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Delay based congestion control for heterogeneous

environments
Łukasz Budzisz, Rade Stanojević, Arieh Schlote, Robert Shorten and Fred Baker

Abstract—This paper presents and develops a novel delay-based
AIMD congestion control algorithm. The main features of the
proposed solution include: (1) low standing queues and delay
in homogeneous environments (with delay-based flows only); (2)
fair coexistence of delay- and loss-based flows in heterogeneous
environments; (3) delay-based flows behave as loss-based flows
when loss-based flows are present in the network; otherwise
they revert to delay-based operation. It is also shown that these
properties can be achieved without any appreciable increase
in network loss rate over that which would be present in a
comparable network of standard TCP flows (loss-based AIMD).
To demonstrate the potential of the presented algorithm both
analytical and simulation results are provided in a range of
different network scenarios. These include stability and con-
vergence results in general multiple-bottleneck networks, and
a number of simulation scenarios to demonstrate the utility
of the proposed scheme. In particular, we show that networks
employing our algorithm have the features of networks in which
RED AQM’s are deployed. Furthermore, in a wide range of
situations (including high speed scenarios), we show that low
delay is achieved irrespective of the queueing algorithm employed
in the network, with only sender side modification to the basic
AIMD algorithm.

Index Terms—delay-based congestion control, TCP.

I. INTRODUCTION

CONGESTION control in TCP/IP networks is traditionally

handled using packet losses to indicate congestion [1].

An alternative approach to respond to congestion involves

the use of network delay. This was first proposed by Jain [2]

and since then, there has been much work and debate on this

topic [3–11]. Delay-based congestion control is conceptually

very attractive. Potential benefits include the ability to allocate

the network bandwidth between competing sources with: (i)

low (zero) packet loss; (ii) very low queueing delay; and

(iii) with full utilisation of network links. Networks which

exhibit this property are said to operate at the knee of the

throughput-delay curve [12]. Motivated by these and other

potential benefits, delay-based congestion control remains

an active area of research and new algorithms continue to

be developed. Recent examples include: Fast TCP [3, 13];

Microsoft Compound [14] (partially based on delay); more

recent delay-based additive increase multiplicative decrease

(AIMD) variants [15–18]; and this present work.
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Despite this large body of work, several issues concerning

the use of queueing delay remain to be resolved before delay

based congestion control can be deployed. These include:

(i) the difficulty in obtaining delay estimates from network

measurements [19]; (ii) network sampling issues [19–22]; (iii)

the inability of existing delay-based algorithms to maintain

a low standing queue [21, 22]; and (iv) the inability of

delay-based flows to coexist fairly with loss-based flows

in mixed environments. These items have been the subject

of much discussion by us and other researchers [19–21]

which we do not repeat here. Rather, we focus the specific

issue of coexistence. Note that the issue here is not just

simple coexistence; after all, delay-based flows may simply

switch to a loss-based mode once a packet loss is detected,

thereby solving the fairness problem. The issue that makes

coexistence difficult is that delay-based flows must revert

back to delay-based operation when loss-based flows are

no longer present. One of the recent works in the area of

coexistence [23, 24] develops a mathematical framework

that helps prove the existence of the network equilibrium in

heterogeneous environments. In this work we go one step

further, and propose to design the nature of the network

equilibria to achieve our goals.

Given these basic observations, our contribution in this paper

is to develop and explore a strategy that resolves (at least

in part) these issues. In particular, our principal contribution

in this work is to propose a strategy that allows delay-based

TCP flows to coexist fairly and without any discernible

increase in network loss rate with loss-based flows when they

are present, and to revert back to a delay-based behaviour

whenever loss-based flows are no longer present. While the

basic idea underlying this work was presented in [25, 26],

this paper extends and complements this work in a number of

ways1. These include more comprehensive simulation studies

involving realistic network scenarios (multiple bottlenecks,

reverse traffic, and the presence of on/off network flows), and

a detailed mathematical analysis. Finally, we demonstrate the

potential benefits of the proposed strategy when applied to

high speed links.

Our paper is structured as follows. In Section II we in-

troduce the proposed algorithm, illustrating its efficacy in

Section III with a number of simulations in both single

and multiple bottlenecks. Then, in Section IV we provide

mathematical analysis that describes the ability of the pro-

1This current paper is a journal version of the articles [25, 26].
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posed solution to switch between loss-based and delay-based

operation regimes and reflects on stability issues. Next, in

Section V, we compare the proposed solution to other existing

strategies, namely RED and one of the most recent delay-based

congestion control schemes, as well as provide some insights

on its application in more versatile scenarios, including high

speed networks. Finally, in Section VI we discuss constraints

limiting the application of the proposed algorithm.

II. AQM EMULATION TO ENSURE FAIR COEXISTENCE

WITH LOSS-BASED FLOWS

Our basic idea is motivated by recent work concerning Active

Queue Management (AQM) emulation from end-hosts using

delay measurements, called Probabilistic Early Response

TCP (PERT) [17]. The basic idea behind PERT is very

simple and involves responding to delay in a probabilistic

rather than deterministic manner. By judiciously selecting the

manner of the probabilistic response, Reddy et al. [17] are

able to emulate, from end-hosts, the behaviour of a range of

AQM’s. To facilitate such AQM emulation, each PERT flow

probes the network for congestion as a normal AIMD flow,

but reduces its congestion window in a probabilistic manner

that depends on the estimated network delay. We refer to

this mechanism as a back-off policy. The authors of PERT

demonstrate that (in principle) any AQM can be emulated

by selecting the back-off policy appropriately. However, it

was subsequently shown that their algorithm fails to solve

the coexistence problem in a satisfactory manner [26]. In

particular, it is shown in this latter paper that PERT can lead

to high loss rates when loss-based flows are present, and

that the delay-based flows may fail to revert to delay-based

operation when the loss based flows leave the network. Our

main contribution here is to present a similar idea that can be

used to solve the coexistence problem by carefully choosing

the probabilistic back-off function, while avoiding many of

the side-effects of the PERT strategy. As we shall see our

strategy, referred to as Coexistent TCP (C-TCP) further in

this article, avoids problems of adjusting AIMD parameters,

keeps the network loss rate low when loss-based flows are

present, and ensures that the delay-based flows revert to

delay-based operation when loss-based flows are no longer

present in the network (termed here as on/off behaviour),

even though these flows do not attempt to sense the presence

of such flows directly.

Specifically, our basic idea is to achieve coexistence by

carefully selecting the back-off policy to achieve fairness and

on/off behaviour. In what follows, we assume that queueing

delay (δ), minimum (RTTmin), and maximum round-trip

time (RTTmax) can be estimated reliably by all delay-based

flows in the network and do not consider the issue of slow

start for delay-based flows; these, and other issues that are not

within the scope of this paper, are discussed in our previous

work, and in previous work by other authors [15, 19–21].

