
H-TCP: TCP for high-speed and long-distance networks

D. Leith∗, R. Shorten∗

Hamilton Institute, NUI Maynooth

Abstract

In this paper we present a congestion control protocol that is suitable for deployment in high-

speed and long-distance networks. The new protocol, H-TCP, is shown to fair when deployed in

homogeneous networks, to be friendly when competing with conventional TCP sources, to rapidly

respond to bandwidth as it becomes available, and to utilise link bandwidth in an efficient manner.

Further, when deployed in conventional networks, H-TCP behaves as a conventional TCP-variant.

1 Introduction

It is generally accepted that future communication and computer networks will be characterised by

high-speed and long-distance connectivity, and by the requirement to carry a wide variety of network

services and traffic types. These demands create new challenges for network designers and researchers.

Clearly, the problem of designing future networks may be addressed by a joint optimization of link-layer,

transport layer and application layer technologies. Unfortunately, the option to completely redesign

networks with a view to such a joint optimization is not feasible due to a strict backward compatibility

constraint; namely, that any new algorithms designed to operate in future networking environments must

also operate in existing and older network types in a way that co-exists with existing and older transport

protocols and supports incremental rollout. The constraint of backward compatibility is particularly

severe in the transport layer and it is the design of transport layer protocols, in particular TCP, that

is the principal concern of this paper. It is widely recognised that transport layer enhancements are

essential if high performance next generation networks are to be realised [1]. Our objective here is to

develop a systematic framework for modifying the basic TCP algorithm that renders it suitable in a

variety of network types. In this paper we report an important first step in this direction. We describe

a new TCP-variant that is suitable for deployment in high speed and long distance networks, as well as

conventional networks. The new TCP variant, H-TCP, is shown to be fair when deployed in homogeneous

networks, to be friendly when competing with conventional TCP sources, to rapidly respond to changes

in available bandwidth, and to utilise link bandwidth efficiently. Further, H-TCP, is shown to behave as

a conventional TCP-variant when deployed on conventional network types.

This paper is structured as follows. In Section 2 we develop a positive systems network model that

captures the essential features of communication networks employing drop-tail queuing and AIMD con-

gestion control algorithms. In Section 3 we use the insights gained from the analysis of the dynamic

properties of this model to develop H-TCP.

∗Joint first author

1

2 Nonnegative matrices and communication networks

A communication network consists of a number of sources and sinks connected together via links and

routers. We assume that these links can be modelled as a constant propagation delay together with a

queue, that the queue is operating according to a drop-tail discipline, and that all of the sources are

operating a TCP-like congestion control algorithm. The links and queues along a network path form a

‘pipe’ that contain packets in flight. TCP operates a window based congestion control algorithm. The

TCP standard defines a variable cwnd called the congestion window. Each source uses this variable to

determine the number of packets that can be in transit, but not yet acknowledged, at any time. When

the window size is exhausted, the source must wait for an acknowledgement before sending a new packet.

Congestion control is achieved by dynamically adapting the window size according to an additive-increase

multiplicative-decrease (AIMD) law. The basic idea is for a source to gently probe the network for spare

capacity and rapidly back-off the number of packets transmitted through the network when congestion

is detected, as depicted in Figure 7. Each source is parameterized by an additive increase parameter and

a multiplicative decrease factor, denoted αi and βi respectively. These parameters satisfy αi ≥ 1 and

0 < βi < 1 ∀i ∈ {1, ..., n}.

