Delay-based Congestion Control: Sampling and
Correlation Issues Revisited

G.D. McCullagh, D.J.Leith
Hamilton Institute, Ireland

Abstract— In this paper we revisit the commonly voiced con-
cern that low correlation between measured delay and netwdr
congestion means that delay may be fundamentally flawed as J
a signal for congestion control. Our main contribution is to
demonstrate that in fact what matters for congestion contrd -
is the aggregate behaviour of the flows sharing a link. Hence,
perhaps somewhat surprisingly, while any given single flow ey HES :
measure delay which is only weakly correlated with network il
congestion, this is not in itself an obstacle to congestiorontrol.

|. INTRODUCTION T i ﬂf

L L L L L
(] 0.01 0.02 003 004 005 006

In this paper we revisit the recently voiced concern that lo me@
correlation between measured delay and network congestion
means that delay may be fundamentally flawed as a sigmajl 1. lllustrating sampling issues when estimating qustaée — example
for congestion control. A related concern is that on heavifjpeue occupancy time history with packets of one selected rtarked by
multiplexed links the measured delay may be only weakf?"d Sauares
correlated with the congestion window of a flow [10]. These

concerns are particularly topical in View of a numb_er qfarge changes in queue occupancy and, in particular, mby fai
proposals to change the TCP congestion control algorlthmtg) detect queue full events. Thus, in general, the cormiati

make use of delay informa?ion. Examples include noF Onb/etween the queueing delay measured by a given flow and
FAST TCP [7] but also hybrid congestion control algor'thmﬁongestion at a bottleneck link may be low.

based on the use of both loss and delay, e.g. TCP IIIir‘O'S'While the possibility of low correlation between network

[8]. and Co_mpound_TCP [15]. The Iattgr Is nhow available i@ongestion and the delay measured by a flow thus seems
Windows Vista and is currently undergoing review at the IRTE, o, established, our aim in this paper is to investigate the

and [ETF standards bodies. . implications for congestion control. A natural concerntistt

A number of recent independent measurement studies [}, correlation between measured delay and congestionsnean
[9], [11] have indeed found that there may be only 10W,5 gejay measurements grema faciean inadequate indi-
correlation between packet loss events and the delay me&hsul, . of network congestion and thus their use for congestio

by a flow. That is, when packet loss occurs, and thus sog, | could be fundamentally flawed. Indeed, precisethsu

network queue is full, nevertheless all flows need not OkBer(Yoncerns are raised in [9], [10], [11]. This potentially has

high (lzlelay. In|1|‘act, any_give? TCE ﬂ(I)W may obser\r/we_ hli)gh de_lqylrect implications not only for recent delay-based pra®s
atonly a small proportion of packet loss events. This befavi (FAST, Compound TCP etc) but also for our understanding of

is confirmed by_gur own %Tpenmental fmeahsurlements. ati the fundamental constraints on congestion control withia t
[9], [10] consider possible reasons for the low corre at'OEhrrent Internet architecture.

observed and suggest that sampling issues are a fundamentg),,. main contribution in this paper is to demonstrate that

(Experimental tests and also confirm analytically the gdnera
example, the “samples” for one flow are marked by SOI'Hature of our conclusions.

squares mh Figure 1.f Ar? a result, th; flow ;:a}lnnotdaccuratelylt is important to emphasise that this result does not poeclu
estimate the state of the queue and may fall to detect eyl eyistence of other factors that may limit the practical

This work was supported by Cisco Systems and Science Faandegland application of de_lay'pased FOnQGStion control, it Onlytﬂa
grant IN3/03/1346. that low correlation is not itself an obstacle. For example,

obtaining good delay measurements in the presence of “noigdf when queueing delay exceeds some threshold, we can avoid
such as delayed acking and hardware offload is also potgntidilling the queue (maintain low queueing delay) while stayin

an important issue — in fact we touch on this issue hewgthin the well-established AIMD framework. Specificallye
although it is not the main focus of the present paper. Despdonsider the following delay-based AIMD algorithm:

the existence of such issues that require further study, we
nevertheless argue that the work here is an important first
step in exploring the nature of fundamental constraints on
congestion control.

The paper is organised as follows. In Section Il we brieflwhere 7 is the observed queueing delay, > 0 is a delay
review a delay-based modification to the standard TCP AlMireshold that triggers delay-based backoff. The queueing
algorithm that will be used later. In Section IV we considedelayr is estimated asRTT (t) — RTT,,in, Where RT T, IS
the requirement for correlation between delay and lossteyerthe minimum observed packet round-trip time al7"7(t)
analyse the congestion control properties of the delagthags an estimate of the current round-trip time. Loss induced
AIMD algorithm and establish conditions under which ibackoffs are retained as part of the algorithm to accomneodat
achieves congestion control, in the sense of bounding thituations where, for example, the buffers are sized suah th
gueue occupancy. Section V presents experiments to validataximum queueing delay is less than Since it continues to
this analysis, including in heavily multiplexed regimeslan employ an AIMD strategy, the delay-based algorithm iniserit
the presence of “noise” such as delayed acking and TSO. Wie usual fairness and convergence properties of AIMD.

cwnd + afcwnd, on each ACK
cwnd «— 8 X cwnd, if T>19
8 X cwnd, if packet loss

briefly summarise our conclusions in Section VII. The impact of this change on the AIMD operation is
illustrated in Figure 3. It can be seen that although theduif
Il. RELATED WORK sized at 400 packets, the floamond now backs off before the

. : .queue is full. In this example we can also see that following
Interest n the use of delay for congesn(_)n control 'gwe first backoff wherecwnd is reduced by half, the queue
long-standing. Early work on delay-based algorithms idek empties for a significant period of time — this is to be expacte

