
1

Experimental Evaluation of Delay/Loss-based TCP
Congestion Control Algorithms

Douglas J. Leith∗, Lachlan L. H. Andrew†, Tom Quetchenbach†, Robert N. Shorten∗, Kfir Lavi∗
∗Hamilton Institute, Ireland †Caltech, Pasadena, CA, USA

Abstract—We present initial experimental results for TCP
Illinois and Compound TCP. These tests are for relatively simple
scenarios yet they are sufficient to highlight several interesting
issues. We observe that both TCP Illinois and Compound TCP
can exhibit poor scaling behaviour as path BDP increases. Asa
result, link utilisation can be low and network responsiveness can
become sluggish as BDP increases. We also document a number
of important implementation issues observed during our tests.

I. I NTRODUCTION

TCP Reno is well known to scale poorly to large bitrate-
delay product (BDP) networks, even with extensions such as
newReno, SACK and ECN. This is because it only increases its
window by one packet per round trip time (RTT) and decreases
it by half when a loss is detected. Most proposed solutions [1],
[2] alter the rate of increase and/or decrease based purely on
loss information. Others [3] adjust the window primarily on
the estimated queueing delay. Several promising proposals[4],
[5], [6], [7] seek to combine both. This paper empirically
evaluates the performance of two such algorithms: Compound
TCP [4] and TCP Illinois [5]. To our knowledge this is the
first reported experimental evaluation both of TCP Illinois
and of the latest version of Compound TCP (in Vista SP1).
We focus on simple scenarios which evaluate basic properties
such as scaling behaviour, fairness and friendliness as well
as situations which are known to cause difficulties for delay-
based algorithms. Use of relatively simple scenarios allows the
mechanisms to be understood, as a precursor to defining more
complex “typical usage” tests to evaluate their performance in
the wider Internet.

II. PRINCIPLES OF OPERATION

TCP Illinois [5] uses an AIMD algorithm but adjusts
the increase and decrease parameters based on estimates of
queueing delay and buffer size. When no queueing delay is
detected, the rate of additive increase (AI) is fixed at 10
packets per RTT; as the estimated queueing delay rises the
AI rate is gradually reduced to 0.3 packets per RTT when
the estimated queueing delay is maximal (network buffers are
estimated to be full). On loss, the congestion windowcwnd
is decreased ascwnd← (1 − δ)cwnd. If the RTT is close to
the maximum observed value then the loss is deemed a buffer
overflow andδ ≈ 1/2, while δ decreases to 1/8 as the RTT
gets smaller (as loss is then taken as packet corruption).

Compound TCP [4] maintains a Reno-like AIMD window
wnd, and a separate delay-based window,dwnd. The conges-
tion window used is the sum of the two. The AIMD window

wnd behaves as per Reno, i.e., increases by one packet per
RTT and backs off by1/2 on loss. The delay-based window
dwnd increases rapidly when the estimated queue occupancy
is small, using a rule based on HS-TCP [8]. When the
estimated number of packets that a flow has queued exceeds
a target valueγ, dwnd is reduced by the estimated number of
packets in the queue. On loss,dwnd also backs off by1/2.
The versions which we use employ TUBE [4] to adaptγ to
the available buffer size.

Note that we refer to the applied congestion window (sum
of wnd anddwnd) as cwnd, in line with standard notation
although this differs from the terminology in [4].

III. E XPERIMENTAL SETUP

These experiments were performed on Caltech’s WAN-
in-Lab [9] and on the Hamilton Institute testbed based on
dummynet, as specified in the text.

WAN-in-Lab servers had 2.4 GHz Opteron 250 CPUs with
1 MByte cache, and Neterion s2io 10 Gbit/s Ethernet cards
using the 2.0.25.1 driver, a txqueue length of 1000 and
netdev max backlog of 300. TCP segmentation offloading
(TSO), interrupt moderation and SACK were enabled. The
Hamilton Institute testbed used PE860 servers with Intel Xeon
3GHz 2MB cache CPUs and Intel Pro/1000 GiGE cards.