It is informative to begin our discussion by considering networks for which the following assumptions are

valid: (i) at each congestion event every source experiences a packet drop i.e. the drops are synchronised;

and (ii) each source has the same round-trip-time (RTT)1. In this case an exact model of the network

dynamics may be found using elementary algebra. Let wi(k) denote the congestion window size of source

Time (RTT)

w
i

w
i
(k)

w
i
(k+1)

k'th congestion epoch

k'th congestion

event

t
a
(k)
 t
c
(k)
t
b
(k)

Figure 1: Evolution of window size

i immediately before the kth network congestion event is detected by the source. Over the kth congestion

epoch three important events can be discerned: ta(k), tb(k) and tc(k) in Figure 1. The time ta(k) denotes

the instant at which the number of unacknowledged packets in the pipe equals βiwi(k); tb(k) is the time

at which the pipe is full; and tc(k) is the time at which packet drop is detected by the sources, where

time is measured in units of RTT. It follows from the definition of the AIMD algorithm that the window

evolution is completely defined over all time instants by knowledge of the wi(k) and the event times

ta(k), tb(k) and tc(k) of each congestion epoch. We therefore only need to investigate the behaviour of

1One RTT is the time between sending a packet and receiving the corresponding acknowledgement when there are no

packet drops.

2

these quantities.

We have that tc(k)− tb(k) = 1; namely, each source is informed of congestion exactly one RTT after the

first dropped packet was transmitted. Also,

wi(k) ≥ 0,

n
∑

i=1

wi(k) = P +

n
∑

i=1

αi, ∀k > 0, (1)

where P is the maximum number of packets which can be held in the pipe; this is usually equal to

qmax + BTd where qmax is the maximum queue length of the congested link, B is the service rate of the

congested link in packets per second and Td is the round-trip time when the queue is empty. At the

(k + 1)th congestion event

wi(k + 1) = βiwi(k) + αi[tc(k)− ta(k)]. (2)

and

tc(k)− ta(k) =
1

∑n

i=1 αi

[P −
n

∑

i=1

βiwi(k)] + 1. (3)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi

∑n

j=1 αi

[
n

∑

i=1

(1− βi)wi(k)], (4)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (5)

where WT (k) = [w1(k), · · · , wn(k)], and

A =













β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn













+
1

∑n

j=1 αi











α1

α2

· · ·

αn











[

1− β1 1− β2 · · · 1− βn

]

. (6)

The matrix A is a positive matrix (all the entries are positive real numbers) and it follows that the

synchronised network (5) is a positive linear system [2]. Many results are known for positive matrices and

we exploit some of these to analyse the properties of synchronised communication networks. In particular,

from the viewpoint of designing communication networks the following properties are very important: (i)

network fairness and TCP-friendliness; (ii) network convergence; (iii) network responsiveness; and (iv)

throughput efficiency. Roughly speaking, window or pipe fairness refers to a steady state situation where

n sources operating AIMD algorithms have an equal number of packets P/n in flight at each congestion

event; convergence refers to the existence of a unique fixed point to which the network dynamics converge;

responsiveness refers to the rate at which the network converges to the fixed point; and throughput

efficiency refers to the objective that the network operates at the bottleneck-link capacity. It is shown in

[3, 4] that these properties can be deduced from the network matrix A. We briefly summarise here the

relevant results in these papers.

Theorem 2.1 [4] Let A be defined as in Equation (6). Then, a Perron eigenvector of A is given by

xT
p = [α1

1−β1
, ..., αn

1−βn
].

3

The following corollary follows from Theorem 2.1 and properties of non-negative matrices [5, 2].

Corollary 2.1 [4] For a network of synchronised time-invariant AIMD sources: (i) the network has

a Perron eigenvector xT
p = [α1

1−β1
, ..., αn

1−βn
]; and (ii) the Perron eigenvalue is ρ(A) = 1. All other

eigenvalues of A satisfy |λi(A)| < ρ(A). The network converges to a unique stationary point Wss = Θxp,

where Θ is a positive constant such that the constraint (1) is satisfied; limk→∞ W (k) = Θxp, and the rate

of convergence of the network to Wss is bounded by the second largest eigenvalue of A (max|λ|, λ 6= 1 ∈

spec(A)).

The following facts may be deduced from the above discussion.

(i) Fairness and friendliness: Window fairness is achieved when the Perron eigenvector xp is a

scalar multiple of the vector [1, ..., 1]; that is, when αi

1−βi
is a constant that does not depend on i.

