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Abstract— Analysis of the 802.11 CSMA/CA mechanism
has received considerable attention recently. Bianchi [1]
presents an analytic model under a saturated traffic assump-
tion. Bianchi’s model is accurate, but typical network con-
ditions are non-saturated and heterogeneous. We present an
extension of his model to a non-saturated environment. The
model’s predictions, validated against simulation, accurately
capture many interesting features of non-saturated opera-
tion. For example, the model predicts that peak through-
put occurs prior to saturation. Our model allows stations to
have different traffic arrival rates, enabling us to address the
question of fairness between competing flows. Although we
use a specific arrival process, it encompasses a wide range
interesting traffic types including, in particular, VoIP.

Keywords—802.11, CSMA/CA, non-saturated traffic, het-
erogeneous network.

I. Introduction

The 802.11 wireless LAN standard has been widely de-
ployed during recent years and has received considerable re-
search attention. The 802.11 MAC layer uses a CSMA/CA
algorithm with binary exponential back-off to regulate ac-
cess to the shared wireless channel. While this CSMA/CA
algorithm has been the subject of numerous empirical stud-
ies, an analytic framework for reasoning about its prop-
erties remains notably lacking. Developing analysis tools
is desirable not only because of the wide deployment of
802.11 equipment but also because the CSMA/CA mech-
anism continues to play a central role in new standards
proposals such as 802.11e. A key difficulty in the mathe-
matical modeling of the 802.11 MAC lies in the large num-
ber of states that may exist (scaling exponentially with the
number of stations). In his seminal paper, Bianchi [1] ad-
dressed this difficulty by assuming that (i) every station is
saturated (i.e. always has a packet waiting to be transmit-
ted), (ii) the packet collision probability is constant regard-
less of the state or station considered and (iii) transmission
error is a result of packets colliding and is not caused by
medium errors. Provided that every station is indeed sat-
urated, the resulting model is remarkably accurate. How-
ever, the saturation assumption is unlikely to be valid in
real 802.11 networks. Data traffic such as web and email
is typically bursty in nature while streaming traffic such as
voice operates at relatively low rates and often in an on-off
manner. Hence, for most real traffic the demanded trans-
mission rate is variable with significant idle periods, i.e.
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stations are usually far from being saturated. Indeed, to
even determine if the network will be saturated for a given
traffic load may require an understanding of non-saturated
operation. Thus our aim in this paper is to derive a mathe-
matical model of CSMA/CA that relaxes the restriction of
saturated operation while retaining as much as possible of
the attractive simplicity of Bianchi’s model, in particular,
the ability to obtain analytic relationships.

In Section II earlier approaches to non-saturated model-
ing are reviewed. In Section III the model is introduced and
solved. In Section IV its predictions are verified through
ns2 simulation for homogenous stations and heterogeneous
stations that have one of two distinct arrival rates. In Sec-
tion V, using the model, the scope for optimizing CWmin
in the non-saturated context is investigated. As a case
study, we consider voice-call pairs. In Section VI fairness
in the heterogeneous case is analysed. In Section VII the
model’s scope is discussed, along with possible variations
and extensions. Concluding remarks are in Section VIII.

II. Related Work

There are approaches to non-saturated modeling other
than ours. In [2] a modification of [1] is considered where
a probability of not transmitting is introduced that rep-
resents a station having no data to send. The model is
not predictive as this probability is not known as a func-
tion of load and must be estimated from simulation. In [3]
idle states are added after packet transmission to represent
bursty arrivals. The number of idle states is distributed
geometrically with a parameter λ, however no relationship
is given between λ and the load on the system. This model
also includes a full backoff before each packet transmission,
which does now allow for packet inter-arrival and 802.11’s
post-backoff period to overlap. This model also consid-
ers multi-rate transmissions. In [4] a Markov model where
states are of fixed real-time length is introduced. As ob-
served in the paper, the derived throughput is a monotonic
function of offered load, and so the model cannot predict
a pre-saturation peak in throughput. In [5] a model fo-
cusing on multi-rate transmission is presented, including
an infinite queue with Poisson arrivals. This model is not
solved analytically and is subject to limited validation. In
[6] a non-Markov model is developed, but is based on an
unjustified assumption that the saturated setting provides
good approximation to certain unsaturated quantities. It
appears to produce inaccurate predictions. None of these
previous models have considered fairness issues arising from
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Fig. 1. Non-saturated Markov Chain.

different traffic arrival rates. The p-persistent approach of
the 802.11 MAC has also been studied extensively, for re-
cent work see [7] and the references therein.

