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Abstract— In this paper we present experimental results eval-
uating the performance of the Scalable-TCP, HS-TCP, BIC-TCP,
FAST-TCP and H-TCP proposals in a series of benchmark tests.
In summary, we find that both Scalable-TCP and FAST-TCP
consistently exhibit substantial unfairness, even when competing
flows share identical network path characteristics. Scalable-TCP,
HS-TCP, FAST-TCP and BIC-TCP all exhibit much greater RTT
unfairness than does standard TCP, to the extent that long RTT
flows may be completely starved of bandwidth. Scalable-TCP, HS-
TCP and BIC-TCP all exhibit slow convergence and sustained
unfairness following changes in network conditions such as the
start-up of a new flow. FAST-TCP exhibits complex convergence
behaviour.

Index Terms— TCP Congestion control; Evaluation of TCP
protocols; High-speed networks.

I. INTRODUCTION

The TCP congestion control algorithm has been remarkably
successful in making the current Internet function efficiently.
However, in recent years it has become clear that it can
perform very poorly in networks with high bandwidth-delay
product (BDP) paths. The problem stems from the fact that the
standard TCP AIMD congestion control algorithm increases
the congestion window too slowly. This is illustrated in Figure
1 which plots evolution of the congestion window cwnd of a
single flow, and its throughput time histories measured on a
1Gb/s trans-atlantic path between Dublin, Ireland and Chicago.
The propagation delay is 100ms and the bandwidth-delay
product approximately 8000 packets. On reducing cwnd by
a half, when delayed acking is used it takes 8000 round-trip
times i.e. 800s for the cwnd to fill the pipe again. This is
simply too slow for most applications as it would lead to
prohibitively long file transfer times. In the example shown,
it takes over 1200s for the flow to recover after a backoff
and the average throughput achieved is only 218Mb/s. This
poor utilisation of network capacity is not confined to long
distance inter-continental paths. With the continuing rollout
of gigabit-speed (and faster) links, latencies of only a few
tens of milliseconds are quite sufficient to create bandwidth-
delay products that yield poor throughput performance with
the current TCP congestion control algorithm.

A solution to this problem that has been pursued by many
authors is to increase the rate at which cwnd is increased
and thereby shorten the congestion epoch duration. However,
backward compatibility requirements with existing TCP flows
requires that any new protocol should behave similarly to
standard TCP on paths with low bandwidth-delay product.
Early work along these lines includes the HS-TCP proposal

Fig. 1. Measured cwnd and throughput time histories on 1Gb/s path between
Dublin, Ireland and Chicago, USA. Over 1200s, the average throughput
achieved is only 218Mb/s. These particular measurements were taken on
the afternoon of Dec 9th 2003 using a dedicated trans-atlantic link with no
significant competing traffic.

of Floyd[8], the Scalable-TCP proposal of Kelly[12] and
the FAST-TCP proposal of Low et al[9]; more recent new
proposals include BIC-TCP[20] and H-TCP[14]. These pro-
posals have all been the subject of considerable interest and
experimentation in recent years.

Due in no small part to the volume of work that has
been carried out in this area, a real need has developed
for systematic screening of proposals to identify suitable
candidates for more detailed evaluation. Evaluating the per-
formance of new TCP proposals is not easy. One principal
difficulty arises from the lack of an agreed set of performance
measures. As a result of the latter, different studies typically
employ performance tests that highlight particular aspects of
TCP performance while casting little light on other, equally
important, properties of proposed protocols. Several existing
studies also does not control for variations in performance
associated with differences in network stack implementation
that are unrelated to the congestion control algorithm (see
below). This is an important practical aspect that is frequently
ignored in academic studies on the topic. In view of these
facts it is not surprising that concrete conclusions relating to
the merits of competing proposals have been difficult to make
based on currently available published results.

Our aim in this paper is to compare the performance of
competing TCP proposals in a systematic and repeatable
manner. It is important to emphasise that our goal in this
paper is not to achieve exhaustive testing, but rather to perform
initial screening of proposals. Our approach is to define and



2

use a set of benchmark tests that probe a number of important
aspects of new protocols, and to consistently apply these
tests to all proposals. Specifically, we present experimental
measurements of the performance of the HS-TCP, Scalable-
TCP, FAST-TCP, BIC-TCP and H-TCP1 proposals. These tests
highlight a number of specific deficiencies of the protocols
studied, and suggest future research directions to render these
suitable for deployment in real networks.

II. SOME PITFALLS

Comparing the performance of TCP proposals is not always
easy and many pitfalls exist. Examples include the following.

Different network stack implementations. In several recent
studies on high-speed networks, publicly available Linux
patches provided by the authors of TCP proposals are used.
The performance of these patches are then compared directly.
However, patches may relate to different operating system
versions. More seriously, performance issues relating to the in-
efficiency of the network stack implementation, particularly in
relation to SACK processing, are known to have a significant
impact on performance. As a result, most patches implement-
ing proposed changes to the TCP congestion control algorithm
also implement numerous changes to the network stack that are
unrelated to the congestion control algorithm. Consequently,
direct performance comparisons of these patches risk revealing
more about the efficiency of the network stack implemen-
tation than about the performance of the congestion control
algorithm. In this paper, we use a common network stack
implementation with all of the congestion control algorithms
studied in order to focus solely on the latter’s performance.

Congestion control action not exercised. It is important to
design experiments that exercise the TCP congestion control
algorithm rather than other elements of the network stack. For
example, it is essential that the bandwidth of the network is
lower than that of the server network interface card (NIC), i.e.
that the network bottleneck lies external to the server being
tested. Otherwise, it is often the case that the transport layer
congestion control algorithm is effectively inactive (packet
drops are virtual) and performance measurements merely
evaluate the efficiency of the NIC driver.

Performance measures too narrow. We argue that it is not
sufficient to focus solely on TCP throughput performance.
Fairness, responsiveness, backward compatibility, support for
incremental rollout etc should also be evaluated.

