flow to see a drop at each
congestion event). Hence, the events cannot be independent.

We now present two results that characterise the expected behaviour of AIMD-
networks that satisfy Assumptions 3.1 and 3.2. The first characterises the ensem-
ble average behaviour of flows, while the second characterises the time average
behaviour. Both results indicate that the expected number of packets that are
in-flight in the network is determined solely by the network parameters and the
probability ρj.

Result 1. Ensemble average behaviour of TCP-flows

Theorem 3.1 Consider the stochastic system defined in the preamble. Let Π(k)
be the random matrix product arising from the evolution of the first k steps of
this system:

Π(k) = A(k)A(k − 1)....A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (
m∑

i=1

ρiAi)
k; (22)

and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (23)

where the vector xp is given by xT
p = Θ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn)
), yT

p =

(γ1, ...., γn). Here Θ ∈ R is chosen such that equation (15) is satisfied if wi

is replaced by xpi = Θαi/(λi(1− βi)).
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Comment 5: Theorem 3.1 characterises the ensemble average behaviour of the
congestion variable vector W (k). The congestion variable vector of a network of
flows starting from initial condition W (0) and evolving for k congestion epochs is
given by W (k) = Π(k)W (0). The average window vector over many repetitions is
given by E(Π(k))W (0). Theorem 3.1 provides an expression for calculating this
average in terms of the network parameters and the probabilities ρi. Furthermore,
we have that as k becomes large E(Π(k))W (0) tends asymptotically to xpy

T
p W (0).

The rate of convergence of E(Π(k))W (0) to this limiting value is bounded by
the second largest eigenvalue of the matrix

∑m
n=1 ρiAi. Note that yT

p W (0) is a
constant independent of W (0) (due to the constraint (15)). Hence, Theorem
3.1 states that the ensemble average window vector tends to a scalar multiple of
xp. When the λi, i = 1, ..., n are equal, xp is identical to the Perron eigenvector
obtained in the case of synchronised networks; that is, the ensemble average
in the unsynchronised case is identical to the fixed point in the deterministic
situation where packet drops are synchronised. Many of the deduced properties
for synchronised networks therefore carry over with a stochastic interpretation to
the unsynchronised case: in particular, window fairness.

Comment 6: Theorem 3.1 is concerned with the expected behaviour of the
source congestion windows at the k’th congestion epoch. For k sufficiently large
the expected throughput before backoff can be approximated as

∑k
i=1

αi

λi(1−βi)RTTi,max
.

The worst case throughput after backoff (which occurs when the queue is on av-
erage empty after backoff) is approximately

∑k
i=1

αi

λi(1−βi)RTTi,min
. An immediate

consequence of this observation is that the bottleneck link is guaranteed to be
operating at capacity (on average) for k large enough if βi =

RTTi,min

RTTi,max
.

Result 2. Time average behaviour of flows

We now present the following theorem which is concerned with networks charac-
terised by long-lived flows.

Theorem 3.2 Consider the stochastic system defined in the preamble and let

W (k) :=
1

k + 1

k∑
i=0

W (i) =

(
1

k + 1

k∑
i=0

Π(i)

)
W (0),

and where

Π(k) = A(k)A(k − 1)....A(0).

Then, with probability one

lim
k→∞

W (k) = xpy
T
p W (0) =

(
n∑

j=1

γjwj(0)

)
xp, (24)
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where the vectors xp and yp are as defined in Theorem 3.1.

Comment 7: Theorem 3.2 states that the time-average vector of window sizes
almost surely converges asymptotically to a scalar multiple of xp. Hence, xp

determines the time-averaged relative number of unacknowledged packets in the
network from each source at each congestion event.

Comment 8: In view of Comment 6, it again follows that asymptotically, the
time-averaged throughput through the bottleneck link will approach the capacity
B for k sufficiently large if βi =

RTTi,min

RTTi,max
.

4 Model Validation

The mathematical results derived in Section 3 are surprisingly simple when one
considers the potential mathematical complexity of the unsynchronised network
model (19). The simplicity of these results is a direct consequence of Assumptions
3.1 and 3.2. The objective of this section is therefore twofold; (i) to validate
the unsynchronised model (19) in a general context; and (ii) to validate the
analytical predictions of the model and thereby confirm that the aforementioned
assumptions are appropriate in practical situations.

4.1 Two Unsynchronised Flows

We first consider the behaviour of two TCP flows in the dumbbell topology shown
in Figure 5. Our analytic results are based upon two fundamental assumptions:
(i) that the dynamics of the evolution of the source congestion windows can be
accurately modelled by equation (19); and (ii) the allocation of packet drops
amongst the sources at congestion can be described by random variables. We
consider each of these assumptions in turn.

(i) Accuracy of dynamics model. A comparison of the predictions the model
(19) against the output of a packet-level NS simulation is depicted in Figure
6. Here, the pattern of packet drops observed in the simulation is used to
select the appropriate matrix A(k) from the set A at each congestion event
when evaluating (19). As can be seen, the model output is very accurate.
Also plotted in Figure 7 is the evolution of the linear combination

∑n
i=1 γiwi

where the γi are defined in Equation (15). It can be seen that
∑n

i=1 γiwi has
the same value at each congestion event thereby validating the constraint
(15) used in the model.

