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ABSTRACT

Location-based applications (LBAs) are emerging to be the
killer applications on mobile devices. To know the where-
abouts of devices, various interfaces (i.e., GPS, Wi-Fi or cel-
lular) can be used to sense their locations. Ideally, localiza-
tion should be done all the time. However, keeping any of
these interfaces running continuously would drain a device’s
battery rapidly. In this paper, we present a radical design
of a collaborative localization system called HartFi, which
enhances existing devices with a low-power 802.15.4-based
WirelessHART interface. A salient feature of this added in-
terface is that its energy consumption is up to two orders of
magnitude less than that of a standard Wi-Fi interface; yet it
provides a comparable range of coverage. In the HartFi sys-
tem, therefore, WirelessHART interfaces are used whenever
and wherever it is feasible to share location information that
has been obtained using GPS/Wi-Fi/cellular interfaces. We
have designed a mechanism to avoid location error accumu-
lation in HartFi, which raises its localization accuracy to a
level comparable to that of Wi-Fi localization. We are imple-
menting a HartFi system at the moment and current results
are promising.

1. INTRODUCTION

Location-based applications (LBAs), e.g., Foursquare [1],
Facebook Places [2], Gowalla [3], MicroBlog [12], Traffic-
Sense [14], Pothole Patrol [11], PeopleNet [15], are becom-
ing increasingly popular. A common and natural requirement
of these applications is that they need to know the physical lo-
cation of a device, and many applications would greatly ben-
efit from having this information available at all times rather
than only intermittently. However, existing localization tech-
nology is energy intensive and drains the battery of a mobile
device too quickly to be usable for sustained periods.

The Global Positioning System (GPS [10]) currently pro-
vides the most accurate technique for localization of mobile
devices. GPS can normally locate a device with errors of
about 10 meters [12, 19]. However, GPS has two major dis-
advantages: 1) it is energy hungry, for example, Vtrack [19]
and MicroBlog [12] report that a phone that was continuously
using GPS can only last for about 10 hours before its battery
is drained, and 2) if there is no line of sight between a GPS
device and the satellites then location information cannot be
determined, with an immediate consequence of this being that
GPS often does not work at all in indoor environments and in
city center areas with many high buildings [16].
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To reduce energy consumption and enhance coverage within
buildings and built-up areas, other interfaces, such as, cellu-
lar, Wi-Fi and Bluetooth interfaces can be used for locating
devices. However, the tradeoff between location accuracy,
coverage and energy consumption is complex:

e Cellular networks cover large areas and provide cover-
age both indoors and outside. Cellular interfaces con-
sume less energy than GPS (a device using cellular lo-
calization can last for 60 hours). However, the location
estimates via cellular base stations are much less accu-
rate than GPS, with errors of around 400 meters [18];
see Table 1.

e Wi-Fi interfaces are nowadays ubiquitous on smartphones
and tablets. Their estimation accuracy and energy effi-
ciency lie between those of GPS and cellular: current
techniques for Wi-Fi location estimation normally have
errors of around 40-meters, and a device using Wi-Fi
localization can last for about 40 hours [4, 8, 9].

e Modern mobile devices are also often equipped with
Bluetooth interfaces. However, the coverage of Blue-
tooth only extends to about 10 meters and its energy
consumption is comparable to Wi-Fi. (Note that the
per-bit energy consumption of Bluetooth is much less
than that of Wi-Fi. However, Bluetooth expends much
greater time/energy in discovery and other tasks.) If this
small coverage area is sufficient, location information
using Bluetooth can be of high accuracy [16].

IEEE 802.15.4 technology (e.g., WirelessHART [17], Zig-
Bee [6]) is becoming popular in sensor networks, smart home
environments, and industry control. They can be expected to
become available on mobile devices in the near future (e.g.,
SIM cards with a ZigBee chip embedded already exist). A
salient feature of 802.15.4 is that radios consume up to two
orders of magnitude less energy than standard Wi-Fi, while
at the same time it covers an area comparable to Wi-Fi. The
data rate supported by 802.15.4 (250 kbps) is one order of
magnitude less than Wi-Fi’s, but it is already sufficient for
location-based applications.

