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Abstract—We consider the problem of scheduling jobs with
given start and finish times over two classes of multi-user chan-
nels, namely Multiple Access Channels and Degraded Broadcast
Channels, and derive necessary and sufficient conditions for
feasible scheduling of the jobs.

I. INTRODUCTION

We consider the problem of scheduling jobs with hard dead-
lines over Multiple Access Channels (MAC) and Degraded
Broadcast Channels (DBC). The jobs correspond to indepen-
dent information bits and the hard deadlines correspond to
given start and finish times within which the bits must be
communicated to the receiver. The problem was formulated
by Martel [1] who studied the premptive scheduling of jobs
with hard deadlines among machines with differing service
times. He showed that the scheduling problem is equivalent
to determining the maximum flow over a suitably defined
polymatroidal flow network, and proposed an algorithm to find
the maximum flow. In this paper, we define and solve Martel’s
scheduling problem for multi-user channels.

II. PROBLEM STATEMENT AND RELATED WORK

We first define the problem for the M user MAC. For ease
of exposition we assume that there are M jobs, one at each
transmitter. The job at transmitter i comprises of wi bits that
have to be communicated reliably to the receiver. The job has a
start time si, corresponding to when the job becomes available
for transmission, and a deadline di, corresponding to the
time by which the bits must be communicated reliably to the
receiver. We assume there is a centralized scheduler to which
the transmitters communicate the job details, i.e., (wi, si, di)
ahead of time. The scheduling problem is to determine if it
is feasible to schedule the jobs, and if so, to construct the
scheduling. The problem can similarly be defined for the M
user DBC. In this case, all the M jobs are colocated at the
transmitter, and each job has to be communicated to a distinct
receiver within the deadline. For simplicity, in the DBC case
we only consider M = 2 with both the jobs having the same
start time; this corresponds to the case when the transmitter
has both the jobs at the start.

For both problems, we derive the necessary and sufficient
conditions for feasibility of scheduling. The conditions are
described by bounds on the rates of the job, that are functions
of the underlying channel law. The solution for the scheduling
problem for the MAC is obtained by using the idea of Martel,
namely that of constructing an equivalent polymatroidal flow
network and determining the maximum flow over this network.

The solution for scheduling over the DBC follows using
superposition coding [2] arguments.

Scheduling problems have been studied extensively for
multiuser channels from the point of view of energy efficiency
[3][4] [5] [6] [7]. Typically in these works, the problem is
that of determining a schedule which minimizes the total
energy consumed over the transmission while respecting the
deadline constraints. The channels considered are multi-user
Gaussian channels or channels where the power is convex
in the transmission rates. In contrast, our study applies to
the larger class of discrete memoryless multi-user channels,
where we fix the channel input distribution (equivalently the
average power in the Gaussian case) over the entire period of
transmission and determine if scheduling is feasible.

The organization of the paper is as follows: Section III sets
up the notation. In Section IV and V, respectively, we prove the
necessary and sufficient conditions for feasible scheduling over
the MAC. The Appendix contains some background results
on polymatroidal flow networks which will be useful in the
proof of the sufficiency. In Section VI, we prove the feasibility
conditions for the 2 receiver DBC.

III. NOTATION AND PRELIMINARIES

Let Xj denote the input of the jth transmitter and Y denote
the output at the receiver of the MAC. The channel law is
given by pY |X1,...XM

(·|·). We use the start and finish times of
the jobs to divide the timeline into 2M − 1 intervals. Let ti
be the ith smallest value among the 2M start and finish times
{s1, . . . , sM , d1, . . . , dM}. The ith interval or epoch is the time
period from ti to ti+1. Let ∆i = ti+1− ti. The jth job is said
to be active in the ith interval iff sj ≤ ti and dj ≥ ti+1. Note
that within an interval, the set of active jobs does not change.
We let N (i) denote the set of transmitters whose jobs are
active during the interval i and let D(i) = N (i)c denote the
set of transmitters whose jobs are not active in the interval i.
Likewise for every job j, we denote by N (j) the time intervals
during which the job j is active.

