
1

Delay-based Congestion Control: Sampling and
Correlation Issues Revisited

G.D. McCullagh, D.J.Leith
Hamilton Institute, Ireland

Abstract— In this paper we revisit the commonly voiced con-
cern that low correlation between measured delay and network
congestion means that delay may be fundamentally flawed as
a signal for congestion control. Our main contribution is to
demonstrate that in fact what matters for congestion control
is the aggregate behaviour of the flows sharing a link. Hence,
perhaps somewhat surprisingly, while any given single flow may
measure delay which is only weakly correlated with network
congestion, this is not in itself an obstacle to congestion control.

I. I NTRODUCTION

In this paper we revisit the recently voiced concern that low
correlation between measured delay and network congestion
means that delay may be fundamentally flawed as a signal
for congestion control. A related concern is that on heavily
multiplexed links the measured delay may be only weakly
correlated with the congestion window of a flow [10]. These
concerns are particularly topical in view of a number of
proposals to change the TCP congestion control algorithm to
make use of delay information. Examples include not only
FAST TCP [7] but also hybrid congestion control algorithms
based on the use of both loss and delay, e.g. TCP Illinois
[8] and Compound TCP [15]. The latter is now available in
Windows Vista and is currently undergoing review at the IRTF
and IETF standards bodies.

A number of recent independent measurement studies [1],
[9], [11] have indeed found that there may be only low
correlation between packet loss events and the delay measured
by a flow. That is, when packet loss occurs, and thus some
network queue is full, nevertheless all flows need not observe
high delay. In fact, any given TCP flow may observe high delay
at only a small proportion of packet loss events. This behaviour
is confirmed by our own experimental measurements.

[9], [10] consider possible reasons for the low correlation
observed and suggest that sampling issues are a fundamental
factor. To see this, consider Figure 1 which presents an
example queue occupancy time history at a bottleneck link
carrying many flows. Packets from a single flow “sample” the
queueing delay at the bottleneck link. However, when many
flows share a link, the proportion of queued packets that are
associated with a given flow can become small. The queueing
delay is then only very sparsely sampled by that flow – for
example, the “samples” for one flow are marked by solid
squares in Figure 1. As a result, the flow cannot accurately
estimate the state of the queue and may fail to detect even

This work was supported by Cisco Systems and Science Foundation Ireland
grant IN3/03/I346.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

90

100

time (s)

qu
eu

e
oc

cu
pa

nc
y

(p
ac

ke
ts

)

Fig. 1. Illustrating sampling issues when estimating queuestate – example
queue occupancy time history with packets of one selected flow marked by
solid squares.

large changes in queue occupancy and, in particular, may fail
to detect queue full events. Thus, in general, the correlation
between the queueing delay measured by a given flow and
congestion at a bottleneck link may be low.

While the possibility of low correlation between network
congestion and the delay measured by a flow thus seems
well established, our aim in this paper is to investigate the
implications for congestion control. A natural concern is that
low correlation between measured delay and congestion means
that delay measurements areprima faciean inadequate indi-
cator of network congestion and thus their use for congestion
control could be fundamentally flawed. Indeed, precisely such
concerns are raised in [9], [10], [11]. This potentially has
direct implications not only for recent delay-based proposals
(FAST, Compound TCP etc) but also for our understanding of
the fundamental constraints on congestion control within the
current Internet architecture.

Our main contribution in this paper is to demonstrate that
in fact what matters for congestion control is theaggregate
behaviour of the flows sharing a link. Hence, perhaps some-
what surprisingly, while any given single flow may measure
delay which is only weakly correlated with the congestion on
a link, this is not in itself an obstacle to congestion control.
In this paper we demonstrate this constructively via detailed
experimental tests and also confirm analytically the general
nature of our conclusions.

It is important to emphasise that this result does not preclude
the existence of other factors that may limit the practical
application of delay-based congestion control, it only states
that low correlation is not itself an obstacle. For example,

2

obtaining good delay measurements in the presence of “noise”
such as delayed acking and hardware offload is also potentially
an important issue – in fact we touch on this issue here
although it is not the main focus of the present paper. Despite
the existence of such issues that require further study, we
nevertheless argue that the work here is an important first
step in exploring the nature of fundamental constraints on
congestion control.

The paper is organised as follows. In Section III we briefly
review a delay-based modification to the standard TCP AIMD
algorithm that will be used later. In Section IV we consider
the requirement for correlation between delay and loss events,
analyse the congestion control properties of the delay-based
AIMD algorithm and establish conditions under which it
achieves congestion control, in the sense of bounding the
queue occupancy. Section V presents experiments to validate
this analysis, including in heavily multiplexed regimes and in
the presence of “noise” such as delayed acking and TSO. We
briefly summarise our conclusions in Section VII.

II. RELATED WORK

Interest in the use of delay for congestion control is
long-standing. Early work on delay-based algorithms includes
CARD [6], Tri-S [16], and DUAL [17]). TCP Vegas ([2], [3])
and related algorithms such as FAST [7] are one of the most
widely studied delay-based transport layer protocols. More
recently, hybrid congestion control algorithms based on the use
of both loss and delay have been proposed, e.g. TCP Illinois
[8] and Compound TCP [15]. Compound TCP is being actively
considered for use in a mainstream operating systems and is
currently undergoing review at the IRTF and IETF.

In parallel with work on the development of delay-based
algorithms, a number of concerns have been raised as to
practicality of delay as a congestion signal. Potentially one
of the most serious is the observation that there can be low
correlation between measured and actual queueing delay and
loss. This is discussed in detail in the experimental studies
in [1], [9], [11]. These studies do not investigate any specific
delay-based algorithm but rather make use of experimental
measurements to evaluate correlation. [10] considers a number
of possible reasons for low correlation to occur, includingin
particular sampling issues.