In this paper, we introduce a radical design called HartFi.
HartFi combines the use of Wi-Fi and WirelessHART for
energy-efficient localization. In HartFi, only a few devices
in the network need to directly communicate with Wi-Fi APs
to determine their locations. Once the location information
is available, it will be broadcasted using the low-power Wire-
lessHART interface. After hearing these broadcast packets
and at the same time measuring RSS (Received Signal Strength),



GPS Wi-Fi Cellular Bluetooth | 802.15.4
Lifetime(h) 10 40 60 60 TBD, but longer than cellular
Coverage(m) Outdoor | 50 Everywhere | 10 35-75
Error(m) 10 40 400 10 TBD
Radio Emitting Power(mW) | Vary 32-200 | 100-2000 10 1

Table 1: Comparison among popular wireless technologies. Note that the actual energy consumption is greater than
the radio transmission power due to the energy consumption of the analogue front-end (amplifiers etc), digital signal

processing and, importantly, protocol overheads.

other devices can derive their own locations and once again
broadcast their locations. HartFi thus has the potential of
achieving remarkable energy saving compared to existing Wi-
Fi-based localization systems as most communication is now
through low-power WirelessHART interfaces.

The HartFi system also features larger coverage than Wi-
Fi. This is due to the fact that the WirelessHART interfaces
form a multi-hop mesh network. Areas that are not covered
by Wi-Fi APs can now be covered by this mesh network.

To ease deployment, we design an incremental algorithm
with which the HartFi system works regardless of the num-
ber of WirelessHART interfaces. That is, if there is no Wire-
lessHART, the HartFi system becomes the original Wi-Fi based
system. As the number of WirelessHART increases, the gain
of energy saving also improves. See Section 2 for details.

We are in the progress of implementing a hardware testbed
and a large scale simulation. Preliminary but encouraging
results can be found in Section 3.

Note that in this paper we use Wi-Fi as the reference inter-
face. The proposed HartFi system works when one replaces
the Wi-Fi with GPS, and indeed with more saving expected.

2. THE HartFi SYSTEM

2.1 The Infrastructure

The infrastructure of the HartFi localization system is de-
picted in Fig. 1. A device in such system can have multi-
ple interfaces, including GPS, Wi-Fi, cellular, Bluetooth and
WirelessHART. All other interfaces work as usual, but the
WirelessHART interfaces form a multiple-hop mesh network.
In this mesh network, a device can either be a coordinator or
a normal node. There is one and only one coordinator in this
mesh, which schedule all the transmissions. That is, this mesh
is TDMA in nature. All normal nodes simply join and listen
to the coordinator’s schedule.

In particular, formation of the WirelessHART mesh net-
work consists of three main phases: network initialization,
device joining and normal operation.

When a device powers up, its WirelessHART interface first
scans all 16 channels to detect the advertisement messages
broadcasted from existing WirelessHART nodes for a period
of time. If it cannot hear any advertisement messages, it will
take the role of coordinator. It will then broadcast advertise-
ment messages periodically to notify others of its existence.
Each advertisement contains the network id, the communica-
tion links that are available to new devices to join in and the
absolute slot number for new devices to synchronize with the
coordinator.

If the device can detect one or more advertisement mes-
sages around it, it will go through a join process to fully in-
tegrate into the network. The general progression that must

Figure 1: The infrastructure of the HartFi system.

be followed for the joining device to become operational in-
cludes the following steps:

o It listens for an advertisement message to synchronize
to the network clock and identify potential parents.

o [t then presents its credentials to the coordinator.

e The Network Manager at the coordinator provides the
first session key and network key to the device. The
device is then in the quarantined state.

e The Network Manager then proceeds to integrate the
device into the network by provisioning the device with
normal superframes and links.

e The device becomes operational and begins acquiring
bandwidth and communication resources required for
various communication purposes.

After the new devices have fully joined into the network, they
will also broadcast advertisement messages. This will signif-
icantly increase the scale of the formed WirelessHART mesh
network and covers many areas that cannot be covered by Wi-
Fi access points.