Tests with TCP Illinois used a Linux 2.6.23.1 kernel with
a bug in the Illinois code fixed. Compound TCP tests were
performed using both the Windows Vista Service Pack 1 (SP1,
build 6001) version of CTCP and a re-implementation for
Linux [10], based on the Internet Draft [11]. By working with
both implementations our aim is to help verify whether the
draft provides a complete description of the official implemen-
tation. With Vista,cwnd time histories are reconstructed from
tcpdump data while with Linux tcpprobe instrumentation is
used.

Some tests, including all Vista tests, used dummynet (with
0.1 ms scheduler granularity) instead of the fibre delays of
WAN-in-Lab. WAN-in-Lab seeks to avoid artefacts, such as
packet bursts associated with scheduler granularity, which may
be particularly important when studying algorithms which rely
on delay. Tests which were performed on both WAN-in-Lab
and dummynet can be used to quantify the impact of such
artefacts, or lack thereof.

All throughput values are one second averages.

IV. SCALING BEHAVIOUR WITH BDP

The basic motivation behind the proposed changes to the
TCP congestion control algorithm considered here is that

2

the performance of the current Reno congestion avoidance
algorithm scales poorly with path BDP. The Reno congestion
avoidance algorithm increasescwnd by one packet per RTT
until network buffers fill and packet loss occurs, at which
point cwnd is reduced by1/2. The time between congestion-
related loss events is referred to here as the congestion epoch
duration. With Reno, the congestion epoch duration of a
single flow increases linearly in proportion to the path BDP
and congestion epoch durations of 30 minutes or longer are
common on modern high-speed links.

It is known that this can lead to low link utilisation – since
a flow increasescwnd by only one packet per RTT following
loss, losses induced by slow-starting web traffic etc can prevent
the cwnd of a flow from growing sufficiently large to fully
utilise a link. As a result link utilisations of only 10-20% are
not uncommon with Reno flows on high BDP paths in some
situations.

In addition to low link utilisation, long congestion epoch
durations are known to lead to sluggish responsiveness to
changes in network conditions such as the startup of new
flows. This arises because the convergence time is directly
related to the congestion epoch duration, with a network of
long-lived Reno flows taking roughly four congestion epochs
to converge to within 95% of steady state [12]. We note
that slow convergence can translate into prolonged unfairness
between competing flows, either when a new flow starts or
when some flows observe a loss event that others miss.

In the rest of this section we investigate the corresponding
link utilisation and convergence rate behaviour of the TCP
Illinois and Compound TCP congestion control algorithms.

A. Link utilisation

1) Response function: A basic requirement is that a single
flow should be able to achieve high link utilisation without
requiring unrealistically low packet loss rates. We can capture
this requirement via the response function, i.e., a plot of
throughput (or cwnd) vs loss rate for a single flow and
randomly generated losses. Recent proposals for changes to
TCP all modify the response function to be more aggressive
than Reno.

TCP Illinois increasescwnd by 10 packets per RTT when
the queueing delay is estimated to be low, and by an amount
decreasing to 0.3 packets as the queueing delay rises. Thus
the response function of TCP Illinois lies between that of a
Reno flow with increase rate 0.3 packets per RTT and one
with increase rate of 10 packets per RTT.

Note that the increase rate is fixed at a maximum of 10
packets per RTT. Since Ethernet increases its bitrate by a factor
of 10 each generation, it follows that TCP Illinois essentially
buys us one extra generation; beyond that, similar scaling
issues to Reno will inevitably manifest themselves.

Compound TCP uses an additive increase rate based on that
of HS-TCP when the queueing delay is small. The increase
rate therefore increases with congestion window and is not
capped at a small fixed value.