III. Model of non-saturated heterogeneous

stations

Following the seminal paper of Bianchi [1], much of the
analytic work on 802.11 MAC performance has focused on
saturated networks where each station always has a packet
to send. For notable examples, see [8], [9]. The saturation
assumption enables queueing dynamics to be neglected and
avoids the need for detailed modeling of traffic character-
istics, making these networks particularly tractable.

Networks do not typically operate in saturated condi-
tions. Internet applications, such as web-browsing, e-mail
and voice over IP exhibit bursty or on-off traffic charac-
teristics. Creating an analytic model that includes fine
detail of traffic-arrivals and queueing behavior, as well as
802.11 MAC operation, presents a significant challenge. We
introduce a model with traffic and buffering assumptions
that make it sufficiently simple to give explicit expressions
for the quantities of interest (throughput per station, de-
lay, collision probabilities), but still capture key effects of
non-saturated operation. Although our traffic assumptions
form only a subset of the possible arrival processes, we will
see they are useful in modeling a wide range of traffic, in-
cluding voice conversations. As in [1], our fundamental
assumption is that each station has a fixed probability of
collision when it attempts to transmit, irrespective of its
history.

A. Per-station Markov Model

Bianchi [1] presents a Markov model where each station
is modeled by a pair of integers (i, k). The back-off stage,
i, starts at 0 at the first attempt to transmit a packet and
is increased by 1 every time a transmission attempt results
in a collision, up to a maximum value m. It is reset after a
successful transmission. The counter, k is initially chosen
uniformly between [0, Wi − 1], where typically Wi = 2iW0

is the range of the counter and W0 is the 802.11 parameter
CWmin. While the medium is idle, the counter is decre-
mented. Transmission is attempted when k = 0.

We introduce new states (0, k)e for k ∈ [0, W0−1], repre-
senting a station which has transmitted a packet, but has
none waiting. This is called post-backoff. The first two
stages of the new chain are depicted in Figure 1. Note that

i = 0 in all such states, because if i > 0 then a collision has
occurred, so we must have a packet awaiting transmission.

We assume that for each station there is a constant prob-
ability 1− q that the station’s buffer has no packets await-
ing transmission at the start of each counter decrement1.
This enables us to derive relationships between the per-
station quantities: q, the probability of at least one packet
awaiting transmission at the start of a counter decrement;
m, the maximum backoff stage; p, the probability of col-
lision given the station is attempting transmission; P , the
Markov chain’s transition matrix; b, the chain’s stationary
distribution; and τ , the stationary distribution’s probabil-
ity that the station transmits in a slot. These relationships
can be solved for p and τ , and network throughput pre-
dicted. It is important to note that the Markov chain’s evo-
lution is not real-time, and so the estimation of throughput
requires an estimate of the average state duration. Later,
when we discuss multiple stations, we will subscript each
of these per-station quantities with a station label.

Under our assumptions, we have for 0 < k < Wi

0 < i ≤ m, P [(i, k − 1)|(i, k)] = 1,
P [(0, k − 1)e|(0, k)e] = 1 − q,
P [(0, k − 1)|(0, k)e] = q.

If the counter reaches 0 and a packet is queued, then we be-
gin a transmission. We assume there is a station-dependent
probability p that other stations transmit at the same time,
resulting in a collision. In the case of a collision we must
increase the backoff stage (or discard). In the case of a suc-
cessful transmission we return to backoff stage 0 and the
station’s buffer is empty with probability 1−q. In the case
with infinitely many retransmission attempts we need in-
troduce no extra per-station parameters and for 0 ≤ i ≤ m
and k ≥ 0 we have

P [(0, k)e|(i, 0)] = (1−p)(1−q)
W0

,

P [(0, k)|(i, 0)] = (1−p)q
W0

,

P [(min(i + 1, m), k)|(i, 0)] = p
Wmin(i+1,m)

.

Naturally, these transitions could be adapted to allow dis-
cards after a certain number of transmission attempts.