CARD [6], Tri-S [16], and DUAL [17]). TCP Vegas ([2], [3]) X
. as the delay-based algorithm backs @ffnd before the queue
a'f‘d related.algorlthms such as FAST [7] are one of the m?sss%ull. High utilisation be maintained by adjusting the katft
widely studied delay-based transport layer protocols. €Mo¥actor appropriately. In more detail, we adjust the backoff
recently, hybrid congestion control algorithms based erutbe factor according to ' ’

of both loss and delay have been proposed, e.g. TCP lllinois

[8] and Compound TCP [15]. Compound TCP is being actively B = RTTmin/RT Thackof
considered for use in a mainstream operating systems and is
currently undergoing review at the IRTF and IETF. where RT Ty, ko5 ¢ denotes the measured RTT at backoff. See

In parallel with work on the development of delay-baself]:[14] for further details.
algorithms, a number of concerns have been raised as tn
practicality of delay as a congestion signal. Potentialhe o 600
of the most serious is the observation that there can be |
correlation between measured and actual queueing delay . 500/
loss. This is discussed in detail in the experimental stidi V
in [1], [9], [11]. These studies do not investigate any sfieci
delay-based algorithm but rather make use of experimen
measurements to evaluate correlation. [10] considers daum
of possible reasons for low correlation to occur, including
particular sampling issues.

cwnd (packets)
queue occupancy (packets)| -

300 -

200
IIl. DELAY-BASED AIMD

We begin by briefly reviewing the delay-based AIMC
algorithm [4] which will be used later. Note that our purpos
here is not to advocate use of the delay-based AIMD alg % 8 100 10 140 0 180 200
rithm. Rather the delay-based AIMD algorithm is simply on mee
approach to delay-based congestion control that happens to
provide a useful vehicle for demonstrating some fundanhen%@' 2. lllustrating delay-based AIMD algorithm. (delay Qrgls, link rate
. . . . Mbps, 400 packet queugy 20ms,ns simulation).
issues in a concrete manner. The algorithm simply exterals t
standard TCP AIMD algorithm to use delay as well as loss (or
ECN) to control network congestion. Standard TCP employs
anAdditive-Increase Multiplicative-DecreagaIMD) strategy | V- |'S LOW CORRELATION AN OBSTACLE TO CONGESTION
during its congestion avoidance mode. AIMD congestion con- CONTROL?
trol can be implemented using signals other than packetless On the face of it, the existence of situations where low
a congestion indicator. The basic idea here is that by bgckicorrelation exists between the queueing delay measured by

a flow and the actual queueing delay appears to create an
obstacle to congestion control. That is, how can we expect
to succeed at congestion control if some flows are unable to
reliably detect congestion events where the queue occypgnc
high. We demonstrate that in fact what matters for congestio
control is theaggregatebehaviour of the flows sharing a link. cwnd
Hence, while any given single flow may measure delay which o
is only weakly correlated with the actual queueing delaig th
is not in itself an obstacle to achieving congestion control - = =g~ =

To explore this question we use the delay-based AIMD time
algorithm as an example and investigate its congestion
control behaviour in more detail. We repeat again that our queve
purpose here is not to advocate use of the delay-based q0
AIMD algorithm. Rather the delay-based AIMD algorithm is
simply one approach to delay-based congestion control that time
happens to provide a useful vehicle for demonstrating some
fundamental issues in a concrete manner. Our analysis makigs3. lllustrating cwnd and queue time histories.
use of the following basic observation.

wi(k) w(k+1)

Key Observation. Sparse sampling of the queue occupancy The queue occupanagy(k) at thek’th congestion event is

means that packets from some flows may not detect an n
event where the queueing delay rises above a threshold q(k) = Z [wi (k) — b;(k)t;] (1)
Nevertheless, if the queueing does rise abeyethen we im1

h v th Kets th ereb; (k) is the bandwidth being consumed by flavand
greater tham, — namely, the very packets that are responsi _bi(k) = B with B the link bandwidth in packet/s.
for filling the queue above threshotd. oy

We letqq denote the queue occupancy corresponding to the
backoff delay threshold,. Note that this implicitly assumes
at a one to one correspondence exists between queue oc-
upancy and queueing delay. This assumption is satisfied, fo

alwayshave that some packets do experience queueing d@

We immediately have that as long as the queueing del
remains above threshold), then each RTT the delay-base
AIMD algorithm will lead to at least one flow backing off. example, for any link with constant service rate.

Moreover, since every packet participating in the overshoo © Also assume, for the moment, that a delay-based flow backs

in queue occupancy abovg measures the high q_ueuem ff its cwnd whenever one or more packets measures queueing
delay, the magnitude of the aggregate flow backoff is rough lay above threshold,. We return to this assumption later

proportional to the overshoot in queue occupancy (we ma K€ action IV-D. We then have the following identity:
this statement more precise below). Intuitively, this teea

pressure to drain the queue occupancy belew thereby
achieving congestion control. This argument does not requz
that every flow be able to detect events when the queueifig
delay becomes high, it only requires that in aggregate the n

flows respond to each such congestion event. By the foregoing < Z + (Bmaz — 1)(q(k) —))
key observation, the latter is always the case. We deveisp th =1

argument in more detail next. Hence, combining (1) and (2),

< ﬂmaz - q() + Z w’L qO)

A. Congestion Control Analysis qk+1) = Z [w;(k + 1) — bs (k + 1)t;]
Considern delay-based AIMD flows sharing a common i=1

bottleneck. Letw;, t; be the respective cwnd and round-
trip propagation delay of flowi. Let W = [wy, -, wy],
T = [t1,--- ,t,]. Time k corresponds to thé’'th congestion N
event, i.e. a network event where at least one flow backs off

’ max + 1-— max + ai/—Ti
its cwnd. Figure 3 illustrates an example cwnd and queue time Bmasq(k) + (1= 6 w Z
history. From the AIMD algorithm we have that n

wilk +1) = Bi(kywi(k) + aiTi(k) + 3 fwik) = bk + 1)t — (k)] (3)

i=1

|
Mﬁ

[Bi(k)w;(k) 4+ a; Ti(k) — bi(k + 1)t;]

i=1

i=1

whereq; is the AIMD increase parameter in packets/RT7,
is the AIMD backoff factor withg;(k) = 1 corresponding to
no back off of flow: at eventt andg < S, < 1 otherwise.
T(k) is the number of flow RTTs between congestion events 17pe eyistence of a unique, stable steady-state solutiorsyiochronised
kandk + 1. AIMD-based TCP networks is shown in, for example, [13].