(ii) Validity of random drop model. It is well known that networks of TCP
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Figure 6: Predictions of the network model compared with packet-level NS sim-
ulation results. Key: ◦ flow 1 (model), ♦ flow 2 (model), - flow 1 (NS), – flow 2
(NS). Network parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms;
T1=42ms; no background web traffic.
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Figure 7: Evolution of
∑n

i=1 γiwi. Network parameters: B=100Mb, qmax=80
packets, T̄=20ms, T0=102ms; T1=42ms; no background web traffic.

flows with drop-tail queues can exhibit a rich variety of deterministic drop-
behaviours [24]. However, most real networks carry at least a small amount
web traffic. In Figure 8 we plot NS simulation results where the mean con-
gestion window as the level of background web traffic is varied (background
information on the web traffic generator in NS is described in [25]). To
illustrate the impact of small amounts of web traffic, these results are given
for a network condition where phase effects are particularly pronounced:
the congestion window time histories with no web traffic are shown in Fig-
ure 9. It can be seen that the time histories appear to jump between two
persistent regimes. In the first regime flow 1, which has a propagation de-
lay of 122ms, achieves a larger congestion window than flow 2, which has
a propagation time of only 62ms, see Figure 9(b). The reverse reverse is
true in the second regime, see Figure 9(c). The impact of background web
traffic is evident from Figure 10: despite its small volume, the effect of this
traffic is enough to disrupt the coherent structure associated with phase
effects and other complex phenomena previously observed in simulations of
unsynchronised networks [24].

From the packet-based simulation results we can determine the proportion
of congestion events corresponding to both flows simultaneously seeing a
packet drop, flow 1 seeing a drop only, and flow 2 seeing a drop only.
Using these estimates of the probabilities ρi, the mean congestion window

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

mean web traffic/link bandwidth (%)

no
rm

al
is

ed
 c

w
nd

 s
iz

e

Figure 8: Variation of mean wi(k) with level of background web traffic in
dumbbell topology of Figure 5. Key: +NS simulation result; · mathematical
model (19); ◦ Theorem 3.2. Network parameters: B=100Mb, qmax=80 packets,
T̄=20ms, T0=102ms; T1=42ms.
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Figure 9: Congestion window time history corresponding to results in Figure 8
with no web traffic. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms; T1=42ms.

19



0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

time (s)

cw
nd

 (
pa

ck
et

s)

flow 2 

flow 1 

(a)

3000 3100 3200 3300 3400 3500 3600 3700
50

100

150

200

250

300

350

400

450

500

flow 2 

flow 1 

(b) t = 3000s to t = 3750s

Figure 10: Congestion window time history corresponding to results in Figure
8 with 0.4% web traffic. Network parameters: B=100Mb, qmax=80 packets,
T̄=20ms, T0=102ms; T1=42ms.
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can be estimated using expression (23) from Theorem 3.2. The resulting
estimates are shown in Figure 11, and are also presented in tabular form in
Table 1. It can be seen that there is close agreement between the packet-
level simulation results and the predictions obtained using (23). The actual
convergence of the simulation data to the mean values (i.e. the time average
as a function of the length of the time history) is depicted in Figure 12.

Also shown in Figure 11 are the analytic predictions for the case where each
source has an equal probability of backing off: namely, when λi = 1

n
∀i. The

corresponding ratio of the elements of the average congestion window vector
is the same as that under the assumption of source synchronisation (it is
important to note that patterns of packet drop other than synchronised
drops can lead to the same distribution as long as the proportion of backoff
events experienced by the two flows is the same). Observe that the resulting
predictions are an accurate estimate of the mean congestion window size and
that as the level of web traffic increases the mean window size approaches
that in the synchronised case (see Figure 8).

Before proceeding we also present results from several other two-flow net-
works in Figures 13 and 14. As can be seen from the figures, the predictions
of Theorem 3.2 and the NS-simulations are consistently in close agreement.

T1 (ms) Flow 1 Flow 2
NS Simulation Model Theorem 3.2 NS Simulation Model Theorem 3.2

2.0 0.1924 0.1908 0.1895 0.8076 0.8092 0.8105
12.0 0.2762 0.2757 0.2736 0.7238 0.7243 0.7264
22.0 0.3253 0.3235 0.3237 0.6747 0.6765 0.6763
42.0 0.3691 0.3654 0.3651 0.6309 0.6346 0.6349
62.0 0.4226 0.4230 0.4239 0.5774 0.5770 0.5761
82.0 0.4599 0.4605 0.4600 0.5401 0.5395 0.5400
102.0 0.4866 0.4901 0.4943 0.5134 0.5099 0.5057
122.0 0.5156 0.5071 0.5082 0.4844 0.4929 0.4918
142.0 0.5461 0.5406 0.5378 0.4539 0.4594 0.4622
162.0 0.5877 0.5813 0.5825 0.4123 0.4187 0.4175
252.0 0.6652 0.6627 0.6609 0.3348 0.3373 0.3391

Table 1: Tabular data for Figure 11. T1 is the fixed delay associated with source
1 that is depicted in Figure 5. The first column for each flow gives the actual
average window size as predicted by the NS simulator; the second column gives
the predictions of the model (19); and the third column gives the long-time
average predictions of Theorem 3.2.
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Figure 11: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; approximately 0.5% bidirec-
tional background web traffic.

4.2 Many Unsynchronised Flows

The foregoing results are for networks with two competing TCP sources. We note
briefly that we have also validated our results against packet-level simulations for
networks of up to five flows. As in the two flow case, and the simulation and
analytical predictions are in close agreement; a sample of the results that we
have collected is depicted in Figures 15-16.

