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Abstract—This paper presents NMLab, a proposal of new
co-simulation framework for Matlab and ns-2 targeted for
networked control systems. NMLab enables to combine flexible
and powerful numerical operations together with a realistic
support for a wide range of up-to-date communication protocols,
and permits simulating networking scenarios of high grade of
complexity. At the same time the proposed solution is kept simple.
The capabilities of NMLab are illustrated through a series of
experiments, using as an example the academic version of the
pendulum on a cart.
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I. INTRODUCTION

Recent years saw a growing role of networked control
systems (NCS) within the control community. A NCS consists
of several systems, controllers, actuators and sensors which
share one bandwidth-limited digital communication channel
(for a more detailed introduction to NCS, see e.g., [1] and
the references therein). As NCS have become more and more
complex, a pure analytical approach is often not possible
(or too demanding), and consequently there is a strong need
for development of appropriate simulating tools. Typically
control system simulators, e.g., Matlab/Simulink [2], or
Scilab/Scicos [3], focus on continuous dynamics having
only some support for discrete events. Meanwhile, most
common network simulators, such as Opnet or ns-2 [4], while
providing realistic frameworks for simulations of packet
based transmissions (discrete-event-driven) and supporting
wide range of network protocols and scenarios, have limited
support for continuous dynamics [5].

As hybrid dynamical systems, NCS require from their
simulators to combine both continuous-time plant dynamics
of control system simulators and discrete events present in
network simulators. One of possible solutions is to rely on sev-
eral existing hybrid-system simulators, such as Ptolemy II [6]
or SimEvents [7] extension for Matlab/Simulink. However
these solutions usually have high levels of abstraction which
sees them either unsuitable, or requires large modelling ef-
fort in order to make a realistic NCS simulation feasible
(e.g., SimEvents does not have wireless support, whereas

Ptolemy II’s wireless model can be seen as too simplistic).
Therefore, the approach that federates existing control and
network simulators, a so called co-simulation approach, seems
much more appropriate in terms of simulating NCS. Bringing
both types of simulators together could help to combine
the advantages, i.e., preserve the computational flexibility of
Matlab and provide the functionality of a tested and verified
network simulator [5], however it also poses many challenges,
e.g., versatility of the proposed solution.

One of the first examples of a co-simulation design is
TrueTime extension for Matlab/Simulink [8]. TrueTime is
a discrete-event simulator inside Simulink providing co-
simulation of control task execution, network communication
and plant dynamics. TrueTime, while taking the advantage
of all flexibility and versatility of numerical computations,
preserves also the main drawback of Matlab in context of NCS
simulations, namely, limitation on complexity of the network
and its dynamics [9]. In his thesis, Hartman points out this
limitation of TrueTime while also giving a brief overview of a
co-simulation framework between Matlab and ns-2 in context
of NCS. Further overview of existing NCS co-simulation tools
for ns-2 is given in [10]. Al-Hammouri et al. present in
detail Agent/Plant extension for ns-2, as well as two other
recent solutions, NSCSPlant and one that integrates ns-2 with
Modelica.

The idea of a co-simulation between Matlab and ns-
2 is not new, though existing co-simulation frameworks
are lacking flexibility beyond the network simulation.
Co-simulation in off-line mode, where the output data
from one simulation package is stored in a file, permits
no interaction between the network and the dynamical
system [11]. Frameworks [10], [12, Section 3.3], [13], [14],
which focus on the network simulator, generally benefit
from the performance of compiled external simulators,
but make changes to parameters of the dynamical system
difficult. In contrast, while existing real-time co-simulation
frameworks, e.g., PiccSim [15] for Simulink and ns-2, provide
a valuable tool for simulation of real dynamical systems
and real processes combined with simulated networks,
they categorically cannot simulate asynchronous distributed
systems with high grade of accuracy [16, Chapter 11].
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Fig. 1. NCS using ns-2. The control system is modelled in Matlab, whereas
communication with the controller is subject to delays and message loss
specified by the network simulator ns-2.

This work further explores the idea of ns-2 and Matlab co-
simulation, with a simple design called NMLab, which aims
to improve the available NCS simulation frameworks while
keeping the proposed solution simple.