We assume that each ∆i is an integer and define ∆ =∑
i ∆i. Let the vectors Xj and Y denote the (size ∆) block

input of transmitter j and output respectively of the MAC. Let
Xj,i and Yi denote the (size ∆i) block input of transmitter j
and the MAC output in the ith interval. We say that Xj,i is a
dummy input in the interval i if j ∈ D(i). The dummy inputs of
every transmitter are assumed to be known to the receiver but
not to the other transmitters of the MAC. We re-emphasize that
all transmitters have signaled their job details {(wi, si, di)}M1



to the receiver at the start of time. The receiver thus knows
N (i),D(i) for every interval i. The dummy inputs do not carry
any information and act as sideinformation at the receiver. We
denote the vector of dummy inputs to interval i by XD(i),i

(consisting of all the block inputs Xj,i that are dummy inputs)
and denote the vector of dummy inputs across all intervals
by XD. We denote by XJ i, the inputs corresponding to the
transmitters j ∈ J in the interval i. The set of intervals in
which any job in J is active is denoted by N (J ) and we
define

YN (J ) , {Yi : i ∈ N (J )}

Thus YN (J ) denotes the block outputs in intervals where jobs
in J are active.

IV. NECESSARY CONDITION FOR SCHEDULING

We derive a necessary condition for feasible scheduling
given the job size wj’s, based on information-theoretic con-
verse arguments.

Theorem 1. A necessary condition for the feasible scheduling
of jobs is if there exist random variables (Ui, Xj,i) for
all i = 1, . . . , 2M − 1 and j = 1 . . . ,M distributed as∏

i pUi,XD(i),i
(·, ·)

∏
j∈N (i) pXj,i|Ui

(·|·) such that for every
J ⊆ {1, . . . ,M}∑

j∈J wj

∆
<

∑
i∈N (J )

∆i

∆
I(Yi;XJ ,i|XJ c,i, XD(i),i, Ui) (1)

By Caratheodeory’s theorem [2], it suffices to choose |Ui| =
2|N (i)|.

Proof: Let Wj represent the message of transmitter j
having entropy wj . Let Pe denote the probability of error in
decoding any of messages. From Fano’s inequality, it follows
that for all J ⊆ {1, . . . ,M},

H(WJ |YN (J ),WJ c ,XD) ≤ Pe

M∑
j=1

wj +H(Pe) , ∆ε

In the above, ε → 0 as Pe → 0. Consider any subset J ⊆
{1, . . . ,M} of jobs. The entropy of messages in J can be
bounded as∑
j∈J

wj = H(WJ )
(a)
= H(WJ |WJ c ,XD)

= I(WJ ; YN (J )|WJ c ,XD) +H(WJ |YN (J ),WJ c ,XD)
≤ I(WJ ; YN (J )|WJ c ,XD) + ∆ε
= H(YN (J )|WJ c ,XD)−H(YN (J )|WJ c ,WJ ,XD)
+ ∆ε
(b)

≤
∑

i∈N (J )

H(Yi|XJ c,i,XD(i),i)

−H(YN (J )|WJ c ,WJ ,XD) + ∆ε
(c)
=

∑
i∈N (J )

H(Yi|XJ c,i,XD(i),i)
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Fig. 1. Graph with 3 j-nodes and 3 i-nodes. |Ui| = 1 for i = 1, 2, 3.

−
∑

i∈N (J )

H(Yi|X1,i, . . . ,XM,i) + ∆ε

=
∑

i∈N (J )

I(Yi; XJ ,i|XJ c,i,XD(i),i) + ∆ε

(d)

≤
∑

i∈N (J )

∆i∑
l=1

I(Yi(l);XJ ,i(l)|XJ c,i(l), XD(i),i(l))

+ ∆ε

=
∑

i∈N (J )

∆iI(Yi(Ui);XJ ,i(Ui)|XJ c,i(Ui), XD(i),i(Ui), Ui)

+ ∆ε

where in the last expression, the symbols
Yi(l), XJ ,i(l), XJ c,i(l), XD(i),i(l) denote the lth symbol
in the corresponding block. We explain the inequalities
above: (a) follows from the independence of the messages
and the dummy codewords, (b) follows since removing the
“conditioned on” terms cannot decrease entropy, (c) follows
from the memoryless property of the MAC and (d) follows
from the same reasoning as (b) and (c). The last equality
follows from defining the random variable Ui for all i, which
takes values uniformly in the integer set {1, . . . ,∆i}. It
can be verified that the distribution pXN(i),i(Ui),XD(i),i(Ui),Ui

decouples as pUi
pXD(i),i|Ui

∏
j∈N (i) pXj,i|Ui

.

