Experimental Evaluation of Delay/Loss-based TCP
Congestion Control Algorithms

Douglas J. Leith, Lachlan L. H. AndrewW, Tom Quetchenbad‘hRobert N. Shorten Kfir Lavi*
*Hamilton Institute, Ireland fCaltech, Pasadena, CA, USA

Abstract—We present initial experimental results for TCP wnd behaves as per Reno, i.e., increases by one packet per
lllinois and Compound TCP. These tests are for relatively shple RTT and backs off byl /2 on loss. The delay-based window

scenarios yet they are sufficient to highlight several integsting ; ; :
issues. We observe that both TCP lllinois and Compound TCP .dwnd increases rapidly when the estimated queue occupancy

can exhibit poor scaling behaviour as path BDP increases. Aa IS _Sma”' using a rule based on HS-TCP [8]. When the
result, link utilisation can be low and network responsiveress can €stimated number of packets that a flow has queued exceeds

become sluggish as BDP increases. We also document a numbea target valuey, dwnd is reduced by the estimated number of
of important implementation issues observed during our tets. packets in the queue. On losdwnd also backs off byl /2.
The versions which we use employ TUBE [4] to adapto
the available buffer size.

Note that we refer to the applied congestion window (sum

TCP Reno is well known to scale poorly to large bitratess wnd and dwnd) ascwnd, in line with standard notation
delay product (BDP) networks, even with extensions such 8fhough this differs from the terminology in [4].
newReno, SACK and ECN. This is because it only increases its

window by one packet per round trip time (RTT) and decreases I1l. EXPERIMENTAL SETUP

it by half when alos_s is detected. Most proposed solutiohs [1 These experiments were performed on Caltech's WAN-
[2] alter the rate of increase and/or decrease based pumely"(?_l_ab [9] and on the Hamilton Institute testbed based on
loss information. Others [3] adjust the window primarily OrHummynet as specified in the text

the estimated queueing delay. Several promising propp8als — \yAN-in-Lab servers had 2.4 GHz Opteron 250 CPUs with

[5], [6], [7] seek to combine both. This paper empirically, \jgyte cache, and Neterion s2io 10Gbit/s Ethernet cards

evaluates the performance of two such algorithms: Compoulr}gng the 2.0.25.1 driver, a txqueue length of 1000 and

TCP [4] and TCP lllinois [S]. To our knowledge this is the,atqey max backlog of 300. TCP segmentation offloading
first reported experim.ental evaluation both of. TCP lllinoi SO),_ inte_rrupt moderation and SACK were enabled. The
and of the latest version of Compound TCP (in Vista SPL)nijton Institute testbed used PES60 servers with Inteire
We focus on simple scenarios which evaluate basic propertigsy, o\ cache CPUs and Intel Pro/1000 GIGE cards.
such as scaling behaviour, fairness and friendliness ab Welpagis with TCP Illinois used a Linux 2.6.23.1 kernel with
as S|tuat|on_s which are knowr_l to cause dlfflcultl_es for delay bug in the Illinois code fixed. Compound TCP tests were
based algorithms. Use of relatively simple scenarios &llthe ¢ rtormed using both the Windows Vista Service Pack 1 (SP1,
mechamsms.to be understood, as a precursor to def|n|r)g MYfRd 6001) version of CTCP and a re-implementation for
complex “typical usage” tests to evaluate their perforneanc | i, 110}, based on the Internet Draft [11]. By working with
the wider Internet. both implementations our aim is to help verify whether the
draft provides a complete description of the official imptam
Il. PRINCIPLES OF OPERATION tation. With Vista,cwnd time histories are reconstructed from
TCP lllinois [5] uses an AIMD algorithm but adjuststcpdump data while with Linux tcgprobe instrumentation is
the increase and decrease parameters based on estimatesef.
queueing delay and buffer size. When no queueing delay isSome tests, including all Vista tests, used dummynet (with
detected, the rate of additive increase (Al) is fixed at 1@1ms scheduler granularity) instead of the fibre delays of
packets per RTT; as the estimated queueing delay rises WAN-in-Lab. WAN-in-Lab seeks to avoid artefacts, such as
Al rate is gradually reduced to 0.3 packets per RTT wheacket bursts associated with scheduler granularity, wmay
the estimated queueing delay is maximal (network buffees dve particularly important when studying algorithms whielyr
estimated to be full). On loss, the congestion windownd on delay. Tests which were performed on both WAN-in-Lab
is decreased aswnd« (1 — §)cwnd. If the RTT is close to and dummynet can be used to quantify the impact of such
the maximum observed value then the loss is deemed a bufigtefacts, or lack thereof.
overflow and§ =~ 1/2, while ¢ decreases to 1/8 as the RTT All throughput values are one second averages.
gets smaller (as loss is then taken as packet corruption).
Compound TCP [4] maintains a Reno-like AIMD window IV. SCALING BEHAVIOUR WITH BDP
wnd, and a separate delay-based winddwnd. The conges- The basic motivation behind the proposed changes to the
tion window used is the sum of the two. The AIMD windowTCP congestion control algorithm considered here is that