Range of network conditions. Frequently results are
presented tests from a single test run only and/or for
a specific network condition or small range of network
conditions. A huge variety of conditions exist in modern
networks. We argue that it is essential, as a minimum,
to characterise TCP performance across a broad range of
bandwidths (not just on high-speed links), propagation delays
(not just trans-continental links), router buffer sizes (not just

1We note that H-TCP is developed by some of the authors of this paper.
We emphasise therefore that all of the protocols studied are put through
identical tests yielding quantitative and repeatable measurements. While space
restrictions prevent us from including all of our experimental measurements
in this paper, the measurements are available at www.hamilton.ie/net/eval.

very large or very small buffers) and mix of connection sizes.

Such issues limit the utility of previous evaluation studies
and motivate the approach taken in the present paper. We do
not claim that our tests in this paper are exhaustive. We do,
however, seek to demonstrate their utility and discriminating
power and to initiate wider debate on this topic in the
networking community.

III. COMPARATIVE TESTING

An immediate difficulty that arises in our work, even for
the limited scenarios that we consider, is that the question as
to what exactly constitutes a good network protocol is itself
a topic of much debate. We do not attempt to answer this
question here. Instead, we seek to support decision making
by characterising some important aspects of the behaviour of
new protocols in a consistent and objective manner. While
we lack agreed metrics for ranking performance, we do have
the existing TCP standards-based algorithm against which
to compare the performance of new protocols. We therefore
propose taking the performance of the current start-of-the-art
TCP algorithm2 as a baseline against which the behaviour of
new proposals can be compared.

It is also important to emphasise that our goal in this paper
is not to achieve exhaustive testing, but rather to perform
initial screening of proposals. We therefore seek to define
a series of benchmark tests that can be consistently applied
and that exercise core functionality of TCP. The performance
problems of standard TCP over high bandwidth-delay product
paths are largely associated with bulk data transfers. It is
therefore natural to take this as our starting point in testing
new TCP proposals. In addition to focussing our attention
on the performance of long-lived flows, we also confine
consideration to drop-tail queues, since this is the prevalent
queueing discipline in current networks, and to a single shared
bottleneck link.

We recognize that short-lived TCP flows, and indeed non-
TCP flows, constitute a large proportion of traffic in real
networks. Similarly, not all routers operate drop-tail queueing
disciplines and multiple bottlenecks including cross-traffic can
occur. However, as a minimum we expect that TCP algorithms
should function well over a single bottleneck link with drop-
tail queueing and, as we shall see, the range of network
conditions that we consider is already sufficient to highlight
many interesting features of new TCP proposals. Moreover,
a single bottleneck link with drop-tail queueing is an obvious
starting point for investigating new algorithms as the behaviour
of the standard TCP algorithm in this setting is well studied.
Indeed, our understanding of standard TCP behaviour under
these conditions immediately suggests a number of fundamen-
tal characteristics to consider in making comparisons.

2Implementations of standard TCP do differ in their behaviour. However,
differences in implementation are largely confined to areas such as timeout
handling, undo actions etc. and there is generally consistency in the imple-
mentation of the congestion control algorithm itself. In this paper we consider
the Linux 2.6 TCP implementation.
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A. Definitions

Before proceeding, the following definitions will be useful.
Letting Ui(t) denote the number of packets transferred by the
i’th flow in the time interval [0, t], the average throughput is

ūi := lim
T→∞

Ui(T )
T

(1)

We also define the short-term average throughput as the
moving average

ûi(t + δ) = (1− λ)ûi(t) + λ
U(t + δ)− U(t)

δ
(2)

We have that U(t + δ) − U(t) is the number of packets
sent in interval [t, t + δ] and (U(t + δ) − U(t))/δ is the
average sending rate over this interval. In this paper we use a
sampling interval δ of 0.1 seconds. We have fading memory
so that ûi(t) is, roughly speaking, the running average over
a window of past data with the window size determined by
the parameter λ. We choose λ so that the averaging window
scales is approximately 100 round-trip times We define the
ε-convergence time following startup of a new flow to be the
time before the short-term average throughput of the new flow
is within a factor ε of its long-term average value. Typically,
we use ε = 0.8 yielding the 80% convergence time.

B. Range of Network Conditions

We consider round-trip propagation delays in the range
16ms-320ms and bandwidths ranging from 1Mb/s-250Mb/s.
We do not consider these values to be definitive – the upper
value of bandwidth considered can, in particular, be expected
to be subject to upwards pressure. We do, however, argue that
these values are sufficient to capture an interesting range of
network conditions that characterises current communication
networks. In all of our tests we consider delay values of
16ms, 40ms, 80ms, 160ms, 320ms and bandwidths of 1Mb/s,
10Mb/s, 100Mb/s and 250Mb/s. In addition, we perform each
test with 0,10,20,30,40 and 50 competing bidirectional web
sessions. This defines a three-dimensional grid of measurement
points where, for each value of delay and level of web traffic,
performance is measured for each of the values of bandwidth.

C. Fairness.

The formal fairness requirement on new protocols is unclear
and many definitions of fairness exist. Nevertheless, we can
make the following observations. On a path with a single
bottleneck, we expect that competing long-lived flows with the
same round-trip time should achieve approximately the same
average throughput. Flows with different round-trip times will
be unfair when the standard TCP congestion control algorithm
is used, with short round-trip time flows generally achieving
greater average throughput than long round-trip time flows
(e.g., see [17]). We therefore require that our tests of new
TCP proposals should, as a minimum, evaluate the impact of
round-trip time on the relative throughputs of competing flows.
Specifically, to evaluate fairness, we consider two TCP flows
and propose the following tests:

(i) Fairness with same RTT. Measure the average throughput
of each flow when each flow operates the same congestion
control algorithm, has the same propagation delay and
has a shared bottleneck link. Measurements are taken
for a range of propagation delays, link bandwidths and
level of competing bidirectional web traffic (see above)
and the queue is sized as a constant proportion of the
bandwidth-delay product (we suggest 20% and 100% of
the bandwidth-delay product, roughly corresponding to
conditions with small and large queues).

(ii) Fairness with different RTT’s. Measure the average
throughputs as the propagation delay of the first flow is
held constant and that of the second flow is varied from
16ms-320ms. Measurements are taken for a range of link
bandwidths, web traffic and propagation delays of the first
flow; the queue is sized as a constant proportion of the
bandwidth-delay product.