When flows are synchronised, in steady statgk + 1) =
b;(k) and the terms in the square brackets sum to zero. Hence,

the queue length is constrained by situations where the flows are not synchronised. In moréldeta
taking expectations in (3) yields

q(k + 1) < ﬁmamQ(k) + (1 - ﬁmaw)qo + Zasz(k)

i=1 E[‘](k + 1)] < BmamE[Q(k)] + (1 - ﬁmaz)% + Z OézE[Tz(k)]
Sincel,q < 1 this recursion is convergent and sokas» oo n =l
n + Z [Elw; (k)] — E[bi(k + 1)]t; — Elq(k)]]
qk) < q+ Z a;Ti(k)/(1 = Bimax) (4) =1
=1 In steady state E[b;(k + 1)] = E[b;(k)] , the terms in the

Since the timeT; (k) between congestion events is necessariffiuare brackets sum to zero and length is constrained by
bounded (trivially, since the network capacity is boundesl t n
flow cwnds cannot increase indefinitely), we have (&) is Elq(k+1)] < qo+ Z a; B[Ti(k)]
upper bounded. i=1

The bound in (4) is potentially very conservative. Nevertherhus our conclusion that low correlation is not an obstacle
less, it establishes that a network of synchronised detesgdd to congestion control remains unchanged in unsynchronised
AIMD flows will always converge to operation with boundechetworks.
gueues and so achieve congestion control. This result holds
even when the delay measured by any given single flow may he
weakly correlated with queue excursions above the thrdshol’
70. Thus we have established that low correlation is not in The foregoing analysis assumes that the delay-based AIMD
itself an obstacle to achieving congestion control. Of seuralgorithm backs off its cwnd whenever one or more packets
we need to validate this theoretical analysis via expertalenmeasure queueing delay above threshajd However, in
measurements and this is the subject of Section V. Befote tHfactice we expect to use a smoothed estimate of queueing
however, we first consider some important extensions of o@¢lay in order to avoid backing off in response to spurious

Filtered delay measurements

analysis. delays. In other words we expect to backoff cwnd only after a
sufficient number of packets have experienced high queueing
delay.

B. Two important cases The choice of an appropriate smoothing filter is a design

Tighter bounds on the queue occupancy can be re‘.jm(?‘ve_stion that is o_ut_/vith the scope of the_present papee_adst
obtained in two common cases. our interest here is in understanding the impact such srirapth

Case 1 Queue occupancy falls belog (i.e. below the may have on the congestion control properties of a delay-

delay thresholdy) on flow cwnd backoff following congestion P2s€d algorithm. One direct approach is to seek a class of
eventk. In the worst case (i.e. corresponding to peak queueififjers under which the previous analysis remains appleabl
delay), congestion evet+ 1 occurs when all flows increaselt can be seen immediately that as long as we maintain the

their cwnd's at the point where the queue is just betgw identity (2), then the general bound (4) remains unchanged.
That is For example, this holds when we modify the based delay-

n based AIMD algorithm to be
q(k+1) < QO+ZmaX(O@71) ®)

— cwnd + o/ cwnd — 7, on each ACK

cwnd «— < min[B(cwnd + S,),cwnd], if T> 79
The bound (5) has a natural interpretation. Due to network 8 x cund, if packet loss

delays, no flow can detect an event where the queue exceeg]

S .
7o until at least one RTT after the event. During this RTT jpnerey > 0 if the currently acknowledged packet has

can therefore happen that every flow increases its cwnd a%x(Perlenced queueing delay abave(this may be estimated

injects additional packets into the network. As a resulg th'a the packet time stamp), o.theryws;e = 0 Thl.JS .th.e
a(legonthm makes a small reduction in cwnd when individual

Ezepgpt:r?ic:r?;r lgnt%:%ilr{r?bg;/i;sfrl]:vs; can, in the worst Ca%a’ckets experience high delay. This satisfies (2) by engurin

Case 2 Queue occupancy remains aboye following that cwnd is always backed off at least in proportion to the

. . number of packets with high queueing deldy. is a running
ggngestlon event. In this casel’(k) < matie(y,z,...nyti AN total of v values and is reset to zero on a full backoff (i.e.

whenTt > 7). It is therefore the overall amount, since the last

n full backoff, subtracted from cwnd due to individual deldye

gk) < qo+ Y max(ei,1)/(1 = Baz) (6) packets. We usé,, to adjust the decrease in cwnd at a full
=1 backoff to avoid double counting of delayed packets. The

delay signalr triggering full backoff may be any smoothed
C. Unsynchronised Flows estimate of queueing delay, thereby decoupling the baselin

The forego!ng analysis is for_ networks Where flow baclkOﬁS 2Under mild assumptions, the existence of a unique stajodistribution
are synchronised. The analysis can be readily generaltsedot unsynchronised TCP networks is shown in, for examplg].[1

| [Description |

FreeBSD v4 with the dummynet module, can be configured

CPU Intel Xeon CPU 2.80GHZ
Memory 512 Mbytes with various bottleneck queue-sizes, capacities and raxpd
Motherboard Dell PowerEdge 860 propagation delays to emulate a range of network conditions
Kernel Linux 2.6.18 TCP Flows are injected into the testbed usinger f. TCP
txqueuelen 1,000 . . e g .
max backlog 300 stacks are instrumented using a modified version of the Linux
NIC Intel 82540EM t cppr obe module. Unless otherwise stated, the queueing
NIC Driver 1000 5.2.39-k2 delay threshold used i$=50ms. On receipt of an ACK packet
TX & RX Descriptors 4096 . . .
an RTT measuremenRTT is obtained by comparing the
TABLE | time that the ACK packet is received with the time that the
HARDWARE AND SOFTWARE CONFIGURATION. corresponding data packet was transmitted. In Section V-B —

Section V-E delayed acking and TSO is disabled. These are

then enabled in Section V-F in order to explore their impact

on congestion control behaviour. The minimum observed RTT
congestion control behaviour of the algorithm from the ckoi measuremenRTT,,;, is used as an estimate of propagation
of smoothing filter. delay and queueing delay is then estimate®&g — RT' T}, ..