4.3 Model Approximations

Predictions based upon the model (19) rely on knowledge of the rate αi at which
each of the sources increases its window size. In the case of networks with small
queue sizes, Equation (13) gives a good approximation of these rates. However,
this approximation neglects the curvature in the cwnd evolution induced by time-
varying round-trip time and can therefore be expected to become less accurate
as the queue provisioning increases. This behaviour is confirmed by the simula-
tion results in Figure 17. For the network depicted in this example, it can be
seen that the approximation (13) is accurate for queue sizes less than half the
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Figure 12: Convergence of the empirical mean of the window size to asymptotic
values shown in Figure 11.NS simulation results; network parameters: B=100Mb,
qmax=80 packets, T̄=20ms, T0=102ms.

effective delay-bandwidth product, but its accuracy degrades for larger queue
sizes. We emphasize that the loss of predictive power is due to the validity of
the approximation (13) and not the fidelity of the network model (19); a more
accurate estimate of αi would lead to better model performance. Techniques for
approximating αi when the queue is not small have already been explored in [26].
A sample result illustrating the effect of using approximations developed in this
paper are shown in Figure 18.

The model (19) also neglects the fact that the number of packets in flight for TCP
flows is quantised: namely, restricted to integer values, owing to the packet based
nature of the traffic. Hence, the accuracy of the model (19) can be expected to
degrade under network conditions where the peak window size wi of a flow is
small. This effect can be seen in the simulation results shown in Figure 19 and
Figure 20.

5 Mathematical derivations

Theorem 3.1 and Theorem 3.2 follow from several interesting properties of the set
of matrices A = {A1, ..., Am}. Roughly speaking, these results may be classified
as being algebraic or stochastic in nature. The purpose of this section is to
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Figure 13: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=20ms, T0=2ms; approximately 0.5% bidirec-
tional background web traffic.
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Figure 14: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=100ms, T0=102ms; approximately 0.5% bidirec-
tional background web traffic.
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Figure 15: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy with three TCP flows. Key: +NS simulation result; · mathematical model
(19); ◦, ¦, 2 Theorem 3.2 flows 1, 2 and 3 respectively; solid lines correspond to
synchronised case. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms, T2=62ms; approximately 0.5% bidirectional background web traffic.
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Figure 16: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy with five TCP flows. Network parameters: B=100Mb, qmax=80 packets,
T̄=20ms, T0=102ms, T2=62ms; approximately 0.5% bidirectional background
web traffic.

elucidate these properties and to use them to prove the results given in Section
3.

It was noted before that the matrices in the set A are not column stochastic.
However, the matrices in this set are simultaneously similar to a set of column
stochastic matrices under the transformation Γ = diag[γ1, ..., γn]. For A ∈ A,
determined by a choice of parameters β1(A), . . . , βn(A) we have

ΓAΓ−1

=




β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)


 +

1∑n
j=1 γjαj




γ1α1

γ2α2

· · ·
γnαn




[
(1− β1(A)), · · · , (1− βn(A))

]
,

and setting α̂j := γjαj, j = 1, . . . , n we have

=




β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)


 +

1∑n
j=1 α̂j




α̂1

α̂2

· · ·
α̂n




[
(1− β1(A)), · · · , (1− βn(A))

]
.
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Figure 17: Accuracy of approximation (13) as queue provisioning is varied. The
sum of the congestion window at each congestion event is 200 packets (the ef-
fective delay-bandwidth product). Key: +NS simulation result; · mathematical
model (19); ◦ Theorem 3.2; network parameters: B=100Mb, T̄=20ms, T0=102ms,
T1 = 2ms.
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Figure 18: Accuracy of refined approximation to (11) from [26] as queue provi-
sioning is varied. Effective delay-bandwidth product is 200 packets. Key: + NS
simulation result; · mathematical model (19); ◦ Theorem 3.2; network parame-
ters: B=100Mb, T̄=20ms, T0=102ms, T1 = 2ms.
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Figure 19: Sensitivity of model accuracy to effective pipe size. Bottleneck band-
width B is varied and qmax is varied in proportion. Key: +NS simulation result;
· mathematical model (19); ◦ Theorem 3.2; network parameters: qmax = 0.5BT̄ ,
T̄=20ms, T0=102ms, T1 = 2ms.
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Figure 20: Typical cwnd time histories for small bottleneck link bandwidth.NS
simulation; network parameters: B=10Mbs, qmax = 10 packets, T̄=20ms,
T0=102ms, T1 = 2ms.

It is easy to see that the transformed matrices are column stochastic. We shall
exploit this observation in the sequel as column stochastic matrices are easier to
deal with than nonstochastic ones. In view of this fact we note that the Perron
eigenvector of ΓA1Γ

−1 is given by x̄T
p = ( α̂1

λ1(1−β1)
, α̂2

λ2(1−β2)
, ..., α̂n

λn(1−βn)
), and that

the corresponding Perron eigenvector of A1 is xT
p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn)
).

In the sequel we will derive results that are expressed in terms of x̄p. These cor-
respond to the dynamics of the system (21) and refer to the stochastic properties
of the vector W γ(k). The corresponding results for the system (19) are directly
deduced from these results by similarity.