I. INTRODUCTION

the performance of the current Reno congestion avoidance . . — .
. . . compound (linux)
algorithm scales poorly with path BDP. The Reno congestion compound (vista) -------
avoidance algorithm increasesnd by one packet per RTT linos
until network buffers fill and packet loss occurs, at which
pointcwnd is reduced byl /2. The time between congestion-
related loss events is referred to here as the congestiahepo
duration. With Reno, the congestion epoch duration of a
single flow increases linearly in proportion to the path BDP 1

. . . 0 1 | 1 1

and congestion epoch. durations pf 30 minutes or longer are ' 0 0 100 150 200
common on modern high-speed links. time (s)

It is known that this can lead to low link utilisation — since

. . . 200ms RTT, XBDP buffer.

loss, losses induced by slow-starting web traffic etc cangurie
the cwnd of a flow from growing sufficiently large to fully
utilise a link. As a result link utilisations of only 10-20%ea . . .
not uncommon with Reno flows on high BDP paths in sorr{éme 0, which forces thewnd to a_Imo_st 0. Smce_ the CV.V“O'
situations IS reduced due to loss, recovery is via congestion avoidance

In addit.ion to low link utilisation. lona congestion epoc rather than slow start. TCP lllinois takes approximatel 45

, 1ong cong P khgofuuy utilise the link following the disturbance, whiléné

durations are known to lead to sluggish responsiveness d .
. o 99 P Linux implementation of Compound TCP takes about 60s. In
changes in network conditions such as the startup of new

flows. This arises because the convergence time is direc ler to reduce its window fully the Vista implementation of

related to the congestion epoch duration, with a network ¢ mpound TCP, 20 cross traffic was needeq and the recovery
. . . started about 30 s after the onset of cross traffic. Once eggov
long-lived Reno flows taking roughly four congestion epochst) T .
to converge to within 95% of steady state [12]. We nOt%arted, the behaviour was similar to that of the Linux re-
that slow convergence can translate into prolonged urdagn implementation. . .
between competing flows, either when a new flow starts or2) !Mpact on response function of reverse path queueing:
when some flows observe a loss event that others miss. 1h€ aggressiveness, and therefore the response funotibns,
In the rest of this section we investigate the correspondingP !llinois and Compound TCP are adjusted based on
link utilisation and convergence rate behaviour of the TCpeasured queueing delay. Errors in estimating queueiray del
lllinois and Compound TCP congestion control algorithms. &N therefore be expected to impact link utilisation. Tolese
this we briefly investigate the link utilisation of TCP Ilbis