Further, since it follows for conventional TCP-flows that α = 2(1− β), any new protocol operating

an AIMD variant that satisfies αi = 2(1− βi) will be both fair and TCP-friendly. See for example

Figure 2

0 10 20 30 40 50
0

20

40

60

80

100

120

time (s)

cw
nd

 (p
ac

ke
ts

)

α=1.5, β=0.25

α=1, β=0.5

Figure 2: Example of window fairness between two TCP sources with different increase and decrease

parameters (NS simulation, network parameters: 10Mb bottleneck link, 100ms delay, queue 40 packets.

(ii) Network responsiveness: The second largest eigenvalue λn−1 of the matrix A bounds the con-

vergence properties of the entire network. We show in [4] that the network rise-time when measured

in number of congestion epochs is bounded by nr = log(0.95)
log(λn−1)

. With βi = 0.5 for all i, nr ≈ 4;

see for example Figure 2. Note that nr gives the number of congestion epochs until the network

dynamics have converged to 95 % of the final network state: the actual time to reach this state

depends on the length of the congestion epochs which is ultimately dependent on the αi. It is shown

in [4] that all the eigenvalues of A are real and positive and lie in the interval [β1, 1], where the βi

are ordered as 0 < β1 ≤ β2 ≤ ≤ βn−1 ≤ βn < 1. In particular, the second largest eigenvalue is

bounded by βn−1 ≤ λn−1 ≤ βn. Fast convergence to the equilibrium state (the Perron eigenvector)

is guaranteed if the largest backoff factor in the network is small.

(iii) Network throughput : At a congestion event the network bottleneck is operating at link capacity

4

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

time [s]

cw
nd

 [p
ac

ke
ts

]

Figure 3: NS packet-level simulation (αi = 1, βi = 0.5, dumb-bell with 10Mbs bottleneck bandwidth,

100ms propagation delay, 40 packet queue).

and the total data throughput through the link is given by

R(k)− =

∑n

i wi(k)

Td + qmax

B

(7)

where B is the link capacity, qmax is the bottleneck buffer size, Td is the RTT when the bottleneck

queue is empty and Td + qmax/B is the round-rip time when the queue is full. After backoff, the

data throughput through the link is given by

R(k)+ =

∑n

i βiwi(k)

Td

(8)

under the assumption that the bottleneck buffer empties. Evidently, if the sources backoff too much,

data throughput will suffer as the link operates below its maximum rate and the queue remains

empty for a period of time. A simple method to ensure maximum throughput is to equate both

rates yielding the following equation for the βi:

βi =
Td

Td + qmax

B

=
RTTmin

RTTmax

. (9)

(iv) Maintaining fairness : Note that setting βi = RTTmin

RTTmax
requires a corresponding adjustment of

αi if it is not to result in unfairness. Both network fairness and TCP-friendliness are ensured by

adjusting αi according to αi = 2(1− βi)).

2.1 Models of unsynchronised network

The objective of the preceding discussion is to illustrate that important network properties may be related

to the properties of certain positive matrices. Unfortunately, the assumptions under which this model

was derived, namely of source synchronisation and uniform RTT, are extremely restrictive (although they

may be valid in many long-distance networks). It is therefore of great interest to extend our approach to

more general network conditions.

5

Consider the general case of a number of sources competing for shared bandwidth in a generic dumbbell

topology (where sources may have different round-trip times and drops need not be synchronised). The

evolution of the cwnd of a typical source as a function of time, over the k′th congestion epoch, is depicted

in Figure 4.

k'th congestion epoch (
T(k)
)

t
ai
(k)
 t
ci
(k)
t
b
(k)

w

i

(k)

Time [secs]

Cwnd

(window evolution)
 w
j
(k)

w

j

(k+1)

t
q
(k)

w
i
(k+1)

Figure 4: Evolution of window size over a congestion epoch. T (k) is the length of the congestion epoch

in seconds.