The final transitions are from the (0, 0)e state, where
post-backoff is complete, but the station’s buffer is empty.
In this case we remain in this state if the station’s buffer
stays empty. If a packet arrives we have three possibili-
ties: successful transmission, collision or, if the medium is
busy, the 802.11 MAC begins another stage-0 backoff, now
with a packet. With Pidle denoting the probability that the
medium is sensed idle during a typical slot, the transitions
from the (0, 0)e state are:

P [(0, 0)e|(0, 0)e] = 1 − q + qPidle(1−p)
W0

,

k > 0, P [(0, k)e|(0, 0)e] = qPidle(1−p)
W0

,

k ≥ 0, P [(1, k)|(0, 0)e] = qPidlep

W1
,

k ≥ 0, P [(0, k)|(0, 0)e] = q(1−Pidle)
W0

.

1We discuss this assumption further in Section III-D and Sec-
tion VII.
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Given the collision probability p, the idle probability Pidle

and per-station parameters q, Wi and m we may solve for
a stationary distribution of this Markov chain. This will
enable us to determine the probability, τ , that this station
is attempting transmission in a typical slot.

First we make observations that aid in the deduction
of the stationary distribution. With b(i, k) and b(0, k)e

denoting the stationary probability of being in states (i, k)
and (0, k)e, as b is a probability distribution we have

m
∑

i=0

Wi−1
∑

k=0

b(i, k) +

W0−1
∑

k=0

b(0, k)e = 1. (1)

We will write all probabilities in term of b(0, 0)e and use
the normalization in equation (1) to determine b(0, 0)e. We
have the following relations. To be in the sub-chain (1, k),
a collision must have occurred from state (0, 0) or an arrival
to state (0, 0)e followed by detection of an idle medium and
then a collision, so that b(1, 0) = b(0, 0)p + b(0, 0)eq(1 −
p)p. Neglecting packet discard, for i > 1 we have b(i, 0) =
pi−1b(1, 0) and so

∑

i≥1

b(i, 0) =
b(1, 0)

1 − p
=

b(0, 0)p + b(0, 0)eqpPidle

1 − p
. (2)

The keystone in the calculation is then the determination
of b(0, W0 − 1)e. Transitions into (0, W0 − 1)e from (0, 0)e

occur if there is an arrival, the medium is sensed idle and
no collision occurs. Transitions into (0, W0−1)e also occur
from (i, 0) if no collision and no arrival occurs

b(0, W0−1)e = b(0, 0)e

q(1 − p)Pidle

W0
+

(1 − p)(1 − q)

W0

∑

i≥0

b(i, 0).

(3)
Combining equations (2) and (3) gives

b(0, W0 − 1)e = b(0, 0)e

q(1 − pq)Pidle

W0
+ b(0, 0)

1− q

W0
.

We then have for W0 −1 > k > 0, b(0, k)e = (1− q)b(0, k +
1)e + b(0, W0 − 1)e, with b(0, k)e on the left hand side re-
placed by qb(0, 0)e if k = 0. Straight forward recursion
leads to expressions for b(0, k)e in terms of b(0, 0)e and
b(0, 0), and so we find

b(0, 0)e

b(0, 0)
=

1 − q

q

(

1 − (1 − q)W0

qW0 − Pidle(1 − pq)(1 − (1 − q)W0 )

)

.

(4)
Using these equations we can determine the second sum in
equation (1)

W0−1
∑

k=0

b(0, k)e = b(0, 0)e

qW0

1 − (1 − q)W0
.

The (0, k) chain can then be tackled, starting with the
relation

b(0, W0 − 1) =
∑

i≥0

b(i, 0)
(1− p)q

W0
+ b(0, 0)e

q(1 − Pidle)

W0
.

Iteration leads to

W0−1
∑

k=0

b(0, k) = b(0, 0)e

[

q

1 − q

W0 + 1

2
(

q2W0

1−(1−q)W
0

+ (1 − Pidle)(1 − q) − qPidle(1 − p)
)

+
qW0(qW0 + q − 2)

2(1 − (1 − q)W
0 )

+ 1 − q

]

.

Using equation(4) we can determine b(1, 0) in terms of
b(0, 0)e:

b(1, 0) = b(0, 0)e

pq2

1 − q

(

W0

1 − (1 − q)W
0

− (1 − p)Pidle

)

.

Finally, after algebra, the normalization (1) gives

1/b(0,0)e
= (1 − q) + q2W0(W0+1)

2(1−(1−q)W0 )

+ q(W0+1)
2(1−q)

(

q2W0

1−(1−q)W0
+

(1 − Pidle)(1 − q) − qPidle(1 − p))

+ pq2

2(1−q)(1−p)

(

W0

1−(1−q)W0
− (1 − p)Pidle

)

(

2W0
1−p−p(2p)m−1

1−2p
+ 1

)

.