We select probabilistic back-off strategies of the form depicted

in Fig. 1. As can be observed, the per-packet back-off prob-

ability function p = g(δ) has two parts; a part that increases

Fig. 1. Per-packet back-off probability as a function of the observed delay.

Algorithm 1 Pseudo-code for C-TCP algorithm

On receipt of each ACK:

Estimate the current queueing delay: δ
Set p = g(δ): (only non-zero values are shown)

g(δ) =

{

pmax
δ−δmin

δth−δmin
for δmin < δ ≤ δth

pmax

(

δmax−δ
δmax−δth

)4

for δth < δ < δmax

Pick a random number rand, uniformly from 0 to 1

if rand < p then

reduce cwnd by 0.5 · cwnd
else

increment cwnd by 1/cwnd
end if

monotonically with the delay δ (Region A), and a part that

decreases monotonically with δ (Region B). This form of

AQM emulation has the following properties:

(i) assuming that the maximum equilibrium loss rate (pmax)

is large enough, the network stabilises in Region A when

only delay-based flows are present;

(ii) when loss-based flows are present, the network is driven

to Region B, and delay-based flows behave as loss-based

flows due to the low per-packet back-off probability;

(iii) when loss-based flows switch off, the network cannot

stabilise in this region due to a backward pressure

exerted by the probability function. Namely, as the

flows experience back-offs, the queueing delay reduces,

thereby increasing the per-packet back-off probability,

thus making further back-offs more likely. This process

continues until the network stabilises in Region A.

As can be seen, this type of strategy should achieve co-

existence of loss- and delay-based AIMD flows, without a

discernible increase in network loss rate. Furthermore, the

back-pressure described in (iii) should ensure on/off behaviour.

The basic C-TCP algorithm is summarised in Algorithm 1. δ
is estimated as the difference between the weighted average of

the RTT and its minimum observed value. To ensure similar

number of RTT samples for flows with different RTTs, the

RTT weight is set proportionally to the ratio of the average

RTT and the cwnd value for a given flow. Again, the reader

should be reminded that this paper does not discuss the

accuracy of such an estimate.

Finally we emphasize, our objective here is to present a

simple idea that may be very useful in solving the coexistence
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TABLE I
SUMMARY OF THE SCENARIO PARAMETERS.

PARAMETER LOW

DELAYS

REVERSE

TRAFFIC

FEATURES IN

HOMOGENEOUS

ENVIRONMENTS

FAIRNESS SCALABILITY LOSS RATE ON-OFF

SWITCHING

Capacity (1): 25Mbps
(2): 20-120Mbps

25Mbps 50Mbps 25Mbps 500Mbps 10-100Mbps 25Mbps

RTT all flows:
100ms

all flows:
100ms

30-130ms,
uniformly

30-130 ms,
uniformly

30-130ms,
uniformly

30-130ms,
uniformly

30-130ms,
uniformly

Number
of flows

(1): 1-50(55)
(2): 50

forward path: 1-50
reverse path: 20

(1-2): 30 flows
(3): 51 flows
(20 in at 200 s,
30 out at 400 s)

30 flows in
2mixes: (20,10)
and (10,20)

600 flows:
(400,200) mix

30 flows:
(20,10) mix

30 flows: 20 delay-
based and 10 inter-
mittent‡ (100-300 s)
loss based flows

Web traffic no no no yes: 10 flows yes: 100 flows yes: 10 flows no

Common
parameters

For all tests: buffer size on each link: 1BDP; packet size: 1000 Byte; simulation time: 500 s;
All loss based flows (web traffic sessions as well) use Reno TCP.

‡ 10 intermittent loss based flows enter the scenario in 0.5 s intervals (100-105 s) and leave in 5 s intervals (250-300 s).
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Fig. 2. Proposed algorithm in a single bottleneck scenario - average queueing delay as a function of:
(a) the number of flows for a bottleneck capacity of 25Mbps; and (b) capacity for 50 flows.
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Fig. 3. Performance with 20 flows on the reverse
path: average queueing delay as the number of flows
on the forward path.

problem. In its current embodiment, the idea works best in

heavily multiplexed environments; and this is reflected in the

experimental results given in the paper.

III. BASIC OPERATION OF ALGORITHM

To illustrate the basic operation of C-TCP described in Sec-

tion II, we now present a number of simple experiments. We

begin with a single bottleneck topology and then progress to

a more realistic multiple bottleneck scenario. Our objectives

are: (i) to demonstrate that low delay networks can be realised

in homogeneous environments; (ii) to illustrate that almost

perfect coexistence can be achieved; (iii) to examine the

fairness properties of the algorithm in mixed environments;

(iv) to show that the loss rate is low (not worse than that

of just loss based flows) when loss and delay based flows

coexist together; and (v) to demonstrate that on/off switching

can be achieved. All experiments are constructed with these

objectives in mind.

A. Single bottleneck

We begin with the evaluation of C-TCP in a single-bottleneck

scenario in a classic dumb-bell topology. In the following

tests, we use ns-2 [27] simulations with the most important

settings specified in Table I. As for the C-TCP parameters, the

algorithm proposed here emulates RED AQM in the region A

(Fig. 1). Consequently, one method to select the parameter

values for δmin (5ms), δth (20ms) and pmax (5%) is to use

the rules for RED parameter settings [17]. Meanwhile δmax

is estimated for each flow separately, with an initial value of

100ms. Note that parameter settings provided here are suitable

for a range of link capacities, and bandwidth. See basic feature

and scalability tests for more comments on that matter.

1) Basic feature - low delays for homogeneous networks:

We first demonstrate that our algorithm does indeed yield low

delay networks in case all flows are delay based. As already

mentioned in Section II, the maximum equilibrium loss rate is

given by pmax (see Fig. 1). This means that the network will

revert to a loss based network if there is a very large number

of network flows (related to the available network capacity);

namely, if the required equilibrium loss rate is greater than

pmax. This property is desirable as it is well known that

estimation of queueing delay is difficult in networks with

very large multiplexing of flows [21]. As an example, Fig. 2a

presents the average δ as a function of the number of delay-

based flows sharing a 25Mbps bottleneck. It can be clearly

seen that the maximum number of flows for that given capacity

(Nmax) lies between 50 and 55 flows; readers however should

keep in mind that the bottleneck capacity influences this upper

limit for any selected parameter settings. Nmax can be also

approximated theoretically using the fluid model, as it will be
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Fig. 4. Illustration of the properties of the proposed algorithm in homogeneous scenarios: (a) link utilization; (b) window fairness; and (c) convergence
properties.
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Fig. 5. Coexistence of the delay-based flows and standard TCP flows in terms of the normalised average
throughput for the following mixes of flows: (a) the (20,10) mix; and (b) the (10,20) mix.
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Fig. 6. Scalability of the proposed solution (pre-
serving the C/N ratio): coexistence of the (400,
200) mix of flows in a scenario with a 500Mbps
bottleneck bandwidth.

explained later in Section IV.