As before a number of important events may be discerned; tai(k) is the time at which the number of

packets in flight belonging to source i is equal to βiwi(k); tq(k) is the time at which the bottleneck queue

begins to fill; tb(k) is the time at which the bottleneck queue is full; and tci(k) is the time at which the

i’th source is informed of congestion. Note that the evolution of the i’th window size is not linear after

tq. This is due to the fact that the RTT of the i’th source increases according to RTTi = Tdi
+ qmax

B

after tq where Tdi
is the RTT of source i when the bottleneck queue is empty. Note also that we do not

assume that every source experiences a drop when congestion occurs. For example, a situation is depicted

in Figure 4 where the i’th source experiences congestion at the end of the epoch whereas the j’th source

does not.

Given these general features it is clear that the modelling task is more involved than in the synchronised

case. While this is certainly the case, it is possible to relate wi(k) and wi(k +1) using a similar approach

to the synchronised case as follows.

(i) Non-uniform RTT : The evolution of the i’th window wi does not evolve linearly with time. However,

we may relate wi(k) and wi(k+1) linearly by defining the average rate ᾱi over the k’th congestion epoch:

ᾱi(k) =
wi(k + 1)− βiw(k)

T (k)
, (10)

where T (k) is the duration of the k’th epoch; namely, wi(k + 1) = βiwi(k) + ᾱi(k)T (k).

(ii) Unsynchronised source drops : We may account for the effect of unsynchronised behaviour as follows.

Consider again the situation depicted in Figure 4. Here, the i’th source experiences congestion at the end

of the epoch whereas the j’th source does not. This corresponds to the i’th source reducing its window

variable to βiwi(k + 1) after the k + 1’th congestion event, and the j’th source not adjusting its window

size at the congestion event. This may be modelled by allowing the back-off factor of the i’th source to

take one of two values at the k’th congestion event:

β̄i(k) ∈ {βi, 1} (11)

corresponding to whether the source experienced a packet loss or not.

6

Then by proceeding as described in the previous discussion one obtains the following description of the

network dynamics

W (k + 1) = A(k)W (k), A(k) ∈ IRn×n, (12)

where the time between congestion events is now measured in seconds rather than number of RTT’s.

The matrix A(k) takes the form of (6) with αi and βi replaced with ᾱi(k) and β̄i(k) respectively. An

important simplification occurs when qmax << BTdi
∀ i. In this case, the average ᾱi are (almost)

independent of k and given by ᾱi ≈
αi

Tpi

. This situation corresponds to the practically important case

of a network whose buffer is small compared with the delay-bandwidth product for all sources utilising

the congested link. Such conditions prevail on a variety of networks; for example networks with large

delay-bandwidth products, and networks where large jitter and/or latency cannot be tolerated. Then,

Equation (12) reduces to

W (k + 1) = A(k)W (k), A(k) ∈ A = {A1, ..., Am}, , Ai ∈ IRn×n, m = 2n − 1, (13)

where

A1 =













β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn













+
1

∑n

j=1 ᾱi











ᾱ1

ᾱ2

· · ·

ᾱn











[

1− β1 1− β2 · · · 1− βn

]

. (14)

as in the case of synchronised networks. The non-negative matrices A2, .., Am are constructed by taking

the matrix A1 and setting some, but not all, of the βi to 1. This gives rise to m = 2n−1 unique matrices

associated with the system (13) corresponding to the different combinations of source drops that are

possible.

We have from (13) that W (k) = ΠkW (0) where

Πk = A(k)A(k − 1)....A(0). (15)

The evolution of the vector of window sizes is governed by the asymptotic properties of the matrix product

Πk as k → ∞. Consequently, the asymptotic behaviour of this product also determines the network

fairness, convergence, responsiveness and throughput efficiency properties. While it can be immediately

seen than the unsynchronised case is considerably more difficult to analyse that the synchronised case, it

is shown in [6] that for the system (13) the structural properties of the matrices in A make the product

Πk amenable to study. Specifically, assuming sufficient randomization of drops (induced for example by

a small amount of background web traffic; see [6] for details), it may be shown that the unsynchronised

network (13) exhibits the same qualitative features as the synchronised system (5). In particular, we show

in [6] that under the assumption that the probability that A(k) = Ai ∈ A is independent of k and equals

ρ, then the qualitative properties of (13) are identical to (5); namely that the the empirical mean of the

source congestion windows converges to a fixed point; and that this fixed point is fair if ᾱi = k(1 − βi)

for all i (TCP fairness corresponds to k =2); and finally that the bottleneck link will be used efficiently

provided βi =
RTTmin,i

RTTmax,i
. Full details of these results can be found in [6].