The rest of the paper is organised as follows. The basic
idea, as well as the capabilities of NMLab are presented in
Section II. Section III provides simple, but illustrative example
of NMLab application. The discussion of the obtained results
is presented in Section IV, whereas final remarks are given
in Section V.

II. NMLAB CO-SIMULATION FRAMEWORK

NMLab co-simulation framework extends Matlab with fea-
tures for straight forward network modelling and automates
simulated communication over the network below the appli-
cation level of the so-called Open System Interconnection ref-
erence model (OSI model). More precisely, messages in terms
of Matlab data objects are being automatically fragmented,
transmitted, routed and defragmented by the network simula-
tor. NMLab can be used to construct network topologies using
selected network technologies supported by ns-2. Modelled
plants can be situated in NCS contexts easily, as shown in
Figure 1, so the network and its dynamics can be considered
during controller design. The object-oriented approach makes
it possible to virtually direct Matlab events via the simulated
network and modify them (e.g., delay, or drop given event).

Communication between Matlab and ns-2 is established by
NMLab using stream sockets to connect to ns-2’s Tcl interface.
This solution offers a good deal of flexibility, because it does
not depend on a certain version or setup of ns-2. Furthermore,
almost any functionality of NMLab can be provided by an
expandable Matlab class library, which generates Tcl code for
ns-2. The major drawback of this approach is that any required
functionality of the network simulator has to be implemented
via NMLab classes in advance to provide accessibility. How-
ever, NMLab can forward Tcl commands to ns-2 partially
resolving that issue.

The major challenge for NMLab is to assure the correct
impact of the (application level) data payload to the network
simulation and vice versa. NMLab creates appropriate traffic
on the packet layer in ns-2 for the messages to be send. Suc-
cessfully transmitted packets on the other side are reassembled
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Fig. 2. Co-simulation coupling with NMLab. Both simulators have synchro-
nised clocks at time t0 (simulated time τ0), Matlab commands ns-2 to start
its simulation, ns-2 simulates until simulated time τ1 ≥ τ0 and sends the
updated time to Matlab, which in turn catches up with τ1, so both simulators
are synchronised at t1 again.

to their original message, commanding the network simulator
to synchronise with Matlab which triggers a corresponding
event in Matlab.

During co-simulation, although ns-2 is rendered passive
by being utilised for simply generating message transmission
times and providing network states, its scheduler is used to
specify the common simulated time between both simulators,
as explained in Figure 2. This design has been chosen due to
the simple fact that the occurrence of message receiving events
cannot be foreseen by Matlab. Such a design allows predictable
state-based events of the dynamical system to trigger a network
event, which would have been impossible otherwise (without
modifications to ns-2’s event scheduler).

To be more precise, the exchange of events is a general
problem of asynchronous co-simulation. In Figure 2, if Matlab
needs to schedule a new network event for ns-2 during its
part of the simulation, this is not possible until the time
t1. However, at time t0 Matlab can define an additional
synchronisation event to occur between τ0 and τ1. So, if it was
possible that a network event needed to be sent to ns-2 before
next (original) synchronisation between both simulators, this
has to be decided in advance, e.g., the dynamical system’s
state crosses a certain threshold which triggers a state-based
sensor to send a message, or any part of the NCS has to send
a ”time-out” message as soon as it has not received a message
for a certain period of time.

Both of the above given examples can be modelled
using NMLab with some additional expense. Time-discrete
simulations may need to conservatively schedule additional
conditional synchronisation events, which possibly are going
to be changed or deleted before occurrence, e.g., time-out
events. On the other hand time-continuous simulations may
need to be computed foresight in order to determine the exact
time of a possibly needed synchronisation event. However, in
the simulations presented in this paper such methods are not
necessary.