In the normal operation phase, the WirelessHART devices
will communicate with each other according to the commu-
nication schedule configured by the coordinator. If there is
no data message exchanged between two devices, Keep-alive
messages will be exchanged between them periodically to
keep them synchronized.

2.2 Localization

To determine its own position, a device can use one of its
available interfaces (called client NIC in the following) to



communicate with a few network devices (called master or
anchor devices) which know their own locations. For exam-
ple, for Wi-Fi localization, the client interface is a Wi-Fi card
and the master devices are APs. For cellular localization, the
cellular interface is the client, the master devices are BSs.

While communicating with the master devices, a device
can measure certain metrics to determine its distance to the
master devices. Once three or more master devices’ locations
are known, this node’s own location can be calculated using
trilateration.

To compute the distance, a mobile device might measure
up to four metrics regarding its position relative to a master
device: angle of arrival, time of arrival, time difference of ar-
rival, and RSS. However, the first three options require line of
sight, which is usually not feasible in the indoor environments
that we are targeting [8] [13]. Hence, we focus on the use of
RSS measurements to infer distance, e.g. following [8]. The
following simple example illustrates the potential for power
saving in HartFi.

2.2.1 An Example

Suppose there are 3 APs and 3 mobile devices. If these
devices have Wi-Fi only, then each of them has to power on
its Wi-Fi interface in order to hear packet transmissions from
each of the APs and thereby infer distance (via RSS measure-
ments) and gather information on the AP locations (contained
within the packets). Since the APs are assumed to know their
own locations, each device can then estimate its location us-
ing trilateration. This requires each mobile device to keep its
Wi-Fi interface powered on to receive at least 3 packet trans-
missions (one from each AP). The aggregate device power
consumption then corresponds to that required to receive at
least 3 x 3 = 9 packets.

If these devices have both Wi-Fi and WirelessHART in-
terfaces, we proceed using the following bootstrapping ap-
proach. The first device powers on its Wi-Fi interface in or-
der to receive packets from each of the 3 APs, and can then
determine its location at the energy cost of 3 Wi-Fi packets.
The second device can then use this HartFi device as a master
device, and estimate its location by communicating with only
2 APs as well as the first HartFi device. This carries an energy
cost of 2 Wi-Fi and 1 WirelessHART packet. The third device
can determine its location from listening to 1 Wi-Fi AP and
the first two HartFi devices, at the energy cost of 1 Wi-Fi and
2 WirelessHART packets. In total, the energy cost is 6 Wi-Fi
packets and 3 WirelessHART packets. Since WirelessHART
consumes about 1/100 radio energy of Wi-Fi, we can expect
to have around a 33% energy saving in this case.

The energy saving will become even more significant as
more devices have joined into the formed WirelessHART mesh.
A new device can listen on the broadcast links and capture
the <Loc, RSS> pairs from all its neighbors and then localize
itself. It has to listen to the Wi-Fi APs only if not enough
WirelessHART neighbors can be detected. By propagating
its location through broadcasting on its WirelessHART inter-
face, each new device further expands the HartFi localization
system.

2.2.2  Localization Algorithm

Pseudocode for this iterative location estimation process is
given in Algorithm 1. The basic idea of this algorithm can be
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Figure 2: Illustrating collaborative estimation with 5
HartFi devices

summarized as follows. If a device in HartFi system has no
WirelessHART interface, it just use Wi-Fi for localization. If
the device has WirelessHART interface, it listens to the neigh-
bor broadcasts. When it hears more than three HartFi devices
(in 2D) that provides location information, it computes its
own location by referring these HartFi devices. Otherwise,
the device running this algorithm needs to communicate with
APs to obtain enough master devices.

The information provided by each master device i is pre-
sented as a triple <loc;, e;, rss;>, where loc; is i’s location, e;
is i’s local error factor (explained in the next subsection), and
rss; is the RSS measurement that infers distance.