III. D ELAY-BASED AIMD

We begin by briefly reviewing the delay-based AIMD
algorithm [4] which will be used later. Note that our purpose
here is not to advocate use of the delay-based AIMD algo-
rithm. Rather the delay-based AIMD algorithm is simply one
approach to delay-based congestion control that happens to
provide a useful vehicle for demonstrating some fundamental
issues in a concrete manner. The algorithm simply extends the
standard TCP AIMD algorithm to use delay as well as loss (or
ECN) to control network congestion. Standard TCP employs
anAdditive-Increase Multiplicative-Decrease(AIMD) strategy
during its congestion avoidance mode. AIMD congestion con-
trol can be implemented using signals other than packet lossas
a congestion indicator. The basic idea here is that by backing

off when queueing delay exceeds some threshold, we can avoid
filling the queue (maintain low queueing delay) while staying
within the well-established AIMD framework. Specifically,we
consider the following delay-based AIMD algorithm:

cwnd←







cwnd + α/cwnd, on each ACK
β × cwnd, if τ ≥ τ0

β × cwnd, if packet loss

where τ is the observed queueing delay,τ0 > 0 is a delay
threshold that triggers delay-based backoff. The queueing
delayτ is estimated assRTT (t)−RTTmin whereRTTmin is
the minimum observed packet round-trip time andsRTT (t)
is an estimate of the current round-trip time. Loss induced
backoffs are retained as part of the algorithm to accommodate
situations where, for example, the buffers are sized such that
maximum queueing delay is less thanτ0. Since it continues to
employ an AIMD strategy, the delay-based algorithm inherits
the usual fairness and convergence properties of AIMD.

The impact of this change on the AIMD operation is
illustrated in Figure 3. It can be seen that although the buffer is
sized at 400 packets, the flowcwnd now backs off before the
queue is full. In this example we can also see that following
the first backoff wherecwnd is reduced by half, the queue
empties for a significant period of time – this is to be expected
as the delay-based algorithm backs offcwnd before the queue
is full. High utilisation be maintained by adjusting the backoff
factor appropriately. In more detail, we adjust the backoff
factor according to

β = RTTmin/RTTbackoff

whereRTTbackoff denotes the measured RTT at backoff. See
[4],[14] for further details.

60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

time (s)

cwnd (packets)
queue occupancy (packets)

Fig. 2. Illustrating delay-based AIMD algorithm. (delay 120ms, link rate
50Mbps, 400 packet queue,τ0 20ms,ns simulation).

IV. I S LOW CORRELATION AN OBSTACLE TO CONGESTION

CONTROL ?

On the face of it, the existence of situations where low
correlation exists between the queueing delay measured by

3

a flow and the actual queueing delay appears to create an
obstacle to congestion control. That is, how can we expect
to succeed at congestion control if some flows are unable to
reliably detect congestion events where the queue occupancy is
high. We demonstrate that in fact what matters for congestion
control is theaggregatebehaviour of the flows sharing a link.
Hence, while any given single flow may measure delay which
is only weakly correlated with the actual queueing delay, this
is not in itself an obstacle to achieving congestion control.

To explore this question we use the delay-based AIMD
algorithm as an example and investigate its congestion
control behaviour in more detail. We repeat again that our
purpose here is not to advocate use of the delay-based
AIMD algorithm. Rather the delay-based AIMD algorithm is
simply one approach to delay-based congestion control that
happens to provide a useful vehicle for demonstrating some
fundamental issues in a concrete manner. Our analysis makes
use of the following basic observation.

Key Observation. Sparse sampling of the queue occupancy
means that packets from some flows may not detect an
event where the queueing delay rises above a thresholdτ0.
Nevertheless, if the queueing does rise aboveτ0 then we
alwayshave that some packets do experience queueing delay
greater thanτ0 – namely, the very packets that are responsible
for filling the queue above thresholdτ0.

We immediately have that as long as the queueing delay
remains above thresholdτ0, then each RTT the delay-based
AIMD algorithm will lead to at least one flow backing off.
Moreover, since every packet participating in the overshoot
in queue occupancy aboveτ0 measures the high queueing
delay, the magnitude of the aggregate flow backoff is roughly
proportional to the overshoot in queue occupancy (we make
this statement more precise below). Intuitively, this creates
pressure to drain the queue occupancy belowτ0, thereby
achieving congestion control. This argument does not require
that every flow be able to detect events when the queueing
delay becomes high, it only requires that in aggregate the
flows respond to each such congestion event. By the foregoing
key observation, the latter is always the case. We develop this
argument in more detail next.

A. Congestion Control Analysis

Considern delay-based AIMD flows sharing a common
bottleneck. Letwi, ti be the respective cwnd and round-
trip propagation delay of flowi. Let W = [w1, · · · , wn],
T = [t1, · · · , tn]. Time k corresponds to thek’th congestion
event, i.e. a network event where at least one flow backs off
its cwnd. Figure 3 illustrates an example cwnd and queue time
history. From the AIMD algorithm we have that

wi(k + 1) = βi(k)wi(k) + αiTi(k)

whereαi is the AIMD increase parameter in packets/RTT,βi

is the AIMD backoff factor withβi(k) = 1 corresponding to
no back off of flowi at eventk andβ ≤ βmax < 1 otherwise.
Ti(k) is the number of flowi RTTs between congestion events
k andk + 1.

T(k)

time

cwnd

time

queue

q0

0

w(k) w(k+1)

βw(k)

α

Fig. 3. Illustrating cwnd and queue time histories.

The queue occupancyq(k) at thek’th congestion event is

q(k) =

n
∑

i=1

[wi(k)− bi(k)ti] (1)

wherebi(k) is the bandwidth being consumed by flowi and
∑n

i=1
bi(k) = B with B the link bandwidth in packet/s.

We letq0 denote the queue occupancy corresponding to the
backoff delay thresholdτ0. Note that this implicitly assumes
that a one to one correspondence exists between queue oc-
cupancy and queueing delay. This assumption is satisfied, for
example, for any link with constant service rate.