5.1 Algebraic properties of the set A
We will from now on assume without loss of generality that the matrices in the
set A are column stochastic, which corresponds to the case γ1 = . . . = γn = 1.
Should this not be the case we can always apply the transformation Γ to obtain
this property, which just amounts to a rescaling of the αi. In the derivation of the
main results of this paper we make frequent use of the fact that the matrices in
the set A, and products of matrices in this set, are nonnegative and in particular
column stochastic. This observation implies the existence of an n−1 dimensional
subspace that is invariant under A. We will also see that the matrices in this
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set can be simultaneously transformed into block triangular form with an n − 1
dimensional symmetric block. Given these observations, we will then show under
mild assumptions that the distance of a matrix product of length k, constructed
from matrices in A, from the set of rank-1 matrices converges asymptotically to
zero as k increases.

Lemma 5.1 Consider the set A. Then, there exists an n − 1 dimensional sub-
space invariant under A.

Proof. The row vector v := [1, ..., 1] is a left eigenvector of all of the matrices in
the set A as they are column stochastic. This implies that the n− 1 dimensional
subspace orthogonal to v is invariant under A [27].

Lemma 5.2 Consider the set of matrices A. There exists a real non-singular
transformation T such that for all A ∈ A we have

T−1AT =

[
S B
0 1

]
, (25)

where S ∈ R(n−1)×(n−1) is symmetric, so that in particular the eigenvalues of S
are real and of absolute value ≤ 1.

Proof. We denote α =
[
α1 . . . αn

]T
and cα := (

∑n
j=1 αj)

−1. Let A = Λ +

cααβT ∈ A, where Λ is the diagonal matrix with entries equal to 1 or βs
i and β is

the corresponding vector with entries 0 or 1−βs
i and where we denote . Consider

the diagonal matrix

D =




1√
α1

0 . . . 0

0 1√
α2

0 0
... 0

. . . 0
0 0 · · · 1√

αn


 . (26)

Then DAD−1 is a non-negative matrix with a left eigenvector given by zp = vD−1,
(with v defined in the proof of the previous lemma). Further, it follows that,
DAD−1 = Λ + DcααβT D−1 and by inspection Dα = zp.

We now chose an orthogonal matrix M whose last column is zp/‖zp‖. Then eT
n

(the n-th unit row vector) is a left eigenvector of MT DAD−1M , and furthermore

MT DAD−1M = MT ΛM + cαMT zpβ
T D−1M .

Now as zp is a multiple of the last column of M it follows that MT zp = ‖zp‖en

and hence the entries of MT zpβ
T D−1 are nonzero only in the last row. Thus
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using that eT
n is a left eigenvector we have

MT DAD−1M =

[
S B
0 1

]
, (27)

where S ∈ R(n−1)×(n−1) is equal to the upper left (n − 1)-minor of MT ΛM and
thus symmetric. The assertion follows by setting T = D−1M . The eigenvalues of
S are bounded in absolute value by 1 as the matrix A is column stochastic and
thus has spectral radius equal to 1.

We denote the the of matrices S that appear as the upper left block in (25) by
S.

Corollary 5.1 Consider the system (19). Then for each S ∈ S the function
V (z((k)) = zT (k)z(k) is a quadratic Lyapunov function for the dynamic system

Σ : z(k + 1) = Sz(k) , (28)

i.e., for all solutions of Σ we have V (z(k + 1))− V (z(k)) ≤ 0 for all k.

Proof. The assertion follows immediately as the matrices {S1, S2, .., Sm} are
symmetric column stochastic matrices.

There are some interesting consequences of Corollary 5.1 for products of matrices
from the set S. As these matrices are symmetric and of norm less or equal to
1 they form what is called a paracontracting set of matrices. This property is
defined by the requirement that

Sx 6= x ⇔ ‖Sx‖ < ‖x‖ , ∀x ∈ Rn−1, S ∈ S . (29)

This is true for our set S, as the matrices S ∈ S are symmetric and of spectral
radius at most 1. It is know [28], that finite sets of matrices that are paracon-
tracting have left convergent products, i.e., for any sequence {S(k)}k∈N in S the
following limit exists

lim
k→∞

S(k)S(k − 1) . . . S(0) . (30)

For related literature on paracontracting sets of matrices we refer to [29, 28] and
references therein.

In the following we prove results on the convergence of products of the matrices in
A to the set of column-stochastic matrices of rank 1. To this end it will be conve-
nient to introduce a notation that identifies each matrix A ∈ A with the sources
that do not see a drop in that congestion event. Let I ⊂ {1, 2, . . . , n} be the
index set of sources not experiencing congestion at a congestion event. (Clearly,
I = {1, 2, . . . , n} can be ignored, as this means that there is no congestion).
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The matrix corresponding to an index set I is given by

AI = diag(β1(I), . . . , βn(I)) + cαα
[
1− β1(I) . . . 1− βn(I)

]
,

where βi(I) = 1, if i ∈ I and βi(I) = βs
i otherwise and cα := (

∑n
j=1 αj)

−1. We
now recover our set of possible matrices by

A := {AI | I ( {1, 2, . . . , n}} , (31)

which results in a set of 2n − 1 matrices, as it should. Note that all A ∈ A
are column stochastic, so that they have an eigenvalue equal to 1 equal to the
spectral radius.