Next, in Fig. 2b we show the average δ as a function of the

bottleneck capacity for 50 delay-based flows competing for

the same bottleneck. Again, we will validate the results with

the fluid model in Section IV. This figure illustrates also that

for a given number of flows the proposed parameter settings

permit the application of C-TCP in the entire capacity range

tested. For more comments on the scalability issue, see the

scalability test.

2) Reverse path traffic: It is well-known that reverse-path

traffic can increase the ACK losses for the forward path flows.

To check the influence of this issue on the performance of

our algorithm, we introduce 20 long-lived flows using also

C-TCP on the reverse path. Fig. 3 illustrates the results for

the average δ as a function of the number of delay-based-

forward-path flows sharing the same 25Mbps bottleneck with

20 delay-based flows on the reverse path. It can be clearly

seen, as if compared to Fig. 2a that the limit of the operation

of the presented algorithm has been decreased to accommodate

the reverse path traffic.

3) Further features in homogeneous scenarios: Apart from

maintaining low queueing delay when operating in the delay-

based mode, C-TCP has several interesting features that are

illustrated in Fig. 4.

(i) The proposed algorithm depends on a non-zero average

queuing delay. So by the very nature of this hypothesis, we

are assuming that the link is close to being fully utilised at

all times. This is indeed the case, see Fig. 4a depicting link

utilisation for 30 flows competing on a 50Mbps bottleneck.

(ii) The proposed dropping policy (shown in Fig. 1) emulates

RED. As such, it strives to achieve window fairness, i.e., in the

equilibrium state all flows have, on average, the same cwnd.

This is illustrated experimentally in Fig. 4b. Here, 30 flows

with RTTs uniformly distributed between 30 and 130ms all

achieve similar average window size.

(iii) Finally, we examine the convergence properties of C-

TCP in a setting where N varies instantaneously for a given

bottleneck capacity (50Mbps). This is depicted in Fig. 4c.

Initially, 31 delay-based flows run the proposed algorithm, and

then, flows either enter (additional 20 flows at time: 200 s), or

leave (30 flows at time: 400 s) the discussed scenario. As can

be seen, the allocation of bandwidth switches instantaneously

to the correct equilibria.2

4) Fairness: Next, we examine the ability of delay-based

flows to coexist (fairly) with standard loss-based flows. Fig. 5

depicts the normalised average throughput (calculated as a

ratio of the best average throughput over a 500 second-long

experiment) for a network with two different mixes of standard

TCP and C-TCP flows (a total of 30 flows). Note that while

there is a bias in favour of the loss-based flows (due to the fact

that the delay-based flows experience a small number of non-

loss induced back-offs in the high-queue regime), there is a

reasonably fair coexistence of the loss-based and delay-based

2Due to the limited editorial space not all result for this particular
experiment can be included here. For more results, please refer on-line at:
http:\\www.hamilton.ie\lukasz.
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Fig. 7. Comparison in terms of loss rate: 20 delay-
based flows coexisting with 10 standard TCP flows,
and 30 standard TCP flows.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Time [s]

Q
u
e
u
e
in

g
 d

e
la

y
 [
m

s
]

 

 

proposed algorithm

threshold value

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [s]

L
o
s
s
 r

a
te

 

 

proposed algorithm

(b)

Fig. 8. Coexistence of 20 delay-based flows with 10 loss-based flows switching on and off: (a) queueing
delay at the bottleneck; and (b) loss rate.
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(f)

Fig. 9. Coexistence of 20 delay-based flows and 10 standard TCP flows (lower row) in comparison to 30 delay-based flows (upper row) in a multiple
bottleneck scenario: (a) and (d): queueing delay at the first bottleneck; (b) and (e): queueing delay at the second bottleneck; and (c) and (f) average throughput.

AIMD flows. Furthermore, the aforementioned bias in favour

of loss-based flows can be controlled by carefully selecting the

back-off policy. Notwithstanding this latter observation, the

experiments nevertheless demonstrate very good coexistence

of the delay-based and loss-based flows as measured by the

average throughput.

5) Scalability: As already mentioned, the parameter settings

of the proposed algorithm influence the range of bandwidth

in which C-TCP can operate. To check that, we run a test in

a scenario with a 500Mbps bottleneck. To meet the design

assumptions we keep the ratio of C/N from the fairness

experiments unchanged. This yields a scenario with a mix of

(400, 200) delay and loss-based flows. As can be seen in Fig. 6

(on the previous page), C-TCP is able to keep the fairness

property constant, despite of a slight bias in favour of the

loss-based flows (see fairness comments).

6) Loss rate: Now, we examine the effect of our algorithm

on the network loss rate (in the loss-based operation mode

the back-off probability is low enough so that the congestion

is controlled by packet losses). To do this we compare the

behaviour of 20 delay-based C-TCP flows coexisting with 10

standard TCP flows with a scenario in which all 30 flows are

standard loss-based TCP. The results are depicted in Fig. 7.

Observe that the proposed algorithm does not significantly

increase the network loss rate in the presence of loss-based

flows. Fair coexistence is achieved without any unnecessary

trade-offs.

7) On/Off switching: Our primary objective in this work was

to develop a delay-based algorithm that behaves as a loss-

based TCP when competing with loss-based TCP flows, but

otherwise reverts to delay-based operation. This behaviour is

captured in Fig. 8. Here, 30 flows (20 delay-based and 10

intermittent loss-based flows) compete for the available band-
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Fig. 10. Coexistence of 20 delay-based flows with 10 loss-based flows switching on and off: queueing delay at (a) the first bottleneck (where the loss-based
interference appears), and (b) the second bottleneck; and (c) corresponding loss rates.

width. Between 100. and 300. second, when the loss-based

flows appear in the network, the delay-based flows behave

as standard TCP flows and compete fairly for bandwidth.

Otherwise they strive in a cooperative manner to keep the

queueing delay below a certain threshold (δth). Note also that

the mode switching occurs automatically (and swiftly) without

any complicated sensing or signal processing to determine

whether or not the loss-based flows have left the network.

Note also that for this algorithm, the operation mode is decided

upon by the average value of δ, and not the instantaneous one.

Thus, δth may be exceeded locally, but it is the average value

of δ that decides which operation mode to choose. We believe

that this mechanism is novel in delay-based congestion control

context, and has uses beyond the present context.

B. Multiple bottleneck scenarios

Next, we examine C-TCP in a multiple-bottleneck situation.