Also assume, for the moment, that a delay-based flow backs
off its cwnd whenever one or more packets measures queueing
delay above thresholdτ0. We return to this assumption later
in Section IV-D. We then have the following identity:

n
∑

i=1

βi(k)wi(k) ≤ βmax(q(k)− q0) +

n
∑

i=1

wi(k)− (q(k)− q0)

≤

n
∑

i=1

wi(k) + (βmax − 1)(q(k)− q0) (2)

Hence, combining (1) and (2),

q(k + 1) =
n

∑

i=1

[wi(k + 1)− bi(k + 1)ti]

=

n
∑

i=1

[βi(k)wi(k) + αiTi(k)− bi(k + 1)ti]

≤ βmaxq(k) + (1− βmax)q0 +

n
∑

i=1

αiTi(k)

+

n
∑

i=1

[wi(k)− bi(k + 1)ti − q(k)] (3)

When flows are synchronised, in steady state1 bi(k + 1) =
bi(k) and the terms in the square brackets sum to zero. Hence,

1The existence of a unique, stable steady-state solution forsynchronised
AIMD-based TCP networks is shown in, for example, [13].

4

the queue length is constrained by

q(k + 1) ≤ βmaxq(k) + (1− βmax)q0 +
n

∑

i=1

αiTi(k)

Sinceβmax < 1 this recursion is convergent and so ask →∞

q(k) ≤ q0 +
n

∑

i=1

αiTi(k)/(1− βmax) (4)

Since the timeTi(k) between congestion events is necessarily
bounded (trivially, since the network capacity is bounded the
flow cwnds cannot increase indefinitely), we have thatq(k) is
upper bounded.

The bound in (4) is potentially very conservative. Neverthe-
less, it establishes that a network of synchronised delay-based
AIMD flows will always converge to operation with bounded
queues and so achieve congestion control. This result holds
even when the delay measured by any given single flow may be
weakly correlated with queue excursions above the threshold
τ0. Thus we have established that low correlation is not in
itself an obstacle to achieving congestion control. Of course
we need to validate this theoretical analysis via experimental
measurements and this is the subject of Section V. Before that,
however, we first consider some important extensions of our
analysis.

B. Two important cases

Tighter bounds on the queue occupancy can be readily
obtained in two common cases.

Case 1: Queue occupancy falls belowq0 (i.e. below the
delay thresholdτ0) on flow cwnd backoff following congestion
eventk. In the worst case (i.e. corresponding to peak queueing
delay), congestion eventk + 1 occurs when all flows increase
their cwnd’s at the point where the queue is just belowq0.
That is,

q(k + 1) ≤ q0 +
n

∑

i=1

max(αi, 1) (5)

The bound (5) has a natural interpretation. Due to network
delays, no flow can detect an event where the queue exceeds
τ0 until at least one RTT after the event. During this RTT it
can therefore happen that every flow increases its cwnd and
injects additional packets into the network. As a result, the
size of the resulting queue overshoot can, in the worst case,
be proportional to the numbern of flows.

Case 2: Queue occupancy remains aboveq0 following
congestion eventk. In this caseT (k) ≤ maxi∈{1,2,..,n}ti and
so

q(k) ≤ q0 +

n
∑

i=1

max(αi, 1)/(1− βmax) (6)

C. Unsynchronised Flows

The foregoing analysis is for networks where flow backoffs
are synchronised. The analysis can be readily generalised to

situations where the flows are not synchronised. In more detail,
taking expectations in (3) yields

E[q(k + 1)] ≤ βmaxE[q(k)] + (1− βmax)q0 +

n
∑

i=1

αiE[Ti(k)]

+

n
∑

i=1

[E[wi(k)]− E[bi(k + 1)]ti − E[q(k)]]

In steady state2 E[bi(k + 1)] = E[bi(k)] , the terms in the
square brackets sum to zero and length is constrained by

E[q(k + 1)] ≤ q0 +

n
∑

i=1

αiE[Ti(k)]

Thus our conclusion that low correlation is not an obstacle
to congestion control remains unchanged in unsynchronised
networks.

D. Filtered delay measurements

The foregoing analysis assumes that the delay-based AIMD
algorithm backs off its cwnd whenever one or more packets
measure queueing delay above thresholdτ0. However, in
practice we expect to use a smoothed estimate of queueing
delay in order to avoid backing off in response to spurious
delays. In other words we expect to backoff cwnd only after a
sufficient number of packets have experienced high queueing
delay.

The choice of an appropriate smoothing filter is a design
question that is outwith the scope of the present paper. Instead,
our interest here is in understanding the impact such smoothing
may have on the congestion control properties of a delay-
based algorithm. One direct approach is to seek a class of
filters under which the previous analysis remains applicable.
It can be seen immediately that as long as we maintain the
identity (2), then the general bound (4) remains unchanged.
For example, this holds when we modify the based delay-
based AIMD algorithm to be

cwnd←







cwnd + α/cwnd− γ, on each ACK
min[β(cwnd + Sγ), cwnd], if τ ≥ τ0

β × cwnd, if packet loss

where γ > 0 if the currently acknowledged packet has
experienced queueing delay aboveτ0 (this may be estimated
via the packet time stamp), otherwiseγ = 0. Thus the
algorithm makes a small reduction in cwnd when individual
packets experience high delay. This satisfies (2) by ensuring
that cwnd is always backed off at least in proportion to the
number of packets with high queueing delay.Sγ is a running
total of γ values and is reset to zero on a full backoff (i.e.
whenτ ≥ τ0). It is therefore the overall amount, since the last
full backoff, subtracted from cwnd due to individual delayed
packets. We useSγ to adjust the decrease in cwnd at a full
backoff to avoid double counting of delayed packets. The
delay signalτ triggering full backoff may be any smoothed
estimate of queueing delay, thereby decoupling the baseline

2Under mild assumptions, the existence of a unique stationary distribution
for unsynchronised TCP networks is shown in, for example, [12].

5

Description

CPU Intel Xeon CPU 2.80GHz
Memory 512 Mbytes

Motherboard Dell PowerEdge 860
Kernel Linux 2.6.18

txqueuelen 1,000
max backlog 300

NIC Intel 82540EM
NIC Driver e1000 5.2.39-k2

TX & RX Descriptors 4096

TABLE I

HARDWARE AND SOFTWARECONFIGURATION.

congestion control behaviour of the algorithm from the choice
of smoothing filter.

