
Self-Configuration of Scrambling Codes for
WCDMA Small Cell Networks

Alessandro Checco∗, Rouzbeh Razavi†, Douglas J. Leith∗ and Holger Claussen†
∗Hamilton Institute, NUI Maynooth. †Bell Laboratories, Alcatel-Lucent Ireland

Abstract—This paper introduces the problem of Primary
Scrambling Code (PSC) selection in small cell networks and
proposes a novel optimisation technique. Small cells introduce
challenges not present in conventional macrocell scrambling code
allocation, including the need for dynamic allocation, scalable
distributed allocation algorithms, and support for unplanned and
organic deployments. To the best of our knowledge this is the
first study addressing the issue of distributed scrambling code
selection for small cell networks. We propose a decentralized
learning algorithm which does not require any collaboration
between the neighbouring base-stations and which finds a feasible
allocation whenever one exists. The performance of the algorithm
is compared against two variations of a greedy algorithm which
is the current 3GPP recommendation and is shown to offer
significant performance benefits.

Index Terms—Small Cell Networks, Femtocells, Primary
Scrambling Code, Self-Configuration, Self-Optimisation

I. INTRODUCTION

With the rapidly growing demand for mobile broadband
services and the emergence of new high capacity mobile
devices, mobile operators are struggling to meet the resulting
capacity demand while keeping costs at an economic level.
According to a recent Cisco report [1] mobile tablets will
generate as much traffic in 2015 as the entire global mobile
network in 2010. Small cells are now envisioned as one of the
most promising solutions by the industry.

Reducing cell size is one of the simplest yet most effective
solutions for capacity improvement e. g. in [2] the spectral
gain efficiency of wireless systems from 1950-2000 is analysed
and shows that shrinking of cell size has resulted in a factor
of 2700 spectral efficiency gain. Self-configuration and self-
optimisation are considered as a key enabler for successful
deployment of small cells. This is especially true considering
most deployments of small cells (e. g. femtocells) are expected
to be ad-hoc and unplanned. The 3GPP standard [3] classifies
the requirements for self-configuration of small cells into 10
categories where detailed fulfilment of these requirements is
left to vendor specific solutions. The optimal selection of
Primary Scrambling Codes (PSCs) is considered in this list
and is additionally ranked as one of the top 5 most important
parameters [3].

The PSC used by a base-station in UMTS and HSPA acts as
an identifier and it is important that neighbouring base stations
employ different scrambling codes in order to correctly man-
age handovers and cell association. The 3GPP requirements for
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macrocells therefore specify that direct neighbours and second
order neighbours use different PSCs. In fact, detection of the
PSC is an essential part of the target cell search procedure.
In practice, a total of 512 available PSCs are divided into 64
groups each with 8 codes. The target cell procedure consists
of two main stages where the User Equipment (UE) firstly
determines the scrambling code group to which the target cell
belongs and then in the second stage, it determines the PSC.
Compared to the initial cell search, the target cell search is
considerably simplified since the search space is restricted to
the Neighbour Cell List (NCL).

In legacy macrocells, the PSC is chosen from a total
of 512 available codes and, with such a large number of
available codes, scrambling code allocation is a fairly straight-
forward task [4]. This task is mostly carried out manually
or through centralised algorithms using cluster reuse-based
techniques [5] or centralised graph colouring schemes [6].
While the NCL can be constructed manually with potential
enhancement through drive tests to include missing neigh-
bours by constructing the cell overlapping matrix for legacy
macrocell networks [7], this would not be applicable to small
cells considering their unplanned deployment. Therefore a
number of PSCs are reserved specifically for small cells.
Because small cells can be deployed within the coverage
area of any macrocell, all macrocells need to add this set
to their existing NCL. To avoid excessively long NCLs, the
number of reserved PSCs is kept very small (3 or 4 in current
implementations). A too long NCL leads to slower neighbour
detection, measurement and cell acquisition [8].

For small cells, scrambling code allocation is much more
challenging for four main reasons:

1) Small cells are not only constrained to choose from
amongst only very few reserved scrambling codes but
also are typically more densely deployed: it is not even
guaranteed a non-interfering allocation exist;

2) Dynamic allocation is required due to the unplanned,
organic nature of deployments;

3) Allocation algorithms are constrained to use little or no
message passing between base stations in order to ensure
scalability to large network sizes;

4) Since the reserved scrambling codes for small cells is a
unique set that is added to all macrocells NCL, intelligent
code planning techniques such as choosing the codes
from the same code group or choosing identical codes
from different groups becomes more difficult.