Objectives stay the same, as stated in the introduction to

this section. The scenario under test is the simplest parking-

lot topology, and comprises of a cascade of two bottlenecks,

with half of all flows traversing both first and second bottle-

neck (and the remaining half living in the second bottleneck

only). The first bottleneck has a capacity of 12.5Mbps and a

155 packet queue, whereas the second bottleneck has 25Mbps

capacity, and a 310 packet queue, respectively. Each of the

bottlenecks introduces 5ms propagation delay, and serves

a drop tail queue. Apart from the flows under evaluation,

in the coexistence experiment 10 mice flows are added on

each bottleneck to make the scenario more realistic. All the

remaining parameters are the same as for the corresponding

tests in Section III-A.

1) Coexistence with loss-based flows: First, we compare 30

delay-based flows using C-TCP to a mix of (20,10) delay-

and loss-based flows split evenly between two bottlenecks.

Fig. 9 (on the previous page) shows the results for each set in

separate rows (the scenario with all flows being delay-based

is shown in the upper row, whereas the mix of delay- and

loss-based flows is shown in the lower row). In case there are

only delay-based flows, the algorithm is able to keep queueing

delay below the δth threshold at each of the bottlenecks (again,

readers should be reminded that it is the average value of

δ that decides the operating area). We shall see that such a

homogeneous network has similar properties to a network in

which a RED AQM is deployed. Note also that in presence of

the standard TCP flows the algorithm switches to a loss-based

operation, filling the queues at each bottleneck, but preserving

the overall fairness with standard TCP counterparts (Fig. 9f).

2) On/Off switching: Next, we check the dynamic behaviour

of C-TCP in the multiple bottleneck scenario with 30 flows (20

delay-based and 10 intermittent loss-based flows) competing

for the available bandwidth (Fig. 10). When 10 loss-based

flows appear at the first bottleneck (100-300s), the 5 delay-

based flows living there switch to the long-queueing-delay

mode and compete fairly for bandwidth. Meanwhile, the 15

delay-based flows at the second bottleneck stay in the low

queueing delay regime. Note that the high queueing delay

(and non-zero loss rate) operation affects only the bottleneck

where the loss-based flow appeared. Otherwise, when there

are only delay based flows (before 100 s, and after 300 s), the

low-queueing delay regime is maintained at both bottlenecks.

IV. MATHEMATICAL ANALYSIS

Having outlined the basic properties of our algorithm, we

now characterise some of these properties in a mathematical

framework. Our starting point is the single bottleneck

scenario. We show, using a fluid (Kelly) like argument, that

the on/off behaviour is a manifestation of the interaction of

stable and unstable equilibria in the network. We then extend

this result to multiple bottleneck networks.

Basic notation: By δ(t) and Wi(t), where i = 1, . . . , N ,

we denote the queueing delay and congestion window size

(cwnd) of flow i at time t. Those quantities are related to

link capacity C, as:
∑N

i=1
Wi(t)

RTT+δ(t) = C.

Basic model (single bottleneck): In steady state (for RED like

AQM’s) the average window sizes do not depend on the round

trip time; it is just a scaling for the speed of the evolution.

Thus W1(t) = W2(t) = · · · = WN (t) =: W (t) and together

we get W (t) = C(RTT+δ(t))
N

. Using a standard fluid model

the evolution of cwnd is given by:

∆W (t)

∆t
=

1

RTT + δ(t)
−

q0

∆t
·
W (t)

2
, (1)

where q0 is the probability that during the time interval (t, t+
∆t) a back-off occurred. We denote by M0 the number of
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packets a source with congestion window size of W (t) sends

in the interval (t, t + ∆t). Then M0 = ∆t·W (t)
RTT+δ(t) , and we can

approximate q0 as q0 = 1 − (1 − p)M0 ≈ pM0 = p∆t·W (t)
RTT+δ(t) .

It therefore follows that (1) can be written as

∆W (t)

∆t
=

1

RTT + δ(t)

(

1 −
p

2
W

2(t)
)

. (2)

We are going to use this very general equation (2) to model

our system also in the multiple bottleneck case. In the single

bottleneck case we can further simplify (2) to

∆W (t)

∆t
=

1

RTT + δ(t)

(

1 −
p

2

(

C(RTT + δ(t))

N

)2
)

(3)

As the right hand side of (3) no longer depends on ∆t we can
now write Ẇ (t) instead of

∆W (t)
∆t

. The network equilibria

are given by p
2

(

C(RTT+δ(t))
N

)2

= 1. We denote by p∗(δ),

the equilibrium probability p∗(δ(t)) = 2N2

C2(RTT+δ(t))2 . Recall
that the per-packet back-off rate p is a function of the delay

δ: p = g(δ). Therefore, the system (1) is in equilibrium at

the points of intersection of curves p∗(·) and g(·). Those two

curves have zero or one, or two points of intersection δ∗1 < δ∗2
(see Fig. 1).

Single bottleneck result: Our objective is to design the net-

work so that there are two equilibria (the regular regime). Us-

ing the Lyapunov function V (δ) = δ2, it is easily deduced that

the right point of intersection (δ∗2) is an unstable equilibrium

and that the other left equilibrium (δ∗1) is a stable one. It also

follows that if δ becomes smaller than δ∗2 the system will

be driven to the stable equilibrium δ∗1 . We formalise these

statements in the following lemma.

Lemma IV.1. The system (1), has 0,1 or 2 equilibrium points:

(i) If p∗(δth) < pmax there are two equilibrium points:

δ∗1 < δ∗2 .The right equilibrium point δ∗2 is unstable and the left

one, δ∗1 is stable. (ii) If p∗(δth) = pmax there is one, unstable,

equilibrium and the cwnd dynamics is mainly driven by the

packet drops, when the queue is full. (iii) If p∗(δth) > pmax

there is no equilibrium, and the cwnd dynamic is mainly

driven by the packet drops, when the queue is full.

Proof: We prove item (i) here. Items (ii) and (iii) either follow

directly or are proved analogously. Define a candidate Lya-

punov function for the queue dynamics as V (δ(t)) = δ(t)2.
The assertions of the Lemma IV.1 follow from the fact that

V̇ (δ(t)) = 2δ(t)δ̇(t), and from the fact that δ̇(t) > 0 for

all δmin < δ(t) < δ∗1 ; δ̇(t) < 0 for all δ∗1 < δ(t) < δ∗2 ; and
δ̇(t) > 0 for all δ(t) > δ∗2 . These facts follow directly from (1)

and (3). Namely, for queueing delays δ < δ∗1 , the dynamics

of the congestion window “overcomes” the per-packet back-

off rate and forces the network toward δ∗1 . Between δ∗1 and

the apex of the per-packet back-off rate, the back-off rate is

sufficiently large to overcome (1) and forces the network to δ∗1 .
Between the apex and δ∗2 , this latter mechanism is reinforced

by back-off rate that increases as δ decreases. Thus, using

standard Lyapunov theory, one concludes that δ∗1 is a stable

equilibrium, whereas δ∗2 is not.