and Compound TCP in the presence of reverse path traffic.
Fig. 2(a) shows measurements for a 250 Mbps link with
1) Response function: A basic requirement is that a singlea single forward path TCP lllinois flow. Reverse path traffic
flow should be able to achieve high link utilisation withoustarting at 25s is on-off (5s on, 1s off) with a window
requiring unrealistically low packet loss rates. We canteap capped at 0.5MByte, giving a maximum of approximately
this requirement via the response function, i.e., a plot 4D Mbps, and an observed throughput on the reverse path of
throughput (or cwnd) vs loss rate for a single flow an@0Mbps. No losses were measured on the reverse path during
randomly generated losses. Recent proposals for changethtexperiment. TCP lllinois takes around 60 s to fill the link
TCP all modify the response function to be more aggressif@lowing a loss at time 25s. Queueing of acks due to the
than Reno. reverse path traffic causes TCP lllinois to incorrectly infe
TCP lllinois increaseswnd by 10 packets per RTT whenqueue buildup and thus to adjust its rate of increase to @roun
the queueing delay is estimated to be low, and by an amodnpackets per RTT, rather than 10 packets per RTT. However,
decreasing to 0.3 packets as the queueing delay rises. Thinse TCP lllinois does not backoffwnd except on loss, it
the response function of TCP lllinois lies between that of ecovers faster than Reno would.
Reno flow with increase rate 0.3 packets per RTT and oneThe behaviour with Compound TCP is shown in Fig-
with increase rate of 10 packets per RTT. ure 2(b). It can be seen that the impact of reverse path quguei
Note that the increase rate is fixed at a maximum of %€ substantial. Following a loss at time 25s, the Compound
packets per RTT. Since Ethernet increases its bitrate bgtarfa TCP flow takes around 200 s to fill the link, i.e., the response
of 10 each generation, it follows that TCP lllinois essdhtia function and link utilisation performance is similar to tha
buys us one extra generation; beyond that, similar scaliRgno. The reverse queueing delay causes the Compound flow
issues to Reno will inevitably manifest themselves. to consistently backoflwnd early. As a result, the reverse
Compound TCP uses an additive increase rate based on thath traffic prevents the Compound T@Rnd from growing
of HS-TCP when the queueing delay is small. The increaaad so Compound TCP reverts to Reno-like behaviour. Thus
rate therefore increases with congestion window and is ristk utilisation becomes poor as path BDP increases. Note
capped at a small fixed value. that the volume of reverse path traffic is less than 10% of link
To illustrate this difference, Fig. 1 shows the response o&pacity. However, the frequent slow-starting is suffitien
TCP flow on a 400 Mbps link to a 5s burst of UDP traffic atreate burstiness and queueing on the reverse path.

400

300

rate (Mbit/s)

200

100

A. Link utilisation

7000 T T ” T T 250
cwn + —
& 6000 throughput 4 200 &
T 5000]
ﬁ - 150 =4 350 1 T T T\OW‘OCW%d 12 _ 7000 T T T T T 250 _
g 200 EL 7 = e S B B R
= 28(0)8 4 100 § S 200] 2 § S 4000 | 150 §
3 S 150 7 2 S 3000} g
3 1000 4150 £ £ 100 ////WWWWWA 42§ 2000 /|/ 100 2
- ° s 12 E % 1000} 50 2
0 L 1 1 0 o P o b 0
0 20 40 60 80 100 0 100 200 300 400 500 600 0 200 400 600 800 1000 1200
time (S) time (s) time (s)
o (a) 10 Mbps, 100 ms, 2BDP (b) 250 Mbps, 100 ms, 2BDP
(a) TCP llinois
8000 : : 250 Fig. 3. TCP lllinois congestion epoch duration vs BDP (Dumety. Cases
& 7000 [cwnd + 2 with smaller buffers are considered in Section VI.
% 6000 |-throughput 1 200 2
_é 150 = 7000 T T T T 250
o =1 y flow 0 cwnd —
; 100 % :tE 6000 flow (J":\‘Lo:%r‘:vpnn;t 77777777 4 200 §
g 50 8 &) 5000 | flow 1 throughput X =
° o £ g 4000 | 4 150 2
£ 2
0 50 100 150 200 < 3000 100 £
time (s) S 2000 3
S 1000 % £
(b) Compound TCP 0 O I I

0
Fig. 2. Behaviour in presence of reverse path traffic. Sifmeard path flow, 0 200 490 600 800 1000
on-off reverse path flow with window capped at 0.5 MByte. L2%0 Mbps, time (s)
100 ms RTT, XBDP buffer.