One of the key features of NMLab is to keep the co-
simulation together, namely modelling the control system in
conjunction with the network in Matlab, while the latter is
simulated by ns-2. Thus it becomes easy to change network



t i m e r = ns2 . NMTimer ( ne twork ) ;
t i m e r . s e t D e l a y ( 0 . 0 1 ) ;
t i m e r . s t a r t ( ) ;

a d d l i s t e n e r ( t i m e r , ’ Tick ’ , @( s , e v n t ) . . .
sendMessage ( p l a n t , c o n t r o l l e r , . . .

r e a d S e n s o r s ( p l a n t , netwock . c l o c k ) ) ) ;
a d d l i s t e n e r ( c o n t r o l l e r , ’ MessageReceived ’ , @( s , e v n t ) . . .

sendMessage ( c o n t r o l l e r , p l a n t , . . .
c r e a t e V a l u e ( c o n t r o l l e r , e v n t . message ) ) ) ;

a d d l i s t e n e r ( p l a n t , ’ MessageReceived ’ , @( s , e v n t ) . . .
ap p l y V a l u e ( p l a n t , e v n t . message , ne twork . c l o c k ) ) ;

ne twork . run ( ) ;

Listing 1. Example of Matlab code for setting up a networked control system
after having created the network topology. Highlighted identifiers and events
are provided by Matlab and NMLab.

parameters in conjunction with parameters of the control
system. Additionally certain states of the simulated network,
known exclusively to the network simulator, e.g., queue levels,
can be passed to Matlab during co-simulation for live analysis
or processing.

Listing 1 demonstrates NMLab’s usage by giving an
example of how the communication between parts of a NCS
is set up. Every 10ms the plant reads its sensors and sends
a message to the controller, which in return provides the
appropriate control value. As soon as the value has arrived
at the actuator, it is applied. Synchronisation between Matlab
and ns-2 happens automatically each time an event is triggered.

III. THE PENDULUM AS A SHOWCASE

With the help of the well studied academic example of a
pendulum on a cart we want to demonstrate the versatility
and flexibility of NMLab and the need for simulating NCS in
general, i.e., our aim is not to gain new experiences regarding
the pendulum in the first place. We take a look at the four-
dimensional pendulum-cart system. The following system’s
equations:

u + mplϕ̇
2 sin ϕ = (mc + mp)r̈ + bcṙ + mplϕ̈ cosϕ (1)

gmpl sin ϕ = Jϕ̈ + bpϕ̇ + mplr̈ cos ϕ (2)

(see Table I for notation) are a model of the pendulum’s
dynamics and are integrated in Matlab using an ODE solver.

The control objective is to stabilise the pendulum in its top
position (ϕ = 0) in the middle of the rail (r = 0). Different
initial states with an arbitrary angle ϕ are chosen, and the
remaining state parameters are set to ϕ̇ = r = ṙ = 0.
In the following experiments it will be shown how long
does the dynamical system need to reach a certain stability
threshold for the first time, which will be denoted informally
as ”stabilisation time” in the figures below, with respect
to different simulation parameters. Therefore the maximum
norm of its state vector x =

(
r ṙ ϕ ϕ̇

)T
is computed

periodically until it falls below 0.01 (proposed threshold) for
the first time.

‖x‖ = max {|r|, |ṙ|, |ϕ|, |ϕ̇|} (3)

Variables
ϕ rad pendulum’s angle
r m cart’s position on the rail
u kg m/s2 external force

Constants
mc 3.2kg cart’s mass
mp 0.329kg pendulum’s mass
l 0.44m distance between pendulum’s

axis and gravity centre
J 0.0719944kg m2 pendulum’s moment of inertia
bc 25.28kg/s cart friction coefficient
bp 0.009kg m2/s pendulum friction coefficient
g 9.81m/s2 gravity

TABLE I
VARIABLES AND CONSTANTS USED FOR THE PENDULUM. THE CONSTANTS

HAVE BEEN CHOSEN TO MATCH AN EXISTING PENDULUM ENTITY.

Because of the angle’s periodicity, ϕ is considered within the
interval [−π, π] during computation of the norm.