Model validation: The fluid like argument can be used to

approximate theoretically the maximum number of flows that

can be maintained in the low delay regime (Nmax). We

demonstrate that in the experiments for the single bottleneck

scenario, shown in Section III-A in Fig. 2a and 2b. Of course,

this is a coarse approximation to what is actually happening.

The network is certainly not transporting fluid, but rather

discrete packets. It is also discrete event in nature, and not

continuous. Furthermore, each flow estimates δ and cannot see

an exact value of this quantity for a variety of reasons; filtered

measurements of δ (difference between weighted average of

the RTT and its minimum observed value); different RTT’s.

Finally, our networks do not support an infinite number of

flows, but rather, a small number of flows. Nevertheless, the

fluid model yields some insights into the qualitative behaviour

of our network and does approximate in some sense the

network dynamics. With these qualifying remarks, we do use

this model to calculate the Nmax. As shown in Fig. 2a and 2b

(on page 3), within the scope of application of the fluid model

the results are acceptably close to the values measured from

simulations.

Extended model (multiple bottlenecks): We now want to

extend our model to handle networks of a more complicated

topology. We emphasise that extending our results to this

case is non-trivial; see [28] for examples of networks that are

single-bottleneck-stable, but become unstable in the multiple

bottleneck case due to queue interactions. In what follows we

reuse the approach given in [29]. Although Wang et al. use a

different model in [29], following their approach we can prove

global asymptotic stability if our algorithm uses the following

piecewise linear probability function:

p(δ) = K · δ, (4)

which is an approximation of the original probability function,

shown in Fig. 1. We consider the network consisting of a

set of resources J = {1, . . . , J} (links) with capacities

{C1, . . . , CJ}. We identify each route {1, . . . , N} with a

subset i ⊂ J and assign it the window size Wi(t), which
is to be understood as the cumulative sum of the window

sizes of the flows along route i and is to take values in

the positive real numbers for all t ∈ R+. Each link is

equipped with a queue. The queue sizes q1(t), . . . , qJ(t) are

also to take values in the positive real numbers for all t ∈ R+.

We can model the Wi in the following way

Ẇi(t) =
1

RTTi + δi(t)

(

1 −
pi

2
W

2
i (t)

)

. (5)

This is the same equation as in the single bottleneck case (2),

where we use δi(t) =
∑

j∈i

qj(t)
Cj

and

q̇j(t) =

{

∑

i:j∈i

Wi(t)
RTTi+δi(t)

− Cj for qj > 0

{
∑

i:j∈i

Wi(t)
RTTi+δi(t)

− Cj}
+ for qj = 0

, (6)

for i = 1, . . . , N , j = 1, . . . , J . For any function f that

maps into the real numbers, we denote by {f}+ the non-

negative part of f , that is {f}+ = max{f, 0}. The first

equation is familiar from the single bottleneck case and the
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second equation just states that queueing dynamics simply

depend on the difference between total arrival rate and capacity

at each link, with the constraint that the queue never takes

negative values, but rather stays at zero until the dynamic

is positive again. Setting (5) and (6) to zero, and assuming

that at equilibria we have 1
RTTi+δi(t)

= 1
RTTi+δi

for all

i = 1, . . . , N , then

W
∗
i =

√

2

p∗
i

(7)

∑

i:j∈i

W ∗
i

RTTi + δi

= Cj , (8)

i = 1, . . . , N , j = 1, . . . , J .
To ease exposition we give our mathematical proofs for piece-

wise linear probability functions p(δ). All results generalise to
the nonlinear case by replacing the piecewise linear function

p(δ) with the appropriate linearisations (Jacobians). This ex-

tension is given formally (without proof) as Corollary IV.3.

Full details and proofs can be found in [30]. To prove the

desired results we partition our system by choosing two special

probability functions, showing certain properties and fitting the

two systems together again. At first we choose

pi(δi) = Kδi, (9)

where δi is the sum over all queueing delays experienced by

flow i and K ∈ R+ for all i = 1, . . . , N . Then we look at

pi(δi) = p0 − K̂δi, (10)

where again δi is the sum over all queueing delays experienced

by flow i and p0 > 0, K̂ ∈ R+ for all i = 1, . . . , N , where we

make the additional assumption that δi ≤ p0

K̂i

, i = 1, . . . , N

such that pi(δi) is always positive.

In the final step, we allow each flow to switch between the

probability functions (9) and (10) in a deterministic manner

so that we get an overall probability function

pi(δi) =

{

Kδi for 0 < δi ≤ δth

p0 − K̂δi for δth < δi ≤ δmax
. (11)

Multiple bottleneck result: We can now state the main result

of this section. This is a direct extension of the result for the

single bottleneck case; albeit with an extremely involved proof.

We assume that the equilibria of our system lie in the appro-

priate area. Especially we assume for the stable equilibrium,

that is the topic of the following theorem, that δ∗i < δth for

all i = 1, . . . , N . To achieve this is rather a designing task

as their location depends on the calibration of the algorithm’s

parameters.

Theorem IV.2. The system described by (5), (6), (11) has only

one asymptotically stable fixed point. Each other fixed point

is unstable.

Proof: The proof consists of three parts. First we will

consider a system, where every flow uses (9) as its probability

function. We will be able to show that there is a unique

globally asymptotically stable fixed point to this system.

To ease the exposition of the final step, in the second step

we will consider a system, where all flows use (10) as

their probability function. We will be able to show, that all

equilibria of this system are unstable. In the final step we

consider (11), which will again prove unstable as long as

some flows are in the high delay area.

(i) Let every flow use (9) as its probability function.

We calculate the equilibrium (W ∗

1 , . . . , W ∗

N , q∗1 , . . . , q∗J )
using (7) and (8). Next we consider the following

transformation of coordinates W̃i(t) = Wi(t)−W ∗

i and

q̃j(t) = qj(t) − q∗j . We get the following system

˙̃
Wi(t) = −

1

2

K

RTTi + δi

(

∑

j∈i

q̃j(t)

Cj

(

W̃i(t) + W
∗
i

)2
+

+
∑

j∈i

q∗j

Cj

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

)

(12)

˙̃qj(t) =
∑

i:j∈i

W̃i(t)

RTTi + δi

, (13)

as can be seen from

˙̃
Wi(t) = Ẇi(t) − Ẇi

∗

=
1

RTTi + δi

(

1 −
pi

2
W

2
i (t)

)

=
1

RTTi + δi

(

1 −
1

2

∑

j∈i

K
qj(t)

Cj

W
2
i (t)

)

=
1

RTTi + δi

·

·

(

1 −
1

2

∑

j∈i

K(
q̃j(t)

Cj

+
q∗j

Cj

)
(

W̃i(t) + W
∗
i

)2

)

=
1

RTTi + δi

(

1 −
1

2
(W ∗

i )2
∑

j∈i

K
q∗j

Cj

−

−
1

2

∑

j∈i

K
q̃j(t)