The per packet backoff factorγ may differ from the standard
backoff factorβ. One natural choice isγ = 1 − β which
ensures back off toβ × cwnd when a full windows worth
of packets are delayed. Since we might expect to choose the
smoothing filter such thatτ exceedsτ0 when a full cwnd of
packets exceedsτ0 (indeed, perhaps when less than a full cwnd
of packets exceedτ0), then the per packet backoff simply acts
as a conservative “safety net” .

Again, we have that low correlation is not an obstacle to
congestion control even when a filtered delayed signal is used.

V. EXPERIMENTAL MEASUREMENTS

To help build confidence in the validity of the foregoing
analysis for real network traffic, in this section we explore
delay-based congestion control behaviour using experimental
measurements taken on a hardware testbed. Use of experi-
mental tests seems particularly important in the context of
delay-based control as issues such as scheduling granularity,
hardware offload, packet burstsetc are difficult to model ac-
curately yet may have a direct impact on delay measurements
and performance.

This section is organised as follows. We begin by describing
the experimental setup used and then demonstrate that low
correlation between delay and loss is prevalent on heavily
multiplexed links. Initially delayed acking is disabled, as is
TCP segmentation offload (TSO) in order to focus on corre-
lation issues. We explore the congestion control behaviourof
the delay-based AIMD algorithm and compare experimental
measurements with the analysis in Section IV. In Section V-D
we discuss in more detail some observations on asymptotic
behaviour as the number of flows becomes very large. In
Section V-F we enable delayed acking and TSO and consider
the impact on delay measurement and congestion control.

A. Experimental setup

We have implemented the delay-based AIMD algorithm in
Linux 2.6.23. Experiments were carried out using a testbed
consisting of commodity PCs connected to gigabit switches
to form the branches of a dumbbell topology. All sender and
receiver machines used in the tests have identical hardware
and software configurations as shown in Table I and are
connected to the switches at 1Gb/sec. The router, running

FreeBSD v4 with the dummynet module, can be configured
with various bottleneck queue-sizes, capacities and roundtrip
propagation delays to emulate a range of network conditions.
TCP Flows are injected into the testbed usingiperf. TCP
stacks are instrumented using a modified version of the Linux
tcpprobe module. Unless otherwise stated, the queueing
delay threshold used isτ0=50ms. On receipt of an ACK packet
an RTT measurementRTT is obtained by comparing the
time that the ACK packet is received with the time that the
corresponding data packet was transmitted. In Section V-B –
Section V-E delayed acking and TSO is disabled. These are
then enabled in Section V-F in order to explore their impact
on congestion control behaviour. The minimum observed RTT
measurementRTTmin is used as an estimate of propagation
delay and queueing delay is then estimated asRTT−RTTmin.

B. Illustrating low correlation

We begin by considering a heavily multiplexed link where
we expect low correlation between delay and loss to be
prevalent. Figure 4 demonstrates the congestion control action
of the delay-based AIMD algorithm on a 10Mbps link shared
by 80 TCP flows. The flows have a range of round-trip times
from 20-200ms. Figure 4(a) plots the correlation between the
queueing delay measured by flow 1 and the queueing delay
measured by flows 2-803. These results are representative, with
similar correlation values obtained for flows other than flow1.
It can be seen that the correlation between measured queueing
delay is close to zero for all flows. Figure 4(b) shows typical
time histories of the measured queueing delay (i.e. measured
RTT minus the known propagation delay), and the low level
of correlation between measurements is evident.

Despite the low correlation between measured queueing
delay, the delay-based algorithm successfully regulates the
flow cwnds to prevent queue overflow and congestion. This
is illustrated in Figure 5(a) which plots the sum of the flow
cwnds while Figure 5(b) plots typical cwnd time histories
for individual flows. During this test run no packet losses
occurred. Note that the small flow cwnds in Figure 5(b) are
feature of the link being highly multiplexed and reflect the
fact that here we are intentionally seeking to explore situations
where flow delay measurements may be weakly correlated.

C. Peak queueing delay vs number of flows

To explore congestion control performance in more detail
we consider the measured queueing delay as a function of
the number of flows sharing a link. Figure 6 plots the mean
and peak queueing delay as the number of competing flows
is varied on a link. Also marked on Figure 6 is the analytic
bound (5). This worst case bound captures the fact that no flow
can detect a queue overshoot aboveτ0 until one RTT after it
occurs. Thus it can happen that all flows increase their cwnd
and insert extra packets with one RTT, creating an overshoot
aboveτ0 that is proportional to the number of flows. It can

3Queueing delay is the measured from the packet time-stamps less
baseRTT , wherebaseRTT is the minimum observed delay. We confirmed
that flow baseRTT estimates of propagation delay were accurate. Time
histories are aligned based on the peak correlation.

6

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

flow number

co
rr

el
at

io
n

co
ef

fic
ie

nt

(a) Correlation between queueing delay measured by flow 1 andby flows 2-80.

221 222 223 224 225 226 227 228 229
0

20

40

60

80

100

120

140

160

180

200

time (s)

m
ea

su
re

d
qu

eu
ei

ng
 d

el
ay

 (
m

s)

(b) Time histories of measured queueing delay for flow 1 and flow 2.

Fig. 4. 80 concurrent, long-lived flows. 10Mbps link, flow RTTs uniformly
randomly chosen from 20-200ms.

be seen that as we increase the number of flows the peak
queueing delay the analytic bound is generally quite tight.This
not only provides a degree of validation of the analysis in
Section IV but also provides a concrete demonstration that a
delay-based algorithm can indeed achieve effective congestion
control under low correlation conditions.