Algorithm 1 The HartFi Localization Algorithm

. hasWH = TRUE;
Swy = &; Il The set of <loc;, ey r, rss;> triples from Wi-Fi APs
Swin = &5 /] The set of <loc;, e;, rss;> triples from HartFi neighbors

hasWH = CheckWH();
if (hasWH == FALSE) then
ScanAvailableWiFiAPList();
Associate with the first 3 APs with best RSS and get S, f;
<loc, e> = EstLocation(S,./);
. else
: S,wn = ListenNeighborLocBcast();
12: if (|Syn| > 3) then
13: <loc, e> = EstLocation(S,,;,);
14:  else
15: ScanAvailableWiFiAPList();
16: Associate with the first 3 — |S,,;| APs with best RSS and get S,,f;
17: <loc, e> = EstLocation(S,;, U Sw);
18:  endif
19: end if
20: Broadcast the <loc, e> pair through WirelessHART interface;
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2.2.3  Using Collaborative Localization for Error Con-
trol

In the foregoing example, it is clear that the accuracy of
the location estimate derived by the third device is subject
not only to errors in the distance measurements to the AP but
is also affected by errors in the other two HartFi devices. We
therefore expect that the estimation error for the third device
will be higher than for the first two devices. When others
use the third device as a master, the error will continue to



propagate and accumulate.

There are two ways to mitigate this issue. First, we can turn
on GPS and/or Wi-Fi interfaces when the errors are too large.
Doing so however has to disadvantage of wasting energy and
so we will consider this as a backup plan when the second
technique is not efficient.

Second, errors can be mitigated by collaborative location
estimation. In particular, each HartFi device considers all its
neighboring master HartFi devices, rather than three of them,
to localize itself. An example of using 5 master devices is
shown in Fig. 2. Every HartFi device estimates its location
by the algorithm EstLocation(S) (pseudocode shown in Al-
gorithm 2), where S is the set of triples from master devices.
The algorithm assigns the device a location / that minimize
the sum of the squared error between the distance from / and
the measured distance to each master device:

: 2
I =argmin )’ fi(|| I —loc; || —d;)
I s
where for each master device i, || [ — loc; || is the distance
from [ to loc;, f; is the confidence for referring this master
device. f;is computed as:

fi=ewr/(ews +ei)

where e, r is an empirical constant value of the average
error in Wi-Fi localization, and ¢; is the error factor for the
master device i. It is clear that when e; is large, the confidence
value is small. We use e,,r/ (e, s +¢;) rather than 1/e; to avoid
extreme values.

Algorithm 2 EstLocation(S) Algorithm

tb Input: A set S of <loc;, e;, rss;> triples from neighbors, and the current
estimated location /' and the error factor e/
Output: Device’s updated estimated location / and error factor e.

1: for each <loc;, e;, rss;> triple in S do

2: Derive d;, the estimated distance to i, from rss; according to the RSS
model;

3: fi = ewy/(ews +e;); I/ confidence for each master device

4: end for

5: I =argminy fi(|| { —loc; | —d;)*

I ics

6: if I’ = null_ then

7.

8:

e=p- % // B: tuning parameter larger than 1

else
9: Cnew = % H -r H!
10:  e=oa-e' 4+ (1 —a)-epew; // € (0,1): parameter for moving average
11: endif
12: return </,e>;

The error factor for each AP is e,yr. When it is the first
time for a HartFi device to run localization, it initializes its
error factor to be e = 3 - %, where P is a tuning parameter
larger than 1. Such initialization means that the error factor is
always larger than the average value of the error factors from
its masters. After that, when finish location estimation once,
the device updates its error factor by a moving average:

EZ(X'€/+(1*OL)'enew

WirelessHART
Coordinator
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Figure 3: Leveraging ZigBee devices in localization

.
e

" and ¢’ are the previous estimated location and error fac-
tor. e,y is the geometric mean of the average error factors
of masters and the difference between the updated prior loca-
tions. When most masters have low error factors, or the up-
dated location does not have much change, e, will be very
small. It helps the system to converge.

After finishing updating / and e, the HartFi device broad-
casts these two values. Every HartFi device runs the localiza-
tion process iteratively.