The main contributions of this paper are: (a) The formal



definition of the dynamic scrambling code allocation problem
for small cells; (b) The design of a novel decentralised (with
no message passing) algorithm for dynamic scrambling code
allocation; (c) Analysis and performance evaluation of this
algorithm using numerical simulations. The results show a
dramatic improvement (up to 150% reduction in code confu-
sion when a feasible solution exists) with respect to the 3GPP
recommended scheme.

The rest of the paper is organised as follows. Section II
formulate the problem of scrambling code allocation in general
and introduces the notations used. Section III introduces the
scrambling code selection algorithms including the proposed
scheme of this paper. Subsequently, Section IV describes
how the confusion graph can be constructed in practice. The
simulation results are presented and discussed in Section V
and finally Section VI concludes the paper.

II. PROBLEM STATEMENT

We introduce the following notation:
• Let B denote the set of small base-stations, with |B| = N .
• Let S denote the set of PSCs reserved for small cells,

with |S| =M .
• Let si ∈ S denote the scrambling code associated to

base-station i ∈ B, and s ∈ SN a global scrambling code
allocation.

• Let ri(p) the received signal code power (RSCP) from the
CPICH pilot of base-station i ∈ B measured at location
p ∈ R2, and ri,j := ri(pj), where pj is the location of
device j (which might be a UE or another base-station).

Let mi,j denote the maximum ratio of received pilot power of
base-station i to that of base-station j in the coverage area Cj
of base-station j, i. e. mi,j := maxp∈Cj

ri(p)
rj(p)

. The neighbor
set for base-station i is defined as ni = {j : j ∈ B : wj,i > 0},
where

wj,i =

{
mj,i if mj,i > T

0 otherwise,

and T is an appropriate threshold value. We define the net-
work confusion graph be the weighted directed graph G :=
(B, E, w) with vertices B and edges E := {(i, j) : j ∈ ni}.
That is, the graph with network base-stations as vertices and
edge between each vertex/base-station i and every member
of its neighbour set ni. Each edge between two neighbours
(i, j) is assigned weight wi,j . Graph G is fundamental because
if every vertex is assigned a different PSC from all of its
neighbours then code confusion cannot occur. We call such
an allocation a proper code allocation. Conversely, if any
neighbours in this graph choose the same PSC then code
confusion may occur.

We define the utility of a code allocation as:

U(s) =

∑N
i=1 ui
N

, ui =

{
1 if si 6= sj , for all j ∈ ni
0 otherwise.

The utility of a proper code allocation s is U(s) = 1, while
if all base-stations have at least one neighbour with the same
PSC then U(s) = 0. Given a confusion graph G and a set S
of codes, the code allocation task is to find a code allocation

Figure 1. Simple example of a confusion graph G for a scenario consisting
of 4 base-stations with symmetrical weights, and w1,2 < w2,4, w3,4 < w1,3.

s with maximal utility U(s). We say that this code allocation
task is feasible if at least one proper choice of PSCs exists
(and so the maximal U(s) = 1). Whether a feasible allocation
exists depends both on the graph G and the number M of
codes available.

As an example, Figure 1 shows a simple case of a confusion
graph G for a network consisting of 4 base-stations where the
weights associated to the edges are symmetrical, i. e. wi,j =
wj,i.

III. SCRAMBLING CODE SELECTION

In this section we introduce three decentralized algorithms
for tackling the code allocation task. All algorithms are run by
the base-stations in an unsynchronised fashion, i. e. each base-
station asynchronously updates its choice of PSC. We will
discuss how the ordering of updates can affect the performance
of the algorithms.

A. State of the Art: Single-step Greedy Algorithm (SGA)

The SGA algorithm is based on the current 3GPP recom-
mendation [3] that is envisioned as a potential solution while
other vendor specific methods are concurrently encouraged.
Each base-station i ∈ B scans the set of available PSCs and
determines the set Sallocated(b) = {sj , j ∈ ni} of PSCs used
by its neighbouring base-stations. From this it determines the
set Sfree(i) = S \ Sallocated of unallocated PSCs. If Sfree(i)
is non-empty, then base-station i picks a PSC uniformly
at random from Sfree(i). Otherwise, base-station i selects
the code that is used by a neighbour of minimal weight
s = argmin

s∈S
max

j∈ni,si=s
wj,i.