Investigating these experimental results in more detail, it
can be seen from Figure 6 (and Figure 8) that the peak
queueing delay does not increase monotonically with the
number of flows but rather may decrease as the number of
flows increases. This arises due to quantisation of the number
of packets in flight. To see this considern flows sharing a
link with bandwidth-delay productP packets and with queue
occupancyq0 packets corresponding to the queueing delay
thresholdτ0. Assume, for simplicity, that the flows are per-
fectly synchronised and have the same cwnd. Letcwnd(n) =
max {j : j × n− P < q0, j ∈ {0, 1, 2, ...}}. That is,cwnd(n)
is the largest cwnd such that the queueing delay still remains
below the thresholdτ0. Overshoot in queue occupancy above

0 100 200 300 400 500 600 700
125

130

135

140

145

150

155

160

165

time (s)

A
gg

re
ga

te
 c

w
nd

 (
pa

ck
et

s)

(a) Sum of flow cwnds.

221 222 223 224 225 226 227 228 229
1

1.5

2

2.5

3

3.5

4

time (s)

cw
nd

 (
pa

ck
et

s)

flow 1
flow 2

(b) cwnd time histories for flow 1 and flow 2.

Fig. 5. 80 concurrent, long-lived flows. 10Mbps link, flow RTTs uniformly
randomly chosen from 20-200ms.

q0 will then occur on the next round-trip time when flows
increase their cwnd by one packet, with the magnitude of
the overshoot being(cwnd(n) + 1) × n − P − q0. As we
increase the number of flows ton+k, then the flow cwnd just
before backoff initially remains unchanged i.e.cwnd(n+k) =
cwnd(n), providedcwnd(n)× (n+k)−P < q0 . Eventually,
however, asn+ k increases furthercwnd(n+ k) must reduce
to be smaller thancwnd(n). At this point the delay overshoot
will also decrease, leading to non-monotonic behaviour of the
overshoot. It can seen from Figures 6(a) that, as might be
expected, this effect is most pronounced when all flows have
the same RTT and so are almost synchronised. When flows
have different RTTs, as in Figure 6(b), and are unsynchronised
the overshoot tends to show a simple rising trend.

Also plotted in Figure 6 is the mean queueing delay vs
number of flows. It can be seen that the mean delay also
displays a rising trend. This has implications for performance
and operation at the “knee of the curve”. The potential exists
to modify the delay-based algorithm to mitigate this effecte.g.

7

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Q
ue

ue
in

g
D

el
ay

 (
m

se
c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

τ0 = 50 msec
Analytic Bound

(a) All flows have RTT 100ms.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Q
ue

ue
in

g
D

el
ay

 (
m

se
c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

τ0 = 50 msec
Analytic Bound

(b) Flow RTTs uniformly random from 20–200ms.

Fig. 6. Peak and mean queueing delay vs number of flows. 10Mbpslink.
Bound (5) is labelled “Analytic Bound”. The vertical line in(a) marks the
point at which the number of flows equals the path bandwidth-delay product.

by adjusting the thresholdτ0 based on observed overshoot in
delay. However, we do not explore this possibility here.

D. Asymptotic behaviour

While our experimental results demonstrate that low corre-
lation need not be an obstacle to congestion control, they also
highlight that other issues can arise on links with very large
numbers of flows. In particular, as the number of flows is
increased the flow cwnd’s will eventually decrease until they
are only one packet in size. This is inevitable since newly
added flows must have a cwnd of at least one packet and
therefore existing flows must, if possible, reduce their cwnd
to make space for new flows (or rather backoff their cwnds to
maintain the queueing delay belowτ0). Eventually, however,
we will reach the situation where all flows have reduced their
cwnd to one packet.

This behaviour is illustrated in Figure 7, which plots the
flow cwnds as the number of flows is increased. It can be seen
that as the number of flows is increased the flow cwnds tend
to fall, until eventually all flows have cwnd of one packet. The

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

T
im

e-
F

ra
ct

io
n

F
lo

w
s

S
pe

nt
 a

t C
w

nd

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(a) 10Mbps link, 100ms RTT, 1500B packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

T
im

e-
F

ra
ct

io
n

F
lo

w
s

S
pe

nt
 a

t C
w

nd

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(b) 10Mbps link, RTTs 20-200ms, 1500B packets

Fig. 7. Fraction of time that flows take values ofcwnd vs the number of
flows. It can be seen that flowcwnd’s tend to decrease as the number of
flows increases, until all flows havecwnd of one packet.

point where this occurs can be calculated as follows. In Figure
7(a) flows with a base RTT of 100ms share a 10Mbps link.
The number of packets required to fill the pipe and create a
queueing delay ofτ0 is B(RTT +τ0), whereB is the link rate
in packets per second . Withτ0=50ms and 1500 byte packets,
B(RTT + τ0)=130 packets i.e. our limit is 130 flows with
cwnd of 1 packet. This is confirmed by inspection of Figure
7(a). In the mixed base RTT case shown in Figure 6(b) it is
harder to analytically calculate the number of flows where the
limiting regime occurs. Nevertheless, the qualitative behaviour
is similar as can be seen from Figure 7(b).

In this asymptotic regime, each additional new flow leads
to an increase in the level of queue occupancy. This occurs
despite the fact that the queueing delay may then remain per-
sistently aboveτ0, since flows all have cwnd of one packet and
so cannot backoff their cwnd further to reduce the queueing
delay. Note also that when the delay is persistently aboveτ0,
delay-based AIMD flows will not increase their cwnd. Hence,
we have that the queueing delay simply increases linearly with
the number of flows. This behaviour is evident in Figure 6(b)
when the number of flows is greater than 130 – it can be seen

8

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450

M
ax

 O
bs

er
ve

d
Q

ue
ue

in
g

D
el

ay
 (

m
se

c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

τ0 = 50 msec
Analytic Bound

Fig. 8. Peak and mean queueing delay vs number of flows. 10Mbpslink,
100ms RTT, 512B packets.

that the delay rises linearly, parallel to the analytic bound (5).

We discuss SACK Reno in more detail in the next section,
but note here that once the cwnd of a flow falls below three
packets, fast retransmit no longer operates (since it requires
two duplicate acks after loss of one packet) and congestion
control falls back retransmit timeouts (RTO). SACK Reno
behaviour is the asymptotic regime is thus complex and, for
example, prone to prolonged unfairness between competing
flows due to sensitivity to loss of retransmitted packets when
in RTO.