D. Backward compatibility.

To evaluate backward compatibility, we repeat the foregoing
fairness measurements but now with the first flow operating
the standard TCP algorithm and the second flow operating the
new TCP congestion control algorithm being studied.

E. Efficiency.

That is, utilisation of the available network resources. It is
known that the efficiency of standard TCP is influenced by
the queue provisioning within the network: for a single flow
(or with multiple synchronised flows) link utilisation falls as
the queue size is reduced below the delay-bandwidth product
of a path. As a minimum we therefore expect our tests to
characterise efficiency with respect to this parameter.

To evaluate link utilisation, we consider two TCP flows
having the same propagation delay and propose the following
two tests:
(i) Efficiency vs Queue Provisioning. Measure average

throughput and loss overhead as the queue provisioning is
varied from 1% to 100% of the bandwidth-delay product.

(ii) Efficiency vs RTT. Measure average throughput and loss
overhead as the propagation delay is varied and the queue
size scaled to be a constant proportion of the bandwidth-
delay product.

F. Responsiveness

Since network conditions are not static, we are also inter-
ested in the ability to rapidly acquire and release bandwidth
as conditions change.
(i) Response Function. On links with many flows the backoff

events experienced by a single flow are often modelled as
a random process, e.g. see Padhye et al [17]. Motivated
by this, we evaluate the impact of random packet loss on
efficiency via the following test. Configure the network to
generate random packet losses with constant per-packet
drop probability (in our tests we implemented this on a
software router). Measure the average throughput of a



4

single TCP flow as the level of random packet losses is
varied.

(ii) Convergence Time. On links with smaller numbers of
flows, it is known that interactions between competing
flows can have a strong impact on network convergence
time following a disturbance, e.g. see [19]. We evalu-
ate the responsiveness of small numbers of TCP flows
to changing network conditions by measuring the 80%
convergence time following the startup of a second flow.
We recommend that tests be repeated with a range of start
times of the second flow that span at least one congestion
epoch of the first flow. In this way we can evaluate
the average performance independent of the specific start
time used.

As usual, these measurements are carried out for a range of
propagation delays, web traffic and link bandwidths.

IV. EVALUATING HIGH-SPEED PROTOCOLS

In this section we measure the performance of the following
high-speed proposals: Scalable-TCP, high-speed TCP (HS-
TCP), BIC-TCP, FAST TCP and H-TCP. These proposals have
all been the subject of considerable interest and experimenta-
tion in recent years, with patches implementing each of these
protocols on the Linux operating system publicly available.

Before proceeding, we very briefly review the basic op-
eration of each of these competing proposals. The reader is
referred to the original literature for more detailed information.

A. Scalable-TCP [12]

The basic idea in Scalable-TCP is to make the recovery
time after a congestion event independent of window size.
Specifically, Scalable-TCP proposes that the TCP cwnd be
updated as follows

Ack: cwnd ← cwnd + α

Loss: cwnd ← β × cwnd

Suggested values for the parameters α and β are 0.01 and
0.875, respectively. A mode switch is used whereby the
standard TCP cwnd update rules are used when cwnd is less
than a threshold, Low Window, and the Scalable-TCP update
rules are used for larger cwnd values.

B. HS-TCP [8]

HS-TCP uses the current TCP cwnd value as an indication
of the bandwidth-delay product on a path. The AIMD increase
and decrease parameters are then varied as functions of cwnd:

Ack: cwnd ← cwnd +
fα(cwnd)

cwnd
Loss: cwnd ← gβ(cwnd)× cwnd

In [8] logarithmic functions are proposed for fα(cwnd)
and gβ(cwnd), whereby fα(cwnd) increases with cwnd and
gβ(cwnd) decreases. Similarly to Scalable-TCP, HS-TCP uses
a mode switch so that the standard TCP update rules are used
when cwnd is below a specified threshold.

C. H-TCP [14]

HTCP uses the elapsed time ∆ since the last congestion
event, rather than cwnd, to indicate path bandwidth-delay
product and the AIMD increase parameter is varied as a
function of ∆. The AIMD increase parameter is also scaled
with path round-trip time to mitigate unfairness between
competing flows with different round-trip times. The AIMD
decrease factor is adjusted to improve link utilisation based
on an estimate of the queue provisioning on a path. In more
detail,

Ack: cwnd ← cwnd +
2(1− β)fα(∆)

cwnd
Loss: cwnd ← gβ(B)× cwnd

with

fα(∆) =

{
1 ∆ ≤ ∆L

max(f̄α(∆)Tmin, 1) ∆ > ∆L

gβ(B) =

{
0.5 |B(k+1)−B(k)

B(k) | > ∆B

min( Tmin

Tmax
, 0.8) otherwise

where ∆L is a specified threshold such that the standard TCP
update algorithm is used while ∆ ≤ ∆L. A quadratic increase
function f̄α is suggested in [14], namely f̄α(∆) = 1+10(∆−
∆L) + 0.25(∆−∆L)2. Tmin and Tmax are measurements of
the minimum and maximum round-trip time experienced by a
flow. B(k + 1) is a measurement of the maximum achieved
throughput during the last congestion epoch.

D. BIC-TCP [20]

BIC-TCP employs a form of binary search algorithm to
update cwnd. Briefly, a variable w1 is maintained that holds a
value halfway between the values of cwnd just before and just
after the last loss event. The cwnd update rule seeks to rapidly
increase cwnd when it is beyond a specified distance Smax

from w1, and update cwnd more slowly when its value is close
to w1. Multiplicative backoff of cwnd is used on detecting
packet loss, with a suggested backoff factor β of 0.8. In more
detail,

Ack:

{
δ = (w1 − cwnd)/B

cwnd← cwnd + fα(δ,cwnd)
cwnd

Loss:


w1 =

{
1+β

2 × cwnd cwnd < w1

cwnd otherwise

w2 = cwnd

cwnd← β × cwnd

with

fα(δ, cwnd) =



B
σ (δ ≤ 1, cwnd < w1)

or (w1 ≤ cwnd < w1 + B)
δ 1 < δ ≤ Smax, cwnd < w1

w1
B−1 B ≤ cwnd− w1 < Smax(B − 1)
Smax otherwise

BIC-TCP also implements an algorithm whereby upon low
utilisation detection, it increases its window more aggressively.
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This is controlled with the Low Util and Util Check param-
eters. In order to maintain backwards compatibility, it uses
the standard TCP update parameters when cwnd is below
threshold Low Window.