Cj

(

W̃i(t) + W
∗
i

)2
−

−
1

2

∑

j∈i

K
q∗j

Cj

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

)

= −
1

2

K

RTTi + δi

(

∑

j∈i

q̃j(t)

Cj

(

W̃i(t) + W
∗
i

)2
+

+
∑

j∈i

q∗j

Cj

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

)

(14)

and

˙̃qj(t) = q̇j(t) − q̇∗j

=
∑

i:j∈i

Wi(t)

RTTi + δi

− Cj

=
∑

i:j∈i

W̃i(t) + W ∗
i

RTTi + δi

− Cj

=
∑

i:j∈i

W̃i(t)

RTTi + δi

+
∑

i:j∈i

W ∗
i

RTTi + δi

− Cj

=
∑

i:j∈i

W̃i(t)

RTTi + δi

(15)
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V̇ (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) = 2

N
∑

i=1

1

(W ∗
i )2

W̃i
˙̃

Wi +

J
∑

j=1

K

Cj

q̃j
˙̃qj

= −

N
∑

i=1

2

(W ∗
i )2

W̃i
1

2

K

RTTi + δi

(

∑

j∈i

q̃j

Cj

(

W̃i + W
∗
i

)2
+
∑

j∈i

q∗j

Cj

(

W̃
2
i + 2W

∗
i W̃i

)

)

+

J
∑

j=1

K

Cj

q̃j

∑

i:j∈i

W̃i

RTTi + δi

= −

N
∑

i=1

1

(W ∗
i )2

W̃i
K

RTTi + δi

(

∑

j∈i

q̃j

Cj

(

W̃
2
i + 2W

∗
i W̃i

)

+
∑

j∈i

q∗j

Cj

(

W̃
2
i + 2W

∗
i W̃i

)

)

−

−

N
∑

i=1

1

(W ∗
i )2

W̃i
K

RTTi + δi

(

∑

j∈i

q̃j

Cj

(W ∗
i )2

)

+

J
∑

j=1

K

Cj

q̃j

∑

i:j∈i

W̃i

RTTi + δi

= −

N
∑

i=1

1

(W ∗
i )2

W̃
2
i

K

RTTi + δi

(

∑

j∈i

q̃j

Cj

(

W̃i + 2W
∗
i

)

+
∑

j∈i

q∗j

Cj

(

W̃i + 2W
∗
i

)

)

= −

N
∑

i=1

1

(W ∗
i )2

K

RTTi + δi

W̃
2
i (W̃i + 2W

∗
i )

(

∑

j∈i

q̃j + q∗j

Cj

)

≤ 0. (17)

A Lyapunov function for our system is given by

V (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) =
N
∑

i=1

1

(W ∗
i )2

W̃
2
i +

1

2

J
∑

j=1

K

Cj

q̃
2
j . (16)

It is clearly positive definite, and further (17) (shown

at the top of the page) demonstrates the stability of the

equilibrium. Using LaSalle’s invariance principle we can

show that it is in fact globally asymptotically stable. To

this end we look at the set V̇ −1(0). It is

V̇
−1(0) =

{(W̃1, . . . , W̃N , q̃1, . . . , q̃J )|V̇ (W̃1, . . . , W̃N , q̃1, . . . , q̃J )=0}

= {(W̃1, . . . , W̃N , q̃1, . . . , q̃J )|(W̃1 = · · · = W̃N = 0)

or (q̃1 = −q
∗
1 , . . . , q̃J = −q

∗
J )}. (18)

A simple deliberation shows that the only invariant

subset contained in V̇ −1(0) is the origin. If we consider
a vector from V̇ −1(0), that is not the origin, it can

be easily seen from (12) and (13), that we get pushed

out of V̇ −1(0). And thus the equilibrium is globally

asymptotically stable. This concludes this part of the

proof.

(ii) In the second step we choose the probability function

for every flow to be (10).

We calculate again an equilibrium (W ∗

1 , . . . , W ∗

N ,
q∗1 , . . . , q∗M ) using (7) and (8). Next we consider the fol-

lowing transformation of coordinates W̃i(t) = Wi(t) −
W ∗

i and q̃j(t) = qj(t) − q∗j .
For i = 1, . . . , N and j = 1, . . . , J we get the following

normalised dynamics

˙̃
Wi(t) = −

1

2

1

RTTi + δi

·

·

(

−

(

∑

j∈i

K̂
q̃j(t)

Cj

)

(

W̃i(t) + W
∗
i

)2
+

+

(

p0 −
∑

j∈i

K̂
q∗j

Cj

)

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

)

(19)

˙̃qj(t) =
∑

i:j∈i

W̃i(t)

RTTi + δi

, (20)

where we used the same trick as for (12) and (13). A
Lyapunov function that will prove instability is given by

V (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) =
N
∑

i=1

1

(W ∗
i )2

W̃
2
i −

1

2

J
∑

j=1

K̂

Cj

q̃
2
j . (21)

In every neighbourhood of the equilibrium we can

find (W̃1, . . . , W̃N , q̃1, . . . , q̃J) ∈ RN+J
+ such that

V (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) is negative. Further, (22)

(placed on the top of the next page) shows the

instability of the considered system by the Lyapunov

Instability Theorem, see e.g. [31, Theorem 3.2.37],

which is applicable because there are no invariant sets

in V̇ −1(0). The argument here is the same as in (i).

(iii) Now let each flow use (11) as its probability function.

Thus each flow in our system uses one of the probability

functions (9) and (10), with the above defined switching

rule. Let Is denote the set of flows using initially (9)

and by Iu the set of flows using initially (10). For any

partition Is, Iu of {1, . . . , N} (7) and (8) give us an

equilibrium of our system. We will show that this equi-

librium can only be stable if Iu is the empty set. If Iu

is the empty set then the equilibrium is asymptotically

stable. Let us assume Iu 6= ∅. The dynamic becomes

˙̃
Wi(t) = −

1

2

1

RTTi + δi

(

K
∑

j∈i,j∈Is

q̃j(t)

Cj

(

W̃i(t) + W
∗
i

)2
+

+K
∑

j∈i,j∈Is

q∗j

Cj

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

−
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V̇ (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) = 2

N
∑

i=1

1

(W ∗)2
W̃i

˙̃
Wi −

J
∑

j=1

K̂

Cj

q̃j
˙̃qj

= −2

N
∑

i=1

1

(W ∗)2
W̃i

1

2

1

RTTi + δi

(

−

(

∑

j∈i

K̂
q̃j

Cj

)

(

W̃i + W
∗
i

)2
+

(

p0 −
∑

j∈i

K̂
q̃∗j

Cj

)

(

W̃
2
i + 2W

∗
i W̃i

)

)

−

−

J
∑

j=1

(

K̂
q̃j

Cj

)

