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Abstract—We provide the first rigorous analysis of propor-
tional fairness in 802.11 WLANs. This analysis corrects prior
approximate studies. We show that there exists a unique pro-
portional fair rate allocation and completely characterise the
allocation in terms of a new air-time quantity, the total air-time.

I. INTRODUCTION

Proportional fairness has been the subject of considerable
attention in the literature on multi-rate 802.11 WLANs since
it can be used to address the performance “anomaly” [3]
in a principled manner and is closely related to so-called
time-based fairness [4, 11]. Well established utility fairness
techniques from wired networks cannot, however, be directly
applied to random access CSMA/CA wireless networks due
to the presence of collision losses and the coupling of station
transmissions via carrier sense.

For Aloha wireless networks, proportional fairness is rigor-
ously analysed in [5, 7, 12]. In [5, 12] it is established that
there exists a unique proportional fair rate allocation and local
message-passing algorithms that converge to this allocation are
proposed. In [7] an alternative distributed algorithm based on
back-pressure is studied. However, there are no corresponding
rigorous results for 802.11 WLANs and the literature is
confined to approximate approaches [1, 2, 4, 8, 10]. The work
in [4, 8] neglects collision losses while [1] neglects collisions
involving more than two stations. In [10] an algorithm based
on contention window tuning is proposed and in [2] an
algorithm using MTU tuning is proposed. Notwithstanding this
work, since the 802.11 rate region is non-convex basic issues
such as the existence and uniqueness of proportional fair rate
allocations remain open.

It is notable that these approximate approaches in the
literature share in common the idea that proportional fairness
is related to some form of air-time fairness. In this paper we
provide the first rigorous analysis of proportional fairness in
802.11 WLANs. For a WLAN (i.e. a single wireless hop)
with no hidden terminals or noise losses we show that there
exists a unique proportional fair rate allocation and completely
characterise the allocation in terms of an air-time quantity.
Importantly, we find that the correct air-time quantity, the flow
total air-time, differs from the quantities previously considered
in the literature. Our analysis is general enough to encompass
both per station fairness and per flow fairness, and does not
assume symmetric network load (stations may have different
numbers of flows and flows may have finite offered load,
leading to stations being unsaturated). Our work builds on the
recent observation that the 802.11 rate region is log-convex
[6].

This material is based upon works supported by Science Foundation Ireland
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II. NETWORK MODEL

1) Station Throughput: We consider an 802.11 WLAN with
n stations, n ≥ 2. Let τi denote the probability that station i
attempts a transmission. The throughput of station i is [6]:

Si(τ) =
Psucc,iDi

σPidle + Tc(1− Pidle)

where Pidle =
∏n

k=1(1− τk), Psucc,i = τi
∏n

k=1,k !=i(1− τk),
τ = [τ1 ... τn]T , σ is the PHY idle slot duration, Tc the
mean duration of a transmission, Di the mean number of bits
sent by station i in a successful transmission. This model is
from [6], with the mean durations of successful and colliding
transmissions taken equal i.e. without TXOP packet bursting.

The WLAN rate region is the set R of achievable throughput
vectors S(τ) = [S1 ... Sn]T as the vector τ of attempt
probabilities ranges over domain [0, 1]n. We also define the
log-transformed rate region R̃ as the set of achievable vectors
S̃(τ) = [S̃1 ... S̃n]T , S̃i = log Si.

It will prove useful to work in terms of xi = τi/(1 − τi)
rather than τi; observe that xi ∈ [0,∞) for τi ∈ [0, 1). We
have that Pidle = 1/

∏n
k=1(1 + xk), Psucc,i = xiPidle and

Si(x) =
xi

X(x)
Di

Tc
(1)

where X(x) = a +
∏n

k=1(1 + xk)− 1 with a = σ/Tc.
2) Flows: We assign the packets transmitted by each station

to “flows”. Let Pi be the set of flows carried by station i and
P = ∪n

i=1Pi the set of flows in the WLAN. How we choose
to define a flow is essentially a design decision, subject only to
the constraint that

∑
p∈Pi

s(p) = Si(x), s(p) the rate of flow
p. For example, we might define a flow to consist of packets
with the same source-destination address/port number quadru-
ple. Alternatively, per-station fairness is subsumed within our
formulation by defining all packets transmitted by the same
station to be a flow.

3) Air-time: We clarify air-time, since in the literature
various non-equivalent definitions are used.

Definition 1 (Transmission Duration). The time Tc taken to
transmit a frame; e.g., used in [2].

Definition 2 (Successful Station Air-time). The fraction of
time spent by a station on successful transmissions; e.g., used
in [1]. For station i, this is given by Tsucc,i = xi/X(x).