. Fig. 4. TCP lllinois convergence time. Best case example revheew
B. Convergence time flow does not backoff at first congestion event, yet still fakeound 300 s

Qualitatively, the convergence time of an algorithm is the cont;/ergle.kOn missing drops, sgs;fained excursions framefs occur.
.) . . . 250 M ink, 100 ms RTT, $BDP . (D t
time it takes for a new flow, after entering congestion avoid>°MPPs n ms uffer. (Dummynet)
ance mode, to obtain its average fair share of the capadity. Ipoor responsiveness at larger BDPs.

a formal mathematical discussion, see [12]. When dwnd is non-zero for a significant fraction of each
Note that, while hybrid loss/delay algorithms adjust thgongestion epoch, its dynamics also affect the convergence

congestion window increase and decrease parameters bas@hviour. In Figure 6, two flows share a link with a relatyvel

on delay, fundamentally these algorithms still operateimts small buffer. Both flows exit slow start while the loss-based

of congestion epochs. In particular, from [5] we expect thgnd is still small, since the buffer cannot accommodate the

convergence time of TCP lllinois to be proportional to th@ursts resulting from the doubling of the window each RTT

congestion epoch duration, and similarly with Compound . TCRuring slow start. In Figure 6 it takes around 500s for the
Fig. 3 plots measured congestion window time histories fggss-basedwnd to fill the 2500 packet pipe. During this

a single TCP lllinois flow on a 10 Mbps and a 250 Mbps linkime, convergence is dominated bynd. Figure 6 (and other

The congestion epoch duration is already rather long (afousixperimental results) show that the convergence time of the

600s) at 250 Mbps. TCP lllinois reverts to a less aggressid@nd dynamics can be quite sluggish — the flows have not
AIMD increase rate on detecting queueing delay, to as littt&nverged to fairness after 300s.

as 0.3 packets per RTT. Because the additive increase mate ca
be a third that of Reno, it takes up to three times as long to
fill a buffer. This can be seen in Fig. 3 where TCP lllinois
takes 600 seconds to increasand by 2000 packets on a Loss-based high-speed algorithms often introduce RTT-
100ms RTT link, compared with about 200 s for Reno whictinfairness, unless this is explicitly counteracted [1].cbm-
increases by one packet per RTT. Since the convergence tifi@st, fairness between Vegas flows is generally unaffected
is proportional to congestion epoch duration, convergeace by differences in RTT, which has led to claims that hybrid
be slow following a change in network conditions. This igpproaches may be more RTT friendly than Reno [4].
illustrated, for example, in Fig. 4. Figure 7 shows the ratio of the throughputs achieved by a
The congestion epoch duration with Compound TCP flow with 120 ms (base)RTT and a flow with shorter RTT,
determined entirely by the loss-based component of the akaring a 100Mbit/s link with 10% cross traffic, half of
gorithm, provided that the buffer is large enough tHand which had RTT 6ms and half had RTT 120ms. The cross
decreases to zero before loss. That is, the congestion eptseffic consisted of a Poisson arrival process of flows with
duration is generally identical to that of Reno and so scal®sreto distributed file sizes, with mean 25 000 bytes andeshap
linearly with BDP. Figure 5 plots the window size for the \dst parameteryr = 1.2, and was included to avoid phase effects.
implementation of Compound TCP when a new flow starts. Results are shown when the buffers are sized at 120ms and
This data, and results from other experiments, indicates t116 ms (BDP and 0.13BDP for the 120 ms flow).
the convergence time scales roughly with the congestionfepo When the buffer is 120ms, Compound TCP and TCP
duration and is similar to that of Reno. That is, the conveecge lllinois exhibit similar RTT unfairness to Reno. This is te b
time scales linearly with BDP and thus the network can exhitéxpected, since their dynamics approach that of Reno when