The fact that flow cwnds are constrained to have a minimum
value of one packet appears to place a limit on the use of delay-
based congestion control. Namely, as the number of flows is
increased to the point where a flow cwnd of less than one
packet is needed to maintain low queueing delay, then low
delay operation becomes impossible and packet loss eventually
occurs as the number of flows becomes sufficiently large.

The limit is, however, not a fundamental one. For example,
while cwnd is constrained to be at least one packet, we might
reduce the packet size to prevent queue buildup. For example,
we re-ran our experiments using a packet size of 512 bytes
rather than 1500 bytes. Figure 8 shows the corresponding
results – we can now fit more than 390 flows on the link before
the flow cwnds are all reduced to only one packet. Reducing
packet size may not be an attractive solution, however, as it
increases the transmission overhead (packet headers and link
framing overhead remain unchanged as the packet payload is
decreased in size). One alternative is to insert delays between
packet transmissions so as to pace packets at a slower rate,
which would soften the impact of the one packet lower bound
on cwnd. However, situations where this limit is reached
are essentially corner cases where flows are all getting very
low throughput and the user experience is likely to be poor
regardless of changes to TCP. For example, on a 10Mbps link
with 130 flows, each flow is has a throughput share of less than
75Kbps, i.e. similar to a dialup modem. With 512B packets,
for >390 flows the per share is less than 25Kbps.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

A
gg

re
ga

te
 G

oo
dp

ut
 O

bs
er

ve
d

(M
bi

t/s
ec

)

Number of Flows

DB-AIMD
Reno

DB-AIMD MTU=512B

(a) Goodput vs number of flows.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

Ja
in

 F
ai

rn
es

s
In

de
x

Number of Flows

DB-AIMD
Reno

(b) Fairness vs number of flows.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100 120 140

A
vg

. G
oo

dp
ut

 (
M

bi
t/s

ec
)

Flow Number

DB-AIMD
Reno

(c) Fairness between flows when 128 concurrent flows.

Fig. 9. Goodput and fairness for Reno and delay-based AIMD algorithms.
10Mbps link, 100ms RTT.

9

E. Comparison with SACK Reno

To illustrate that effective congestion control is indeed being
achieved by the delay-based algorithm even when correlation
is weak, it is informative to compare behaviour with that of
the standard SACK Reno loss-based TCP. Figures 9 and 10
compare the performance of the delay-based algorithm with
that of the standard Linux SACK Reno algorithm. Figure 9
show measurements when flows have the same base RTT
of 100ms and Figure 10 shows measurements when the
flow base RTTs are distributed between 20-200ms. It can
be seen that for a given packet size link utilisation is at
worst slightly reduced with delayed-based AIMD i.e. the low
delay achieved by the delay-based AIMD algorithm does not
come at the cost of a significant lowering of throughput. As
discussed previously, the negative impact on throughput of
using a smaller packet size is evident in Figure 9(a). While
the aggregate link utilisation is similar, it can be seen from
Figure 9(b) that the delay-based algorithm achieves better
inter-flow fairness than Reno on heavily-multiplexed paths.
It can also be seen from Figure 10(b) that the difference in
fairness behaviour is less pronounced when there is wider
mix of flow RTTs, and so of flow cwnds. At low cwnds, fast
recovery is ineffective and congestion control in Reno reverts
to RTO operation. Unfairness then arises because flows in RTO
become very sensitive to packet loss – following an RTO, if
the first retransmitted packet is lost then the RTO timer is
doubled and can easily increase to several seconds duration.
In contrast, the delay-based algorithm avoids packet loss even
in quite extreme regimes.

F. Delayed ACKing and TSO

The foregoing experimental results disable delayed acking
and TSO in order to focus clearly on the fundamental per-
formance of the delay-based algorithm. In this section we
consider the impact of delayed acking and TSO in more detail.
Although our primary focus in this paper is on the impact
of low correlation in congestion control, we found that our
experimental tests also helped to throw some light on the
issue of obtaining clean delay measurements. In particular,
we found that some significant sources of “noise” in delay
measurements can be removed by simple sender side changes
to delay measurement within the network stack. These changes
have since been incorporated into the Linux kernel.

Delayed acking can be a source of error in delay measure-
ments. With delayed acking, a receiver does not immediately
acknowledge receipt of a data packet but instead waits until
either a second packet arrives or a timer expires (the timer
may be a fixed delay e.g. 100 ms or might be adaptive e.g.
in Linux the timer is adapted to be roughly related to the
inter-packet spacing) before transmitting a TCP ACK packet
back to the data sender. In practice delayed acking is almost
universally used and creates additional delay within the end
host receiver. This additional delay is unrelated to queueing
delay and network conditions and so is a form of “noise”
on the measured packet RTT. An obvious concern is that this
“noise” may negatively impact delay-based congestion control.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160 180 200

A
gg

re
ga

te
 G

oo
dp

ut
 O

bs
er

ve
d

(M
bi

t/s
ec

)

Number of Flows

DB-AIMD
Reno

(a) Goodput vs number of flows.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 G
oo

dp
ut

 (
M

bi
t/s

ec
)

Flow Base RTT (msec)

32 Reno Flows
64 Reno Flows

128 Reno Flows
32 DB-AIMD Flows
64 DB-AIMD Flows

128 DB-AIMD Flows

(b) Fairness between flows when 32, 64 and 128 flows.

Fig. 10. Goodput and fairness for Reno and delay-based AIMD algorithms.
10Mbps link, 20-200ms RTT.

In a similar vein, in this section we also consider the impact
of hardware TCP segmentation offload (TSO). TSO is widely
used in modern network cards, particularly at higher line
rates. With TSO large sized segments are handed off to the
network interface card for conversion into multiple packets
before transmission. This can create additional delay while the
end host sender waits for a sufficient backlog of enqueued data
to form a large segment – a timer is typically used to bound
the delay i.e. a segment is handed off to the hardware once
sufficient packets have been accumulated for transmission or,
failing that, when the timer expires. TSO can also lead to
increased burstiness of packet transmissions (a segments worth
of packets are sent back to back) and thus perhaps to changes
in queueing delay behaviour.

