
1

Making available Base-RTT for use in congestion
control applications

D.J.Leith, R.N.Shorten, G. McCullagh
Hamilton Institute, National University of Ireland Maynooth

Abstract— In this paper we revisit the interaction between
baseRTT estimation and congestion control action. We develop a
simple AIMD-based scheme that allows network buffers to drain
and thus demonstrate in a constructive manner that, with proper
design, it is indeed possible for flows traversing a bottleneck link
to estimate their base RTT reliably.

I. I NTRODUCTION

Estimation of round-trip propagation delay, also referred
to as baseRTT , is a fundamental part of many congestion
control algorithms. Apart from its evident importance in delay-
based algorithms such as FAST TCP [4] and TCP Vegas
[1], it also plays an important role in recently proposed loss-
based (and hybrid) schemes such as TCP Westwood, Microsoft
Compound, and H-TCP [3] in which flows adaptively set their
backoff factor toβ = baseRTT/RTTmax, whereRTTmax

is related to the measuredRTT at backoff. In this latter
context, the ability to estimatebaseRTT effectively decouples
the congestion control algorithm from the issue of queue
provisioning and enables high utilisation to be achieved with
small buffers [5].

Accurate estimation ofbaseRTT is, however, known to
potentially be problematic. A primary issue is interactions
betweenbaseRTT estimation and the congestion control algo-
rithm itself. For example, in TCP Vegas and related algorithms
a standing queue is induced as part of the correct operation of
the congestion control algorithm. Thus, when flow start times
are staggered, later flows tend to over-estimatebaseRTT due
to the standing queue created by earlier flows. Similar issues
can also arise with loss-based algorithms. For example, if the
AIMD backoff factor used isβ = baseRTT/RTTmax (as in
H-TCP and some versions of Westwood), then overestimation
of baseRTT may mean that flows do not empty network
queues, allowing the overestimate to persist indefinitely.Sta-
tistical multiplexing of flow backoffs on links shared by many
loss-based flows can also lead to later flows experiencing a
standing queue and so overestimatingbaseRTT .

In this paper we revisit the interaction betweenbaseRTT
estimation and congestion control action. We develop a simple
AIMD-based scheme that allows network buffers to drain and
thus demonstrate in a constructive manner that, with proper
design, it is indeed possible for flows traversing a bottleneck
link to estimate their base RTT reliably.

The financial support of Cisco Systems for this work is gratefully acknowl-
edged. This work was also supported by SFI grant 04/IN3/I460.

II. BACKGROUND

The context for the present work is a Cisco funded project
to investigate delay-based AIMD congestion control [2]. The
basic idea here is that by backing off cwnd when queueing
delay exceeds some threshold, we can avoid filling the queue
(thus maintaining low queueing delay) while staying withinthe
well-established AIMD framework. Further, by adapting the
AIMD backoff factors as proposed in [5], we can also achieve
high network utilisation. Since this algorithm is an AIMD
strategy, networks deploying the delay-based algorithm exhibit
the usual fairness and convergence properties of AIMD. For
convenience, we recap the algorithm proposed in [2]:

cwnd←







cwnd + α/cwnd, on each ACK
βcwnd, if τ ≥ τ0

βcwnd, if packet loss

where τ is the observed queueing delay,τ0 > 0 is a delay
threshold that triggers delay-based backoff (set here to=
50ms). The queueing delayτ is estimated assRTT − T̂ (k)
where T̂ (k) is the minimum round-trip time observed so far
andsRTT is an estimate of the current round-trip time.T̂ (k)
may be interpreted as an estimate ofbaseRTT , although it is
important to stress that we donot assume that it is necessarily
an accurate estimate. The backoff factor is

β(k) = δT̂ (k)/RTT (k) (1)

whereRTT (k) is the measured RTT before thek’th backoff
event1 , and0 ≤ δ < 1 is a design parameter.

It is the impact of the choice of backoff factor (1) that is the
primary focus of the present paper. While we often illustrate
results with reference to the delay-based AIMD algorithm, all
our analysis extends to general AIMD algorithms including
loss-based algorithms. To make this explicit, we thereforealso
include examples illustrating loss-based AIMD operation.Our
main result is that with the choice of backoff factor (1) only
very mild conditions are needed for the bottlenecked bufferto
drain and for the true value ofbaseRTT , to be available to
network flows regardless of initial estimation errors. Thisfact
is shown both analytically and experimentally. Details of the
experimental testbed are given in the Appendix

1It is not essential thatRTT (k) equals the delay before backoff, it is
only required thatRTT (k) is greater than or equal to this delay. In our
implementation theRTT (k) value used is a quantity that tracks the maximum
observed RTT and decays towardsT̂ during periods when the current RTT is
below RTT (t).