The per packet backoff factgrmay differ from the standard
backoff factor 3. One natural choice iy = 1 — B which g lllustrating low correlation
ensures back off tg3 x cwnd when a full windows worth . L . . .
of packets are delayed. Since we might expect to choose thé{\/e begin by conS|der|_ng a heavily multiplexed link where
smoothing filter such that exceedsr, when a full cwnd of we expect .IOW correlation between delay gnd Iosg to be
packets exceeds (indeed, perhaps when less than a full cwnlrevalent. Figure 4 demonstrates the congestion conttioirec

of packets exceed,), then the per packet backoff simply act f the delay-based AIMD algorithm on a 10Mbps Iink.sh_ared
as a conservative “safety net” . y 80 TCP flows. The flows have a range of round-trip times

Again, we have that low correlation is not an obstacle fiom 20-200ms. Figure 4(a) plots the correlation between th

congestion control even when a filtered delayed signal id.us@ueueingl delay measured by flow 1 and the queue.ing dglay
measured by flows 2-80These results are representative, with

similar correlation values obtained for flows other than flbw
It can be seen that the correlation between measured qgeuein
To help build confidence in the validity of the foregoingjelay is close to zero for all flows. Figure 4(b) shows typical
analysis for real network traffic, in this section we explorg@me histories of the measured queueing delay (i.e. medsure
delay-based congestion control behaviour using expetsherRTT minus the known propagation delay), and the low level
measurements taken on a hardware testbed. Use of expgficorrelation between measurements is evident.
mental tests seems particularly important in the context of pespite the low correlation between measured queueing
delay-based control as issues such as scheduling grapulagelay, the delay-based algorithm successfully regulates t
hardware offload, packet burstsc are difficult to model ac- flow cwnds to prevent queue overflow and congestion. This
curately yet may have a direct impact on delay measuremegisllustrated in Figure 5(a) which plots the sum of the flow
and performance. cwnds while Figure 5(b) plots typical cwnd time histories
This section is organised as follows. We begin by describifgr individual flows. During this test run no packet losses
the experimental setup used and then demonstrate that lg&¢urred. Note that the small flow cwnds in Figure 5(b) are
correlation between delay and loss is prevalent on heavilyature of the link being highly multiplexed and reflect the
multiplexed links. Initially delayed acking is disableds & fact that here we are intentionally seeking to explore sitaa
TCP segmentation offload (TSO) in order to focus on corrgrhere flow delay measurements may be weakly correlated.
lation issues. We explore the congestion control behawbur
the delay-based AIMD algorithm and compare exper_imentgl_ Peak queueing delay vs number of flows
measurements with the analysis in Section IV. In Section V-)))
we discuss in more detail some observations on asymptotic'© €xplore congestion control performance in more detail
behaviour as the number of flows becomes very large. Y¥f consider the measured queueing delay as a function of
Section V-F we enable delayed acking and TSO and considia¢ number of flows sharing a link. Figure 6 plots the mean

the impact on delay measurement and congestion control, @1d peak queueing delay as the number of competing flows
is varied on a link. Also marked on Figure 6 is the analytic
bound (5). This worst case bound captures the fact that no flow
can detect a queue overshoot abeyeauntil one RTT after it

We have implemented the delay-based AIMD algorithm ioccurs. Thus it can happen that all flows increase their cwnd
Linux 2.6.23. Experiments were carried out using a testbedd insert extra packets with one RTT, creating an overshoot
consisting of commodity PCs connected to gigabit switched®over, that is proportional to the number of flows. It can
to form the branches of a dumbbell topology. All sender and
receiver machines used in the tests have identical hardwariueueing delay is the measured from the packet time-stareps |

. . . base RT'T, wherebase RTT is the minimum observed delay. We confirmed

and software configurations as shown in Table | and

: %t flow baseRT'T estimates of propagation delay were accurate. Time
connected to the switches at 1Gh/sec. The router, runnimgories are aligned based on the peak correlation.

V. EXPERIMENTAL MEASUREMENTS

A. Experimental setup

165

160

155

correlation coefficient
Aggregate cwnd (packets)
=
IS
&

0 L L L L L L L 125 I I I I I I
0 10 20 30 40 50 60 70 80 0 100 200 300 400 500 600 700

flow number time (s)

(a) Correlation between queueing delay measured by flow Jgritbws 2-80. (a) Sum of flow cwnds.
200 4

T
flow 1
180 B flow 2

3.5 ~

=

o

=]
T
I

i

I

S
T
I

i

)

=]
T
I

+ 5
80 E] +0 +
+

measured queueing delay (ms)
=
)
3
T
cwnd (packets)
N
2
T
I

60
a0 +

201 o + P 4 8 o -

0 1
221 222 223 224 225 226 227 228 229 222 223 225 227
time (s) time (s)

(b) Time histories of measured queueing delay for flow 1 and fo (b) cwnd time histories for flow 1 and flow 2.