E. FAST-TCP [9]

FAST-TCP is a delay based algorithm. In outline,

Each RTT: cwnd ← [cwnd +
Tmin

T̄
cwnd + fα(B)]/2

Loss: cwnd ← 0.5× cwnd

where Tmin and T̄ are the minimum and average observed
latencies of the flow respectively. The function fα(B) depends
upon the measured throughput B achieved by the flow: cur-
rently, fα(B) is set to 8, 20 and 200 for achieved throughputs
of less than 10Mbit/sec, less than 100Mbit/sec and greater
than 1Gbit/sec respectively. (These thresholds are specified
by the sysctl entries (m0a,m0u, m1l), (m1a,m1l,m1u) and
(m2a,m1l,m2u) respectively). FAST-TCP also includes rate
pacing. Note that rate-pacing is a functional change and is thus
viewed here as being part of the congestion control algorithm
(unlike network stack issues such as efficient SACK processing
implementation which fundamentally involve no functional
change, only a change in computational burden).

F. Experimental Setup

Dummynet
Router

TCP1
receiver

TCP2
receiver

TCP1
sender

TCP2
sender

GigE
switch

GigE
switch

Fig. 2. Experimental set-up.

All tests were conducted on an experimental testbed. Com-
modity high-end PCs were connected to gigabit switches to
form the branches of a dumbbell topology, see Figure 2. All
sender and receiver machines used in the tests have identical
hardware and software configurations as shown in Table I
(see Appendix) and are connected to the switches at 1Gb/sec.
The router, running the FreeBSD dummynet software, can be
configured with various bottleneck queue-sizes, capacities and
round trip propagation delays to emulate a wide range network
conditions.

Apart from the router, all machines run a modified version
of the Linux 2.6.6 kernel. Each of the congestion control
algorithms studied have independent patches that are publicly
available. However, these patches are often for different ver-
sions of Linux and typically also make changes to the network
stack that are not directly related to the congestion control
algorithm; for example, it is common for patches to alter
the SACK processing algorithm to improve its efficiency as
the standard implementation has known performance problems
in high-speed environments[13]. To provide consistency, and
control against the influence of differences in implementation

as opposed to differences in the congestion control algorithm
itself, we therefore built the congestion control algorithms into
a common kernel. This kernel is referred to as the altAIMD
kernel, see Appendix for further details3.

The kernel is instrumented with the Web100 extensions [16]
to allow measurement of TCP variables.

In order to minimise the effects of local hosts queues and
flow interactions, unless otherwise stated we only ran one
long-lived flow per PC with flows injected into the testbed
using iperf. Web traffic sessions are generated by dedicated
client and server PCs, with exponentially distributed intervals
between requests and Pareto distributed page sizes. This is
implemented using a client side script and custom CGI script
running on an Apache server. Following [21], we used a
mean time between requests of 1 second and a Pareto shape
parameter of 1.2. Each individual test was run at least ten
minutes each. In the case of tests involving Standard TCP,
we ran individual tests for up to an hour as the congestion
epoch duration becomes very long on large bandwidth-delay
products paths. In order to obtain a good representation of the
run-to-run variability in performance metrics, all individual
tests were repeated at least 5 times and the arithmetic mean
taken. An error on the measurement was taken as the standard
error from this mean.

As discussed previously, an essential feature of the proposed
approach is that we always carry out the full range of tests for
standard TCP so as to provide a baseline against which we can
evaluate the performance of new TCP proposals. By always
taking measurements for standard TCP, we have a common
baseline for making comparisons.

V. RESULTS

Owing to space restrictions, we cannot include the results
of all our tests here. We therefore present results for a subset
of network conditions that are representative of the full test
results obtained.

A. Fairness with same RTT

Figure 3 plots the ratio of measured throughputs for two
flows with the same propagation delay sharing a common
bottleneck link as the path propagation delay is varied. Tests
are of 10 minutes duration. Results are shown both for a
bottleneck link bandwidth of 10 Mb/s and 250Mb/s, roughly
corresponding to low and high-speed network conditions. The
results shown are with no web traffic, but similar behaviour is
observed when web traffic is present.

It can be seen that this basic test reveals some striking be-
haviour. Under these conditions, the standard TCP congestion
control algorithm consistently ensures that each flow achieves
the same (to within less than 5%) average throughput. How-
ever, the measurements shown in Figure 3 indicate that many
of the proposed protocols exhibit substantial unfairness under
the same conditions. While both FAST-TCP and Scalable-TCP

3We note that the implementation of BIC-TCP included in the standard
Linux 2.6.6 kernel distribution is known [15] to be incorrect (this has
subsequently been corrected). In our tests we use a corrected implementation
based upon the original Linux patch developed by the BIC-TCP authors.
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Fig. 3. Ratio of throughputs of two flows with the same RTT (also sharing same bottleneck link and operating same congestion control algorithm) as
path propagation delay is varied. Results are shown for 10Mbit/sec and 250Mbit/sec bottleneck bandwidths. The bottleneck queue size is 20% BDP, no web
traffic. Observe that while standard TCP and H-TCP are essentially fair (the competing flows achieve, to within 5%, the same average throughput) under
these conditions, Scalable-TCP and FAST-TCP are notably unfair. HS-TCP and BIC-TCP can also be seen to exhibit significant unfairness, albeit to a lesser
degree than Scalable-TCP and FAST-TCP.
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Fig. 4. Scalable-TCP cwnd time histories following startup of a second flow.
RTT of both flows is 42ms (top) and 162ms (bottom). Bottleneck bandwidth
is 250Mbit/sec, queue size 20% BDP, no web traffic.
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Fig. 6. HS-TCP cwnd time histories following startup of a second flow.
RTT is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth
250Mbit/sec, queue size 20% BDP, no web traffic.
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display very large variations in fairness, BIC-TCP and HS-
TCP also display significant levels of unfairness.