Figure 11 plots RTT measurements illustrating the impact
of delayed acking. The data marked “timestamp” corresponds
to the packet RTT measurements obtained as per RFC 1323
[5] – these are the standard RTT values available within
the network stack. While originally introduced for retransmit
timeout (RTO) calculations, these measurements are also used
by many delay-based congestion control algorithms. Note the
large spikes in the measured delay due to delayed acking.
These arise because RFC 1323 mandates that RTT is measured

10

 0

 50

 100

 150

 200

 250

 200 205 210 215 220

O
bs

er
ve

d
R

T
T

 (
m

se
c)

Time (sec)

Timestamp τ0= 20msec
Timestamp τ0=110msec

Filtered τ0= 20msec
Filtered τ0=110msec

Fig. 11. Example time histories of measured RTT with delayedacking.
“Timestamp” denotes the RTT measured as per RFC 1323. “Filtered” denotes
RTT measured as the time between arrival of an ACK and transmission of the
most recent packet acked. 10Mbps link, two flows, RTT of flow 1 is 20ms
and of flow 2 is 110ms.

TCP data

time

TCP ACK

1 2

RTT_adjusted

RTT_rto

Fig. 12. Illustrating RTT calculations with delayed ackingvia timeline at
sender. Data packet 2 generates a delayed ack at the receiverwhich arrives
at the sender after a round-trip time. RTTrto denotes the RTT measurement
defined in RFC 1323 which includes both the network round-trip time and the
delay due to delayed acking at the receiver, RTTadjusted denotes the RTT
measurement without delayed acking.

as the time between transmission of theoldestpacket acked
and arrival of the ACK packet. This is illustrated for example
in Figure12.

It can be seen that RTT measured as per RFC 1323 includes
the delay within a receiver before an ack is sent. While this
makes sense for RTO calculations (inflating the RTO threshold
and avoiding spurious timeouts being induced by delayed
acking), it is less useful for delay-based congestion control
since the delay within the receiver is unrelated to network con-
gestion. Although we might use filtering to attenuate the delay
spikes induced by delayed acking, effective filtering requires
some form of averaging over multiple delay measurements.
We note that the impact of delayed acking is particularly
pronounced at low cwnds (e.g. in Figure 11 the impact is
greatest on flow with longer RTT which has cwnd of around
10 packets rather than the short RTT flow which has cwnd
around 40 packets) where delay measurements are relatively
widely spaced due to the small number of packets in flight
and filtering can be problematic. For example, if a flow has
cwnd of one packet, delay measurements are taken an RTT
apart and owing to the long delay between measurements it

can be difficult to decide whether an increase in delay should
be attributed to delayed acking or to network congestion.

Fortunately, a clean RTT signal without delayed acking
delay can be readily obtained by a small change to the delay
measurement calculation used for congestion control (the
delay measurement used for RTO calculations is, of course,
left unchanged). Specifically, by using an RTT measurement
calculated as the time between transmission of thenewest
packet acked and arrival of the ACK packet – see Figure12. In
addition, when delayed acking is detected we ignore the RTT
value from ACK packets that ack a single packet (as opposed
to acking multiple packets). These changes are straightforward
to implement but their impact is substantial. This is illustrated,
for example, in Figure 11 by the data marked “filtered”. It
can be seen that the delay spikes associated with delayed
acking are completely removed. That is, by a small change
to the delay measurement approach we are able to remove a
significant source of “noise”.

Figure 13 illustrates the impact of TSO on delay measure-
ments. The data marked “2.6.18” shows measurements taken
using the Linux 2.6.18 kernel and it can be seen that TSO
can induce large spikes in the measured RTT. These spikes
are associated with the kernel using a simple timer with the
relatively large value of 40ms. A segment is handed off to
the hardware once sufficient packets have been accumulated
for transmission or, failing that, when the timer expires.
The data marked “2.6.24” show measurements for the same
experimental setup but now using a more recent 2.6.24 kernel
that includes modifications (motivated in part by the work in
this paper) that implement more sophisticated TSO handling.
It can be seen that the spikes are almost completely removed.
Also shown in Figure 13 is the queue occupancy time history
from which it can be seen that the RTT measurement now has
little noise.

With the changes to RTT measurement and TSO handling
discussed above, Figure 14(a) plots the measured queueing
delay vs number of flows with delayed acking and TSO
enabled. In these tests we also make a change to the delay-
based AIMD algorithm to prevent delay backoff reducing the
cwnd below two packets (loss backoff and RTO behaviour is
unchanged). This is because with delayed acking enabled we
need at least two packets in flight in order to obtain a clean
delay measurement using the approach discussed above. It can
be seen from Figure 14(a) that the performance is similar to
that without delayed acking and TSO – compare with Figure
6(b). In particular, the queueing delay remains bounded even
for large numbers of flows where the correlation between
measured and actual queueing delay is low. The point at which
the link enters the asymptotic regime is changed, however,
from around 130 flows to around 90 flows owing to the lower
bound on cwnd of two packets in Figure 14(a) while in Figure
6(b) the lower bound is one packet.

Also shown in Figure 14(b) is the corresponding measured
link goodput. It can be seen that the goodput is almost identical
to that without delayed acking and TSO. Although not shown
here, throughput fairness between flows is also very similarto
that without delayed acking and TSO.