If I 6= ∅, i.e., if at least one source does not experience congestion, then the
dimension of the eigenspace corresponding to 1 is equal to the number of sources
not seeing the congestion event. To see this consider first the case that the first
k sources k ∈ {1, . . . , n− 1} do not see a drop and the others do. In this case

A{1,...,k} =

[
Ik×k B

0 C

]
, (32)

where B > 0 by definition. As the matrix is column stochastic this means that all
columns of C sum to a value strictly less than one, and hence r(C) ≤ ‖C‖1 < 1
and the claim follows for A{1,...,k}. Now an arbitrary matrix AI , I 6= ∅ may be
brought into the form (32) by permutation of the index set and we have shown
the desired property.

Note also that the eigenspace of AI associated to the eigenvalue 1 is given by

VI = span{ei | i ∈ I} , (33)

where ei denotes the i-th unit vector.

Let us briefly discuss the eigenspaces of SI corresponding to the eigenvalue 1,
which we denote by V (SI). If I = ∅, {1}, . . . {n}, then as we have seen in (33), the
multiplicity of 1 as an eigenvalue of AI is 1, so from (25) we have that r(SI) < 1.
In this case we will (with slight abuse of notation) set V (SI) = {0}. We denote
the subspace orthogonal to [1, . . . , 1] by [1, . . . , 1]⊥. Recall from Lemma 5.1,
that this is an invariant subspace of A ∈ A. In general, we see from (33) and
Lemma 5.1 that if I = {k1, k2, . . . , kl} ( {1, . . . , n} then a basis for

[
1 1 . . . 1

]⊥ ∩ VI (34)

is given, e.g. by
ek1 − ek2 , ek1 − ek3 , . . . , ek1 − ekl

.

Hence the eigenspace of V (SI) is spanned by

MT D−1(ek1 − ek2),M
T D−1(ek1 − ek3), . . . , M

T D−1(ek1 − ekl
) . (35)
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From this it follows that

V (SI1) ∩ V (SI2) = V (SI1∩I2) , (36)

justifying our abuse of notation above. In particular, V (SI1) ∩ V (SI2) 6= {0} if
and only if I1 ∩ I2 contains at least 2 elements.

Proposition 5.1 Let {S(k)}k∈N ⊂ S be a sequence with associated index sets
I(k). The following statements are equivalent:

(i) For all z0 ∈ Rn−1 it holds that

lim
k→∞

S(k)S(k − 1) . . . S(0)z0 = 0 .

(ii) for all but one l ∈ {1, . . . , n} it holds that for each k ∈ N, there is an
k1 > k with l /∈ I(k1).

(iii) If {A1, . . . , As} ⊂ A are the matrices that appear infinitely often in the
sequence AI(k), then

Â :=
1

s

s∑

l=1

Al

is a matrix that with the exception of at most one column has strictly positive
entries.

If in (iii) the k-th column of Â has zero entries then this column is equal to ek.

Proof. (ii)⇔(iii): Note first that the k-th column of Â is not equal to ek, if and
only if for one of the matrices Al, l = 1, . . . ,m the corresponding column is not
a unit vector. The assumption on the matrix Al implies that the k-th source
experiences a drop infinitely many times. Under assumption (iii) this is true for
all but at most one column, which implies (ii). Conversely, under the assumption
(ii) the k-th source experiences a drop infinitely many times. As there are only
finitely many matrices in which the k-th column is not equal to ek one of these
appears infinitely often in the sequence of matrices and therefore in the definition
of Â. This implies (iii).

(i)⇒(ii): If (ii) does not hold, then (without loss of generality) there is a s ≥ 0
such that for all t ≥ s we have {1, 2} ⊂ I(k). This implies that for all t ≥ s the
matrix S(k) has the eigenspace MT D−1(e1 − e2) as an eigenspace corresponding
to the eigenvalue one. Hence any z0 such that S(s) . . . S(0)z0 is a multiple of
MT D−1(e1− e2) does not satisfy (i). Such a z0 exists as all the matrices in A are
invertible. This shows the assertion.
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(ii)⇒(i): Denote z(k) := S(k − 1) . . . S(0)z0. Using paracontractivity of S and
(30) it follows that

z∞ := lim
k→∞

z(k)

exists. If z∞ = 0 there is nothing to show. Otherwise, we claim that for some k0

sufficiently large, it follows that Skz∞ = z∞ for all k ≥ k0. To this end note that
because S is finite, there exists a constant 0 < r < 1 such that for all S ∈ S we
have

Sz∞ 6= z∞ ⇒ ‖Sz∞‖ < r‖z∞‖ .

By convergence this implies for all S ∈ S and all k sufficiently large that

Sz∞ 6= z∞ ⇒ ‖Sz(k)‖ <
1 + r

2
‖z∞‖ < ‖z∞‖ .

On the other hand the sequence ‖z(k)‖ is decreasing, so it follows that ‖z(k)‖ ≥
‖z∞‖ for all k ∈ N. This implies that for k sufficiently large it must hold that
S(k)z∞ = z∞. This, however, means that z∞ lies in the eigenspace V (S(k)) for
all k large enough. From (36) it follows that at least two sources do not see a
drop for all k large enough.

For the statement of the next result we denote the set of column stochastic
matrices of rank 1 by R. Note that the matrices in R are of the form

η
[
1 1 . . . 1

]
,

where η is a nonnegative vector, the entries of which sum to 1. In particular, the
matrices in R are idempotent, because

[
1 1 . . . 1

]
η = 1.