To illustrate this difference, Fig. 1 shows the response of
TCP flow on a 400 Mbps link to a 5 s burst of UDP traffic at

 0

 100

 200

 300

 400

-50 0 50 100 150 200

ra
te

 (
M

bi
t/s

)

time (s)

compound (linux)
compound (vista)

illinois
reno

Fig. 1. Response to 5 s interruption by UDP traffic at 100 s. 400Mbps link,
200 ms RTT, 1×BDP buffer.

time 0, which forces thecwnd to almost 0. Since the cwnd
is reduced due to loss, recovery is via congestion avoidance
rather than slow start. TCP Illinois takes approximately 150 s
to fully utilise the link following the disturbance, while the
Linux implementation of Compound TCP takes about 60 s. In
order to reduce its window fully the Vista implementation of
Compound TCP, 20 s cross traffic was needed and the recovery
started about 30 s after the onset of cross traffic. Once recovery
started, the behaviour was similar to that of the Linux re-
implementation.

2) Impact on response function of reverse path queueing:
The aggressiveness, and therefore the response functions,of
TCP Illinois and Compound TCP are adjusted based on
measured queueing delay. Errors in estimating queueing delay
can therefore be expected to impact link utilisation. To explore
this we briefly investigate the link utilisation of TCP Illinois
and Compound TCP in the presence of reverse path traffic.

Fig. 2(a) shows measurements for a 250 Mbps link with
a single forward path TCP Illinois flow. Reverse path traffic
starting at 25 s is on-off (5 s on, 1 s off) with a window
capped at 0.5 MByte, giving a maximum of approximately
40 Mbps, and an observed throughput on the reverse path of
20 Mbps. No losses were measured on the reverse path during
the experiment. TCP Illinois takes around 60 s to fill the link
following a loss at time 25 s. Queueing of acks due to the
reverse path traffic causes TCP Illinois to incorrectly infer
queue buildup and thus to adjust its rate of increase to around
3 packets per RTT, rather than 10 packets per RTT. However,
since TCP Illinois does not backoffcwnd except on loss, it
recovers faster than Reno would.

The behaviour with Compound TCP is shown in Fig-
ure 2(b). It can be seen that the impact of reverse path queueing
is substantial. Following a loss at time 25 s, the Compound
TCP flow takes around 200 s to fill the link, i.e., the response
function and link utilisation performance is similar to that of
Reno. The reverse queueing delay causes the Compound flow
to consistently backoffdwnd early. As a result, the reverse
path traffic prevents the Compound TCPdwnd from growing
and so Compound TCP reverts to Reno-like behaviour. Thus
link utilisation becomes poor as path BDP increases. Note
that the volume of reverse path traffic is less than 10% of link
capacity. However, the frequent slow-starting is sufficient to
create burstiness and queueing on the reverse path.

3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100
 0

 50

 100

 150

 200

 250

c
w

n
d

 (
p

a
c
k
e

ts
)

th
ro

u
g

h
p

u
t
(M

b
p

s
)

time (s)

cwnd
throughput x

+

(a) TCP Illinois

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 50 100 150 200
 0

 50

 100

 150

 200

 250

c
w

n
d

 (
p

a
c
k
e

ts
)

th
ro

u
g

h
p

u
t
(M

b
p

s
)

time (s)

cwnd
throughput

+

x

(b) Compound TCP

Fig. 2. Behaviour in presence of reverse path traffic. Singleforward path flow,
on-off reverse path flow with window capped at 0.5 MByte. Link250 Mbps,
100 ms RTT, 1×BDP buffer.

B. Convergence time

Qualitatively, the convergence time of an algorithm is the
time it takes for a new flow, after entering congestion avoid-
ance mode, to obtain its average fair share of the capacity. For
a formal mathematical discussion, see [12].

Note that, while hybrid loss/delay algorithms adjust the
congestion window increase and decrease parameters based
on delay, fundamentally these algorithms still operate in terms
of congestion epochs. In particular, from [5] we expect the
convergence time of TCP Illinois to be proportional to the
congestion epoch duration, and similarly with Compound TCP.