V. RTT FAIRNESS

3000 T T T T T 4.5 T T
@ 2500 - fow@ownd | 4 compound —+— |
@ flow 1 cwnd B illinois —--x--—-
S 2000 / N 35 .. reno -k
© .
8 1500 ~ 3l |
~ Q
= 1000 | x //t g 25 —
g 500 F * g v 2r
k- ! 1 1 1 1 g 15 B
0 100 200 300 400 500 600 1r b
time (s) 05 i
0 Il Il Il Il
0 01 02 03 04 05
Fig: 5. Compound TCP convergence time following startup séeond flow RTTL/RTT2
at time 100 s. 200 Mbps link, 100 ms RTTxBDP buffer. (Vista, dummynet) . (@) 120ms buffer
eyl 1(5)88 I I I ﬂochIwnd +I - X\\ ‘ ‘ con%ppun_d 4,7‘
2] i L llinois ---x--- |
> 3500 flow 1 cwnd O reno %
X — Y
£ 2000 - £ 0
T 1500 s S 15 \uxo .
S 1000 i 3 N
5 500 : € 10t A g
0 i 1 ¥ 1 1 1 1 1 — . e
0 50 100 150 200 250 300 350 400 5F T]
time (S) 0 I I ! !]]
0 0.1 0.2 0.3 0.4 0.5
Fig. 6. Convergence whemwnd non-zero. Compound TCP, 200 Mbps link, RTTL/RTT2
200ms RTT, 0.XxBDP buffer (Vista, Dummynet). (b) 16 ms buffer
the buffer '$ Iarge enoth thatand decreases to zero WhenFig. 7. RTT fairness experiments, 100 Mbit/s link, RTT of fléws 120 ms,
the buffer fills. RTT of flow 1 is marked on x-axis.
When the buffer is smaller, the results are significantly o —
different. It appears that Compound TCP has slightly better 80 |~

QF o Wiy
/"illinois I
Reno

RTT-fairness than Reno, while lllinois fares slightly weys
although no confidence intervals have been calculated.

These results have been taken at the comparitavely low rate
of 100 Mbit/s, to allow experiments of only half an hour. (As 0 ST SR
discussed above, the congestion epoch duration increases w 0 200 400 600 800 1000 1200 1400
the bandwidth-delay product, requiring longer experiradat time (5) -
the same accuracy.) Evaluating performance at higher teis ra Emagis,loza'\l\%?t?é g(;rr:)s, 0-6BDP queue, 65Mbits 1l
is left as future work.

Rate (Mbit/s)
a
o

) N N N T N |

1400 T T T T T T
w1200 j illinois B
VI. TCP FRIENDLINESS 2 1000 | ﬂﬂ Reno _
g 800 [4
New congestion control algorithms are required to coexist :é 600 |- KWL/M /] //l// i
with legacy TCP flows. In this section we briefly investigate s Nl ‘ ‘]
the “TCP friendliness” of TCP lllinois and Compound TCP. 0 P ————

0 200 400 600 800 1000 1200 1400
time (s)

(b) 100 Mbps, 100 ms, 0:6BDP queue, 53 Mbit/s llli-
nois, 37 Mbit/s Reno

Due to lack of space presentation of more comprehensive
measurements is left as future work.

Figure 8 illustrates the behaviour of a TCP lllinois flow
and a Reno flow sharing a 100 Mbps link. Figure 9 shows
the corresponding results for Compound TCP. In these te5i% d8- § ”"QOiS ITCP ffielﬂtd"?]ess vs BDg- hl_a'riper plot S'hO\tArlfeTged

. . . wna and rates. Lower plot shows raswmwn IStory since In IS larger
b(_)th TCP lllinois and Comp(_)un(_j T(_:P are apprOX|ma_1ter fay DP example the variations iownd are slow enough to be give additional
with Reno. A notable exception is Figure 8(a) where it can b&ormation. (WAN-in-lab)
seen that TCP lllinois is significantly less friendly to tlegcy 1) no cross traffic
TCP flow than is Compound TCP. This appears to be due to amy) 109, forward TCP cross traffic
implementation issue with TCP lllinois whereby the maximum 3) 1094 forward TCP cross traffic, long-lived reverse flow.
RTT is over-estimated. Since the backoff factor of TCP dis The TCP cross traffic is of the sort used in Section V, with

is adjus_ted based on the measured delay relatlive o maximHggv RTTs evenly divided between 30, 60, 90 and 120 ms. The
RTT, this leads to a reduced backoff and unfairess. cross traffic uses the Linux Reno algorithm without SACK. For
comparison, results for a loss-based high-speed algowtfem
VII. CROSS TRAFFIC also presented. Cubic [2] was chosen since it is the current
We also consider the impact of cross-traffic and reversaefault in Linux.