3 Protocols for high-speed and long distance networks

Recently, the design of congestion control protocols for deployment in high speed and long distance

networks has been the subject of much interest in the networking community [7, 8, 9]. This interest

7

T
1

T
0

B, T

Figure 5: Dumbbell topology used in Figure 6.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T1 (ms)

re
la

tiv
e

cw
nd

 s
iz

e

dumbbell topology, B=100Mb, q
m

ax=80, T=20ms, T0=102ms

Figure 6: Asymptotic behaviour of the empirical mean of Wi(k): Key: + NS simulation result; · prediction

of unsynchronised model (13); ◦ analytic prediction.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

congestion epoch

m
ea

n
w

0/w
1

Figure 7: Convergence of the empirical mean of the window size to asymptotic values.

8

stems from the fact that the conventional TCP congestion control algorithm is ineffective in networks

where window sizes may become very large. In these networks, following a congestion event, it may take

an excessively long time for a source window size to recover. This leads to slow network convergence

properties and poor bandwidth utilisation in links whose queues are small compared with the delay-

bandwidth products as seen by sources served by the congested link. It is therefore essential to revise the

TCP congestion control algorithm to operate efficiently in such environments. This task is non-trivial due

to the backward-compatibility constraints discussed in the Section 1, and due to a number of performance

related constraints. In particular, it is desirable that any new protocol exhibit the following features.

(i) High speed protocols should behave as a conventional TCP-variant when deployed in low-speed/short-

distance networks.

(ii) High speed protocols should be TCP friendly; that is, should not completely starve TCP flows of

available bandwidth when competing on high speed links

(iii) High speed protocols should be fair in some suitable sense. For example, high-speed sources com-

peting against each other should on average have an approximately equal number of packets in

flight in the network at each congestion event. The extension of our work to design for this and

other types of fairness can be achieved with minor modifications to our analysis and algorithms.

(iv) High speed protocols sources should be responsive. That is, they should respond quickly to changes

in available bandwidth (following start-up or death of a network flow, or in response to other

network disturbances).

(v) High speed protocols sources should ensure that the bottleneck link is being used efficiently at all

times.

In the remainder of this section we demonstrate that H-TCP realises all of these design objectives.

3.1 H-TCP

Several approaches have been proposed for designing protocols for high-speed and long distance networks

[7, 8, 9] ranging from minor modifications to conventional TCP, to a complete protocol redesign. Our

approach belongs to the former category and represents an evolution of conventional TCP rather than

a radical departure from it. Our motivation for adopting this approach is twofold: (i) TCP has proved

to be remarkably effective and robust in regulating network congestion and it seems sensible to retain

as many aspects of TCP as possible; and (ii) it seems likely that TCP will continue to be deployed in a

variety of networks into the future and any new protocol should therefore both co-exist and be backward

compatible with conventional TCP.

Our design, referred to as H-TCP, is motivated by the simple observation that the αi should be small is

conventional networks (for backward compatibility) and large in high-speed and long distance networks

(for short duration congestion epochs even with large pipe sizes). We therefore concentrate on modifying

the basic TCP paradigm by adjusting the rate αi at which a source inserts packets into a network to

reflect the prevailing network conditions. This is similar to the work advocated by Floyd and Kelly in

[7, 8]. The key innovative idea in our approach is to make the αi increase as a function of the time elapsed

since the last packet drop experienced by the i’th source.