(5)

The main quantity of interest is τ , the probability that
the station is attempting transmission. A station attempts
transmission if it is in the state (i, 0) (for any i) or if it
is in the state (0, 0)e, a packet arrives and the medium is
sensed idle. Thus τ = q(1− p)b(0, 0)e +

∑

i≥0 b(i, 0), which
reduces to

τ = b(0, 0)e

(

q2W0

(1 − p)(1 − q)(1 − (1 − q)W0)
−

q2Pidle

1 − q

)

,

(6)
where b(0, 0)e is given in equation (5), so that τ is expressed
solely in terms of p, Pidle, q, W0 and m. Placing the station
in saturation by taking the limit q → 1, the model reduces
to that of Bianchi [1]. With q, W0 and m fixed for each sta-
tion, in order to determine the collision probability, p, we
must determine a relation between the stations competing
for the medium; we do this in Section III-B. We discuss
how to model Pidle in Section III-C and then show how q
may be related to real-world offered load in Section III-D.

B. Heterogeneous Network Model

Consider the case where n stations are present, labeled
l = 1, . . . , n. We subscript the per-station quantities from
the previous section with the station label. Equation (6)
gives an expression for τl, the per-station transmission
probability, in terms of a per-station arrival probabilities
ql and a per-station collision probability pl. Note that

1 − pl =
∏

j 6=l

(1 − τj), for l = 1, . . . , n, (7)

that is, there is no collision for station l when all other
stations are not transmitting. With n stations, (6) and
(7) provide 2n coupled non-linear equations which can be
solved numerically for p1, . . . pn and τ1, . . . τn. The value
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(1 − pi)(1 − τi) is the same for all i = 1, . . . , n and repre-
sents the probability that the medium is idle (1− pi is the
probability that other stations are silent and 1 − τi is the
probability that this station is silent). These equations im-
ply that different stations’ collision probabilities are not the
same unless their transmission probabilities are equal. In
the case where the stations are homogenous, the equations
(7) reduce to 1− p = (1 − τ)n−1.

The length of each state in the Markov chain is not a
fixed period of real time. Each state may be occupied by
a successful transmission, a collision or the medium being
idle. To convert between states and real time, we calculate
the expected time spent per state. To do this we consider
the probability of an idle slot (i.e. 0 stations transmitting),
of successful transmissions (i.e. exactly 1 station transmit-
ting) or of a collision (i.e. r ≥ 2 stations transmitting),
which gives

Es = (1 − Ptr)σ +
∑n

i=1 Psi
Tsi

+

n
∑

r=2

∑

1≤k1<···<kr≤n

Pck1...kr
Tck1...kr

, (8)

where:
Psi

= τi

∏

j 6=i

(1 − τj)

is the probability station i successfully transmits; Tsi
is

the expected time taken for a successful transmission from
station i, (including overhead, ACK and frame spacing);

Pck1...kr
=

r
∏

i=1

τkr

∏

j 6=k1...kr

(1 − τj),

the probability that only the stations labeled k1 to kr ex-
perience a collision by attempting transmission;

Ptr = 1 −

n
∏

i=1

(1 − τi)

is the probability at least one station attempts transmis-
sion; and σ is the slot-time; Tck1...kr

is the expected time
taken for a collision from stations labeled k1 to kr (i.e. the
expectation of the maximum of the transmission times for
stations k1 to kr, including overhead, ACK timeout and
frame spacing).

Once the mean state time is known, we estimate the
proportion of time that the medium is used by each station
for successfully transferring data:

Si =
Psi

Li

Es

, (9)

where Li is the expected time spent transmitting payload
data for source i. The normalized throughput of the system
is then

S =

n
∑

i=1

Si. (10)

In order to determine the throughput and collision prob-
ability for each station and the overall throughput, one first
solves equations (7) using equations (5) and (6). Then one
uses equations (8), (9) and (10).