Fig. 3 plots measured congestion window time histories for
a single TCP Illinois flow on a 10 Mbps and a 250 Mbps link.
The congestion epoch duration is already rather long (around
600 s) at 250 Mbps. TCP Illinois reverts to a less aggressive
AIMD increase rate on detecting queueing delay, to as little
as 0.3 packets per RTT. Because the additive increase rate can
be a third that of Reno, it takes up to three times as long to
fill a buffer. This can be seen in Fig. 3 where TCP Illinois
takes 600 seconds to increasecwnd by 2000 packets on a
100 ms RTT link, compared with about 200 s for Reno which
increases by one packet per RTT. Since the convergence time
is proportional to congestion epoch duration, convergencecan
be slow following a change in network conditions. This is
illustrated, for example, in Fig. 4.

The congestion epoch duration with Compound TCP is
determined entirely by the loss-based component of the al-
gorithm, provided that the buffer is large enough thatdwnd
decreases to zero before loss. That is, the congestion epoch
duration is generally identical to that of Reno and so scales
linearly with BDP. Figure 5 plots the window size for the Vista
implementation of Compound TCP when a new flow starts.
This data, and results from other experiments, indicates that
the convergence time scales roughly with the congestion epoch
duration and is similar to that of Reno. That is, the convergence
time scales linearly with BDP and thus the network can exhibit

 0
 50

 100
 150
 200
 250
 300
 350

 0 100 200 300 400 500 600
 0

 2

 4

 6

 8

 10

 12

cw
nd

 (
pa

ck
et

s)

th
ro

ug
hp

ut
 (

M
bp

s)

time (s)

flow 0 cwnd
flow 0 tput

(a) 10 Mbps, 100 ms, 1×BDP

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 200 400 600 800 1000 1200
 0

 50

 100

 150

 200

 250

cw
nd

 (
pa

ck
et

s)

th
ro

ug
hp

ut
 (

M
bp

s)

time (s)

flow 0 cwnd
flow 0 tput

(b) 250 Mbps, 100 ms, 1×BDP

Fig. 3. TCP Illinois congestion epoch duration vs BDP (Dummynet). Cases
with smaller buffers are considered in Section VI.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000
 0

 50

 100

 150

 200

 250

c
w

n
d

 (
p

a
c
k
e

ts
)

th
ro

u
g

h
p

u
t
(M

b
p

s
)

time (s)

flow 0 cwnd
flow 0 throughput

flow 1 cwnd

flow 1 throughput x

+

Fig. 4. TCP Illinois convergence time. Best case example where new
flow does not backoff at first congestion event, yet still takes around 300 s
to converge. On missing drops, sustained excursions from fairness occur.
250 Mbps link, 100 ms RTT, 1×BDP buffer. (Dummynet)

poor responsiveness at larger BDPs.
Whendwnd is non-zero for a significant fraction of each

congestion epoch, its dynamics also affect the convergence
behaviour. In Figure 6, two flows share a link with a relatively
small buffer. Both flows exit slow start while the loss-based
wnd is still small, since the buffer cannot accommodate the
bursts resulting from the doubling of the window each RTT
during slow start. In Figure 6 it takes around 500 s for the
loss-basedwnd to fill the 2500 packet pipe. During this
time, convergence is dominated bydwnd. Figure 6 (and other
experimental results) show that the convergence time of the
dwnd dynamics can be quite sluggish – the flows have not
converged to fairness after 300 s.

V. RTT FAIRNESS

Loss-based high-speed algorithms often introduce RTT-
unfairness, unless this is explicitly counteracted [1]. Incon-
trast, fairness between Vegas flows is generally unaffected
by differences in RTT, which has led to claims that hybrid
approaches may be more RTT friendly than Reno [4].

Figure 7 shows the ratio of the throughputs achieved by a
flow with 120 ms (base)RTT and a flow with shorter RTT,
sharing a 100 Mbit/s link with 10% cross traffic, half of
which had RTT 6 ms and half had RTT 120 ms. The cross
traffic consisted of a Poisson arrival process of flows with
Pareto distributed file sizes, with mean 25 000 bytes and shape
parameterα = 1.2, and was included to avoid phase effects.