9

Specifically, H-TCP amends conventional TCP in the following manner. In the high-speed mode the

increase function of source i is αH
i (∆i) and in the low-speed mode αL

i . The mode switch is governed by:

αi =

{

αL
i ∆i ≤ ∆L

αH
i (∆i) ∆i ≥ ∆L

(16)

where ∆i is the time elapsed since the last congestion event experienced by the ith source, αL
i is the

increase parameter for the low-speed regime (unity for backward compatibility), αH
i (∆i) is the increase

function for the high-speed regime, βi is the decrease parameter as usual and ∆L is the threshold for

switching from the low to high speed regimes.

Time (s)

w
i
 w

i

(k)
 w

i

(k+1)

L

 H

Figure 8: Evolution of window size

The increase function αH
i is a design parameter that can be chosen according to desired objectives. In

the rest of the present paper we set αH
i according to:

αH
i (∆i) = 1 + 10(∆i −∆L) + (

∆i −∆L

2
)2. (17)

This choice of αH
i yields a response function similar to that of HS-TCP [7]. In terms of the congestion

epoch duration for large pipe sizes, the impact of increasing α in this manner is evident from Figure 9.

A typical window evolution time history is illustrated in Figure 8. This approach has several advantages

over evolving the αi as a function of wi as advocated in [7]. Firstly, the function governing the rate at

which αi is increased can be tuned to ensure that H-TCP operates as standard TCP in conventional

networks where the time between successive congestion events is small, and to evolve more aggressively

in high speed and long-distance networks where the time between congestion events may be long. We

use a simple mode switch to guarantee that H-TCP operates as a conventional TCP variant for a short

period after every congestion event. This guarantees both backward compatibility on low speed networks,

and TCP-friendliness when deployed in high-speed networks. Secondly, because the mode switch is based

on time since the last back-off, the sources behave symmetrically; that is, sources already in high speed

mode do not gain a long term advantage over new flows starting up. This maintains symmetry in the

network thereby guaranteeing fairness with other H-TCP sources.

Comment 1: We note that H-TCP is not an AIMD congestion control strategy. Nevertheless, by defining

an effective linear ᾱi for each source,

ᾱi(k) =
wi(k + 1)− βi(k)w(k)

T (k)
, (18)

10

100 101 102 103

101

102

103

104

105

106

congestion epoch duration (s)
pe

ak
 c

w
nd

 s
iz

e
(p

ac
ke

ts
)

Standard TCP
RTT 250ms

Standard TCP
RTT 100ms

H−TCP
RTT 100ms

H−TCP
RTT 250ms

Figure 9: Peak window size achieved vs duration of congestion epoch with standard TCP and with

H-TCP

where T (k) is the duration of the k’th epoch, the behaviour of a network of H-TCP sources may be

modelled in exactly the same manner as in Section 2. See for example, Figures 10-13.

Comment 2: Recall that for standard TCP we have that the effective increase rate is inversely propor-

tional to round-trip time, ᾱi ≈
αi

Tpi

. A similar situation holds for the high-speed mode switch (17). In

both cases, we note that ᾱi can be effectively made invariant with round-trip time by simply scaling αi

by the respective round-trip time Tpi
. With such scaling2, the congestion epoch duration (see Figure 9)

also becomes invariant with round-trip time. Combining this observation with the convergence results

above that establish the convergence rate in terms of number of congestion epochs, it then becomes an

option to specify a required convergence time in seconds that is independent on round-trip time.

3.2 Adaptation to achieve efficient bandwidth utilisation

In standard TCP congestion control the AIMD parameters are set as follows: αi = 1 and βi = 0.5.