path traffic on throughput. With one long-lived flow with RTT Figure 10 shows the mean throughput of the forward flow

120 ms in the “forward direction” of a 400 Mbit/s link, threein each case, taken between 200s and 1800s. Note that the

cases are studied: total volume of cross traffic is equal in each case (40 Mbit/s)

%0 —_— : : : : Algorithm Compound lllinois Reno Cubig¢
> ¥ F 1 Eb/T] (Mbit/s) 0.698 0520 0.771 031
2 oF |] E[b]/E[T] (Mbit/s) 1.17 0.807 1.32 0.50
g [\ Mo W\‘,\W A i
S Br el e Y] TABLE |
§ 28 r compound] RATES OF CROSS TRAFFIC SHARING WITH A LONELIVED FLOW OF 120MS
10 Reno - RTT. HERE, b IS THE NUMBER OF BITS IN A FLOW AND 7' IS THE FLOW
0 ! ! ! ! ' : DURATION. BOTTLENECK: 400 MBIT/S. TOTAL CROSS TRAFFIC 10%
0 200 400 600 800 1000 1200 1400
time (s)
(a) 100 Mbps, 30ms, 0:6BDP queue, 47 Mbit/s Com- 7000 ‘ ; : ‘ 8000 ‘ ; ; ‘
pound, 42 Mbit/s Reno 5 S00f Compound] g 9O kol —
g Sy] 2 o0 |
S 4000 | 8
1400 T T T T T T = 3000 K. = gggg:
w1200 compound B S 2000 H S 2000 [
2 1000 Reno . © 1000 H 000 [
é 800 T 0 0 400 800 1200 1600 2000 0 0 400 800 1200 1600 2000
~ 600 1 time (s) time (s)
T 400 V] % . .
£ 200 ‘ i (a) Compound TCP (b) TCP lllinois
0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 Fig. 11. Sensitivity to errors in baseRTT esimate. 150 Mbitt00 ms,
time (s) 1.6xBDP buffer. (Linux, WAN-in-Lab)
(b) 100 Mbps, 100 ms, 0:6BDP queue, 48 Mbit/s Com- while the bottom row shows ratio of the mean size to mean du-
pound, 41 Mbit's Reno ration, which is weighted towards the longer flows. Compound
Fig. 9. Compound TCP friendliness vs BDP. (WAN-in-lab) TCP gives the highest rate to cross traffic. In contrashdi
is consistently more aggressive. Both give greater thrpugh
109% cross, inidhealiong) than the loss-based cubic algorithm, although from Figure 2
ACKs, 10% cross, unidirectional s
10% cross, bidectional mes | it can be seen that the long flow obtains similar throughput

in each case. Reno gives cross traffic the highest throughput
since the long-lived flow obtains very little throughput.

Rate (Mbit/s)

The Vegas delay-based algorithm is known to be sensitive
to errors in estimating the minimum RTT (“baseRTT”) when
existing flows cause persistent queueing [14]. It is theeefo
interesting to investigate the sensitivity of the hybrid AC
lllinois and Compound TCP to errors in the estimate of

compound __ lincis cubic baseRTT. Fig. 11 shows a typical example from our tests.
It can be seen that Compound TCP and TCP lllinois achieve
Fig. 10. Throughput of long-lived forward flow for a range abss traffic regsonable fairness despite over-estimating baseRTT bs20
scenarios. 400Mbps link, 4096 packet buffexx@DP for 120ms RTT). . e . .
The insensitivity of fairness to errors in baseRTT appears t
and so these figures directly indicate link utilization. Whegise pecause both algorithms are able to detect that queuei
cross traffic is present (green bar), the hybrid algorithmg present, despite misjudging the exact magnitude of the