2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 32 32.5 33 33.5 34

E
rr

or
 in

 m
in

R
T

T
 (

m
se

c)

Time (sec)

delta=0.5
delta=0.8
delta=0.9
delta=1.0

(a) Delay-based AIMD

Fig. 1. Experimental measurements of estimation errorT̂ − T vs time.
Measurements are shown for a range of values of the design parameterδ.
Initial estimate of base RTT is hard-wired to an incorrect value to illustrate
convergence. 10Mbps link, RTT 200ms, one delay-based AIMD TCP flow.

III. D RAINING NETWORK BUFFERS

To help gain some insight into the mechanics of the backoff
algorithm, consider for the moment a network with a single
flow. Let B denote the link bandwidth in packets/s,T the
round-trip propagation delay. Consider thek’th backoff event
and let w(k) denote the congestion window of the flow at
backoff andQk the network buffer occupancy. At backoff, we
have thatRTT (k) = T + Qk/B andw(k) = B × RTT (k).
Following backoff, the flow cwnd isβ(k)w(k). Selectingβ(k)
according to (1),

β(k)w(k) = δ
T̂ (k)

RTT (k)
B ×RTT (k) = δBT̂ (k)

If T̂ (k) = T , then sinceδ < 1 it can be seen that cwnd
falls below the link bandwidth-delay productBT . Thus the
queue empties thereby providing an opportunity for the flow
to observe the propagation delayT . If T̂ (k) > T then the
queue need not empty after backoff. The buffer occupancy
after backoff isqk = β(k)w(k) − BT = B(δT̂ (k) − T) and
the round-trip delay isT + qk/B = δT̂ (k). Sinceδ < 1, the
round-trip delay islower than the previous lowest observed
delay T̂ (k). Hence, the flow can updatêT to a value that
is closer to the true propagation delayT . In effect, we are
using the multiplicative decrease action to probe the network
to discover whether an RTTbelow our current best estimatêT
is possible. After a number of congestion events (the number
being dependent on the size of the initial error inT̂ and on
the value ofδ), we can see the flow is eventually guaranteed
to obtain an accurate estimate of the propagation delayT .
This is illustrated in Figure 1, which shows experimental
measurements of̂T converging toT .

A. Detailed Analysis

Considern flows sharing a bottleneck link. Letwi(k) denote
the cwnd of flowi at the k’th backoff event, letTi be the
round-trip propagation delay of flowi. Let Qk be the buffer
size at thek’th congestion event. Note that this need not be the
maximum buffer size when delay-based AIMD is used. When

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450

M
in

R
T

T
 E

rr
or

 (
m

se
c)

Time (sec)

Fig. 2. Experimental measurements illustrating queue draining with multiple
flows. 10Mbps link, 125KB buffer, mix of flow RTTs 20-200ms,δ = 0.8,
16 TCP Reno flows with adaptive backoff and randomised start times. Initial
base RTT estimates for all flows are hard-wired to incorrect values to confirm
insensitivity of convergence to estimation errors.

delay-based congestion control it also need not be the same at
every congestion event (due to burstiness etc). At congestion
we have that the aggregate flow rate equals the link rate, i.e.

n
∑

i=1

wi(k)

Ti + Qk

= B (2)

Following backoff, the aggregate rate becomes
∑n

i=1 βi(k) wi(k)
Ti+qk

, where qk is the queue occupancy
after backoff (qk < Qk) and βi(k) is the backoff factor of
flow i.

If the queue empties on backoff, thenqk = 0 and flows
have the opportunity to measure their base round-trip timeTi.
If the queue does not empty on backoff, then the aggregate
flow rate continues to equal the link rate, i.e.

n
∑

i=1

βi(k)
wi(k)

Ti + qk

= B (3)

Assume that flow backoffs are synchronised i.e. every flow
backs off at each congestion event (this assumption is relaxed
later). Also assume for the moment that each flow observed
the RTT at thek − 1’th backoff when the queue occupancy
was qk−1 (again, we relax this assumption later). The flow
backoff factors then satisfy

βi(k) ≤ δ
Ti + qk−1

Ti + Qk

∀i ∈ 1, .., n

Substituting into (3),

B =

n
∑

i=1

βi(k)
wi(k)

Ti + qk

≤

n
∑

i=1

δ
Ti + qk−1

Ti + qk

wi(k)

Ti + Qk

(4)

Using (2), it then follows that∃i such thatδ Ti+qk−1

Ti+qk

≥ 1.
i.e. qk ≤ δqk−1 − (1 − δ)Ti. Thus, providedδ < 1 the
queue occupancy at backoffqk decreases monotonically until
eventually the queue empties, providing an opportunity for
flows to measure their base round-trip time. This is illustrated
for example in Figure 2.