These choices are reasonable when the maximum queue size in the bottleneck buffer is equal to the

delay-bandwidth product, and backing off by a half should allow the buffer to just empty. However,

is is generally impractical to provision a network in this way; for example, when each flow sharing a

common bottleneck link has a different round-trip time. Moreover, in high-speed networks large buffers

are problematic for both technical as well as cost reasons. When the queue sizes is small, the effect of

backing off by 0.5 can lead to the queue being empty for a significant period of time and thereby to

an under utilisation of the bottleneck link. An example showing this effect is given in Figure 12. The

solution is an adaptive backoff mechanism that exploits the following observation. At congestion the

network bottleneck is operating at link capacity and the total data throughput through the link is given

by

R(k)− =

n
∑

i

wi(k)

RTTmax,i

(19)

2It is of course prudent to restrict such scaling to lie in some interval, say [0.5,10], to prevent misbehaviour on paths

with very short or very long round-trip times.

11

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

time (s)

cw
nd

 (p
ac

ke
ts

)

Figure 10: Example of two H-TCP flows illustrating rapid convergence to fairness - taking approximately

4 congestion epochs which is in agreement with the rise-time analysis for βi = 0.5 (NS simulation, network

parameters: 500Mb bottleneck link, 100ms delay, queue 500 packets).

where B is the link capacity, n is the number of network sources, and RTTmax,i is the maximum RTT

experienced by the i’th source. After backoff, the data throughput through the link is given by

R(k)+ =
n

∑

i

βiwi(k)

RTTmin,i

(20)

under the assumption that the bottleneck buffer empties. Clearly, if the sources backoff too much, data

throughput will suffer. A simple method to ensure maximum throughput is to equate both rates yielding

the following equation for the βi:

βi =
RTTmin,i

RTTmax,i

. (21)

Based on the above observation we propose an adaptive strategy under which each source estimates
RTTmin,i

RTTmax,i
and uses this quantity to determine βi such that the throughput is matched before and after

backoff, thereby ensuring that the buffer just empties following congestion and the link remains operating

at capacity [10].

Comment : Alternatively, the backoff factor can be expressed as

βi(k + 1) = min
j

βi(j)
B−

i (j)

B+
i (j)

(22)

where B−

i (k) is the throughput of flow i immediately before the k’th congestion event, B+
i (k) the through-

put of flow i immediately after the k’th congestion event. Both quantities are readily measured from

packets ACK’ed over an RTT. This avoids the need to measure the ratio RTTmin,i/RTTmax,i directly

and is the approach currently employed in test implementations.

3.3 Adaptation to achieve responsiveness

As mentioned previously, in AIMD-like algorithms a trade-off exists between responsiveness and through-

put efficiency. The back-off factor may need to approach unity on links with small queues to achieve

12

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

standard TCP

H−TCP

Figure 11: Example of standard TCP and H-TCP flows co-existing on a low speed link (NS simulation,

network parameters: 5Mb bottleneck link, 100ms delay, queue 44 packets; H-TCP parameters: αL =

1, αH = 20, β = 0.5,∆L = 19).

efficient utilisation. However values of βi close to one will lead to slow convergence after a disturbance

(e.g. traffic joining or leaving the route associated with the link, see examples below). We therefore

need to adapt the source back-off factors to reflect the need to respond rapidly to changes in network

conditions or to utilise bandwidth efficiently. This requires a network quantity that changes sensibly

during disturbances and which can be used to trigger an adaptive reset that adjusts the βi to ensure

responsiveness. One quantity that can be used to achieve such an adaptive strategy is the throughput

achieved just before a congestion event, B−

i . B−

i is determined by the link service rate B, which we

assume is constant, the number of flows, and the distribution of bandwidth among the flows. Thus as

new flows join we expect the B−

i to decrease. On the other hand the value of B−

i will increase when the

traffic decreases. Thus by monitoring B−

i for changes it is possible to detect points at which the flows

need to re-adjust and reset βi to some suitable low value for a time.

In summary, an adaptive reset algorithm is as follows.

(i) Continually monitor the value of B−

i .

(ii) When the measured value of B−

i moves outside of a threshold band, reset the

value of βi to βreset.

(iii) Once B−

i returns within the threshold band (e.g. after convergence to a new

steady state, which might be calculated from βreset), re-enable the adaptive

backoff algorithm βi =
RTTmin,i

RTTmax,i
.