V. PROOF OF SUFFICIENCY

In this section, we prove the sufficiency of the necessary
condition (1) for feasible scheduling. The proof is via poly-
matroidal network flows.

Theorem 2. The necessary condition (1) for feasible schedul-
ing is also sufficient.

Proof: Fix the input distribution:∏
i pUi,XD(i),i

(·, ·)
∏

j∈N (i) pXj,i|Ui
(·|·). We define a directed

graph G = (V, E) with set V of vertices and set E of edges
. There is a j-node for each job and |Ui| nodes (labeled
i1, . . . i|Ui|) for the ith interval for i = 1, . . . , 2M − 1. There
is an edge directed from node j to node iu if the job j is
active in the interval i. There is also a source node s with
an arc from s to each j-node of capacity wj and a sink node
t with an arc from each iu-node to t of capacity ∞. An
example of such a network is illustrated in Figure 1. With
respect to any node l, we denote the set of incoming edges
by Il and the set of outgoing edges by Ol.



A flow in the network is an assignment of real numbers to
the edges of the network. We let the flow be represented by a
function f : E → R+ which extends to sets of E in a natural
way, i.e.,

f(φ) = 0,

f(A) =
∑
e∈A

f(e) (φ 6= A ⊆ E)

The flow has the following interpretation with respect to the
scheduling problem: The flow f(j, i) from a j-node to an i-
node implies that f(j, i) bits of the job j are communicated
reliably to the receiver in the interval i. The flow function is
said to be feasible if

f(s, j) ≤ wj ∀j = 1, . . . ,M (2)
f(A) ≤ I(Yi;XJ ,i|XJ c,i, XD(i),i, Ui = ui)p(ui)∆i

∀i, A ⊆ Iiui
,J , {j : (j, i) ∈ A} (3)

f(s, j) = f(Oj) j = 1, . . . ,M (4)
f(Iiu

) = f(iu, t) i = 1, . . . , 2M − 1, u = 1, . . . , |Ui|
(5)

f(e) ≥ 0 ∀e ∈ E (6)

The mutual information term in (3) is computed with respect to
the input distribution pXD(i),i|Ui

(·|ui)
∏

j∈N (i) pXj,i|Ui
(·|ui)

defined for every interval i and every ui. The inequal-
ity (2) ensures that at most wj bits are assigned to
the job j. The inequality (3) ensures that the rates as-
signed to the transmitters in interval i for each subinter-
val iui

corresponding to the choice of input distribution∏
i pUi,XD(i),i

(ui, ·)
∏

j∈N (i) pXj,i|Ui
(·|ui) are achievable (We

assume that the ∆i’s are large enough so that in each subinter-
val of duration p(ui)∆i, the bits can be transmitted at any rate
inside the MAC capacity region corresponding to the input
distribution for the subinterval). The equalities (4) and (5)
ensure flow conservation respectively at the j-nodes and i-
nodes. Finally, (6) requires that the flow through each edge be
non-negative.

It follows that any feasible flow corresponds to a schedule.
In particular, note that the value of the net flow between the
source and the sink is the amount of processing completed
in the schedule corresponding to the flow. Thus, a feasible
schedule which completes all jobs exists if there exists a flow
in the network defined by (2) - (6) with net value

∑m
j=1 wj .

The sufficiency condition therefore, is one which ensures that
the max flow in the above defined flow network has value∑m

j=1 wj .