In view of the somewhat surprising nature of these results,
it is worthwhile investigating this behaviour in more detail.
We consider in turn each of the protocols exhibiting greater
levels of unfairness than standard TCP.
• Scalable-TCP. Figure 4 shows typical examples of mea-

sured cwnd time histories. It can seen that the cwnds
either do not converge to fairness or else converge
very slowly indeed (not reaching fairness within the
10 minute duration of these tests). Although sometimes
expressed as a modified additive increase algorithm, it is
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Fig. 8. BIC-TCP cwnd time histories following startup of a second flow. RTT
is 42ms (top), 162ms(middle) and 324ms (bottom). Bottleneck bandwidth is
250Mbit/sec, queue size 20% BDP, no web traffic.
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Fig. 9. H-TCP cwnd time histories following startup of a second flow. RTT
is 42ms (top), 162ms (middle) and 324ms (bottom). Bottleneck bandwidth is
250Mbit/sec, queue size 20% BDP, no web traffic.

easily shown that the Scalable-TCP algorithm is in fact
a multiplicative-increase multiplicative-decrease (MIMD)
algorithm and this appears to explain much of the ob-
served behaviour. It has been known since the late 1980s
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[5] that in drop-tail networks such algorithms may not
converge to fairness. Further, in the case of MIMD flows
with different round-trip times, theory predicts that the
flow with the shortest round-trip time can seize essentially
the entire link capacity [3] and this type of behaviour is
evident in our experimental results presented later. Note
that this behaviour is not confined to synchronised pat-
terns of packet drop and is also observed when significant
levels of web traffic are present (although [3] considers
synchronised drop-tail environments, the analysis can be
readily extended the unsynchronised drops with similar
conclusions).

• FAST-TCP. Figure 5 shows typical examples of measured
cwnd time histories when using the FAST-TCP algo-
rithm. The upper figure shows measurements taken on a
250Mb/s path with 42ms propagation delay. Rapid varia-
tions in cwnd are evident which are somewhat surprising
in view of the delay-based rather than loss-based nature
of the FAST-TCP algorithm. The lower figure shows the
cwnd’s measured when the propagation delay on the path
is increased to 162ms. The rapid variations in cwnd are
no longer present, but the flows now exhibit a number
of abrupt changes in cwnd including a sharp increase in
unfairness after 500s. It is perhaps worth emphasising that
these examples are representative of our measurements
across a wide range of network conditions and are not
selected as worst case behaviours.
Our purpose in this paper is not to explain the perfor-
mance of the FAST-TCP algorithm. We do, however,
comment that the behaviour in the low latency example
appears to be associated with use of a large value of fα.
Roughly speaking, each FAST flow attempts to maintain
fα/2 packets in the queue at the bottleneck link. Hence,
with n flows a queue size of at least nfα/2 is needed
to avoid flooding the queue and inducing many packet
losses. For link speeds above 100Mbs, fα/2 = 100 and
so with two flows we need a queue of at least 200 packets.
However, for a 250Mb/s link and 42ms delay, a 20% BDP
queue is only 175 packets.
The behaviour in the high-latency example in Figure
5 appears to be associated with the adaptive switching
of the fα parameter value. If flows happen to adapt
to different values of fα this can lead to substantial
unfairness as fα can take values in a range covering two
orders of magnitude. Moreover, this unfairness can be
sustained since the fα is updated based on throughput.
For example, choosing a low value of fα leading to a low
throughput share in turn leads to the continuing choice of
a low value for fα, while conversely once a flow chooses
a high value of fα such that receives a high throughput
share then this leads to it maintaining a high value of
fα. As a result, the network can remain indefinitely in an
unfair configuration.

• HS-TCP. Figure 6 shows examples of HS-TCP cwnd
time histories for flows with the same round-trip time
following startup of a second flow. It can be seen that the
flows do converge to fairness, but that the convergence
time can be long. This effect becomes more pronounced

as the path propagation delay is increased. These exper-
imental measurements are in good agreement with the
simulation results previously reported in [18]. Recall that
the AIMD increase parameters are functions of cwnd
in HS-TCP. The slow convergence appears to originate
in the asymmetry that exists in HS-TCP between the
AIMD parameters of newly started flows (with small
cwnd) and existing flows (with large cwnd). Existing
flows with large cwnd have more aggressive values of
increase and decrease parameters than do newly started
flows which have small cwnd. Hence, new flows are at
a disadvantage and sustained unfairness can occur. Note
that similar behaviour is also observed as we vary the
level of web traffic.
We also comment briefly upon the 250Mb/s, 42ms mea-
surement for HS-TCP shown in Figure 3. The cwnd time
histories corresponding to this measurement are shown
in Figure 6, and in more detail in Figure 7. It can
be seen that there appears to be long-term unfairness
between the two flows that persists after the flows have
converged to steady-state. Also shown in Figure 7 are the
measured values of the AIMD α and β parameters for
each flow. The long-term unfairness appears to be due to
the granularity of the lookup table used to implement the
HS-TCP cwnd update rules. The current implementation
uses a simple nearest neighbour type of table lookup to
find the α and β values for the current value of cwnd.
The granularity of this process could be readily reduced,
e.g. by including more table entries or by interpolating
between entries when performing a lookup, and our
measurements indicate that it would be of benefit to refine
the implementation in this manner.

• BIC-TCP. Figure 8 shows examples of the cwnd time
history of BIC-TCP following startup of a second flow.
It can seen that as the path propagation delay increases
the cwnd’s converge increasingly slowly, not reaching
fairness within the 10 minute duration of these tests
when the path propagation delay is large. This behaviour
manifests itself in Figure 3 as a fall in the measured
fairness as propagation delay increases.

• HTCP. Figure 9 shows cwnd time histories of H-TCP
following startup of a second flow. The equal sharing
achieved between the two competing flows is evident.