11

 60

 80

 100

 120

 140

 160

 180

 200

 25 30 35 40 45 50 55 60

C
w

nd
 (

pk
t)

t (sec)

2.6.24-rc6
2.6.18.1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 25 30 35 40 45 50 55 60

Q
ue

ue
 L

en
gt

h
(p

kt
s)

t (sec)

2.6.24-rc6
2.6.18.1

 100

 120

 140

 160

 180

 200

 220

 25 30 35 40 45 50 55 60

R
T

T
 (

m
se

c)

t (sec)

2.6.24-rc6
2.6.18.1

Fig. 13. Example time histories of measured RTT with TSO enabled in
Linux 2.6.18 and 2.6.24 kernels. Delayed acking disabled. Top plot shows
flow cwnd, middle plot queue occupancy and lower plot measured RTT at
sender. 10Mbps link, single flow, RTT 100ms, queue1×BDP.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

O
bs

er
ve

d
Q

ue
ue

in
g

D
el

ay
 (

m
se

c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

50 msec
Analytic Bound

(a) Peak and mean queueing delay vs number of flows

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200

A
gg

re
ga

te
 T

hr
ou

gh
pu

t

Number of Flows

(b) Goodput vs number of flows

Fig. 14. Performance with delayed acking and TCP segmentation offload
enabled. 10Mbps link. Flow RTTs uniformly random from 20-200ms.

VI. SCOPE

This paper focusses on the specific question of whether low
correlation between measured and network congestion is a
fundamental obstacle to congestion control. This issue is of
particular interest as it is a commonly voiced concern and
has been the subject of a number of published studies. We
emphasise that many other issues that are not addressed here
remain to be considered before any decision could be made as
to the suitability or otherwise of delay as a congestion signal
for use other than on a purely experimental basis. For example,
we do not consider the issue of co-existence between flows
operating loss-based and delay-based congestion control,per-
formance over multiple bottlenecks, performance over wireless
links and so on. Nevertheless, we argue that the work here is
an important first step in exploring the nature of fundamental
constraints on congestion control.

VII. C ONCLUSIONS

In this paper we revisit the commonly voiced concern
that low correlation between measured delay and network
congestion that delay may be fundamentally flawed as a signal

12

for congestion control. This concern is particularly topical in
view of a number of proposals to change the TCP congestion
control algorithm to make use of delay information. Examples
include not only FAST TCP [7] but also hybrid congestion
control algorithms based on the use of both loss and delay,
e.g. TCP Illinois [8] and Compound TCP [15]. The latter is
now available in Windows Vista and is currently undergoing
review at the IRTF and IETF standards bodies.

Our main contribution in this paper is to demonstrate that in
fact what matters for congestion control is theaggregatebe-
haviour of the flows sharing a link. Hence, perhaps somewhat
surprisingly, while any given single flow may measure delay
which is only weakly correlated with network congestion, this
is not in itself an obstacle to congestion control. In this paper
we demonstrate this constructively via detailed experimental
tests and also confirm analytically the general nature of our
conclusions. This potentially has direct implications forour
understanding of the fundamental constraints on congestion
control within the current Internet architecture.

ACKNOWLEDGEMENT

Discussions with Robert Shorten are gratefully acknowl-
edged.

REFERENCES

[1] S. Biaz and N. Vaidya. Is the round-trip time correlated with the number
of packets in flight? InProceedings Internet Measurement Conference
(IMC), 2003.

[2] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. InProceedings of
SIGCOMM, pages 24–35, 1994.

[3] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion
avoidance on a global internet.IEEE Journal on Selected Areas in
Communications, 13(8):1465–1480, October 1995.

[4] D.J.leith, J.Heffner, R.N.Shorten, and G.D.McCullagh. Delay-based
aimd congestion control. InProc. Workshop on Protocols for Fast Long
Distance Networks, Los Angeles., 2007.

[5] V. Jacobson, R. Braden, and D. Borman. TCP extensions forhigh
performance. IETF RFC 1323, 1992.

[6] R. Jain. A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks.ACM Computer Communica-
tion Review, 19(5):56–71, 1989.

[7] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, architecture,
algorithms, performance. InIEEE INFOCOM 2004, 2004.

[8] S. Liu, T. Ba?ar, and R. Srikant. TCP-Illinois: A loss anddelay-based
congestion control algorithm for high-speed networks. InProc. First
International Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS), Pisa, Italy, October 11-13, 2006, 2006.

[9] J. Martin, A. Nilsson, and I. Rhee. Delay-based congestion avoidance
for TCP. IEEE/ACM Transactions on Networking, 11(3):356–369, June
2003.

[10] R. S. Prasad, M. Jain, and C. Dovrolis. On the effectiveness of delay-
based congestion avoidance. InSecond International Workshop on
Protocols for Fast Long-Distance Networks, 2004.

[11] S. Rewaskar, J. Kaur, and D. Smith. Why don’t delay-based conges-
tion estimators work in the real-world? Technical Report TR06-001,
Department of Computer Science, UNC Chapel Hill, July 2005,2005.

[12] R.N.Shorten, D.J.Leith, and F.Wirth. Products of random matrices and
the internet: Asymptotic results.IEEE Transactions on Networking,
14(6), pp. 616-629, 2006.

[13] R.N.Shorten, D.J.Leith, J.Foy, and R.Kilduff. Analysis and design of
congestion control in synchronised communication networks. Automat-
ica, 2004.

[14] R. Shorten and D. Leith. On queue provisioning, networkefficiency
and the delay-bandwidth product.IEEE Transactions on Networking,
15:866–877, 2007.

[15] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound TCP
approach for high-speed and long distance networks. InInternational
Workshop on Protocols for Fast Long-Distance Networks, 2005.

[16] Z. Wang and J. Crowcroft. A new congestion control scheme: Slow Start
and Search (Tri-S).ACM Computer Communication Review, 21(1):32–
43, 1991.

[17] Z. Wang and J. Crowcroft. Eliminating periodic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm.ACM Computer
Communication Review, 22(2):9–16, 1992.

PLACE
PHOTO
HERE

Doug Leith Doug Leith graduated from the Univer-
sity of Glasgow in 1986 and was awarded his PhD,
also from the University of Glasgow, in 1989. In
2001, Prof. Leith moved to the National University
of Ireland, Maynooth to assume the position of SFI
Principal Investigator and to establish the Hamilton
Institute (www.hamilton.ie) of which he is Director.
His current research interests include the analysis
and design of network congestion control and dis-
tributed resource allocation in wireless networks.

PLACE
PHOTO
HERE

Gavin McCullagh