∑

i:j∈i

W̃i

RTTi + δi

= −2

N
∑

i=1

1

(W ∗)2
W̃i

1

2

1

RTTi + δi

(

−

(

∑

j∈i

K̂
q̃j

Cj

)

(

W̃
2
i + 2W

∗
i W̃i

)

+

(

p0 −
∑

j∈i

K̂
q̃∗j

Cj

)

(

W̃
2
i + 2W

∗
i W̃i

)

)

= −

N
∑

i=1

1

(W ∗)2
W̃

2
i

1

RTTi + δi

(

p0 −
∑

j∈i

K̂
qj

Cj

)

(

W̃i + 2W
∗
i

)

≤ 0. (22)

−

(

∑

j∈i,j∈Iu

K̂
q̃j(t)

Cj

)

(

W̃i(t) + W
∗
i

)2
+

+

(

p0 −
∑

j∈i,j∈Iu

K̂
q∗j

Cj

)

(

W̃
2
i (t) + 2W

∗
i W̃i(t)

)

)

(23)

˙̃qj(t) =
∑

i:j∈i

W̃i(t)

RTTi + δi

. (24)

The function

V (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) =

N
∑

i=1

1

(W ∗
i )2

W̃
2
i +

+
1

2

∑

j∈Is

K

Cj

q̃
2
j −

1

2

∑

j∈Iu

K̂

Cj

q̃
2
j (25)

is a Lyapunov function that will prove instability.

In every neighbourhood of the equilibrium we can

find (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) ∈ RN+J
+ such that

V (W̃1, . . . , W̃N , q̃1, . . . , q̃J ) is negative. And further,

(26) proves instability of the system by the Lyapunov

Instability Theorem ([31, Theorem 3.2.37]), which is

again applicable because there are no invariant sets in

V̇ −1(0). The argument here is the same as in (i).

Notice how we used findings from (17) and (22) to

develop (26).

The stability results for non-linear probability functions follow

from [30, Theorem 6.8]. We state the relevant special case in

the following corollary.

Corollary IV.3. Let x∗ be an hyperbolic equilibrium of the

system described by (5), (6) and arbitrary smooth probability

functions pi(δi), i = 1, . . . , N . Then

(i) x∗ is locally asymptotically stable for the system if

for all i = 1, . . . , N the functions pi(δi) are strictly

increasing in a neighbourhood of x∗,

(ii) x∗ is unstable for the system if for one i = 1, . . . , N the

function pi(δi) is strictly decreasing in a neighbourhood

of x∗.

The assumption of hyperbolicity3 can not be omitted. However

we suppose that it is a generic property of our system. From

Corollary IV.3 it is now clear that any equilibrium of our

system must be unstable if even one flow is in the high delay

3An equilibrium of a non-linear system is called hyperbolic, if its Jacobian
does not have eigenvalues on the imaginary axis. By the continuous depen-
dence of eigenvalues on matrix entries almost all matrices have this property.

V̇ (W̃1, . . . , W̃N , q̃1, . . . , q̃n) = 2

N
∑

i=1

1

(W ∗
i )2

W̃i
˙̃

Wi +
∑

j∈Is

K

Cj

q̃
2
j −

∑

j∈Iu

K̂

Cj

q̃j
˙̃qj

= −

N
∑

i=1

2

(W ∗
i )2

W̃i
1

2

K

RTTi + δi

(

∑

j∈i,j∈Is

q̃j

Cj

(

W̃i + W
∗
i

)2
+
∑

j∈i,j∈Is

q∗j

Cj

(

W̃
2
i + 2W

∗
i W̃i

)

)

+
∑

j=1,j∈Is

K
q̃j

Cj

∑

i:j∈i

W̃i

RTTi + δi

−

−

N
∑

i=1

2

(W ∗
i )2

W̃i
1

2

1

RTTi + δi

((

∑

j∈i,j∈Iu

K̂
q̃j

Cj

)

(

W̃i + W
∗
i

)2
−

(

p0 −
∑

j∈i,j∈Iu

K̂
q̃∗j

Cj

)

(

W̃
2
i + 2W

∗
i W̃i

)

)

−

−

(

∑

j=1,j∈Iu

K̂
q̃j

Cj

)

∑

i:j∈i

W̃i

RTTi + δi

= −

N
∑

i=1

1

(W ∗
i )2

1

RTTi + δi

W̃
2
i

(

W̃i + 2W
∗
i

)

((

∑

j∈i,j∈Is

K
qj

Cj

)

+

(

p0 −
∑

j∈i,j∈Iu

K̂
qj

Cj

))

≤ 0, (26)
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Fig. 11. Comparison of 30 flows in a multiple bottleneck scenario in terms of the average throughput: (a) all flows delay-based; and (b) all flows RED.

region, while the unique equilibrium in the low delay region

is asymptotically stable.

Comment IV.4. The practical interpretation of this result is

the following. If we consider Fig. 1 all solutions converge to

the unique attractive fixed point left of δth as long as we stay

left of any equilibrium on the right side of δth. Once we get

on the right side of such an equilibrium, as may happen if

loss based flows are present, we might get driven further into

the high delay region. But due to the fluctuations in the queue

sizes driven by the multiplicative back-off behaviour of the

flows, there is always a positive possibility that we reach a

position left of the equilibrium. If this happens the dynamic

drives the solutions to the low delay equilibrium.

V. CASE STUDIES

We now present a number of case studies to illustrate some

important features of our algorithm.

The first two are comparative studies. We first show that

our algorithm effectively emulates a network of buffers in

which RED AQM’s are deployed. We then, briefly, compare

C-TCP with a recently proposed delay based algorithm that

purports to solve the coexistence problem; namely, the PERT

algorithm [17].

Next, we present an application study, in which we show,

again briefly, that C-TCP may be of use in certain situations

where high delays are inevitable (but nevertheless undesir-

able). Specifically, we examine the High Speed TCP variant.

A. Comparative study #1: Emulation of RED AQM

We first show that networks in which our algorithm is deployed

(and in which no loss based flows are present), have similar

characteristics to networks where RED AQM schemes are

deployed. These results are consistent with the simulation

studies presented by Reddy et al. in [17].

We reuse the multiple bottleneck scenario, discussed previ-

ously in Section III-B. The parameters for the RED model are

adjusted to be the same, as the corresponding parameters of

C-TCP, namely δmin, δth and pmax. Fig. 11 illustrates the

results for the average throughput for 30 flows, half of which

traverse both bottlenecks. As can be observed the performance

of the proposed algorithm in terms of average throughput is

similar to RED AQM. Consequently, if all flows use C-TCP

the queueing delay can be kept at low levels, and the network

has similar fairness properties to that of a RED network.