cross traffic volume, and slightly more than the loss-based

high-speed algorthm. il
Reverse traffic causes a significant reduction in throughput T
(magenta bar). Possible reasons include (i) queueing on fheTCP lllinoisin Linux 2.6.23
reverse path, as investigated in Figure 2, (ii) the small ACK Initial tests highlighted a bug leading to incorrect baékof
from the reverse flow reduce the effective size of the buffén TCP lllinois, which has now been fixed. We also observed
since it holds a fixed number of packets, (iii) burstineghat TCP lllinois commonly over-estimates the maximum
caused by ACK compression. An additional test (blue bar) wS T. Errors in max RTT estimation appear to arise because
performed with 52 byte packets in the forward direction a&t thLinux timestamps packets at the TCP layer, rather than when
rate of reverse-flow ACKs (5 Mbit/s). The similarity betweenhey arrive at the NIC. Processing delays were observed to
this throughput and that of case 2 shows that the ACKs drgroduce significant delays, e.g., sender side processing
probably not the source of the reduction. Since the smdtle list of unacknowledged packets was found to introduce
reduction incurred by the loss-based high-speed algorittsignificant delays in machines with a 0.5MB cache, although
reflects the impact of ACK compression, presumably tHess so in machines with a 2 MB cache. Outliers in measured
remaining reduction incurred by the hybrid algorithms i® duRTT cause TCP lllinois to act as if the buffer is very large
to reverse path queueing. and thus to treat all regular RTT samples as if queueing is
It is also important to understand the impact that the longeglibible. Hence TCP lllinois becomes overly aggressee,
lived flow has on the cross traffic. Table | shows the medor example Figure 12.
throughput achieved by the cross-traffic in case 2 abovefgre To mitigate these effects, we patched TCP lllinois to ignore
bar). The top row shows the mean rate of the individual flowRTT samples for two RTTs after loss. Note, however, that
which is weighted towards the many short cross-traffic flowthe maximum RTT seems intrinsically a much more fragile

| MPLEMENTATION ISSUES

10000 , : . .
illinois flow ——
o) 8000 reno flow —--—---- i
g 11
S 6000 i PV A |
= A
> 4000 H/ |
s N
8 2000 [F HE |
o ([| [Tt ”’/(1/‘ﬁ_4f//t>/—i"/

0 100 200 300 400 500
time (s)

600

Fig. 12. TCP lllinois with an over-estimate of the maximumTRbeing
very unfair to Reno. 400 Mbit/s, 120 ms, 1 BDP.

5000 T
flow O cwnd "
flow 1 cwnd

1/ L0

1000

cwnd (packets)

%
o L L L L
(0] 500 1000 1500 2000

time (s)

Fig. 13. Anomalous behaviour in Vista SP1 implementatiorCompound
TCP. 250 Mbit/s link, 100 ms, 2BDP buffer.

activity. End users wishing to choose which implementation
to run may be interested to know that on a 122ms 1 Gbit/s
Packet-over-Sonet path with 5% bidirectional Pareto cross
traffic and a 1BDP buffer, Linux Compound TCP achieved
809 Mbit/s and TCP lllinois achieved 783 Mbit/s.

IX. CONCLUSIONS

This paper presents initial experimental results for TCP
lllinois and Compound TCP. These tests are for relatively
simple scenarios yet they are sufficient to highlight some
interesting issues. Both TCP lllinois and Compound TCP
can exhibit poor scaling behaviour as path BDP increases.
This relates both to their response functions (e.g. event lig
reverse path traffic makes Compound TCP revert to a Reno-
like scaling behaviour, while the linear increase used ifPTC
lllinois limits scalability) and congestion epoch duratidor
Compound TCP this is dominated by the Reno-like loss-based
component, for TCP lllinois the concae&nd evolution leads
to poor scaling of congestion epoch duration when buffers
are sized proportional to BDP. As a result link utilisation
can be low and network responsiveness can become sluggish
as BDP increases. We also document a number of important

statistic than the minimum RTT, since the former is loweimplementation issues observed during our tests.

bounded by the propagation delay. The maximum RTT may
also be susceptible to spoofing by deliberately delaying 5CK
which would allow a receiver to obtain an unfairly high rate.