B. Fairness with different RTTs

Figure 10 shows the ratio of measured throughputs when the
propagation delay of the first flow is held constant at 162ms
and the propagation delay of the second flow is varied. Again,
Results are shown both for a bottleneck link bandwidth of
10 Mb/s and 250Mb/s. Results are shown when the queue is
sized at 20% BDP but similar results are also obtained when
the queue is 100% BDP. The results shown are also for no
web traffic as we find that the level of web traffic has little
impact on the measured fairness, see Section V-G for further
details. As a check on our experimental setup, also plotted on
Figure 10 are the throughputs for standard TCP predicted by
theory[19].
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Fig. 10. Ratio of throughputs of two competing flows as the propagation
delay of the second flow is varied. Results are shown for 10Mbit/sec (top)
and 250Mbit/sec (bottom) bottleneck bandwidths. Flow 1 has RTT of 162ms,
the RTT of Flow 2 is marked on the x-axis of the plots. Queue size is 20%
BDP, no web traffic.

It can be seen from Figure 10 that Scalable TCP, HS-
TCP, BIC-TCP and FAST-TCP all exhibit significantly greater
RTT unfairness than standard TCP. The degree of unfairness
can be nearly an order of magnitude greater than that with
standard TCP and is such that long round-trip time flows may
be essentially starved of bandwidth. To give a feel for this, a
ratio of 0.003 in flow throughputs (the lowest ratio observed
with FAST-TCP, HS-TCP in Figure 10; note that Scalable-TCP
exhibits still greater unfairness) corresponds to a throughput
of approximately 249.5Mbps for the short RTT flow and a
throughput of only 0.5Mbps for the long RTT flow. This
compares with throughputs of 245Mbps/5Mbps for a ratio of
0.02 (the lowest ratio observed with standard TCP) – observe
that the throughput of the long RTT flow is now an order of
magnitude greater – and 200Mbps/50Mbps for a ratio of 0.2
(the lowest ratio observed with H-TCP).

With regard to Scalable TCP, as noted previously this adopts
an MIMD strategy. In the case of MIMD flows with different
round-trip times, theory predicts that the flow with the shortest
round-trip time can seize essentially the entire link capacity
[3] and this is indeed what we observe.

The increased level of RTT unfairness evident with HS-TCP
is associated with the AIMD increase and decrease parameters
being functions of flow cwnd. This means that unfairness tends
to be amplified. For example, suppose the network is perturbed
so that the cwnd of one flow is increased while that of another
flow is decreased. The flow with larger cwnd adjusts its AIMD
parameters to become more aggressive, at the same time the
flow with the smaller cwnd adjusts its AIMD parameters to be
less aggressive. There is thus a reinforcing action that tends to
increase the level of unfairness. A similar effect also appears
to occur with BIC-TCP.

The lower level of RTT unfairness in H-TCP compared to
Standard TCP is associated with the use of RTT scaling in
H-TCP. This yields RTT unfairness whereby the measured
throughput ratio is proportional to the ratio of flow RTTs.
With standard TCP, the measured throughput ratio is of course
proportional to the square of the flow RTT ratio.
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Fig. 11. Ratio of throughputs of competing New-TCP and standard TCP
flows as path propagation delay is varied. Results are shown for 10Mbit/sec
(top) and 250Mbit/sec (bottom) bottleneck bandwidths. Both flows have the
same RTT. Queue size is 20% BDP, no web traffic.

C. Backward Compatibility

Figure 11 plots the ratio of measured throughputs of two
flows with the same propagation delay and a shared bottleneck
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link. The first flow operates the standard TCP algorithm while
the second flow operates a new TCP variant. Results are
shown both for bottleneck link bandwidths of 10 Mb/s and
250Mb/s. It can be seen that Scalable-TCP and FAST-TCP
exhibit the greatest degree of unfairness in both low and high-
speed conditions.

The unfairness between Scalable TCP and Standard TCP
in low speed conditions is perhaps surprising in view of the
mode switch whereby Scalable TCP behaves as Standard TCP
at low cwnd sizes. The observed unfairness appears to occur
due to the following effect. When the flow cwnd is below the
Low Window threshold it indeed behaves as Standard TCP
and in the low-speed tests fair operation has the flow cwnds
below this threshold. However, perturbations in cwnd (e.g. due
to unsynchronised packet drops) can lead to it crossing the
Low Window threshold. When this occurs, the flow switches
to the Scalable algorithm. The Scalable algorithm is more
aggressive than Standard TCP and so once it is activated this
can lead to long-term unfairness whereby the flow thereafter
maintains its cwnd above Low Window. Note that we did
not observe such behaviour with HS-TCP, which employs a
similar mode switch. This appears to be due to the fact that
the transition to high-speed operation is smoother in the sense
that a relatively large increase in cwnd above Low Window
is required before the HS-TCP becomes significantly more
aggressive than Standard TCP.

D. Efficiency

Figure 12 shows measured aggregate throughput of two TCP
flows with the same propagation delay as a function of queue
size on a 100Mb/s link. As a validation check, also plotted
on Figure 12 is the efficiency for standard TCP predicted
by NS simulations. It can be seen that the experimental and
simulation throughputs are in good agreement.

It can be seen from Figure 12 that for buffer sizes above
10% of the bandwidth-delay product, the new protocols uni-
formly achieve better throughput than standard TCP. Observe,
however, that in all cases the throughput falls rapidly when the
buffer size becomes less than about 3% of the bandwidth-delay
product (or less than about 8% BDP in the case of FAST-TCP).
It can be seen from the packet loss measurements in Figure
12 that the drop in link utilisation corresponds to a substantial
(around two orders of magnitude) rise in packet loss rate.

The drop in link utilisation appears to be associated with an
increased incidence of packet bursts flooding the buffer when it
becomes very small. In this example a 2% BDP buffer is only
13 packets while a 1% BDP buffer is only 6 packets, compared
to a BDP of 683 packets. Delayed acking leads to many back-
to-back pairs of data packets being sent. Growth of the flow
cwnd’s leads to injection of new packets following receipt
of an ACK, thereby also generating regular packet triples. In
fact we have observed frequent transmission of 6-10 packets
per ACK, presumably due to end host scheduling granularity
– the 1ms clock tick used corresponds to approximately eight
1500 byte packets at 100Mb/s. Since the packet streams of two
flows are aggregated at the router, we therefore have that bursts
of 1-2% BDP at the router are common. It is interesting to
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Fig. 12. Aggregate throughput (top) and packet loss (bottom) of two
competing TCP flows with 100Mbit/sec bottleneck bandwidth. Both flows
have end-to-end round-trip propagation delays of 82ms. BDP is 683 packets.

note that, despite the more aggressive nature of Scalable TCP,
HS-TCP, BIC-TCP and H-TCP, the corresponding threshold in
queue size below which throughput rapidly falls is similar to
that for Standard TCP. This suggests that this short time-scale
burst structure of the packet stream is largely unaffected by
the changes introduced in these congestion control algorithms.