In our experiments we reset βi to 0.5 when B−

i changes by more that 20% from one congestion epoch to

another. Figure 14 illustrates the operation of the adaptive back-off and reset algorithm. It can be seen

that the backoff factor of flow 1 is reset to 0.5 temporarily when flow 2 starts, ensuring rapid convergence

(in around 4 congestion epochs, consistent with the eigenvalues of the A matrix with backoff factor of

0.5). Notice that the flows now converge quickly to the fair allocation, at which time the adaptive reset

is disabled and the value of the βi that utilises the link bandwidth effectively is used instead.

13

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

time (s)

cwnd

throughput (x10Mbps)

RTT (x10ms)

Figure 12: H-TCP with βi(k) = 0.5 for all sources.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

cwnd

throughput (x10Mbps)

RTT (x10ms)

Figure 13: H-TCP with adaptive backoff.

3.4 Complete H-TCP algorithm

H-TCP can be implemented with minor modifications to the existing TCP congestion control algorithm

as follows.

Let ∆i(k) be the time since the last congestion event as experienced by source i,
RTTmin,i

RTTmax,i
be the ratio of

minimum and maximum RTT’s as experienced by source i, and B−

i is the throughput achieved by source

i immediately before a congestion event

(a) On each acknowledgement set:

αi ←

{

1 ∆i ≤ ∆L

1 + 10(∆i −∆L) + (∆i−∆L

2)2 ∆i > ∆L
(23)

and then set

αi ← 2(1− βi)αi. (24)

14

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

time(s)

cw
nd

 (p
ac

ke
ts

)

Figure 14: Adaptive congestion control. Notice that the effective backoff is reset in response to new flows

starting (network simulation parameters are: 20Mb bottleneck link, 100ms delay, maximum queue size is

50 packets).

(b) On each congestion event set :

βi(k + 1) ←







0.5 |
B

−

i
(k+1)−B

−

i
(k)

B̄
−

i
(k)

| > 0.2
RTTmin,i

RTTmax,i
otherwise.

(25)

Comment 1: It is prudent to restrict the βi(k) to the interval [0.5, 0.8] since for very small queues
RTTmin,i

RTTmax,i

may approach unity.

Comment 2: In line with Comment 2 in Section 3.1, we additionally advocate scaling the αi by the

respective round-trip time Tdi
to achieve a congestion epoch duration, and thus convergence time, that

is effectively independent of round-trip time.

Acknowledgements

This work was supported by Science Foundation Ireland grant 00/PI.1/C067.

References

[1] R. Mukhtar, S. Hanly, and L. Andrew, “Efficient internet traffic delivery over wireless networks,”

IEEE Communications Magazine, vol. 41, no. 12, pp. 46–54, 2003.

[2] A. Berman and R. Plemmons, Nonnegative matrices in the mathematical sciences. SIAM, 1979.

[3] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of synchronised communication

networks,” in Proceedings of 12th Yale Workshop on Adaptive and Learning Systems, 2003.

[4] A. Berman, R. Shorten, and D. Leith, “Positive matrices associated with synchronised communica-

tion networks.” Submitted to Linear Algebra and its Applications, 2003.

15

[5] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1985.

[6] R. Shorten, F. Wirth, and D. Leith, “Positive matrices and communication networks.” Technical

Report, Signals and Systems Group, NUIM, 2004.

[7] S. Floyd, “High speed TCP for large congestion windows,” tech. rep., Internet draft draft-floyd-tcp-

highspeed-02.txt, work in progres, February 2003.

[8] T. Kelly, “On engineering a stable and scalable TCP variant,” tech. rep., Cambridge University

Engineering Department Technical Report CUED/F-INFENG/TR.435, 2002.

[9] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Algorithms, Performance.”

Caltech CS Report CaltechCSTR:2003:010, 2003.

[10] R. Shorten, D. Leith, and P. Wellstead, “Adaptive congestion control of the internet.” Submitted to

Automatica, 2004.

16