Definition 3 (Flow Total Air-time). The fraction of time T (p)
used for transmissions by flow p, including both successful
transmissions and collisions. We also define the station total
air-time Ti =

∑
p∈Pi

T (p) and note that

Ti =
τiPcoll,iTc + τi(1− Pcoll,i)Tc

σPidle + Tc(1− Pidle)
=

xi

X(x)

„
1 +

Pcoll,i

1− Pcoll,i

«
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where Pcoll,i = 1 −
Qn

k=1(1−τk)
1−τi

= 1 − 1+xiQn
k=1(1+xk) is the

collision probability experienced by station i.

III. PROPORTIONAL FAIR RATE ALLOCATION

Assume that the WLAN offered load is unconstrained.
This is similar to a saturated station (i.e. stations always
have a packet to send) assumption, which we will later
relax. To determine the proportional throughput allocation
we need to solve the following utility optimisation problem:

max
x,s

X

p∈P

log s(p) s.t.
X

p∈Pi

s(p) ≤ xi

X(x)
Di

Tc
, xi ≥ 0, i = 1, ..., n

The constraints ensure that the aggregate flow throughput at
station i is feasible and so lies within the WLAN rate region.
Since the WLAN rate region R is non-convex, the optimisation
problem is non-convex. Fortunately, it has recently been shown
that the log-transformed rate region R̃ is, however, convex [6].
Changing variables to s̃(p) = log s(p), the optimisation can
therefore be transformed into convex form:

Problem 1 (Proportional Fairness).

max
x,s

X

p∈P

s̃(p) s.t. log
X

p∈Pi

es̃(p) ≤ log
xiDi

X(x) Tc
, xi ≥ 0, i = 1, .., n

In addition to the constraints now being convex, there also
exists a strictly feasible point and so the Slater conditions
[9] are satisfied. Hence, strong duality holds and the KKT
conditions [9] are necessary and sufficient conditions for
global optimality. However, since the objective function is not
strictly concave (it is linear in s̃(p)), extra work is needed to
establish that the optimisation has a unique solution. We will
make use of the following Lemma:

Lemma 1. The log-transformed rate region R̃ is strictly
convex.

Proof: Let ∂R̃ denote the boundary of set R̃. Since we
already know that R̃ is convex, to establish strict convexity it
is sufficient to show that the tangent hyperplanes to any two
boundary points S̃(x1), S̃(x2) ∈ ∂R̃ are different whenever
x1 &= x2. Now S̃i(x) = log xi

X(x)
Di
Tc

and

∂S̃i

∂xj
=

δij

xi
− 1

X

n∏

k !=j
k=1

(1 + xk),

where δij = 1 when i = j and 0 otherwise. The normal vector
b(x) to the tangent hyperplane at point S̃(x) ∈ ∂R̃ solves

n∑

i=1

bi(x)
∂S̃i(x)
∂xj

= 0 ∀j = 1, ..., n.

It can be verified that bj(x) = xj

1+xj
is one such normal

vector. Hence, for any two points S̃(x1), S̃(x2) on the rate
region boundary with x1 &= x2, the corresponding tangent
hyperplanes are different, as required.

We are now in a position to state the first of our main results.

Theorem 1. There exists a unique proportional fair rate
allocation, the solution to Problem 1, which: (i) assigns equal
flow total air-times (T (p) = T (q) ∀ p, q ∈ P), (ii) the flow

total air-times sum to unity (
∑

p∈P T (p) = 1) and (iii) lies
on the boundary of the WLAN rate region. Note that since the
flow air-time usage overlaps due to collisions, (ii) does not
imply that the channel idle probability Pidle = 0.

Proof: We proceed by making use of strong duality. The
Lagrangian is

L(x, s, λ) =
X

p∈P

s̃(p) +
nX

i=1

λi

0

@log
xiDi

XTc
− log

X

p∈Pi

es̃(p)

1

A

The main KKT conditions are

1− λi
es̃(p)

∑
q∈Pi

es̃(q)
= 0 ∀ p ∈ P, i = r(p) (2)

λi

xi
− 1

X

∂X

∂xi

n∑

j=1

λj = 0, i = 1, . . . n (3)

From the first KKT condition (2), s(p) =
∑

q∈Pi

s(q)/λi ∀ p ∈

Pi and so all flows carried by the same station are allocated
the same throughput. Summing (2) over flows p ∈ Pi carried
by station i yields

λi = ni (4)

where ni = |Pi| is the number of flows carried by station i.
It follows from complementary slackness that since λi > 0
the station throughput constraint in Problem 1 is tight. Thus
station throughput Si(x) = nis(p) and S̃i(x) = log nis(p).
The contribution to the optimisation objective function in
Problem 1 by station i is ni log s(p) = niS̃i−ni log ni. Hence,
the level sets form hyperplanes in rate region R̃. Any optimal
solution S̃∗ must lie on the boundary of R̃, else the flow
throughputs could be increased and the objective improved.
Since R̃ is strictly convex by Lemma 1, each boundary point
has a unique supporting hyperplane and so the optimum of
Problem 1 is unique, as claimed.