C. Channel idle probabilities

We used Pidle to denote that the channel was found to
be idle at the time a packet arrived in the (0, 0)e state.
If the MAC checks for a new packet at the beginning
of each slot, then the probability that the medium is
sensed idle is simply the probability that the next slot
is empty given that our station is not transmitting, i.e.
Pidlel =

∏n

i6=l(1− τi) = 1− pl. For throughput calculations,
which are based on the model’s stationary distribution, we
use this relationship. For calculations not based on the
stationary distribution, such as MAC delay, it is more ap-
propriate to use a real-time relation. The one that we adopt
is described in Section III-E.

D. Relating offered load to model parameters

The model represents offered load using ql, the probabil-
ity that a packet becomes available to the MAC in a slot. It
is important to be able to relate this parameter to the the
station’s offered load. Taking ql → 1 models a saturated
station, where a packet is always available to the MAC.

For small buffers, a crude approximation in the un-
saturated setting is to assume that packet arrivals
are uniformly distributed across slots and set ql =
min(ES/mean inter-packet time, 1). If packets arrive at
the MAC in a Poisson manner with rate λl, then a more
satisfying estimate of ql is 1− exp(−λlES), the probability
that one or more packets arrive in a expected slot time.

It is also possible to produce an estimate of for ql

that does not use mean slot times. In the model each
slot is either idle, a transmission from a particular sta-
tion or a collision caused by a particular combination of
stations. The type of slot is considered to be indepen-
dent and identically distributed, so we can write ql =
∑

P [packet becomes available|slot type]P [slot type]. For
example, for constant packet lengths and Poisson arrivals
we can explicitly write

ql = (1 − Ptr)
(

1 − e−λlσ
)

+
∑n

i=1 Psi

(

1 − e−λlTsi

)

+

n
∑

r=2

∑

1≤k1<···<kr≤n

Pck1...kr

(

1 − e−λlTck1...kr

)

.

(11)

With an infinite buffer and arrivals that are Poissonian,
ql can be identified through the well-known M/G/1 rela-
tion [10] for the likelihood the station has a packet. This
requires knowing the mean MAC delay, which we derive in
Section III-E.

Using a state-independent value for the probability of a
packet becoming available to the MAC is an approximation
for most traffic types and buffering schemes. In Section IV
we will see that it can be an accurate approximation in a
number of situations. This point is explored further in the
Appendix.

E. Delay

We are now in a position to estimate the mean MAC de-
lay associated with a transmission by a particular source.
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Consider the situation immediately after station l com-
pletes a transmission. The station begins post backoff and
chooses a backoff of k, and a packet arrives after j states.
Then the mean time between the packet arrival at the MAC
layer and the completion of its transmission will be

∆l =
∑W0

k=0
1

W0

∑∞
j=0 q(1 − q)j∆ljk

∆ljk =

{

k ≥ j (k − j)E
s
′ + (1 − p)Tsl

+ p(Tcl
+ K1)

k < j Pidle((1 − p)Tsl
+ p(Tcl

+ K1)) + (1 − Pidle)K0

(12)
where Es′ is the mean state length if source l is silent, Tcl

is the mean length of a collision involving source l, K0 is
the mean time for l to transmit a frame beginning with a
stage 0 backoff,

K0 =

∞
∑

j=0

2min(j,m)W0 − 1

2
pjEs′ +

∞
∑

j=1

jpj(1 − p)Tcl
+ Tsl

,

(13)
and K1 is the mean time for l to transmit beginning with
a stage 1 backoff, defined similarly.

Observe that this estimate involves conditioning on start-
ing in particular states, and so is not a simple function
of the stationary distribution of our model. Thus we use
an estimate of Pidle that is appropriate for the real-time
nature of our calculation. By considering the conditional
arrival probabilities for busy and idle slots to be propor-
tional to the lengths of those slots, we find an estimate of
(Es′ − (1− pl)σ)/Es′ , which may be substituted into (12).

F. Two Class Network Model

To study fairness of the 802.11 MAC layer, we will solve
the model for two groups of stations, where all stations
within each group have the same station parameters in-
cluding arrival rate and payload size. Suppose there are
n1 stations in the first class and n2 stations in the second
class, then we may solve for the collision probabilities p1

and p2 for a station in each group using (7) to produce the
coupled non-linear equations:

1 − p1 = (1 − τ1)
n1−1(1 − τ2)

n2 ,
1 − p2 = (1 − τ1)

n1(1 − τ2)
n2−1.