Theorem 5.1 Let {A(k)}k∈N ⊂ A be a sequence with associated index sets I(k).
Then each of the statements of Proposition 5.1 is equivalent to

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 . (37)

Proof. Consider Proposition 5.1(ii). It follows from Corollary 5.1 that the system
(21) can be transformed to an equivalent system (25). This implies that for each
t the product A(k)A(k − 1) . . . A(0) is similar to

T (k) :=

[
S(k)S(k − 1) . . . S(0) ∗

0 1

]
. (38)

By Proposition 5.1 it follows that S(k)S(k − 1) . . . S(0) → 0. As the distance
of T (k) to a matrix of rank 1 is upper bounded by ‖S(k)S(k − 1) . . . S(0)‖ this
implies that the distance of A(k)A(k− 1) . . . A(0) to the set of matrices of rank 1
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converges to zero. As each of these matrices is column stochastic any limit point
of the sequence {A(k)A(k − 1) . . . A(0)} is column stochastic.

Conversely, it is clear that the (37) implies Proposition 5.1 (i). This shows the
assertion.

The minor drawback of Proposition 5.1 is that no rate of convergence is supplied.
Indeed, the reader may convince himself that the rate of convergence may be
made arbitrarily slow by considering sequences that have repetitions of the same
matrices for longer and longer intervals as k →∞. It is therefore useful to provide
conditions that guarantee an exponential decay. One such condition is provided
in the following proposition.

Proposition 5.2 For every a ∈ {n, n+1, n+2, . . .} there exists a constant ra < 1
with the following property. For any sequence of index sets I(k) such that for all
l ∈ N and all i ∈ {1, . . . , n} there is a b ∈ {la, la + 1, . . . , (l + 1)a − 1} with
i /∈ I(s) it holds that

‖S(k − 1) . . . S(k′)‖ ≤ r−2k+1
k r

(k−k′)
k , ∀k ≥ k′ ≥ 0 (39)

dist (A(k − 1) . . . A(k′),R) ≤ ‖T‖‖T−1‖r−2k+1
k r

(k−k′)
k , ∀k ≥ k′ ≥ 0 (40)

with T defined by (25).

Proof. Fix a ∈ {n, n+1, n+2, . . .} and consider a finite sequence I(0), . . . , I(a−
1) of index sets such that for all i ∈ {1, . . . , n} there is an 0 ≤ b ≤ k − 1 with
i /∈ I(b). If we continue this sequence periodically then it clearly satisfies the
assumption of Proposition 5.1, so that for the associated sequence {S(k)}k∈N
we have limk→∞ S(k − 1)S(k − 2) . . . S(0) → 0. As the sequence of matrices is
periodic this implies that r(S(a − 1)S(a − 2) . . . S(0)) < 1. Using that for all I
we have ‖SI‖ = 1 and ‖SIx‖ = ‖x‖ if and only if SIx = x the inequality on
the spectral radius implies that ‖S(k − 1)S(k − 2) . . . S(0)‖ ≤ ρ < 1 for some
constant ρ depending on the sequence.

By taking the maximum over all the (finitely many) sequences of length a satis-
fying the drop condition and denoting it by ra, we obtain that

‖S(k − 1) . . . S(0)‖ ≤ rk/a
a ,

so that the first claim follows.

The second claim follows as the distance of A(k)A(k − 1) . . . A(0) to the set of

matrices of rank 1 is upper bounded by ‖T−1

[
S 0
0 0

]
T‖.

Note that any actual flow on a real network has to satisfy the assumption on the
drops seen described in the previous proposition. The reason for this is that if a
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flow does not see a drop it will continue to increase the amount of packages sent
by a constant rate. Eventually this leads to the case the the amount of packages
sent exceeds the capacity of the pipe if no drops are seen. But at this point the
source necessarily sees a drop. This very coarse argument shows that all realistic
flows will satisfy the assumptions of the previous proposition for some k.

5.2 Stochastic properties of the set A
We now proceed to give a number of results that relate to random products of
matrices from the set A. In this section we assume that Assumptions 1 and 2
hold.

We first note that under our assumptions that the expectation of A is a positive
matrix that is column stochastic with Perron eigenvector x̄T

p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn)
).

We then proceed to show that the expectation of

Π(k) = A(k)A(k − 1) . . . A(0),

is also a column stochastic matrix with the same Perron eigenvector. The second
result in this section concerns the asymptotic behaviour of the expectation of
Π(k). These results immediately yield Theorem 3.1 and Theorem 3.2, using the
transformation Γ, if necessary.

The final results in this section revisit the convergence of Π(k) to the set of rank-1
idempotent matrices. We show that for all δ > 0 the probability of Π(k) being at
least a distance δ from the rank-1 idempotent matrices goes to zero as k becomes
large.

In the following we will use the notation AI = ΛI+cααβ(I)T , where Λ denotes the
diagonal matrix, cα := (

∑n
j=1 αj)

−1 and β(I) is the vector with entries 1−βi(I).

Lemma 5.3 Assume that λi > 0 for i = 1, . . . , n then the expectation

E(A) =
∑
I

ρIAI

is positive, column stochastic, and a Perron eigenvector for it is given by

x̄T
p =

(
α1

λ1(1− β1)
,

α2

λ2(1− β2)
, ...,

αn

λn(1− βn)

)
. (41)

Proof. By definition of the expectation we have

E(A) =
∑
I

ρIAI =
∑
I

ρIΛI + cα

m∑
i=1

ρIαβ(I)T

= E(Λ) + cααE(β)T .