Fig. 4. 80 concurrent, long-lived flows. 10Mbps link, flow R§ Tiniformly ~ Fig. 5. 80 concurrent, long-lived flows. 10Mbps link, flow R¥ Tiniformly
randomly chosen from 20-200ms. randomly chosen from 20-200ms.

be seen that as we increase the number of flows the pegkwill then occur on the next round-trip time when flows
gueueing delay the analytic bound is generally quite tihts increase their cwnd by one packet, with the magnitude of
not only provides a degree of validation of the analysis ithe overshoot beindcwnd(n) + 1) x n — P — qo. As we
Section IV but also provides a concrete demonstration thatrerease the number of flows to+ k, then the flow cwnd just
delay-based algorithm can indeed achieve effective cdioges before backoff initially remains unchanged iceund(n+k) =
control under low correlation conditions. cwnd(n), providedcwnd(n) x (n+ k) — P < qo . Eventually,
Investigating these experimental results in more detail, fowever, as: + k increases furthetwnd(n + k) must reduce
can be seen from Figure 6 (and Figure 8) that the pegkbe smaller tharwnd(n). At this point the delay overshoot
queueing delay does not increase monotonically with tidll also decrease, leading to non-monotonic behaviouhef t
number of flows but rather may decrease as the number@y€rshoot. It can seen from Figures 6(a) that, as might be
flows increases. This arises due to quantisation of the numggpPected, this effect is most pronounced when all flows have
of packets in flight. To see this considerflows sharing a the same RTT and so are almost synchronised. When flows
link with bandwidth-delay producP packets and with queue have different RTTs, as in Figure 6(b), and are unsyncheahis
occupancyq, packets corresponding to the queueing deld{pe overshoot tends to show a simple rising trend.
thresholdry. Assume, for simplicity, that the flows are per- Also plotted in Figure 6 is the mean queueing delay vs
fectly synchronised and have the same cwnd.dwetd(n) = number of flows. It can be seen that the mean delay also
max{j:jxn—P <qo,j€{0,1,2,..}}. Thatis,cwund(n) displays a rising trend. This has implications for perfonts
is the largest cwnd such that the queueing delay still remaiand operation at the “knee of the curve”. The potential sxist
below the threshold,. Overshoot in queue occupancy aboveo modify the delay-based algorithm to mitigate this effect.

0) T T T T T T T T T T T
Mean Observed Queueing Delay —»—

Max Observed Queueing Delay ---x---

Q Tp= 5% mse% rrrrrrrr 1 e(}ol

Analytic Bound

250 |

0.8

0.6 [

0.4 |-

Queueing Delay (msec)
Time-Fraction Flows Spent at Cwnd

0 0 50 1100 1;0 260 0 0 ‘ 20 40 60 86 100 le0 1140 160
Number of Flows, N Number of Flows, N
(a) All flows have RTT 100ms. (a) 10Mbps link, 100ms RTT, lSOOB packets.

300 T T T T T T T T
T T
Mean Observed Queuelng Delay —+—
Max Observed Queuem% Delay ---<--- 1
msec --------
Analytlc Bound

Ccwnd>5 ---o--

06 [

0.4 |

Queueing Delay (msec)
Time-Fraction Flows Spent at Cwnd

02

o Tt ‘X;XWX\
0 — N ::&*~—in‘ Ty 1 X 1 AN 1 !
0 0 5‘0 1‘00 1‘50 260 0 20 40 60 80 100 120 140 160
mber of Flows, N (b) 10Mbps link, RTTS bﬁbOfZFBV(v)Sms 1500B packets
(b) Flow RTTs uniformly random from 20-200ms. P p

Fig. 7. Fraction of time that flows take values @fnd vs the number of
Fig. 6. Peak and mean queueing delay vs number of flows. 10Nips flows. It can be seen that flosmwnd's tend to decrease as the number of
Bound (5) is labelled “Analytic Bound”. The vertical line i@) marks the flows increases, until all flows havevnd of one packet.
point at which the number of flows equals the path bandwidtlaydproduct.

by adjusting the threshold, based on observed overshoot if0int where this occurs can be calculated as follows. Inféigu

delay. However, we do not explore this possibility here. ~ 7(a) flows with a base RTT of 100ms share a 10Mbps link.
The number of packets required to fill the pipe and create a

queueing delay ofy is B(RTT+ 1), whereB is the link rate
D. Asymptotic behaviour in packets per second . With=50ms and 1500 byte packets,
While our experimental results demonstrate that low corré(RTT + 79)=130 packets i.e. our limit is 130 flows with
lation need not be an obstacle to congestion control, theey afwnd of 1 packet. This is confirmed by inspection of Figure
highlight that other issues can arise on links with very darg/(@). In the mixed base RTT case shown in Figure 6(b) it is
numbers of flows. In particular, as the number of flows jgarder to analytically calculate the number of flows wheee th
increased the flow cwnd's will eventually decrease untilythdimiting regime occurs. Nevertheless, the qualitativedwetur
are only one packet in size. This is inevitable since newl§ similar as can be seen from Figure 7(b).
added flows must have a cwnd of at least one packet andn this asymptotic regime, each additional new flow leads
therefore existing flows must, if possible, reduce their dwrto an increase in the level of queue occupancy. This occurs
to make space for new flows (or rather backoff their cwnds ttespite the fact that the queueing delay may then remain per-
maintain the queueing delay belowy). Eventually, however, sistently abovey, since flows all have cwnd of one packet and
we will reach the situation where all flows have reduced theso cannot backoff their cwnd further to reduce the queueing
cwnd to one packet. delay. Note also that when the delay is persistently abgye
This behaviour is illustrated in Figure 7, which plots thelelay-based AIMD flows will not increase their cwnd. Hence,
flow cwnds as the number of flows is increased. It can be sesa have that the queueing delay simply increases lineatly wi
that as the number of flows is increased the flow cwnds tettte number of flows. This behaviour is evident in Figure 6(b)
to fall, until eventually all flows have cwnd of one packeteThwhen the number of flows is greater than 130 — it can be seen

250

T T T T
Mean Observed Queueing Delay —+—
Max Observed Queuein%Delay =X
Tp =50 msec --------

Analytic Bound

200 Bl

Max Observed Queueing Delay (msec)

0 50 100 150 200 250 300 350 400 450
Number of Flows, N
Fig. 8. Peak and mean queueing delay vs number of flows. 10Nihips
100ms RTT, 512B packets.

Aggregate Goodput Observed (Mbit/sec)

that the delay rises linearly, parallel to the analytic bt (5).

We discuss SACK Reno in more detail in the next section,
but note here that once the cwnd of a flow falls below three
packets, fast retransmit no longer operates (since it regui
two duplicate acks after loss of one packet) and congestion
control falls back retransmit timeouts (RTO). SACK Renoi§
behaviour is the asymptotic regime is thus complex and, foi

example, prone to prolonged unfairness between competinfg

flows due to sensitivity to loss of retransmitted packetsmwhe
in RTO.