Turning now to the second KKT condition, rearranging (3)
and using (4) yields Ti = λiPn

j=1 λj
, where Ti is the total air-

time used by station i. The total air-time used by each flow
p ∈ Pi carried by station i is

T (p) =
Ti

ni
=

1∑n
j=1 λj

establishing the property (i) as claimed. Property (ii) follows
from the fact that

∑n
j=1 λj =

∑n
j=1 |Pj | = |P|.

IV. FINITE-LOAD

The foregoing analysis can be generalised to situations with
finite offered-load. Problem 1 is then augmented with the
additional (convex) constraint

s̃(p) ≤ log s̄(p), ∀p ∈ P (5)

where s̄(p) > 0 is the offered load of flow p. Let S =
{r ∈ P : s(r) = s̄(r)} denote the set of offered-load con-
strained flows and U = P \ S the set of network constrained
flows. We have the following intuitive extension of Theorem
1 demonstrating that the air-time left unused by the offered-
load constrained flows is simply reallocated equally amongst
the network constrained flows:
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Theorem 2. The proportional fair rate allocation with offered-
load constraint (5): (i) assigns equal total air-time to all
network constrained flows (T (p) = T (q) ∀ p, q ∈ U), (ii)
the flow total air-times sum to unity (

∑
p∈P T (p) = 1) and

(iii) is on the boundary of its rate region.
Proof: Strong duality also holds for the augmented prob-

lem. The Lagrangrian is

L(x, s, λ, θ) =
X

p∈P

s̃(p) +
nX

i=1

λi

0

@log
xiDi

X(x)Tc
− log

X

p∈Pi

es̃(p)

1

A

+
X

p∈P

θp(¯̃s(p)− s̃(p))

with multiplier θp ≥ 0 ∀p ∈ P . The second KKT condition (3)
is unchanged but the first KKT condition becomes

1− λi
es̃(p)

∑
q∈Pi

es̃(q)
− θp = 0 ∀ p ∈ P, i = r(p) (6)

Let Si = Pi ∩ S be the set of offered-load constrained flows
carried by station i and Ui = Pi \ Si the set of network
constrained flows. For a network constrained flow p ∈ Ui

multiplier θp = 0 by complementary slackness. Consider a
station i with at least one network constrained flow (if there
are no network constrained flows, the throughput allocation is
trivial). By (6), s(p) =

∑
q∈Pi

s(q)/λi ∀ p ∈ Ui (so all network

constrained flows on station i have the same throughput) and

s(r) = s̄(r) = (1− θr)s(p) ∀ r ∈ Si, p ∈ Ui

The multiplier θr is equal to the relative throughput differ-
ence between offered-load constrained flow r and a network
constrained flow. Combining these observations we have that

λi =
∑

p∈Ui

1 +
∑

r∈Si

(1− θr) (7)

Now from the second KKT condition, Ti = λiPn
j=1 λj

. Taking
this together with (7), the total air-time allocated to flow p ∈ P
is

T (p) =

{ 1Pn
j=1 λj

p ∈ U = P \ S
1−θpPn
j=1 λj

p ∈ S

That is, every network constrained flow p ∈ U is allocated
the same total air-time as claimed. Property (ii) follows from
inspection of

∑n
j=1 λj . Operation at the rate region boundary

is necessary as otherwise the flow throughputs could be
increased and so the objective improved.

V. EXAMPLE

Consider a WLAN with 10 stations and 24 UDP flows.
The WLAN uses 802.11g MAC/PHY values (9µs slot time,
short preamble, 6Mbps PHY rate). The first three stations
carry 2,5 and 10 flows respectively. The remaining 7 stations
carry one flow each. The offered load is not constrained,
so Theorem 1 applies. Figure 1 shows the flow total air-
times and flow success air-times for the proportional fair rate
allocation. It can be seen that the proportional fair allocation
assigns equal flow total air-times but that that success air-times
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total flow airtime (ms)
success flow airtime (ms)

Fig. 1. Flow air-times of the proportional fair rate allocation in a 802.11g
WLAN with 24 UDP flows and 10 stations.

are unequal. In general, equalising flow total air-times is not
equivalent to equalising flow success air-times whenever there
is asymmetry in the network load (e.g. when stations do not all
carry an identical number of flows) since this leads to stations
experiencing different collision probabilities.

VI. CONCLUSIONS

We provide the first rigorous analysis of proportional fair-
ness in 802.11 WLANs. We show that a unique proportional
fair rate allocation exists and, correcting previous studies, that
this allocation assigns equal total air-time to flows. Total air-
time is the air-time spent on both colliding and successful
transmissions and differs from other air-time quantities pro-
posed heuristically in the literature.
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