(42)
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The i’th diagonal entry of the diagonal matrix E(Λ) is

E(Λi,i) = λiβi + (1− λi) (43)

and the i’th entry of E(β) is

E(βi) = λi(1− βi). (44)

Hence, the matrix E(A) is of the form of A1 defined in Equation (21) with the
same vector α and βi replaced by β̃i := 1−λi(1−βi) ∈ (0, 1). It follows by Theo-
rem 2.1 that a Perron eigenvector of E(A) is given by x̄T

p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn)
).

Lemma 5.4 Consider the random system (19) subject to Assumptions 3.1 and
3.2. The expectation of Π(k) is:

E(Π(k)) = E(A)k = (
∑
I

ρIAI)k. (45)

Proof. By independence we have that the expectation of the product is the
product of the expectations. This implies the equality.

Proposition 5.3 Consider the random system (19) subject to Assumptions 3.1
and 3.2. Then, with probability one,

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 .

.

Proof. Under the assumptions that the λj are positive and the independence
assumptions, with probability one each source will see infinitely many drops. Now
the result follows from Theorem 5.1.

For convenience we refine the above proposition as the following lemma, which is
a consequence of Proposition 5.2.

Lemma 5.5 For all δ > 0, the expectation of dist(Π(k),R) exponentially tends
to zero as k →∞, i.e. there are constants 0 ≤ µ < 1, C ≥ 1 such that

E(dist(Π(k),R)) ≤ Cµk .

5.3 Proof of Theorem 3.2

We now proceed to present the main result of this paper, Theorem 3.2. This
result forms part of the theory of products of random matrices and could be
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shown by introducing the necessary concepts from that theory as discussed in
[30]. We prefer to give a proof that relies on fairly elementary arguments in order
to keep the main ideas accessible.

To aid exposition we first give an outline of this proof.

Outline of proof: We are interested in the asymptotic behaviour of the average

window variable W (k),

W (k) =
1

k

k−1∑
i=0

W (i)

=
1

k
(Π(k − 1) + ... + Π(0)) W (0)

=
1

k

(
k−1∑
i=0

Π(k)

)
W (0),

as k tends to infinity. Our proof consists of five main steps.

Step 1 : We first show that W (k) can be approximated as

W (k) =
1

k + 1
(Π(k) + ... + Π(0))W (0)

=
1

k + 1
(R(k) + ∆(k) + . . . + R(l) + ∆(l) + Π(l − 1) + ... + Π(0))W (0)

≈ 1

k + 1
(R(k) + . . . + R(l) + Π(l − 1) + ... + Π(0))W (0),

where R(k), ..., R(l) are column stochastic rank-1 matrices and ∆(k), .., ∆(l) are
small.

Step 3 : It is then seen that R(k)+...+R(l) can be approximated as (
∑m

i=1 ρiAi)
l.

Step 4 : And it follows that

lim
k→∞

W (k) = xpȳ
T
p W (0),

where ȳT
p = (1, ..., 1).

We now present the proof in detail:

Proof. (of Theorem 3.2)

In the sequel it will be convenient to measure the distance in terms of the size
of the block on the n− 1-dimensional invariant subspace. To this end recall that
each product Π(k) is similar to a matrix of the form

Π(k) = T

[
S(k) B(k)

0 1

]
T−1 ,
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and using this representation we may define dist(Π(k),R) := ‖S(k)‖. In partic-
ular, this implies that for all products Π(k) and all A ∈ A we have

dist(AΠ(k),R) ≤ dist(Π(k),R) .

Consider now a fixed k0 ∈ N. For k ≥ k0 we factorize

Π(k) = Φ(k)Ψ(k) ,

where Φ(k) is the leading part of length k0, i.e.,

Φ(k) := A(k)A(k − 1) . . . A(k − k0 + 1) , and Ψ(k) := A(k − k0) . . . A(0) .

Let k ≥ k0 and write k = mk0 + l, with 0 ≤ l < k0. We now rewrite W (k) as
sums of products where the first k0 factors in each sum do not overlap. Consider

W (k) =
1

k + 1
(Π(k) + ... + Π(0))W (0) =

(
1

k + 1

k0−1∑
i=0

m∑
j=2

Π(jk0 + l − i)

)
W (0) +

1

k + 1

k0+l∑
j=0

Π(j)W (0) =

(
1

k + 1

k0−1∑
i=0

m∑
j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i)

)
W (0) +

1

k + 1

k0+l∑
j=0

Π(j)W (0) .

(46)

Now by assumption for fixed 0 ≤ i ≤ k0 − 1 the random variables Φ(jk0 + l− i),
j = 1, . . . , m are independent and identically distributed. By Lemma 5.4 the
expectation of these random variables is given by

E(Π(k0)) = E(A)k0 .

We now investigate the individual sums that are in the inside. As they are all of
the same form, we consider the sum for i = l to keep notation simple. We may
write

Φ(jk0) = R(jk0) + ∆(jk0) ,

where R(jk0) is the column stochastic, rank one matrix in closest to Φ(jk0) and
∆(jk0) is an error term. With this notation we have

m∑
j=2

Φ(jk0)Ψ(jk0) =
m∑

j=2

[R(jk0) + ∆(jk0)] Ψ(jk0) .