X. ACKNOWLEDGEMENTS

This work was supported by Cisco Systems, by Science

Foundation Ireland grants 07/IN.1/1901 and 04/IN3/1468q a

B. Compound TCP in Microsoft Vista SP1

A number of issues were highlighted during our tests.

1) In versions prior to Service Pack 1 (SP1), Vista has a
serious bug in both the Reno and Compound TCP implemer[ll-]
tations that leads townd backing off to one packet at every
loss event. This bug appears to be fixed in SP1. [2]

2) In Vista SP1 there remain some outstanding issue
For example Fig. 13 shows measurements with two Co s
pound TCP flows sharing a link with a relatively large buffer
(2xBDP). For the second flow, the additive increase rate df!
the loss-based component is consistently less than théieof ts
first flow, leading to persistent unfairness. Observe als th
change in the slope afuwnd around times 500's, 1000 s for the [®]
second flow, which does not appear to be correct Compoun
TCP behaviour.

3) We compared measurements for the Vista implementatlcigl
of Compound TCP and for a Linux re-implementation [10]
based on the Compound TCP internet draft document [11]o]
This highlighted a number of ambiguities within the intdrn
draft (e.g., the way in RTT is measured and filtered is n]ll]
specified) in addition to the issues noted above.

4) We observed a significant deterioration in performan&e?!
at link speeds above around 400Mbps, including spurious
backoffs (without packet loss) and backoffs by a factor legss]
than 0.5. We suspect that , similarly to Linux, this is asatad
with the end host processing burden at higher speeds. [14]
C. Very high speeds

In preliminary tests at 1 Gbit/s, all of the algorithms telste
exhibit irregular behaviour, presumably due to spikes iJCP

by National Science Foundation grant 0303620.

REFERENCES

R. N. Shorten and D. J. Leith. H-TCP: TCP for high-speed &mng-
distance networks. ifProc. PFLDnet, Argonne, 2004.

I. Rhee, L. Xu. CUBIC: A New TCP-Friendly High-Speed TCRriAnt.

In Proc. PFLDnet, 2005.

D. Wei, C. Jin, S. Low and S. Hegde FAST TCP: Motivationghatec-
ture, algorithms, performancéEEE Trans. Network., 14(6):1246-1259,
2006.

K. Tan, J. Song, Q. Zhang, M. Sridharan. A compound TCPr@ggh
for high-speed and long distance networks.Phoc. INFOCOM, 2006.

S. Liu, T. Basar, R. Srikant. TCP-lllinois: a loss andlajebased
congestion control algorithm for high-speed networks.

F. Vacirca, A. Baiocchi and A. Castellani. YeAH-TCP: YAnother
Highspeed TCP. IrProc. PFLDnet2007, 2007.

H. Shimonish, T. Hama and T. Murase. TCP-Adaptive Renp fo
Improving Efficiency-Friendliness Tradeoffs of TCP Cortg@s Control
Algorithm, In Proc. PFLDnet, Feb. 2006, pp. 87-91.

S. Floyd. HighSpeed TCP for large congestion windows.CR3649,
December 2003.

G. S. Lee, L. L. H. Andrew, A. Tang and S. H. Low. A WAN-in-ba
for protocol development. in Proc. PFLDnet, Feb. 2007, 53-99.
http://netlab.caltech.edu/lachlan/ctcp/ct2p6_23.patch
M. Sridharan, K. Tan, D. Bansal, D. Thaler.
draft-sridharan-tcpm-ctcp-01.txt

R. N. Shorten, F.Wirth and D. J. Leith A positive systemsdel of TCP-
like congestion control: Asymptotic resultEEE/ACM Trans. Networks,
14(3):616-629, June. 2006.

L. Brakmo and L. Peterson. TCP Vegas: end-to-end cdingeavoid-
ance on a global InternetEEE J. Select.Areas Commun., 13(8):1465—
80, Oct. 1995.

S. H. Low, L. L. Peterson and L. Wang. Understanding \é¢egaDuality
Model. J. ACM, 49(2):207-235, Mar. 2002.

Internet fbra