Results are shown when the buffers are sized at 120 ms and
16 ms (BDP and 0.13BDP for the 120 ms flow).

When the buffer is 120 ms, Compound TCP and TCP
Illinois exhibit similar RTT unfairness to Reno. This is to be
expected, since their dynamics approach that of Reno when

4

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

c
w

n
d

 (
p

a
c
k
e

ts
)

time (s)

flow 0 cwnd

flow 1 cwnd

Fig. 5. Compound TCP convergence time following startup of asecond flow
at time 100 s. 200 Mbps link, 100 ms RTT, 1×BDP buffer. (Vista, dummynet)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 50 100 150 200 250 300 350 400

c
w

n
d

 (
p

a
c
k
e

ts
)

time (s)

flow 0 cwnd

flow 1 cwnd

Fig. 6. Convergence whendwnd non-zero. Compound TCP, 200 Mbps link,
200 ms RTT, 0.1×BDP buffer (Vista, Dummynet).

the buffer is large enough thatdwnd decreases to zero when
the buffer fills.

When the buffer is smaller, the results are significantly
different. It appears that Compound TCP has slightly better
RTT-fairness than Reno, while Illinois fares slightly worse,
although no confidence intervals have been calculated.

These results have been taken at the comparitavely low rate
of 100 Mbit/s, to allow experiments of only half an hour. (As
discussed above, the congestion epoch duration increases with
the bandwidth-delay product, requiring longer experiments for
the same accuracy.) Evaluating performance at higher bit rates
is left as future work.

VI. TCP FRIENDLINESS

New congestion control algorithms are required to coexist
with legacy TCP flows. In this section we briefly investigate
the “TCP friendliness” of TCP Illinois and Compound TCP.
Due to lack of space presentation of more comprehensive
measurements is left as future work.

Figure 8 illustrates the behaviour of a TCP Illinois flow
and a Reno flow sharing a 100 Mbps link. Figure 9 shows
the corresponding results for Compound TCP. In these tests
both TCP Illinois and Compound TCP are approximately fair
with Reno. A notable exception is Figure 8(a) where it can be
seen that TCP Illinois is significantly less friendly to the legacy
TCP flow than is Compound TCP. This appears to be due to an
implementation issue with TCP Illinois whereby the maximum
RTT is over-estimated. Since the backoff factor of TCP Illinois
is adjusted based on the measured delay relative to maximum
RTT, this leads to a reduced backoff and unfairness.

VII. C ROSS TRAFFIC

We also consider the impact of cross-traffic and reverse-
path traffic on throughput. With one long-lived flow with RTT
120 ms in the “forward direction” of a 400 Mbit/s link, three
cases are studied:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5

ra
te

1/
ra

te
2

RTT1/RTT2

compound
illinois

reno

(a) 120 ms buffer

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5

ra
te

1/
ra

te
2

RTT1/RTT2

compound
illinois

reno

(b) 16 ms buffer

Fig. 7. RTT fairness experiments, 100 Mbit/s link, RTT of flow2 is 120 ms,
RTT of flow 1 is marked on x-axis.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 200 400 600 800 1000 1200 1400

R
at

e
(M

bi
t/s

)

time (s)

illinois
Reno

(a) 100 Mbps, 30 ms, 0.5×BDP queue, 65 Mbit/s Illi-
nois, 24 Mbit/s Reno

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400

cw
nd

 (
pa

ck
et

s)

time (s)

illinois
Reno

(b) 100 Mbps, 100 ms, 0.6×BDP queue, 53 Mbit/s Illi-
nois, 37 Mbit/s Reno

Fig. 8. Illinois TCP friendliness vs BDP. Upper plot shows averaged
cwnd and rates. Lower plot shows rawcwnd history since in this larger
BDP example the variations incwnd are slow enough to be give additional
information. (WAN-in-lab)

1) no cross traffic
2) 10% forward TCP cross traffic
3) 10% forward TCP cross traffic, long-lived reverse flow.