We are currently running large-scale simulations to find the
proper value of o and 3 for accurate and fast convergence.

2.3 Leveraging ZigBee devices in HartFi sys-
tem

ZigBee interface is currently more popular in the market
than WirelessHART. We choose WirelessHART instead of
the ZigBee interface to collaborate with Wi-Fi in the HartFi
system because WirelessHART has several dominating ad-
vantages over ZigBee. The most important is that it supports
packet level channel hopping, which also plays a key role in
other low-power wireless standards suited to coexistence with
Wi-Fi in the 2.4 GHz frequency band.

We note that ZigBee and WirelessHART both use the same
802.15.4 PHY layer. The ZigBee MAC layer message is
strictly compliant to the 802.15.4 MAC format while Wire-
lessHART MAC message is the data type of the 802.15.4
MAC message with its first byte of the frame control field
set as Ox41. For this reason, a WirelessHART interface can
hear any ZigBee packets in its neighborhood. Since the PHY
and MAC headers of ZigBee packets are not encrypted, Wire-
lessHART interface can simply derive the transmitting Zig-
Bee device’s PAN id, nickname and the RSS of the messages.
If multiple WirelessHART interfaces (for example, DEV2,
DEV3, DEV4 in Fig. 3) can hear from the same ZigBee de-
vice, they will report the ZigBee device’s RSS information
to the coordinator. Combined with these reporters’ own lo-
cations, the coordinator can estimate the location of the Zig-
Bee device even it is not integrated into the HartFi system.
The learnt ZigBee location can then be broadcasted in the



Figure 4: One of our WirelessHART devices.

whole mesh. This can further help other WirelessHART in-
terfaces to reduce the number of possible requests to Wi-Fi
access points. For example, DEVS has the <loc, rss> pairs
from neighbor DEV3 and DEV4, and can overhear the Zig-
Bee device. With the addition of the ZigBee device’s location
which is broadcasted in the network, DEVS5 can estimate its
own location without talking to any Wi-Fi AP.

3. EXPERIMENTAL RESULTS
3.1 The Hardware

We set up a set of experiments to compare the power con-
sumption between the Wi-Fi and WirelessHART interfaces.
Four ASUS netbooks are used in the experiments (see Fig. 4).
Each netbook is equipped with an internal 802.11b/g card and
an external WirelessHART development board. Our Wire-
lessHART board is built with the Freescale DEMOJM128
toolkit and runs the WirelessHART stack developed by our-
selves [17]. The toolkit includes a 50.33 MHz ColdFire V1
core, 128 KB of flash memory and 16K RAM with security
circuit. It also features an on-board logic analyzer, a virtual
serial port and a Mini-AB USB connector.

Note that we picked netbooks for this work rather than
phones since our current WirelessHART development board
has only a serial and a USB interface, none of which can be
connected to a phone. However, we note that the HartFi sys-
tem should in future have the WirelessHART interface inte-
grated with either the SIM card or the Wi-Fi card. The former
integration is the same as the Telecom service’s suggestion [7]
for ZigBee and SIM card, and the latter has been done for
Bluetooth and Wi-Fi by major Wi-Fi vendors such as Broad-
com and Atheros. In private communication with Marvell,
who also produces Bluetooth and Wi-Fi chipsets, we have
been informed that integrating WirelessHART and Wi-Fi is
straightforward given the current technology.

Note also that our WirelessHART interface is actually a
development board, which means that results presented in this
work can be greatly improved once it is really integrated in a
phone.

3.2 Energy Consumption Measurements

Both Off (To,rr) | WH (Thn) | Wi-Fi (T,,r) | Saving
Netbook 1 92 82 58 70.588%
Netbook 2 115 107 84 87%
Netbook 3 123 117 88 80%
Netbook 4 91 81 61 63.33%

Table 2: Power consumption by the Wi-Fi and Wire-
lessHART interfaces.