In the case of FAST-TCP, rate-pacing is used but the
accuracy of the pacing is limited by end host scheduling
granularity. At 100Mb/s it takes 0.12ms to transmit a 1500
byte packet and 0.24ms to transmit a packet pair, whereas
the scheduling granularity is on the order of 1ms. Pacing
therefore has only a limited impact in the context of the buffer
sizes considered here. In addition, as noted previously two
FAST flows will attempt to maintain a standing queue of fα

packets, with fα = 8 packets at 10Mb/s and 20 packets at
100Mb/s. This standing queue reduces the space within the
router buffer to accommodate packet bursts. Hence, a 5%
BDP buffer of 34 packets may be reduced to an effective
buffer of only 14 packets i.e. a similar effective buffer size to
that at which the throughput of the other congestion control
algorithms collapses.

E. Response Function

Measurements of the response functions are shown in Figure
13. Also marked are the response functions for standard TCP,
Scalable-TCP and High-Speed TCP predicted by theory [8]. It
can be seen that the measured response functions of Standard
TCP, Scalable TCP and HS-TCP are in fairly good agreement
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with theory, although some discrepancy is evident around the
mode switch transition from standard to high-speed operation.
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Fig. 13. Measured response functions, 250Mb/s bottleneck, 162ms RTT.

F. Convergence Time

Figure 14 plots the measured convergence time following
startup of a second flow. The values plotted are the average of
multiple tests and a range of random start times for the second
flow. The convergence time is plotted versus path propagation
delay (both flows have the same propagation delay in this
experiment) and results are presented for link rates of 10Mb/s
and 250Mb/s.

It can be seen that, in line with the previous discussion, that
Scalable-TCP, HS-TCP and BIC-TCP all exhibit extremely
slow convergence times (or, indeed, non-convergence). We
comment briefly on H-TCP and FAST-TCP.
• H-TCP. H-TCP exhibits similar convergence times to

standard TCP under low-speed conditions. In higher-
speed conditions the 80% convergence time levels off at
around 30s. This is illustrated, for example, in Figure 9.

• FAST-TCP. FAST-TCP has the smallest measured conver-
gence time of all the algorithms studied. These results
need to be interpreted with some care however. For
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Fig. 14. Mean 80% convergence time following startup of a second flow.
Results are shown for 10Mbit/sec (top) and 250Mbit/sec (bottom) bottleneck
bandwidths. Both flows have same RTT. Queue size is 20% BDP. Missing
points along the ordinate axis indicate that the flows did not converge to
within the 80% fairness ratio over the 10 minute duration of the test – this is
especially evident with Scalable-TCP and standard TCP at 250Mb/sec.

example, it can be seen from Figure 5 that while FAST
may converge quickly initially, flows may later diverge
again. It is important to emphasise that only the initial
convergence time is captured by our convergence time
metric.

G. Impact of Web Traffic

We observed that the level of web traffic present made little
difference to our measurements of fairness and responsiveness.
For example, Figure 15 plots the RTT unfairness between two
long-lived flows as background web traffic is varied from 0
to 50 sessions. Note that 50 web sessions generate significant
levels of traffic: mean throughput is typically around 1.5%
link bandwidth with bursts (on the order of 1s duration) in
throughput of around 10% link bandwidth. It can be seen that
both the trend and the actual unfairness values are nevertheless
insensitive to the level of web traffic.

On the face of it this result is somewhat surprising. It has,
for example, been well known for many years that determin-
istic phase effects can have a strong impact on fairness in
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networks with small numbers of long-lived flows and it is also
been observed, e.g. [19], that even small amounts of bidirec-
tional web traffic can randomise packet drops sufficiently to
mitigate phase effects. We note, however, that these results
are based on simulation data. Two differences between our
experimental tests and these simulation studies are (i) delayed
acking is used in our experimental tests and (ii) on high-speed
links end host scheduling granularity can have a significant
impact on the burst structure of the packet stream arriving at
a router. Delayed acking introduces additional variable delays.
Delayed acking also directly changes the burst structure of
TCP packet streams as each ACK arriving at the TCP sender
generates a back to back packet pair rather than a single packet.
This is compounded by end host scheduling granularity. In our
tests, the operating system scheduling granularity (determined
via the HZ kernel parameter) was left at its default setting of
1ms. At 250Mb/s, 1ms is the transmission time of 21 1500
byte packets and so the scheduling granularity can potentially
have a significant impact on packet stream burstiness. Hence,
taken together it seems plausible that these factors may well
be sufficient to disrupt the delicate timing patterns that underly
phase effects even when no web traffic is present. This is of
importance because once phase effects are mitigated previous
simulation studies [19] indicate that the impact of additional
web traffic on the fairness of competing long-lived flows is
relatively minor and this would be consistent with our present
experimental measurements.

VI. RELATED WORK

Performance measurements are included in many papers
proposing modifications to the TCP congestion control algo-
rithm and we briefly mention here the main studies relevant to
the present paper. In [12], Kelly presents an experimental com-
parison of the aggregate throughput performance of Scalable-
TCP and standard TCP. In [11], Low and co-authors present
throughput and packet loss measurements from a lab-scale test
network for FAST-TCP, HS-TCP, Scalable-TCP, BIC-TCP and
TCP-Reno. In [10], aggregate throughput measurements are
presented for FAST-TCP and TCP Reno. In all of these studies
measurements focus on aggregate throughput i.e. link utili-
sation. Measurements are also essentially confined to single
case studies. Hence, efficiency as a function of queue size is
not considered, nor fairness, friendliness, responsiveness and
convergence times.