The TCP cross traffic is of the sort used in Section V, with
flow RTTs evenly divided between 30, 60, 90 and 120 ms. The
cross traffic uses the Linux Reno algorithm without SACK. For
comparison, results for a loss-based high-speed algorithmare
also presented. Cubic [2] was chosen since it is the current
default in Linux.

Figure 10 shows the mean throughput of the forward flow
in each case, taken between 200 s and 1800 s. Note that the
total volume of cross traffic is equal in each case (40 Mbit/s),

5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 200 400 600 800 1000 1200 1400

R
at

e
(M

bi
t/s

)

time (s)

compound
Reno

(a) 100 Mbps, 30 ms, 0.5×BDP queue, 47 Mbit/s Com-
pound, 42 Mbit/s Reno

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400

cw
nd

 (
pa

ck
et

s)

time (s)

compound
Reno

(b) 100 Mbps, 100 ms, 0.6×BDP queue, 48 Mbit/s Com-
pound, 41 Mbit/s Reno

Fig. 9. Compound TCP friendliness vs BDP. (WAN-in-lab)

 0

 100

 200

 300

 400

compound illinois reno cubic

R
at

e
(M

bi
t/s

)

unidirectional
10% cross, unidirectional

ACKs, 10% cross, unidirectional
10% cross, bidirectional

Fig. 10. Throughput of long-lived forward flow for a range of cross traffic
scenarios. 400Mbps link, 4096 packet buffer (1×BDP for 120ms RTT).

and so these figures directly indicate link utilization. When
cross traffic is present (green bar), the hybrid algorithms’
throughput is reduced by slightly more than the 40 Mbit/s
cross traffic volume, and slightly more than the loss-based
high-speed algorthm.

Reverse traffic causes a significant reduction in throughput
(magenta bar). Possible reasons include (i) queueing on the
reverse path, as investigated in Figure 2, (ii) the small ACKs
from the reverse flow reduce the effective size of the buffer,
since it holds a fixed number of packets, (iii) burstiness
caused by ACK compression. An additional test (blue bar) was
performed with 52 byte packets in the forward direction at the
rate of reverse-flow ACKs (5 Mbit/s). The similarity between
this throughput and that of case 2 shows that the ACKs are
probably not the source of the reduction. Since the small
reduction incurred by the loss-based high-speed algorithm
reflects the impact of ACK compression, presumably the
remaining reduction incurred by the hybrid algorithms is due
to reverse path queueing.

It is also important to understand the impact that the long-
lived flow has on the cross traffic. Table I shows the mean
throughput achieved by the cross-traffic in case 2 above (green
bar). The top row shows the mean rate of the individual flows,
which is weighted towards the many short cross-traffic flows,

Algorithm Compound Illinois Reno Cubic
E[b/T] (Mbit/s) 0.698 0.520 0.771 0.310

E[b]/E[T] (Mbit/s) 1.17 0.807 1.32 0.502

TABLE I
RATES OF CROSS TRAFFIC SHARING WITH A LONG-LIVED FLOW OF 120MS

RTT. HERE, b IS THE NUMBER OF BITS IN A FLOW, AND T IS THE FLOW

DURATION. BOTTLENECK: 400 MBIT /S. TOTAL CROSS TRAFFIC: 10%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 400 800 1200 1600 2000

cw
nd

 (
pa

ck
et

s)

time (s)

compound 0
compound 1

(a) Compound TCP

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 400 800 1200 1600 2000

cw
nd

 (
pa

ck
et

s)

time (s)

illinois 0
illinois 1

(b) TCP Illinois

Fig. 11. Sensitivity to errors in baseRTT esimate. 150 Mbit/s, 100 ms,
1.6×BDP buffer. (Linux, WAN-in-Lab)

while the bottom row shows ratio of the mean size to mean du-
ration, which is weighted towards the longer flows. Compound
TCP gives the highest rate to cross traffic. In contrast, Illinois
is consistently more aggressive. Both give greater throughput
than the loss-based cubic algorithm, although from Figure 2
it can be seen that the long flow obtains similar throughput
in each case. Reno gives cross traffic the highest throughput,
since the long-lived flow obtains very little throughput.