For the linearised model of the control system a linear
controller is obtained via Matlab’s built-in pole-placement
algorithm, which proves useful for angles |ϕ| < 1

4π in the
ideal scenario where there is no network control involved.
Additionally, we have developed a simple non-linear controller
with Lyapunov-based design, which is capable of uprising the
pendulum with an initial angle |ϕ| < 5

6π, again as long as there
is no network involved. In the experiments presented below, a
combined controller is used, utilising the linear controller for
lower angles and the non-linear controller for greater angles.
Switching between them takes place at |ϕ| = 1

12π.
Using NMLab the system can be simulated as a networked

control system with different network parameters. The pendu-
lum’s state is read by sensors at a default rate of 20Hz and sent
over the network. The controller calculates the corresponding
control signal and sends it back over the network, to be applied
as soon as it arrives at the pendulum. The value is kept constant
at the actuator until new information arrives. All data payloads
have a fixed size of 100B. In order to keep the simulation
simple, the sensors do not produce errors of measurement,
the controller takes no time for calculation, and any further
restrictions to the system are not considered, i.e., the actuator
is able to apply the control value instantly. Though it could
have been simulated with NMLab easily.

As a reference for classifying the following simulation
results, the pendulum is simulated with zero message delay
and zero message loss, see Figure 3.

A. No Background Traffic

At first, the network is run without the interfering back-
ground traffic, so the links produce nearly constant packet
delay without packet loss, no matter which of the transport
protocols (TCP or UDP) is used. Different round trip times
(RTTs) between the pendulum and its controller are simulated.
The initial angle of the pendulum ϕ is set to 1

9π. Figure 4
shows that there is a local, but not global, maximum of the
stabilisation time around the RTT of 40ms. Above 60ms the
stabilisation time rapidly increases.
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Fig. 3. Stabilising the pendulum under ideal conditions without packet delay
or packet loss.
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Fig. 4. Varying RTTs between the system and its controller. RTTs of 15ms
and 60ms are both better for stability than 40ms.

B. Impact of Background Traffic

Next, a simple dumbbell topology (Figure 5) is simulated.
This time, the RTT between the pendulum and the controller
exceeds 40ms, subject to all connections’ propagation delays
settings. The bottleneck has a 10Mbps bandwidth and a
queue size of 50packets in each direction. Apart from the
communication between the pendulum and its controller which
uses TCP protocol, there are three TCP traffic sources using
the bottleneck at the maximum possible rate. During the
simulation, when the pendulum is on the verge of reaching the
stability threshold, two additional UDP traffic sources, each
with a constant rate of 4Mbps, start sending packets at 2.5s
and 3s respectively. Whereas already the first UDP source
causes all TCP connections to reduce their bandwidth (the
congestion window drops in Figure 6), the latter UDP source
drastically influences the pendulum-network connection, as its

bottleneck

background

traffic sink

pendulum router

traffic

generators

controllerrouter

Fig. 5. Dumbbell Topology. The impact of background traffic can be studied
by sending background traffic over the bottleneck link.
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Fig. 6. At 2.5s and at 3s two UDP traffic generators start jamming 80
percent of the bottleneck’s bandwidth. This results in raising message delays
for the networked control system and the pendulum being unstable.

congestion window drops further and delay for messages from
the controller to the pendulum increases, and in consequence
the pendulum fails to reach the stability threshold.

C. Multiple Dynamical Systems

Communication between the dynamical system and its con-
troller can be disturbed in many different ways, not necessarily
by supplementary background traffic. A good example is a
corporate network with many pendulum instances. Thanks to
NMLab’s flexibility and scalability we can provide simulation



pendulum

pendulum

pendulum

router

controller

controller

controller

Fig. 7. Multiple Dynamical Systems. Many networked control systems share
a corporate network topology interfering each other.

of such a system. In order to amplify variation in the network’s
load, the pendulum instances are capable of varying their
sensor rates according to their distance to the equilibrium
point. The sensor rate is limited to the interval [10, 30]Hz and
can be calculated as follows:

30Hz− 20Hz · exp(−‖x‖), (4)

where ‖x‖ is the individual system’s norm defined in Equation
(3). In short: systems which have nearly reached their equilib-
rium reduce their sensor rate, and thereby increase the global
systems performance. Pendulum and controller instances are
arranged in a star topology, see Figure 7. The central routing
node has an internal bottleneck with a bandwidth of 10Mbps
and a queue size of 50packets which affects each routed
packet. Data payload is being sent using TCP protocol again.