The fact that flow cwnds are constrained to have a minimum
value of one packet appears to place a limit on the use of delay
based congestion control. Namely, as the number of flows is
increased to the point where a flow cwnd of less than one
packet is needed to maintain low queueing delay, then low
delay operation becomes impossible and packet loss e\gntua
occurs as the number of flows becomes sufficiently large.

The limit is, however, not a fundamental one. For example,
while cwnd is constrained to be at least one packet, we might

reduce the packet size to prevent queue buildup. For example oos

we re-ran our experiments using a packet size of 512 byte;s

rather than 1500 bytes. Figure 8 shows the correspondiig .

results — we can now fit more than 390 flows on the link beforé

the flow cwnds are all reduced to only one packet. Reducing |

packet size may not be an attractive solution, however, as it
increases the transmission overhead (packet headersrénd i

framing overhead remain unchanged as the packet payload is”” [

decreased in size). One alternative is to insert delaysdutw

packet transmissions so as to pace packets at a slower rate, °

which would soften the impact of the one packet lower bound
on cwnd. However, situations where this limit is reached

are essentially corner cases where flows are all getting vi% :

low throughput and the user experience is likely to be po
regardless of changes to TCP. For example, on a 10Mbps link
with 130 flows, each flow is has a throughput share of less than
75Kbps, i.e. similar to a dialup modem. With 512B packets,
for >390 flows the per share is less than 25Kbps.

'DB-AIMD ——
-
o

MK

Ko Koo i e oooo K

Number of Flow:

(a) Goodput vs num

250

Number of Flows

(b) Fairness vs number of flows.

200

T

T

1

1

40

60

(c) Fairness between flows when 128 concurrent flows.

140

Goodput and fairness for Reno and delay-based AlMrahms.
bps link, 100ms RTT.

E. Comparison with SACK Reno ‘ e

10 —

To illustrate that effective congestion control is indeethig PO e SR
achieved by the delay-based algorithm even when corraelati@
is weak, it is informative to compare behaviour with that off
the standard SACK Reno loss-based TCP. Figures 9 and %0
compare the performance of the delay-based algorithm with ©f 1
that of the standard Linux SACK Reno algorithm. Figure $§
show measurements when flows have the same base R3IT,|]
of 100ms and Figure 10 shows measurements when tlge
flow base RTTs are distributed between 20-200ms. It cah
be seen that for a given packet size link utilisation is at
worst slightly reduced with delayed-based AIMD i.e. the low
delay achieved by the delay-based AIMD algorithm does not ot T T Ty
come at the cost of a significant lowering of throughput. As Number of Flqus
discussed previously, the negative impact on throughput of (@) Goodput V& limbér of flows.
using a smaller packet size is evident in Figure 9(a). While 5 R o
the aggregate link utilisation is similar, it can be seemfro | gﬁlgzggﬁéagﬁ B
Figure 9(b) that the delay-based algorithm achieves better Y 128 DB-AIMD Flows -
inter-flow fairness than Reno on heavily-multiplexed paths
It can also be seen from Figure 10(b) that the difference @
fairness behaviour is less pronounced when there is widér ,
mix of flow RTTs, and so of flow cwnds. At low cwnds, fast?g
recovery is ineffective and congestion control in Reno rsve ¢ o3
to RTO operation. Unfairness then arises because flows in RTD
become very sensitive to packet loss — following an RTO, if oz} \
the first retransmitted packet is lost then the RTO timer is g gt
doubled and can easily increase to several seconds duration o = s
In contrast, the delay-based algorithm avoids packet less e
in qUite extreme regimes. %20 ;0 éo éo 12)0 120 1140 1230

-7 T T T T T T T
32 Reno Flows —+—

X

Swok
[H

0.5

e R

X
X
o im0, Rl
X ety o S

1
180 200
Flow Base RTT (mse

(b) Fairness between flows when 22, 64 and 128 flows.

F. Delayed ACKing and TSO Fig. 10. Goodput and fairness for Reno and delay-based Alldbrighms.
.] . _10Mbps link, 20-200ms RTT.
The foregoing experimental results disable delayed acking

and TSO in order to focus clearly on the fundamental per-
formance of the delay-based algorithm. In this section we In a similar vein, in this section we also consider the impact
consider the impact of delayed acking and TSO in more detaf. hardware TCP segmentation offload (TSO). TSO is widely
Although our primary focus in this paper is on the impaaised in modern network cards, particularly at higher line
of low correlation in congestion control, we found that ourates. With TSO large sized segments are handed off to the
experimental tests also helped to throw some light on thetwork interface card for conversion into multiple pasket
issue of obtaining clean delay measurements. In particulbefore transmission. This can create additional delayenthié
we found that some significant sources of “noise” in delagnd host sender waits for a sufficient backlog of enqueuea dat
measurements can be removed by simple sender side changderm a large segment — a timer is typically used to bound
to delay measurement within the network stack. These ctsangee delay i.e. a segment is handed off to the hardware once
have since been incorporated into the Linux kernel. sufficient packets have been accumulated for transmission o
Delayed acking can be a source of error in delay measufailing that, when the timer expires. TSO can also lead to
ments. With delayed acking, a receiver does not immediatéhcreased burstiness of packet transmissions (a segmertts w
acknowledge receipt of a data packet but instead waits urtflpackets are sent back to back) and thus perhaps to changes
either a second packet arrives or a timer expires (the timarqueueing delay behaviour.
may be a fixed delay e.g. 100 ms or might be adaptive e.g.Figure 11 plots RTT measurements illustrating the impact
in Linux the timer is adapted to be roughly related to thef delayed acking. The data marked “timestamp” corresponds
inter-packet spacing) before transmitting a TCP ACK packtd the packet RTT measurements obtained as per RFC 1323
back to the data sender. In practice delayed acking is alm{Bt — these are the standard RTT values available within
universally used and creates additional delay within thé ethe network stack. While originally introduced for retraris
host receiver. This additional delay is unrelated to quageitimeout (RTO) calculations, these measurements are aésh us
delay and network conditions and so is a form of “noisely many delay-based congestion control algorithms. Nage th
on the measured packet RTT. An obvious concern is that thégsge spikes in the measured delay due to delayed acking.
“noise” may negatively impact delay-based congestionrobnt These arise because RFC 1323 mandates that RTT is measured

10

250 [i i Timestamp Tq= 20msec ——— i can be difficult to decide whether an increase in delay should

Timestamp 1,=110msec

Filtered 1= 20msec mmmeee be attributed to delayed acking or to network congestion.