B. Comparative study #2: The mPERT algorithm

Next, we compare C-TCP with the recently proposed PERT

strategy [17] in a single bottleneck scenario from Sec-

tion III-A. PERT is a derivative of the AQM emulation work of

Reddy et al., and its modified version (mPERT) [18] purports

to be a delay based protocol that solves the coexistence

problem. As we shall see, it is not clear that mPERT actually

solves the coexistence problem, and the cost of the algorithm

can be very high.

PERT, and its various embodiments, are examined experimen-

tally in [17]. A subsequent modification, mPERT, aiming to

solve the network coexistence problem, is presented in [18],

please refer to these documents for further description of this

work. A number of issues of concern arise upon examination

of the mPERT algorithm in the coexistence context. Namely:

(i) Fairness : mPERT makes no attempt to ensure that

mPERT based flows compete fairly with their loss-based

counterparts.

(ii) Loss rate : The effect of increasing the aggressiveness

with which mPERT flows probe for bandwidth increases

the network loss rate. This in turn leads to an increase in

aggressiveness with which the flows probe for bandwidth

and constitutes an unstable positive feedback loop which

results in high network loss rate.

(iii) Detection : The presence of loss-based flows is inferred

through an increase in the average queueing delay beyond

some threshold. This is an unreliable indicator of the

presence of loss-based flows. In particular, in the presence

of many mPERT flows, there is no reason to believe

that the average queueing delay will reduce below this

threshold once the loss-based flows leave the network.

Our set of experiments demonstrates that mPERT can be made

to coexist with standard TCP, but not necessarily fairly. We

present the plots obtained in a scenario with different mixes

of delay/loss-based flows. Fig. 12 (on the next page) gives

normalised average throughput obtained by each of the flows.

Next, we examine the effect on the network loss rate when

mPERT operates in its loss-based mode. Specifically, we
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Fig. 12. Coexistence of mPERT flows and standard TCP flows in terms of the normalised average throughput for the following mixes of flows: (a) the
(20,10) mix; (b) the (15,15) mix; and (c) the (10,20) mix.
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Fig. 13. Comparison in terms of loss rate: 20
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Fig. 14. Coexistence of 20 mPERT flows with 10 loss-based flows switching on and off: (a) queueing
delay at the bottleneck; and (b) loss rate.

compare the behaviour of 20 mPERT flows coexisting with 10

standard TCP flows, with a scenario in which all 30 flows are

standard loss-based TCP (conventional AIMD). The respective

loss rates are shown in Fig. 13. As can be seen, mPERT leads

to loss rates that are an order of magnitude higher than would

be the case with only loss-based flows.

Finally, we consider a scenario with 20 mPERT flows and 10

intermittent loss-based flow that are active between 100 s and

300 s (we repeat the on/off switching test from Section III-A).

Notice that the average queueing delay does not reduce back

below this 50% threshold once the loss-based flow leaves

the network. Clearly, in this situation mPERT is unable to

revert to the low queueing delay regime, and stays in the loss-

based mode (Fig. 14a), which is characterised by the increased

network loss rate (Fig. 14b) and the high queueing delays.

C. Application Study: HighSpeed TCP

We now show that our basic idea can also be applied to

enhance the performance of high speed networks. We begin by

modifying Sally Floyd’s HighSpeed TCP (HS-TCP, its details

can be found in [32]) to incorporate our back-off strategy. In

this situation our back-off strategy offers a number of benefits.

These include not only a low queueing delay, but also enhance

the network fairness properties by reducing the likelihood

of flow synchronisation (by means of the probabilistic back

off). A series of tests in a single bottleneck scenario (low

delay, fairness, loss rate and on/off switching), with the same

parameters as specified in Section III-A has been carried out.

Fig. 15 (on the next page) illustrates the basic feature of the

presented proposal, the ability to keep the queueing delay low

in a homogeneous scenario consisting of flows that use HS-

TCP extended with our algorithm.

We also examine the ability of delay based flows to coexist

fairly with standard HS-TCP flows. Fig. 16 depicts the nor-

malised average throughput for a network with three different

mixes of standard and extended HS-TCP flows (a total of 30

flows). Again, as in case of standard TCP, we can observe that

the proposed algorithm guarantees fair coexistence in terms of

average throughput rates, between loss and delay based flows.

Next, we check the network loss rate. We observe in Fig. 17

that HS-TCP flows using the proposed algorithm experience

similar loss rates as standard HS-TCP flows. In particular,

a comparison of 20 delay-based HS-TCP flows (using the

proposed algorithm) coexisting with 10 standard HS-TCP

flows with a scenario in which all 30 flows are standard (loss-

based) HS-TCP, witness no significant difference in network

loss rate.

Finally, we test dynamic properties of the presented algorithm

in a high speed network scenario consisting of 20 delay-based

HS-TCP flows and 10 intermittent standard HS-TCP flow (we

repeat analogous on-off switching test from Section III-A.

Fig. 18 illustrates the results of such an experiment both in

terms of queueing delay and packet loss ratio. It can be clearly

seen that the algorithm is able to detect the presence of loss

based flows and then, once these flow are off, is able to revert

back to the low queueing delay operation.
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Fig. 15. Delay-based HS-TCP in a single bottleneck
scenario: queueing delay for 30 flows.
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Fig. 16. Coexistence of delay-based HS-TCP flows and standard HS-TCP flows in terms of the
normalised average throughput for the following mixes of flows: (a) the (20,10); and (b) the (10,20)
mix.
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Fig. 17. Comparison in terms of loss rate: 20 delay-
based HS-TCP flows coexisting with 10 standard
HS-TCP flows, and 30 standard HS-TCP flows.
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Fig. 18. Coexistence of 20 delay-based HS-TCP flows with 10 loss-based HS-TCP flows (standard
HS-TCP) switching on and off: (a) queueing delay at the bottleneck; and (b) loss rate.

VI. CONCLUSION

In this paper we have presented a method that can be used

to ensure that delay-based AIMD flows operate as loss-based

flows when loss-based flows are present in the network,

allowing fair coexistence with their loss-based counterparts,

and otherwise revert to delay-based operation mode. We

demonstrated both in experiments and analytically that the

proposed solution guarantees the aforementioned features, and

that appropriate adjusting of the maximum equilibrium loss

rate permits wide application of C-TCP, covering a range of

different scenarios, e.g., fast networks. Finally, to conclude

the description of presented algorithm we denote a number

of potential limitations of C-TCP. First, our algorithm works

best in multiplexed environments with standing queues. In

situations where this assumption is not valid, some unfairness

may be introduced when loss based flows are present. A

crucial part of the algorithm is the assumption that all flows

use the same per-packet back-off probability function and

sense the same queueing delay. If this assumption is not

valid, unfairness can be introduced. Also, the mathematical

analysis presented in Section IV is only valid in situations

when the fluid model of TCP provides a description of the

queueing dynamics. However, the qualitative description of the

mechanism provided in Section II is valid, and is independent

of the fluid model.
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