It can be checked that the flow network defined as in (2)
- (6) falls in the class of “polymatroidal” flow networks,
i.e., networks with submodular capacity constraints on sets
of edges (see Appendix for definitions and results on the
max-flow min-cut theorem for polymatroidal flow networks).
Consider a partition of the set of vertices V into two sets
(W,Wc) such that s ∈ W and t ∈ Wc and let Ẽ ⊂ E be the
edges which are directed from W to Wc. The cut C(W,Wc)

is evaluated as (see Appendix)

C(W,Wc) =


∞ if ∃iu s.t. (iu, t) ∈ Ẽ∑M

j=1 wj1(s,j)∈Ẽ
+
∑2M−1

i=1 I(Yi;XW,i|XWc,i, XD(i),i, Ui)∆i

else

From the max-flow min-cut theorem for polymatroidal flow
networks [8], it holds that the maximum feasible flow from s
to t is equal to the min-cut(s, t) , minW∈V C(W,Wc). Thus,
a sufficient condition is one which ensures that min-cut(s, t) =∑m

j=1 wj . Note that the cut separating just s from all the
remaining vertices has value

∑m
j=1 wj . Therefore, it only

remains to show that the value of any other cut is at least∑M
j=1 wj . This is clearly the case if the cut includes an

edge (iu, t). Otherwise, it must be that for every subset
J ⊂ {1, . . . ,M}, the cut separating the vertices in J from
the vertices J c is at least

∑M
j=1 wj . Thus, we have∑

j∈J c

wj +
∑
j∈J

wj ≤
∑

j∈J c

wj

+
2M−1∑

i=1

I(Yi;XJ ,i|XJ c,i, XD(i),i, Ui)∆i

which is just the necessary condition (1).

Remark 3. We emphasize that apart from proving the suffi-
ciency of the necessary condition, the Lawler-Martel algorithm
[8] finds the operating rates of the transmitters in every
interval in the feasible schedule.

Remark 4. If there is a only one interval where all jobs are
active, we recover the capacity region of the MAC.

VI. SCHEDULING OVER A 2 RECEIVER DEGRADED
BROADCAST CHANNEL(DBC)

Consider a 2-receiver DBC. There are two jobs at the
transmitter, one for each receiver. We assume both jobs have
the same start time, but possibly different deadlines. The setup
is illustrated in Figure 2. The two nodes on the left represent
the two receivers while the two nodes on the right represent
the two intervals ∆i for i = 1, 2. An arrow from a receiver to
an interval indicates that the corresponding job at the receiver
is active in the interval. In Figure 2, ∆1 corresponds to the
time interval when both jobs are active and ∆2 corresponds to
the interval when only the job corresponding to receiver 2 is
active. Let the input of the transmitter in interval i be Xi and
the corresponding outputs at receivers 1 and 2 by Yi and Zi.
The receiver 1 decodes message W1 based on observations Y1

while receiver 2 decodes message W2 based on observations
(Z1,Z2). In each interval i, the input Xi is (in general) a
function of both messages.

We consider the two cases when X −−◦ Y −−◦ Z and
X −−◦ Z −−◦ Y , the degradations being stochastic in general. We
first derive the necessary and sufficient conditions for the case
X −−◦ Z −−◦ Y . This is the case where the stronger receiver has
a later decoding deadline as compared to the weaker receiver.
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Theorem 5. A necessary and sufficient condition for feasible
scheduling is if (w1

∆ , w2
∆ ) lies in the closure of regions defined

by

w1

∆
<

∆1

∆
I(1)(U ;Y ) (7)

w2

∆
<

∆1

∆
I(1)(X;Z|U) +

∆2

∆
I(2)(X;Z) (8)

where the mutual informations I(1), I(2) are evaluated with
respect to the distributions p(1)

U,X(·, ·) and p(2)
X (·) respectively.

By Caratheodeory’s theorem ([2]), it suffices to choose |Ui| =
min(|X |, |Y|, |Z|).

Proof: The proof of necessity follows using similar steps
as in the proof of the converse of the DBC capacity region
[2]. The message entropy W1 can be bounded as

H(W1) = I(W1; Y1) +H(W1|Y1)

≤ I(W1; Y1) + ∆1ε1 =
∆1∑
i=1

I(W1; Y1i|Yi−1
1 ) + ∆1ε1

≤
∆1∑
i=1

I(W1,Yi−1
1 ; Y1i) + ∆1ε1

(a)

≤
∆1∑
i=1

I(W1,Zi−1
1 ; Y1i) + ∆1ε1

(b)
=

∆1∑
i=1

I(Ui; Y1i) + ∆1ε1.