One hundred and thirty pendulum instances with different
initial angles ϕ are simulated until all of them have reached
the stability threshold. Within Matlab the queue length at
the routing node can be monitored during the simulation.
Here, it is shown, together with the ”mean norm” of all
pendulum systems, which is computed as the arithmetic
mean of all pendulum state’s maximum norm values, and the
number of pendulums which meet the stability threshold in
Figure 8. All states have been measured every millisecond,
but a Fast Fourier Transform (FFT) filter with a window size
of 50ms has been applied to the queue length to mask high
frequencies and smooth the graph. The initial peak in the
queues (see queue length between 0 and 2s) is caused by
many TCP connections starting simultaneously. Some of the
initial handshakes time out that leads to another smaller peak
at 3s (TCP’s default initial retransmission timeout value).
Figure 8 shows the congestion window value for both of such
flows. As the mean norm of the pendulum diminishes, the
network load decreases slowly.

IV. DISCUSSION

Considering Figure 6, it can be seen, that higher message
delays cause the pendulum to be unstable. Although this is
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Fig. 8. Simulating 130 pendulum instances with a corporate bottleneck
for communication with their controllers. TCP congestion window sizes have
been monitored at two selected flows. Pendulums reduce their sensor rate
along with their distance to the upward equilibrium point, so the network
load decreases, as the pendulums come up to their control target.

quite obvious qualitatively, usually it is not perspicuous, to
what extent the impact of non-trivial delay and bandwidth
dynamics will affect the plant quantitatively. Currently, it is
not possible to give tight bounds on the maximum delay that
an arbitrary control systems can stand before losing stability.
Even in the case of no interfering traffic, see Figure 4, which
leads to much simpler dynamics of the TCP flows, it is not
known, how to predict the resulting performance of the overall
system precisely.

Figure 4 also shows that the heuristic statement, greater
delays result in worse performance, is not true. This can be
seen by the decreasing amount of time between 40 and 60ms
until the pendulum reaches the stability threshold. These ob-
servations explain the need for a simulation framework, which
is capable of simulating the network in a realistic manner,
evaluating the influence of various network parameters (e.g.,
TCP’s parameter settings, buffer sizing, packet loss, etc.).

Many systems sharing the same network bottleneck
can lead to interesting TCP dynamics, even without any



background traffic. Real existing NCS, e.g., modern cars,
are much more complex than the system simulated in
Section III-A. They often consist of hundreds of sensors,
actuators and electrical as well as mechanical systems. In
Section III-C we demonstrated the capability of NMLab to
deal with such situations by simulating 130 instances of
the pendulum. In this particular simulation, the individual
subsystems adopt their sampling rates dynamically, i.e., they
adjust their sensor rates according to their distance to the
stability threshold. The ability of NMLab to have access to
various parameters, more precisely describing the network
(thanks to coupling with ns-2), makes possible to design and
simulate controllers, which also take into account the specific
states of the network, e.g., a controller that depends on the
last measured delay.

V. CONCLUSION AND FURTHER WORK

The non-trivial dynamics of an underlying communication
network makes the design of stabilising controllers a demand-
ing task. It is often not clear, how the delays and losses
introduced by the network will impact the performance or the
stability of a NCS.

Testing the performance of the controllers in many different
networking scenarios (e.g., with different network delays,
different network topologies, or different protocols) requires
usually many simulation runs, and may turn to be very com-
plex. Presented co-simulation framework NMLab, provides
through Matlab, the capability to change easily both, the
network parameters, and the parameters of the control system.
We demonstrated flexibility and versatility of NMLab through
simulations of the well known pendulum on a cart, but we
purport it may be also applied to more complex NCS.

Future work may contain integration of existing topology
generators into NMLab, which will result in simpler creation
process for different large-scale networks with realistic traffic
behaviour. Modelling movement of wireless nodes with
NMLab in Matlab would permit co-simulation of NCS with
radio connections.
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