3

B. Discussion

Convergence Rate. The rate of decrease is evidently
influenced by the choice ofδ, decreasingδ increasing the rate
at which the queue drains. This can be seen, for example, in
Figure 1.

Unsynchronised Drops We can capture unsynchronised
backoffs by settingβi(k) = 1 for flows which do not backoff
at the k’th congestion event. The foregoing analysis can
then be immediately extended to the case of unsynchronised
flows under mild assumptions. Specifically, assume that
at congestion events synchronised backoffs occur with
probability lower bounded byps > 0. That is, it occasionally
happens that all flows backoff together at a congestion event.
This assumption can be relaxed in various ways but this is
beyond the scope of the present work.

Observability Our analysis assumes that each flow observes
the RTT after thek’th backoff. It is easy to see that this
assumption may, however, be further relaxed to the much
weaker requirement that there is a non-zero probabilitypi

that over a congestion event flowi observes an RTT less than
or equal to the RTT after thek’th backoff.

Quantisation of cwnd Our analysis assumes that the specified
backoff factor (1) is successfully applied to the flow cwnd.
A notable exception to this occurs when the flow cwnd is
only one packet in size. Since this is the lowest admissible
cwnd, the backoff factor specified by (1) cannot be applied.
This is illustrated, for example, in Figure 3(a) which plots
the worst-case (over all flows) error in estimated baseRTT
as the number of flows is increased. Also shown in Figure
3(b) is the distribution of flow cwnd values vs the number
of flows. It can be seen that the worst case estimation error
begins to rise as the number of flows increases above 60. This
corresponds to a regime where around 60% of flows have a
cwnd of only one packet and around 35% have cwnd of two
packets. Above around 100 flows,> 90% of flows have a cwnd
of one packet. Since flows can no longer backoff their cwnd, a
standing queue develops at the link buffer and the estimation
error of later flows inevitably increases. We note that this issue
can potentially be resolved by introducing more fine-grained
control of the flow send rate at low cwnd via, for example,
pacing. Consideration of such extensions is, however, beyond
the scope of the present paper.

IV. CONCLUSIONS

In this paper we revisit the interaction betweenbaseRTT
estimation and congestion control action. We develop a simple
AIMD-based scheme that allows network buffers to drain and
thus demonstrate in a constructive manner that, with proper
design, it is indeed possible for flows traversing a bottleneck
link to estimate their base RTT reliably.

REFERENCES

[1] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. InProceedings of
SIGCOMM, pages 24–35, 1994.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160

P
ea

k
E

rr
or

 in
 m

in
R

T
T

Number of Flows

δ=0.8

(a) Worst case estimation error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160
F

ra
ct

io
n

of
 C

w
nd

s

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(b) Flow cwnd distribution

Fig. 3. Illustrating quantitisation issues as the number offlows on a link is
increased and flow cwnds tend towards one packet. 10Mbps link, mix of flow
RTTs 20-200ms,δ = 0.8, delay-based AIMD (similar results are obtained
for Reno with adaptive backoff).

[2] D.J.leith, J.Heffner, R.N.Shorten, and G.D.McCullagh. Delay-based aimd
congestion control. InProc. Workshop on Protocols for Fast Long
Distance Networks, Los Angeles., 2007.

[3] D.J.Leith and R.N.Shorten. H-TCP protocol for high-speed long-distance
networks. InProc. 2nd Workshop on Protocols for Fast Long Distance
Networks. Argonne, Canada, 2004, 2004.

[4] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, architecture,
algorithms, performance. InIEEE INFOCOM 2004, 2004.

[5] R. Shorten and D. Leith. On queue provisioning, network efficiency
and the delay-bandwidth product. IEEE Transactions on Networking, to
appear, 2006.

APPENDIX

We implemented the adaptive backoff in Linux 2.6.23 for
both the NewReno/SACK and delay-based AIMD algorithm
algorithms. Experiments were carried out using a testbed
consisting of commodity PCs connected to gigabit switches
to form the branches of a dumbbell topology. All sender and
receiver machines used in the tests have identical hardwareand
software configurations and are connected to the switches at
1Gb/sec. The router, running FreeBSD v4 with the dummynet
module, can be configured with various bottleneck queue-
sizes, capacities and round trip propagation delays to emulate
a range of network conditions. TCP Flows are injected into
the testbed usingiperf. TCP stacks are instrumented using
a modified version of the Linuxtcpprobe module.