The Vegas delay-based algorithm is known to be sensitive
to errors in estimating the minimum RTT (“baseRTT”) when
existing flows cause persistent queueing [14]. It is therefore
interesting to investigate the sensitivity of the hybrid TCP
Illinois and Compound TCP to errors in the estimate of
baseRTT. Fig. 11 shows a typical example from our tests.
It can be seen that Compound TCP and TCP Illinois achieve
reasonable fairness despite over-estimating baseRTT by 20ms.
The insensitivity of fairness to errors in baseRTT appears to
arise because both algorithms are able to detect that queueing
is present, despite misjudging the exact magnitude of the
queueing, and revert to conservative operation.

VIII. I MPLEMENTATION ISSUES

A. TCP Illinois in Linux 2.6.23

Initial tests highlighted a bug leading to incorrect backoff
in TCP Illinois, which has now been fixed. We also observed
that TCP Illinois commonly over-estimates the maximum
RTT. Errors in max RTT estimation appear to arise because
Linux timestamps packets at the TCP layer, rather than when
they arrive at the NIC. Processing delays were observed to
introduce significant delays, e.g., sender side processingof
the list of unacknowledged packets was found to introduce
significant delays in machines with a 0.5 MB cache, although
less so in machines with a 2 MB cache. Outliers in measured
RTT cause TCP Illinois to act as if the buffer is very large
and thus to treat all regular RTT samples as if queueing is
neglibible. Hence TCP Illinois becomes overly aggressive,see
for example Figure 12.

To mitigate these effects, we patched TCP Illinois to ignore
RTT samples for two RTTs after loss. Note, however, that
the maximum RTT seems intrinsically a much more fragile

6

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

time (s)

illinois flow
reno flow

Fig. 12. TCP Illinois with an over-estimate of the maximum RTT, being
very unfair to Reno. 400 Mbit/s, 120 ms, 1 BDP.

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000

cw
nd

 (p
ac

ke
ts

)

time (s)

flow 0 cwnd
flow 1 cwnd

Fig. 13. Anomalous behaviour in Vista SP1 implementation ofCompound
TCP. 250 Mbit/s link, 100 ms, 2×BDP buffer.

statistic than the minimum RTT, since the former is lower
bounded by the propagation delay. The maximum RTT may
also be susceptible to spoofing by deliberately delaying ACKs,
which would allow a receiver to obtain an unfairly high rate.

B. Compound TCP in Microsoft Vista SP1

A number of issues were highlighted during our tests.
1) In versions prior to Service Pack 1 (SP1), Vista has a

serious bug in both the Reno and Compound TCP implemen-
tations that leads tocwnd backing off to one packet at every
loss event. This bug appears to be fixed in SP1.

2) In Vista SP1 there remain some outstanding issues.
For example Fig. 13 shows measurements with two Com-
pound TCP flows sharing a link with a relatively large buffer
(2×BDP). For the second flow, the additive increase rate of
the loss-based component is consistently less than that of the
first flow, leading to persistent unfairness. Observe also the
change in the slope ofcwnd around times 500 s, 1000 s for the
second flow, which does not appear to be correct Compound
TCP behaviour.

3) We compared measurements for the Vista implementation
of Compound TCP and for a Linux re-implementation [10]
based on the Compound TCP internet draft document [11].
This highlighted a number of ambiguities within the internet
draft (e.g., the way in RTT is measured and filtered is not
specified) in addition to the issues noted above.

4) We observed a significant deterioration in performance
at link speeds above around 400Mbps, including spurious
backoffs (without packet loss) and backoffs by a factor less
than 0.5. We suspect that , similarly to Linux, this is associated
with the end host processing burden at higher speeds.