We begin by presenting experimental measurements which
provide an indication of the potential energy consumption re-
duction possible via use of the HartFi system. To collect data,
we connect our testbed netbooks with an AP using their Wi-
Fi interfaces, and they ping the AP at 1-second intervals. We
then use the HartFi interface to connect the netbooks to a
WirelessHART coordinator and they send “hello’ messages
with the same size as the ping packets. In this way we are
emulating the energy usage of a localization algorithm run-
ning at 1-second intervals. We measure the time (in minutes)
taken to consume half of the full battery capacity (i.e. for
the power meter to drop from 100% to 50%). These mea-
surements are shown in Table 2. From these results, we can
see that using the WirelessHART interface (7,,) leads to 20
— 30 minutes longer battery life than when using the Wi-Fi
interface (7,,¢). This translates into a 75.23% power saving,

Twh*Tw’f % 100%

calculated as Ty T

3.3 Inferring Distance From RSS

We use the model proposed in [8] to map from RSS to dis-
tance, with parameters tuned to our test environment, i.e., the
5th floor of the ACES building at UT Austin. The floor map
is not included due to limited space; please refer to [5] if in-
terested. The RSS model for Wi-Fi is as follows.

b Py —10-n-log(4)—nW -WAF ifnW <C

4 PdO—IO-n~log(%)—C-WAF itnW >C
where dj is the reference distance used in the model and
d is the transmitter-receiver (T-R) separation distance. Py,
is the received power at the reference distance and P, is the
received power when the T-R separation distance is d. n is
the signal delay factor, C is the limit for the number of walls,
WAF is the factor for the wall effect and nW is the actual
number of walls between a test point and the measured AP.
We select 11 test points and measure the signal strength from
the 3 APs in four directions. The measurement results are
summarized in Fig. 5. It can be seen that the RSS model with
parameter values of dp = 1 m, Py, = —27dBm,n=1.5,C =4,

WAF = 3.1 is in good agreement with our measurements.
We also conduct a similar measurement for WirelessHART
interface and the result is presented in Fig. 6. We put a Wire-
lessHART device at the location of Wi-Fi AP3 and measure
its signal strength. Since 3 of the 11 test points in the last ex-
periment cannot be covered by the WirelessHART interface,
we add 8 more test points (16 in total). The RSS model is kept
unchanged except that Py, is set as —45dBm. In Fig. 6, we
observe that the RSS model matches the measurements very
well. Although the one hop distance that a WirelessHART
interface can cover (32m) is relatively shorter than that of
a Wi-Fi interface (41 m), the WirelessHART interface has a
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Figure 5: Measurements vs. the RSS model of three Wi-Fi APs.
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much lower power consumption. Notice that since the Wire-
lessHART interfaces in HartFi system will form a multi-hop
mesh, the HartFi localization system is expected to cover a
much larger area than Wi-Fi system.

Currently we are measuring the localization accuracy in
both HartFi and Wi-Fi localization systems. We are going
to evaluate the performance of the error control mechanism
(proposed in Section 2.2.3) in reducing the error propagation
and accumulation in HartFi systems.

4. CONCLUSION AND FUTURE WORKS

Power saving is crucial for mobile devices especially when
continuous location-based applications are running. Typical
localization techniques based on GPS, Wi-Fi and Bluetooth
are energy hungry while cellular localization suffers from un-
acceptable accuracy. In this paper, we present our radical
design of a collaborative localization system called HartFi.
HartFi takes the advantage of the lower-power 802.15.4 based
WirelessHART interface to form a mesh among the mobile
devices. Location information is broadcasted among the Wire-
lessHART interfaces to reduce the usage of Wi-Fi interfaces
as much as possible thus greatly prolongs the mobile device’s
lifetime. We also propose a novel technique to reduce the
error propagation in HartFi system. HartFi localization sys-

tem is expected to achieve the same level accuracy as Wi-Fi
localization system while significantly reduce the energy con-
sumption on mobile devices.

We are building a HartFi testbed in UT Austin. Initial
results are promising and show that our RSS model in the
testbed environment is accurate and our error propagation re-
duction technique is effective. We are doing more experi-
ments to quantitatively compare the HartFi system with pure
Wi-Fi system on energy consumption and localization accu-
racy.
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