The inequality (a) follows since (W1,Yi−1
1 ) −−◦

(W1,Zi−1
1 ) −−◦ Y1i and (b) follows by defining

Ui , (W1,Zi−1
1 ). The message entropy W2 can be

bounded as

H(W2) = H(W2|W1)
= I(W2; Z1,Z2|W1) +H(W2|Z1,Z2,W1)
≤ I(W2; Z1,Z2|W1) + ∆ε2
= I(W2; Z1|W1) + I(W2; Z2|Z1,W1) + ∆ε2

=
∆1∑
i=1

I(W2; Z1i|Ui) +
∆2∑
i=1

(
H(Z2i|Zi−1

2 ,Z1,W1)

−H(Z2i|Zi−1
2 ,Z1,W1,W2)

)
+ ∆ε2

≤
∆1∑
i=1

I(W2; Z1i|Ui) +
∆2∑
i=1

(
H(Z2i)

−H(Z2i|Zi−1
2 ,Z1,W1,W2)

)
+ ∆ε2

=
∆1∑
i=1

I(W2; Z1i|Ui) +
∆2∑
i=1

(
H(Z2i)

−H(Z2i|Zi−1
2 ,Z1,W1,W2,X2i)

)
+ ∆ε2

=
∆1∑
i=1

I(W2; Z1i|Ui) +
∆2∑
i=1

(
H(Z2i)−H(Z2i|X2i)

)
+ ∆ε2

=
∆1∑
i=1

I(W2; Z1i|Ui) +
∆2∑
i=1

I(Z2i; X2i) + ∆ε2

≤
∆1∑
i=1

I(W2X1i; Z1i|Ui) +
∆2∑
i=1

I(Z2i; X2i) + ∆ε2

=
∆1∑
i=1

I(X1i; Z1i|Ui) +
∆2∑
i=1

I(Z2i; X2i) + ∆ε2.

The final equality follows since W2 −−◦ (X1i, Ui) −−◦ Z1i. The
necessary condition (7 - 8) now follows from the convexity of
the region defined in (7 - 8). The sufficiency of the condition
follows from arguments based on superposition coding [2].
The proof is omitted.

We now derive the necessary and sufficient conditions for
the case X −−◦ Y −−◦ Z. In this case, the weaker receiver has a
later decoding deadline as compared to the stronger receiver.

Theorem 6. A necessary and sufficient condition for feasible
scheduling is if (w1

∆ , w2
∆ ) lies in the closure of regions defined

by

w1

∆
<

∆1

∆
I(1)(X;Y |U) (9)

w2

∆
<

∆1

∆
I(1)(U ;Z) +

∆2

∆
I(2)(X;Z) (10)

where the mutual informations I(1), I(2) are evaluated with
respect to the distributions p(1)

U,X(·, ·) and p(2)
X (·) respectively.

By Caratheodeory’s theorem ([2]), it suffices to choose |Ui| =
min(|X |, |Y|, |Z|).

Proof: The entropy of message W1 can be bounded as

H(W1) = H(W1|W2) ≤ I(W1; Y1|W2) + ∆1ε1

= H(Y1|W2)−H(Y1|W1,W2) + ∆1ε1

= H(Y1|W2)−H(Y1|W1,W2,X1) + ∆1ε1

= H(Y1|W2)−H(Y1|W2,X1) + ∆1ε1

=
∆1∑
i=1

H(Y1i|W2,Yi−1
1 )−H(Y1i|W2,X1,Yi−1

1 ) + ∆1ε1

(a)
=

∆1∑
i=1

H(Y1i|W2,Yi−1
1 )−H(Y1i|W2,X1i,Yi−1

1 ) + ∆1ε1

=
∆1∑
i=1

I(X1i; Y1i|W2,Yi−1
1 ) + ∆1ε1

The equality (a) follows from the memoryless property of the
channel. The entropy of message W2 is bounded as

H(W2) = I(W2; Z1,Z2) +H(W2|Z1,Z2)