While appealingly simple, it is important to note that this
greedy algorithm is not guaranteed to find a proper code
allocation even in simple scenarios and in general its per-
formance may be poor. For example, consider the confusion
graph shown in Figure 1, with weights chosen such that
w1,2 < w2,4, w3,4 < w1,3 and suppose M = 2 PSCs are
available for use by small cells, S = {A,B}. It can be readily
verified that a proper code allocation exists, namely assigning
code A to vertices 1 and 4 and code B to vertices 2 and
3. However, in the SGA algorithm it may happen that vertex
1 chooses code A, then vertex 4 chooses code B and now
vertices 2 and 3 are unable to choose a code that ensures a
proper allocation (vertex 2 will choose code A, conflicting
with vertex 1 and vertex 3 will choose code B, conflicting
with vertex 4). Indeed in this case the utility U(s) = 0.



B. Iterative Greedy Algorithm (IGA)
A refinement is to execute the SGA repeatedly rather

than just in a one-shot manner, thereby yielding the Iterative
Greedy Algorithm (IGA). However, in general this suffers
from similarly poor performance to the SGA e. g. it is easy
to verify that in the previous example for SGA the allocation
assigning code A to vertices 1 and 2 and code B to vertices 3
and 4 is a reachable equilibrium point of IGA for the confusion
graph in Figure 1, i. e. there is a significant probability this
algorithm converges to an allocation with U(s) = 0.

C. Communication-Free Learning (CFL) Algorithm
We now present the CFL algorithm which is related to the

class of algorithms recently introduced in [9], [10]. Each base-
station i maintains a vector pi of length M . The s’th element
pi,s gives the probability that base-station i chooses code s.
Vector pi,s is updated according to Algorithm 1. In summary,
when “satisfied” i. e. the current code choice is distinct from
that of all neighbours ni, base-station i keeps using this code.
Otherwise, on “failure” it updates pi to decrease the probability
of selecting this code again and then randomly chooses a
new PSC with probability given by vector pi. The algorithm
contains one parameter β which determines the algorithm’s
aversion to scrambling codes that lead to a failure: as β
is made larger, failures are penalised more heavily and the
memory or “stickiness” of the system decreases. The CFL
algorithm is decentralised, meaning that it does not impose
the requirement and overhead of communication between
the base-stations. The implementation of the algorithm is
especially straightforward making it suitable for small cells
with limited memory and computing power.

Note that due to the stochastic nature of the CFL algorithm
its convergence time is also stochastic. Unless otherwise
stated, if the CFL algorithm takes longer than a given number
of iterations to converge it is terminated early and the alloca-
tion given by scrambling code argmaxj pu,j is used for each
station b ∈ B.

Algorithm 1 Communication-Free Learning
Initialise pi,s = 1/M ∀s ∈ S; select β ∈ (0, 1]
loop

Select si = s with probability pi,s.
if si ∩ {sj : j ∈ ni} = ∅ “satisfied”

pi,s =

{
1 if s = si

0 otherwise.

else

pi,s =

{
(1− β)pi,s if j = si

(1− β)pi,s + β/(M−1) otherwise,

endif
end loop

IV. CONFUSION GRAPH ESTIMATION

In order to decide the scrambling code, ideally each base-
station i should have the knowledge of the RSCP levels
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Figure 2. Example of small cell deployment within the Hynes convention
centre in Boston: (a) Received pilot power for base-station 1, (b) Correspond-
ing confusion graph G′.

rj(p), ri(p), p ∈ Ci for all base-stations j. In practice, these
quantities can be estimated based on UE reports. However,
if the UE reports are to be taken into account, the base-
station requires to allow long enough time to collect the UE
measurements before deciding the scrambling code, which can
lead to slow convergence of the network.

A simpler way to construct the confusion graph is to rely
on base-stations CPICH RSCP measurements of other base-
stations. This corresponds, in our notation, to constructing the
approximated confusion graph G′ measuring mi,j :=

ri(pj)
rj(pj)

for each base-station j. Similarly, the 3GPP recommenda-
tion [3] suggests to use base-stations measurements for scram-
bling code selection.

While the algorithms introduced in this paper can support
both base-station based and UE-assisted graph construction,
in order to make a fair comparison against the 3GPP scheme,
the confusion graphs are constructed based on base-station
measurements.