41



Now R(jk0)Ψ(jk0) = R(jk0) as R(jk0) is of the form η
[
1, . . . , 1

]
and Ψ(jk0) is

column stochastic. Thus we may continue
m∑

j=2

[R(jk0) + ∆(jk0)] Ψ(jk0) =
m∑

j=2

R(jk0) +
m∑

j=2

∆(jk0)Ψ(jk0) =

m∑
j=2

Φ(jk0) +
m∑

j=2

∆(jk0)(Ψ(jk0)− I) .

We note for further reference that
m∑

j=2

‖∆(jk0)(Ψ(jk0)− I)‖ ≤
m∑

j=2

‖∆(jk0)‖C ,

with a constant C uniformly bounding ‖Π(k)− I‖ over all matrix products from
A.

Denote d(k0) := E(dist(Π(k0),R)). By Lemma 5.5 we have that d(k0) → 0 as
k0 → ∞. Noting that ‖∆(jk0)‖ = dist(Φ(jk0),R) by the strong law of large
numbers we have

P

(
1

m− 1

m∑
j=2

(‖∆(jk0)‖ − d(k0)) ≥ ε

)
≤ 1

(m− 1)ε2
Var(dist(Π(k0),R)) (47)

Applying the law of large numbers again, we also have that

P

(
‖ 1

m− 1

m∑
j=2

Φ(jk0)− E(A)k0‖ ≥ ε

)
≤ 1

(m− 1)ε2
‖cov(Π(k0))‖ . (48)

Consider now a fixed δ > 0 and choose k0 large enough so that d(k0)C < δ/4
then we have for all m large enough that

P (‖ 1

m− 1

m∑
j=2

Π(jk0)− E(A)k0‖ ≥ δ)

≤ P (‖ 1

m− 1

m∑
j=2

Φ(jk0)− E(A)k0‖+
1

m

m−1∑
j=2

‖∆(jk0)(Ψ(jk0)− I)‖ ≥ δ)

≤ P (‖ 1

m− 1

m∑
j=2

Φ(jk0)− E(A)k0‖ ≥ δ

2
) + P (

1

m− 1

m∑
j=2

‖∆(jk0)‖C ≥ δ

2
)

≤ P (‖ 1

m− 1

m∑
j=2

Φ(jk0)− E(A)k0‖ ≥ δ

2
) + P (

1

m− 1

m∑
j=2

‖∆(jk0)‖ − d(k0) ≥ δ

4C
)

≤ 4

(m− 1)δ2
Var(dist(Π(k0),R)) +

16C2

(m− 1)δ2
‖cov(Π(k0))‖ ,
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where we have used (47) and (48) in the last step. It follows that for all δ > 0
and k0 such that d(k0)C < δ/4 we have

lim
m→∞

P (‖ 1

m− 1

m∑
j=2

Π(jk0)− E(A)k0‖ > δ) → 0 . (49)

Repeat these arguments in the same manner for the terms
∑m

j=2 Φ(jk0 + l −
i)Ψ(jk0 + l − i), i = 0, . . . , k0 − 1 in (46) and note that

1

k + 1

k0−1∑
i=0

m∑
j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i) =

m− 1

k + 1

k0−1∑
i=0

1

m− 1

m∑
j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i) ,

and limm→∞(m− 1)/(k + 1) = k0. As the remaining term in (46) converges to 0
as k →∞ we obtain from (46) and (49)

lim
k→∞

P (‖ 1

k + 1

k∑
j=0

Π(j)− E(A)k0‖ > k0δ) → 0 ,

provided that d(k0)C < δ/4.

Now E(A)k0 → xpy
T
p and using Lemma 5.5 k0d(k0) → 0 as k0 → ∞. Thus with

probability one we have

lim
k→∞

1

k + 1

k∑
j=0

Π(k) = xpy
T
p .

The claim now follows.

6 Conclusions

In this paper we have presented, and validated using the network simulator NS, a
random matrix model that describes the behaviour of a network of n AIMD flows
that compete for shared bandwidth via a bottleneck router employing drop-tail
queuing. We have used this model to relate several important network proper-
ties to properties of sets of nonnegative matrices that arise in the study of such
networks. We have also derived under simplifying assumptions a number of ana-
lytic results that characterise the asymptotic time-average and ensemble-average
throughput of such networks.
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The obtained results are interesting for a number of reasons. Firstly, they suggest
that for long lived flows, the average throughput of each flow may be controlled in
a precise manner by adjusting the AIMD parameters of each flow (αi, βi), or by
adjusting the drop probabilities λi (or by a combination of both). This observa-
tion suggests that the results of this paper may be used as the basis for algorithms
that prioritise network traffic in a precise manner. A second interesting observa-
tion that arises as a result of the work is that the presence of random background
web traffic appears to have the effect of rendering Assumptions 3.1 and 3.2 valid.
Future work will investigate whether this conjecture can be validated or refuted
statistically for a number of network topologies.

Finally, we note that while our model has been used to characterise the average
behaviour of the source congestion windows, much analytical and experimental
work remains to be done. From an analytic perspective, characterising the distri-
butions of the congestion window vector, and characterising the rates of conver-
gence to the expected values of the distributions is of great practical importance,
as is extending the model to include the effect of slow-start behaviour and of
multiple short lived flows. Finally, we note that while the fidelity of the model
has been established using NS, we are currently in the process of validating the
model and its predictions using measurements from real networks.
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