Filtered 1p=110mSsec «ssseses

Fortunately, a clean RTT signal without delayed acking
delay can be readily obtained by a small change to the delay
measurement calculation used for congestion control (the
delay measurement used for RTO calculations is, of course,
left unchanged). Specifically, by using an RTT measurement
calculated as the time between transmission of ribevest
packet acked and arrival of the ACK packet — see Figurel2. In
addition, when delayed acking is detected we ignore the RTT
value from ACK packets that ack a single packet (as opposed
to acking multiple packets). These changes are straigdiar
to implement but their impact is substantial. This is illagtd,

200 205 Timf(:ec) 215 20 for example, in Figure 11 by the data marked “filtered”. It
can be seen that the delay spikes associated with delayed
Fig. 11. Example time histories of measured RTT with delagelling. acking are completely removed. That is, by a small change

“Timestamp” denotes the RTT measured as per RFC 1323. fi&dltedenotes
RTT measured as the time between arrival of an ACK and trasssam of the to the delay measurement approach we are able to remove a

most recent packet acked. 10Mbps link, two flows, RTT of flows 2oms Significant source of “noise”.

Observed RTT (msec)

and of flow 2 is 110ms. Figure 13 illustrates the impact of TSO on delay measure-
ments. The data marked “2.6.18” shows measurements taken

RTT rto using the Linux 2.6.18 kernel and it can be seen that TSO
- _ > can induce large spikes in the measured RTT. These spikes

h RTT adjusted — are associated with the kernel using a simple timer with the

relatively large value of 40ms. A segment is handed off to
the hardware once sufficient packets have been accumulated

for transmission or, failing that, when the timer expires.
TCP data TePACK The data marked “2.6.24" show measurements for the same
time experimental setup but now using a more recent 2.6.24 kernel

that includes modifications (motivated in part by the work in

_ _ _ _ o this paper) that implement more sophisticated TSO handling
Fig. 12. lllustrating RTT calculations with delayed ackiu@ timeline at | b h h ik | letel d
sender. Data packet 2 generates a delayed ack at the reediigr arrives t can be Se?n t. at the SP' es are almost comp et(:j' y remove :

at the sender after a round-trip time. RTtb denotes the RTT measurementAlSO shown in Figure 13 is the queue occupancy time history

defined in RFC 1323 which includes both the network roumﬂt[rhe and the from Wh|ch |t can be seen that the RTT measurement now has
delay due to delayed acking at the receiver, Ridjusted denotes the RTT little noise

measurement without delayed acking.
With the changes to RTT measurement and TSO handling
discussed above, Figure 14(a) plots the measured queueing
as the time between transmission of tldestpacket acked delay vs number of flows with delayed acking and TSO
and arrival of the ACK packet. This is illustrated for examplenabled. In these tests we also make a change to the delay-
in Figure12. based AIMD algorithm to prevent delay backoff reducing the
It can be seen that RTT measured as per RFC 1323 inclu@¥4'd below two packets (loss backoff and RTO behaviour is
the delay within a receiver before an ack is sent. While thigichanged). This is because with delayed acking enabled we
makes sense for RTO calculations (inflating the RTO threshdleed at least two packets in flight in order to obtain a clean
and avoiding spurious timeouts being induced by de|ayg@Iay measurement using the approach dlscussed_ abpvg. It ca
acking), it is less useful for delay-based congestion ebnt€ seen from Figure 14(a) that the performance is similar to
since the delay within the receiver is unrelated to netwaork-c that without delayed acking and TSO — compare with Figure
gestion. Although we might use filtering to attenuate thaylel 6(P)- In particular, the queueing delay remains bounded eve
spikes induced by delayed acking, effective filtering reesii for large numbers of flows where the correlation between
some form of averaging over multiple delay measuremenf@easured and actual queueing delay is low. The point at which

We note that the impact of delayed acking is particularf® link enters the asymptotic regime is changed, however,

greatest on flow with longer RTT which has cwnd of aroungound on cwnd of two packets in Figure 14(a) while in Figure
10 packets rather than the short RTT flow which has cwiffb) the lower bound is one packet.

around 40 packets) where delay measurements are relativelplso shown in Figure 14(b) is the corresponding measured
widely spaced due to the small number of packets in flighhk goodput. It can be seen that the goodput is almost idehti
and filtering can be problematic. For example, if a flow has that without delayed acking and TSO. Although not shown
cwnd of one packet, delay measurements are taken an Riére, throughput fairness between flows is also very sirtolar
apart and owing to the long delay between measurementshiat without delayed acking and TSO.

200

VI

262416 —+—
26.18.1

Cwnd (pkt)

60 L L L L L L

100 T
2.6.24-rc6 —+—
2.6.18.1

VI

Queue Length (pkts)

2.6.24-1c6
26181 -

RTT (msec)

t (sec)

Fig. 13. Example time histories of measured RTT with TSO bsuhlin
Linux 2.6.18 and 2.6.24 kernels. Delayed acking disablexp flot shows
flow cwnd, middle plot queue occupancy and lower plot meabRET at
sender. 10Mbps link, single flow, RTT 100ms, queueBDP.