As an example, Figure 2-(a), illustrates the scenario where
four base-stations are deployed within the conference hall at
the Hynes convention centre in Boston. The heat-map shown
in this graph refers to CPICH RSCP of base-station 1 (top-left)
when the transmit pilot power is set to 10 dBm. The map is
generated using the Wireless System Engineering (WiSE) [11]
software which is a comprehensive 3D ray tracing based sim-
ulation package. The simulation results from WiSE have been
validated by comparison against measurement data in a num-
ber of indoor and outdoor environments including the Hynes
convention centre considered in this example. Figure 2-(b)
shows the resulting approximated confusion graph G′.

V. RESULTS - NUMERICAL SIMULATIONS

Simulations were performed to evaluate and compare the
performance of these three scrambling code allocation algo-
rithms. Due to the complexity of the WiSE package and need
for exhaustive global search for scrambling code allocation in
many simulation scenarios, a simpler model was used. Varying
number of base-stations are placed uniformly at random in a
100 × 100m2 area. The update ordering of the base-stations
is selected uniformly at random from the set of permutations
of B. The maximum transmit power is 100 mW and the pilot
power is 10% of this value [12]. Radio propagation path loss
used is the 3GPP model for small cells [13]. Simulation results
are averaged over 100 independent runs.
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Figure 3. Comparison of SGA, IGA and CFL algorithms performance when
a feasible code allocation exists.
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Figure 4. Mean utility function U(s) versus number of base-stations for
optimal scrambling code allocation and SGA, IGA and CFL algorithms when
M = 3.

A. Comparison of Scrambling Code Selection Algorithms

Figure 3 shows the boxplot of the utility function, U(s),
for all three algorithms and for scenarios where a feasible
scrambling code allocation exist (choosing the number of
available codes M equal to the chromatic number of the
confusion graph). In this figure, markers indicate the mean
value of utility function, the bottom and the top of the boxes
indicate the 25th and 75th percentile of the utility function
samples. The figure additionally indicates the minimum values
underneath the bottom of the boxes. Without exception, the
CFL always finds a proper solution (U(s) = 1). In contrast,
both IGA and SGA achieve mean utility of around 0.85 and
also have relatively large degree of dispersion around this
mean. The improvement of the utility function is up to 150%.
Figure 4 shows the utility function versus the number of
base-stations. The results are illustrated for the scenario when
M = 3 scrambling codes are reserved for small cells (and so a
proper code allocation may not exist). While the overall trend
is expectedly descending, the CFL is shown to outperform
the other two greedy algorithms by up to 50%. Additionally,
the optimal allocation has been calculated with exhaustive
search and compared against the CFL where the CFL is shown
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Figure 5. Mean utility function U(s) versus number of base-stations for
optimal scrambling code allocation and SGA, IGA and CFL algorithms when
M = 4.
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Figure 6. Mean utility function U(s) corresponding to the optimal allocation
for different number of base-station and varying number of scrambling codes,
M .

to perform relatively close to the optimal especially when
considering practical densities. It should be note that the CFL
performance is considered to be acceptable given that the
code allocation problem is NP-hard and that CFL is a fully
distributed algorithm which relies on individual base-station
decisions without any message passing (i. e. no centralised
knowledge of the network topology is available). Similarly,
Figure 5 shows the results for the case when the number of
scrambling codes is increased to 4. Compared to Figure 4, the
results show significant improvement in terms of the average
utility function as a result of the added scrambling code.
Again, CFL is shown to be superior to both SGA and IGA
algorithms and the performance is even closer to the global
optimum.

B. Impact of NCL size

To provide a better understanding of the effect of the
number of available scrambling codes, Figure 6 shows the
optimal utility function averaged over 100 simulation runs
for increasing number of base-stations and varying number of
available scrambling codes. As the results shows, increasing
the number of scrambling codes has a significant effect on the



supported density of small cell deployments. The downside
would evidently be the increased size of the NCLs. Using
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Figure 7. (a) Synchronisation time (b) Associated complexity (total number
of operations and memory access) and (c) peak processing requirement as a
function of NCL size.

the model introduced in [14], Figure 7-(a) shows the overall
synchronization time required for target cell measurements
as function of the NCL size. In fact, the time required
for synchronization depends on how scrambling codes are

allocated between the neighbouring cells. In general, there is a
trade-off between the synchronization time and the complexity
(in terms of the number of operations and memory access)
when scrambling codes are planned. While the synchronization
time strongly depends on the number of code groups within a
given NCL, the complexity rises with the number of individual
codes [14]. The reason for this is because the final code
detection is more robust than the code group detection stage
albeit at the cost of increased complexity.