In [9], throughput and cwnd time histories of FAST-TCP,
HS-TCP, Scalable-TCP and TCP Reno are presented for a lab-
scale experimental testbed. Aggregate throughput, throughput
fairness (measured via Jain’s index) and a number of other
measures are presented. However, results are confined solely
to an 800Mb/s bottleneck link with 2000 packet buffer. No
attempt is made to control for changes to the Linux network
stack implementation that are unrelated to the congestion
control algorithm. The impact of link rate, RTT, queue size
and level of web traffic on fairness and responsiveness are
not considered, nor the impact of queue size on efficiency.
In [20], NS simulation results are presented comparing the
performance of HS-TCP, Scalable-TCP, BIC-TCP, standard
TCP.

We note that the foregoing papers all propose changes to
the TCP congestion control algorithm and present performance
measurements in support of these changes. The evaluation of
competing proposals per se has received far less attention.
Notably, [4], [6] present evaluation studies specifically targeted
at measuring the performance of TCP proposals. Experimen-
tal measurements are presented for Scalable-TCP, HS-TCP,
FAST-TCP, H-TCP, BIC-TCP, HSTCP-LP and P-TCP (i.e. 16
parallel standard TCP flows) over network paths within the U.S
and between the U.S and Europe. Measurements presented
include aggregate throughput and throughput fairness (via
Jain’s index). RTT unfairness, convergence time and impact of
queue provisioning are not considered. No attempt is made to
control for changes to the Linux network stack implementation
unrelated to the congestion control algorithm.

VII. SUMMARY AND CONCLUSIONS

In this paper we present experimental results evaluating the
performance of the Scalable-TCP, HS-TCP, BIC-TCP, FAST
TCP and H-TCP proposals in a series of benchmark tests.

We find that many recent proposals perform surprisingly
poorly in even the most simple test, namely achieving fairness
between two competing flows in a dumbbell topology with the
same round-trip times and shared bottleneck link. Specifically,
both Scalable-TCP and FAST TCP exhibit very substantial
unfairness in this test.

We also find that, with the notable exception of H-TCP,
all of the proposals studied induce significantly greater RTT
unfairness between competing flows with different round-trip
times. The unfairness can be an order of magnitude greater
than that with standard TCP and is such that flows with longer
round-trip times can be completely starved of bandwidth.

While the TCP proposals studied are all successful at
improving the link utilisation in a relatively static environment
with long-lived flows, in our tests many of the proposals
exhibit poor responsiveness to changing network conditions.
We observe that Scalable-TCP, HS-TCP and BIC-TCP can
all suffer from extremely slow (> 100s) convergence times
following the startup of a new flow. We also observe that while
FAST-TCP flows typically converge quickly initially, flows
may later diverge again to create significant and sustained
unfairness.

With regard to link utilisation, for moderate to large buffer
sizes we find that all of the proposed high-speed algorithms
yield higher throughput than standard TCP on a high-speed
path. With very small buffers, we observe that micro-scale
packet bursts lead to a rapid fall in throughput efficiency. The
threshold buffer size below which this occurs is approximately
the same for all congestion control algorithms studied, with
the exception of FAST-TCP where the threshold is somewhat
higher owing to the standing queue created by the delay-based
congestion control action used in FAST-TCP.

We argue that our results demonstrate that the consistent ap-
plication of standardised tests can yield results of considerable
value. Not only can this be used to screen new proposals prior
to full-scale experimental testing, with its associated costs, but
can also provide a useful step towards establishing a sound
basis for the development of new protocols.



13

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on BicTCP

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on FAST

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on HSTCP

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on HTCP

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on ScalableTCP

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

 0.001

 0.01

 0.1

 1

 10  100

F
ai

rn
es

s 
R

at
io

RTT (msec)

Web Traffic Effect on StandardTCP

0 Sessions
10 Sessions
20 Sessions
30 Sessions
40 Sessions
50 Sessions

Fig. 15. Impact of bidirectional web traffic on RTT unfairness of long-lived flows. Plots show ratio of throughputs of two competing flong-lived lows as the
propagation delay of the second flow and the number of background web sessions is varied. Results are shown for 250Mbit/sec bottleneck bandwidth. Flow
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VIII. APPENDIX

Description
CPU Intel Xeon CPU 2.80GHz

Memory 256 Mbytes
Motherboard Dell PowerEdge 1600SC

Kernel Linux 2.6.6 altAIMD-0.6
txqueuelen 1,000

max backlog 300
NIC Intel 82540EM

NIC Driver e1000 5.2.39-k2
TX & RX Descriptors 4096

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION.

The base Linux kernel includes rate-halving and delayed
acking. In addition, the altAIMD kernel incorporates:

(i) New-TCP Stacks. Each of the congestion control algo-
rithms studied have independent patches that are publicly
available. To provide consistency, and control against the
influence of differences in network stack implementation
as opposed to differences in the congestion control algo-
rithm itself, we incorporated the implemented congestion
control algorithms into a common network stack.

(ii) Appropriate Byte Sizing (RFC3465)[1]. The counting of
ack’s by the number of bytes acknowledged rather than
the number of ack’s received to counter the problems of
cwnd growth under delayed ack’s.

TCP Protocol Parameters
HS-TCP High P=10−7, Low Window=31, High Window=83, 000

Scalable-TCP α = 0.01, β = 0.875, Low Window=16

H-TCP ∆L = 1sec, ∆B = 0.2
BIC-TCP Smax = 32, B = 4, σ = 20, β = 0.8

Low Util=15%, Util Check=2, Low Window=14
FAST-TCP m0a=8, m1a=20, m2a=200

m0u=1500, m1l=1250, m1u=15000 and m2l=12500

TABLE II
DEFAULT NEW-TCP PARAMETERS USED IN ALL TESTS.

(iii) SACK Processing Improvements [13]. The implementa-
tion of SACK processing in the Linux kernels requires
a processing time which is O(cwnd). This has serious
performance implications on large bandwidth-delay prod-
uct paths. We implemented a more robust algorithm with
complexity of O(lost packets).

(iv) Throttle Disabled [13]. A build-up of ack packets at the
sender can cause an overflow in the Linux network ring
buffers which invokes a throttle action that causes all
packets to be dropped. We modified the ring buffers to
operate a pure drop-tail discipline.

(v) Web100 [16]. Kernel was instrumented using Web100.
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