C. Very high speeds

In preliminary tests at 1 Gbit/s, all of the algorithms tested
exhibit irregular behaviour, presumably due to spikes in CPU

activity. End users wishing to choose which implementation
to run may be interested to know that on a 122 ms 1 Gbit/s
Packet-over-Sonet path with 5% bidirectional Pareto cross
traffic and a 1 BDP buffer, Linux Compound TCP achieved
809 Mbit/s and TCP Illinois achieved 783 Mbit/s.

IX. CONCLUSIONS

This paper presents initial experimental results for TCP
Illinois and Compound TCP. These tests are for relatively
simple scenarios yet they are sufficient to highlight some
interesting issues. Both TCP Illinois and Compound TCP
can exhibit poor scaling behaviour as path BDP increases.
This relates both to their response functions (e.g. even light
reverse path traffic makes Compound TCP revert to a Reno-
like scaling behaviour, while the linear increase used in TCP
Illinois limits scalability) and congestion epoch duration: for
Compound TCP this is dominated by the Reno-like loss-based
component, for TCP Illinois the concavecwnd evolution leads
to poor scaling of congestion epoch duration when buffers
are sized proportional to BDP. As a result link utilisation
can be low and network responsiveness can become sluggish
as BDP increases. We also document a number of important
implementation issues observed during our tests.

X. ACKNOWLEDGEMENTS

This work was supported by Cisco Systems, by Science
Foundation Ireland grants 07/IN.1/I901 and 04/IN3/I460, and
by National Science Foundation grant 0303620.

REFERENCES

[1] R. N. Shorten and D. J. Leith. H-TCP: TCP for high-speed and long-
distance networks. inProc. PFLDnet, Argonne, 2004.

[2] I. Rhee, L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant.
In Proc. PFLDnet, 2005.

[3] D. Wei, C. Jin, S. Low and S. Hegde FAST TCP: Motivation, architec-
ture, algorithms, performance.IEEE Trans. Network., 14(6):1246–1259,
2006.

[4] K. Tan, J. Song, Q. Zhang, M. Sridharan. A compound TCP approach
for high-speed and long distance networks. InProc. INFOCOM, 2006.

[5] S. Liu, T. Başar, R. Srikant. TCP-Illinois: a loss and delay-based
congestion control algorithm for high-speed networks.

[6] F. Vacirca, A. Baiocchi and A. Castellani. YeAH-TCP: YetAnother
Highspeed TCP. InProc. PFLDnet2007, 2007.

[7] H. Shimonish, T. Hama and T. Murase. TCP-Adaptive Reno for
Improving Efficiency-Friendliness Tradeoffs of TCP Congestion Control
Algorithm, In Proc. PFLDnet, Feb. 2006, pp. 87–91.

[8] S. Floyd. HighSpeed TCP for large congestion windows. RFC 3649,
December 2003.

[9] G. S. Lee, L. L. H. Andrew, A. Tang and S. H. Low. A WAN-in-Lab
for protocol development. in Proc. PFLDnet, Feb. 2007, pp. 85–90.

[10] http://netlab.caltech.edu/lachlan/ctcp/ctcp2 6 23.patch
[11] M. Sridharan, K. Tan, D. Bansal, D. Thaler. Internet Draft

draft-sridharan-tcpm-ctcp-01.txt
[12] R. N. Shorten, F.Wirth and D. J. Leith A positive systemsmodel of TCP-

like congestion control: Asymptotic resultsIEEE/ACM Trans. Networks,
14(3):616-629, June. 2006.

[13] L. Brakmo and L. Peterson. TCP Vegas: end-to-end congestion avoid-
ance on a global Internet.IEEE J. Select.Areas Commun., 13(8):1465–
80, Oct. 1995.

[14] S. H. Low, L. L. Peterson and L. Wang. Understanding Vegas: A Duality
Model. J. ACM, 49(2):207-235, Mar. 2002.