11

400

T T T T T T T T T
Mean Observed Queueing Delay —+—
Max Observed Queueing Delay ---x---
50 msec oo -
Analytic Bound o -

Observed Queueing Delay (msec)

L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Number of Flows, N

(a) Peak and mean queueing delay vs number of flows

9

Aggregate Throughput
(5]
T
|

0 L L L
0 50 100 150 200
Number of Flows

(b) Goodput vs number of flows

Fig. 14. Performance with delayed acking and TCP segmentatffload
enabled. 10Mbps link. Flow RTTs uniformly random from 2008%s.

VI. ScoPE

This paper focusses on the specific question of whether low
correlation between measured and network congestion is a
fundamental obstacle to congestion control. This issuef is o
particular interest as it is a commonly voiced concern and
has been the subject of a number of published studies. We
emphasise that many other issues that are not addressed here
remain to be considered before any decision could be made as
to the suitability or otherwise of delay as a congestion @lign
for use other than on a purely experimental basis. For exampl
we do not consider the issue of co-existence between flows
operating loss-based and delay-based congestion copénel,
formance over multiple bottlenecks, performance over eg®
links and so on. Nevertheless, we argue that the work here is
an important first step in exploring the nature of fundamlenta
constraints on congestion control.

VII. CONCLUSIONS

In this paper we revisit the commonly voiced concern
that low correlation between measured delay and network
congestion that delay may be fundamentally flawed as a signal

for congestion control. This concern is particularly ta@im [15]
view of a humber of proposals to change the TCP congestion
conUoIa@oﬂﬂnntornakeuseofdemyinkﬂmaﬂon.Exmﬁpq16
include not only FAST TCP [7] but also hybrid congestion
control algorithms based on the use of both loss and delglxé,]
e.g. TCP lllinois [8] and Compound TCP [15]. The latter i
now available in Windows Vista and is currently undergoing
review at the IRTF and IETF standards bodies.

Our main contribution in this paper is to demonstrate that in
fact what matters for congestion control is thggregatebe-
haviour of the flows sharing a link. Hence, perhaps somewhat
surprisingly, while any given single flow may measure delay
which is only weakly correlated with network congestioristh
is not in itself an obstacle to congestion control. In thipgra
we demonstrate this constructively via detailed expertiaden
tests and also confirm analytically the general nature of our
conclusions. This potentially has direct implications tarr
understanding of the fundamental constraints on congestio
control within the current Internet architecture.

12

K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound®TC
approach for high-speed and long distance networkslnternational
Workshop on Protocols for Fast Long-Distance Netwp2@05.

] Z. Wang and J. Crowcroft. A new congestion control sche8low Start

and Search (Tri-S)ACM Computer Communication Revie@d (1):32—
43, 1991.

Z. Wang and J. Crowcroft. Eliminating periodic packesdes in the
4.3-Tahoe BSD TCP congestion control algorithrACM Computer
Communication Review22(2):9-16, 1992.

ACKNOWLEDGEMENT

Discussions with Robert Shorten are gratefully acknowl-
edged.

REFERENCES

(1]

S. Biaz and N. Vaidya. Is the round-trip time correlateihvthe number

of packets in flight? IrProceedings Internet Measurement Conference
(IMC), 2003.

L. S. Brakmo, S. W. O’'Malley, and L. L. Peterson. TCP Veghlew
techniques for congestion detection and avoidanceProteedings of
SIGCOMM pages 24-35, 1994.

L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end cstie
avoidance on a global internetlEEE Journal on Selected Areas in
Communications13(8):1465-1480, October 1995.

D.J.leith, J.Heffner, R.N.Shorten, and G.D.McCullagiDelay-based
aimd congestion control. IRroc. Workshop on Protocols for Fast Long
Distance Networks, Los Angele2007.

V. Jacobson, R. Braden, and D. Borman.
performance. IETF RFC 1323, 1992.

R. Jain. A delay-based approach for congestion avoklandntercon-
nected heterogeneous computer netwoAGSM Computer Communica-
tion Review 19(5):56-71, 1989.

C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, aftgtture,

(2]

(3]

(4]

(5]
(6]

TCP extensionshifgin

(7]

algorithms, performance. IiEEE INFOCOM 2004 2004.

S. Liu, T. Ba?ar, and R. Srikant. TCP-lllinois: A loss addlay-based
congestion control algorithm for high-speed networks. Pioc. First
International Conference on Performance Evaluation Mdtilogies and
Tools (VALUETOOLS), Pisa, Italy, October 11-13, 202606.

J. Martin, A. Nilsson, and |. Rhee. Delay-based congestivoidance
for TCP. IEEE/ACM Transactions on Networkin@1(3):356-369, June
2003.

R. S. Prasad, M. Jain, and C. Dovrolis. On the effectgsnof delay-
based congestion avoidance. 8econd International Workshop on

(8]

El

[10]

Doug Leith Doug Leith graduated from the Univer-
sity of Glasgow in 1986 and was awarded his PhD,
also from the University of Glasgow, in 1989. In
2001, Prof. Leith moved to the National University

PLACE of Ireland, Maynooth to assume the position of SFI

PHOTO Principal Investigator and to establish the Hamilton

HERE Institute (www.hamilton.ie) of which he is Director.
His current research interests include the analysis
and design of network congestion control and dis-
tributed resource allocation in wireless networks.
Gavin McCullagh

PLACE

PHOTO

HERE

Protocols for Fast Long-Distance Networka004.

S. Rewaskar, J. Kaur, and D. Smith. Why don't delay-tasenges-
tion estimators work in the real-world? Technical ReportOBFR001,
Department of Computer Science, UNC Chapel Hill, July 20Q0H)5.
R.N.Shorten, D.J.Leith, and F.Wirth. Products of ramdmatrices and
the internet: Asymptotic results.|[EEE Transactions on Networking,
14(6), pp. 616-6292006.

R.N.Shorten, D.J.Leith, J.Foy, and R.Kilduff. Analysand design of
congestion control in synchronised communication netao/kutomat-
ica, 2004.

R. Shorten and D. Leith. On queue provisioning, netwefficiency
and the delay-bandwidth productEEE Transactions on Networking
15:866-877, 2007.

[11]

[12]

[13]

[14]