≤ I(W2; Z1,Z2) + ∆ε2
= I(W2; Z1) + I(W2; Z2|Z1) + ∆ε2

=
∆1∑
i=1

I(W2; Z1i|Zi−1
1 ) +H(Z2|Z1)−H(Z2|Z1,W2) + ∆ε2

≤
∆1∑
i=1

I(W2,Zi−1
1 ; Z1i) +H(Z2)−H(Z2|Z1,W2,X2) + ∆ε2

(b)
=

∆1∑
i=1

I(W2,Zi−1
1 ; Z1i) +H(Z2)−H(Z2|X2) + ∆ε2

=
∆1∑
i=1

I(W2,Zi−1
1 ; Z1i) +

∆2∑
i=1

H(Z2i|Zi−1
2 )

−
∆2∑
i=1

H(Z2i|Zi−1
2 ,X2) + ∆ε2

≤
∆1∑
i=1

I(W2,Zi−1
1 ; Z1i) +

∆2∑
i=1

H(Z2i)−
∆2∑
i=1

H(Z2i|X2i)

+ ∆ε2

=
∆1∑
i=1

I(W2,Zi−1
1 ; Z1i) +

∆2∑
i=1

I(X2i; Z2i) + ∆ε2

(c)

≤
∆1∑
i=1

I(W2,Yi−1
1 ; Z1i) +

∆2∑
i=1

I(X2i; Z2i) + ∆ε2

The equality (b) follows from the memoryless property of the
channel. The inequality (c) follows from the data processing
inequality since (W2,Zi−1

1 ) −−◦ (W2,Yi−1
1 ) −−◦ Z1i. The

necessary condition (9 - 10) now follows from the convexity of
the region defined in (9 - 10). The sufficiency of the condition
follows from arguments based on superposition coding [2].
The proof is omitted.

APPENDIX: MAX-FLOW FOR POLYMATROIDAL FLOW
NETWORKS

Let G = (V, E) represent a directed graph with the set V of
vertices and the set E of edges . Let s represent a source vertex
and T represent a set of sink vertices. When T contains a
single vertex, we call that vertex t. We recall max-flow min-cut
results for a graph with polymatroidal flow constraints from
[8].

A. Polymatroid Flow Networks

A polymatroid (S, ρ) is defined by a finite set of elements
S and a function ρ : 2S → R+ satisfying the properties

ρ(φ) = 0 (11)
ρ(X) ≤ ρ(Y ) (X ⊆ Y ⊆ S) (12)

ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ) (13)

where X,Y ⊆ S. We are concerned with polymatroids whose
elements are the edges of a graph and define a polymatroid
flow network as follows. For each node u ∈ V , is specified a
capacity function βu. The function βu satisfies the properties
(11-13) with respect to the set of incoming edges Iu of the

node u. Thus (Iu, βu) is a polymatroid. A flow in the network
is an assignment of real numbers to the edges of the network.
We let the flow be represented by a function f : E → R+

which extends to sets of E in a natural way, i.e.,

f(φ) = 0,

f(X) =
∑
e∈X

f(e) (φ 6= X ⊆ E)

Such an extended flow function is said to be feasible if

f(Iu) = f(Ou) u 6= s, u /∈ T (14)
f(X) ≤ βu(X) ∀u,X ⊆ Iu (15)
f(e) ≥ 0 ∀e ∈ E (16)

The equation (14) imposes flow conservation at each node
other than the source and the sink nodes, (15) enforces that
capacity constraints are satisfied on the sets of edges and (16)
requires that the flow through each edge be non-negative. For
a vertex u ∈ V , let f(u) denote the net outgoing flow from u,
i.e., f(u) = f(Ou)− f(Iu).

Suppose we partition the vertex set V into two sets W and
Wc. The value the cut with respect to this partition is defined
as

C(W,Wc) ,
∑

u∈Wc

βu(Iu ∩ E(W,Wc)).

Define

min-cut(s, t) = min
W
{C(W,Wc) : s ∈ W, t ∈ Wc}

It is clear that the net flow f(s) from s to t is upper bounded
by min-cut(s, t). It was shown in [8] that min-cut(s, t) is
also achievable. We recall Theorem 7.1 from [8] with slight
changes in notation.

Theorem 7 (Max-flow min-cut [8]). There exists a flow f
from s to t such that

f(s) = min-cut(s, t)
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