Moreover, poor code group detection degrades the overall
synchronization process substantially and results in lengthy
code acquisition. As an example, for an NCL of size 12,
if 6 identical scrambling codes are selected from 2 groups,
the required synchronization time per cell is 31.9 ms with
the associated complexity of 2.59e5 operations and memory
access. The corresponding values are 40.2 ms and 1.43e5
operations if the 2 codes are selected from 6 groups.

Since the codes that are decided for small cells ought to
be fixed, it may not be possible to choose them from the
same group as the macrocells. However, it is still possible
to select the codes dedicated to small cells from the same
group. In Figure 7-(a), considering the synchronization time
as the performance metric, the worst case allocation refers
to when all codes are selected from different groups and the
best allocation corresponds to choosing codes from minimum
possible number of code groups.

Given that each code group consists of 8 codes, there is a
sharp jump in the synchronization time for the best allocation
when the NCL size is increased from 8 to 9 (or from 16 to
17) which imply the need for a new code group. Furthermore,
the feasible allocation refers to the case when the code group
of which small cell codes are selected is different to that of
the macrocells whilst the number of code groups is kept at
minimum.

Given that the measuring period is 500 ms [14], Figure 7-(a)
confirms that the size of the NCL should not exceeds 14
cells for heterogeneous networks. Therefore, the number of
small cells reserved codes depends on the number of codes
allocated to macrocells. While with an ideal hexagonal shape
macrocells’ layout, merely 6 codes are sufficient to repre-
sent the neighboring cells, in reality, a NCL size of 10 for
macrocells is still not too conservative. This is especially the
case considering dense deployment of the macrocells in urban
areas. The exact number of required codes, depends on the
network topology including the base-stations’ location, their
antennas’ orientations and their pilot power settings.

Figure 7-(b) shows the complexity of the target cell search
procedure as a function of the number cells within a given
NCL. In contrary to Figure 7-(a), the best allocation here
refers to when identical codes are selected all from different
groups and worst allocation represents the scenario when many
individual codes (up to 8) are selected used. While it is
desirable to minimize the number of operations and memory
access to allow longer battery life of UEs, this will not be
a prime performance concern as long as UEs can handle the
computation complexity.

For this reason, the worst case peak processing requirement,
in million instruction per second (MOPS), was calculated and



shown in Figure 7-(c). Since the peak processing complexity
depends on the number of individual codes, it remains the
same after the NCL size exceeds 8. Fortunately, considering
the processing capabilities of mobile phones [15], the worst
case peak processing requirement of 153 MIPS is still well
bellow almost all mobile phones. The margin is over 92%
when considering more recent phones.

Comparing the results shown in Figure 7, it is evident that
for heterogeneous networks consisting of small cells, the best
scrambling code allocation strategy is to choose the codes from
a minimum possible number of code groups.

VI. CONCLUSIONS

This paper introduces the problem of scrambling code
allocation for WCDMA small cell networks. The problem
differs from code planning in the legacy macrocell networks
due to the limited number of codes reserved for small cells,
the need for dynamic adaptation and for scalable, distributed
allocation algorithms. Additionally, a novel decentralised (with
no message passing) algorithm for dynamic scrambling code
allocation is proposed and its performance was evaluated
against two variants of 3GPP recommended schemes. The
results confirm significant performance improvement of the
utility function (up to 150%) when using the proposed scheme.
The proposed scheme is fully distributed and is of low
computation complexity which makes it suitable for unplanned
deployment of small cells base-stations.

Finally, the paper discuss the trade-offs involved in increas-
ing the number of codes reserved for small cells. While there
is a significant improvement in term of supported small cell
deployment density when the number of reserved codes is
increased to 5 or 6, results shows that the NCL size may
not exceeds a total of 14 cells for a synchronisation time
of 500 ms. Additionally, the paper confirms the importance
of scrambling code planning for cells belonging to a given
NCL. Since the synchronisation time is shown to be the
prime limiting factor, the best code allocation strategy for
heterogeneous networks is the one that results in minimal
number of code groups.
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