Letting Ts be the time for a successful transmission and Tc

be the time for a collision,

Es = (Ps1 + Ps2)Ts + (1 − Ps1 − Ps2)Tc + (1 − Ptr)σ,

where Psi is the probability that a station in class i, i = 1, 2,
successfully transmits. Normalized throughput for each
class is S1 = Ps1L1/Es and S2 = Ps2L2/Es, where Li

is the average payload duration for a station in class i.

IV. Model verification

We first consider a homogenous group of stations and
then consider the heterogeneous setting where each station
has one of two arrival rates. Station parameters2 are shown
in Table I.

2Note that the 802.11 standards do not specify a length for ACK-
Timeout. Thus the length of a collision may depend on whether a

We compare predictions of the model from Section III
with simulations using the ns2 based 802.11 simulator pro-
duced by TU-Berlin [11]. We compare model predictions
with simulation for various numbers of stations and arrival
rates. Queues are set as small as ns2 will permit and traf-
fic arrivals are Poisson. We show the predictions of the
model for each of the input rate relationships outlined in
Section III-D.

For the homogeneous case, Figure 2 shows how collision
probability depends on the total normalized offered load.
Figure 3 shows how the normalized throughput of the link
depends on the total normalized offered load. Results for
all three load relationships discussed in Section III-D are
shown. In all cases there is good agreement between the
model and simulations. The model has captured a number
of important features of the behavior, including:

• the linear relationship between the offered load and
throughput when well below saturation.
• the behavior of throughput as predicted by Bianchi’s
model and simulation at high offered loads (corresponding
to saturation).
• for larger numbers of stations the maximum throughput
is achieved before saturation in both the model and simula-
tion. The point at which this maximum occurs is relatively
insensitive to the number of stations.
• a complex transition from under-loaded to saturated with
a sudden increase of collision probabilities from a low level
toward their saturated values.

We note that although there are numerical differences be-
tween the predictions of each input rate relationship, the
results are qualitatively similar. As expected, assuming
uniformly spaced arrivals results in higher throughput pre-
dictions, whereas the technique that considers the possibil-
ity of longer than average slots results in lower throughput
predictions. We have observed similar results in other sit-
uations. For clarity we will use the relationship assuming
Poisson arrivals over a mean slot time for the remainder of
this paper.

As a function of collision probability average delays ex-
perienced by a single station are independent of the num-
ber of stations. Thus Figure 4, which shows simulated and
estimated delays, includes values from all validation exper-
iments. The estimated delays in Figure 4 are determined
by equation (12). The term K0 from equation (13), which
does not account for post-backoff, is also shown. The sim-
ilarity of the estimated delay and K0 suggest that the K0

dominates. Both are accurate for small collision proba-
bilities but become mild underestimates for high collision
rates.

For the heterogeneous setting of where stations are di-
vided into two classes with each class having a different ar-
rival rate, Figure 5 shows the model’s normalized through-
put prediction for a station in each class, with n1 = 12

station was involved in the collision (including a vendor selected ACK-
Timeout) or was an onlooker (then using EIFS). We choose Tc = Ts,
following the spirit for the 802.11 standard. For a model of what oc-
curs when they are set differently in a saturated situation, see Robin-
son and Randhawa [9].
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W0 31 L 364us = 500.0 bytes @ 11Mbps
m 5 Ts 944us = Header + L + SIFS + δ + ACK + δ + DIFS
σ 20us Tc 944us = Header + L + SIFS + δ + ACKTimeout
SIFS 10us DIFS 50us = 2σ + SIFS
δ 2us ACK 304us = 192 bits @ 1Mbps + 14 bytes @ 1Mbps

TABLE I

Parameters values for model and simulation.
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Fig. 2. Collision probability as the traffic arrival rate is varied. Results for the three load relationships (uniform, Poisson and conditional)
presented in Section III-D are shown.
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Fig. 3. Throughput as the traffic arrival rate is varied. At rates below those shown there is agreement between the model and simulation.
Results for the three load relationships (uniform, Poisson and conditional) presented in Section III-D are shown.

and n2 = 24. The throughput is plotted against nor-
malized arrival rate for a station in each class. We take
a representative slice through this surface along the line
where the arrival rate to the second group is 1/4 of that
of the first group. Figure 6 shows predicted and simulated
throughputs and collision probabilities against overall nor-
malized offered load. There is good match between pre-
dicted and observed throughputs, although the simulated
collision probabilities are slightly lower than the model pre-
dicts. The collision probabilities of a station in each class
are always close, but not the same. As commented after
equation (7), this is expected because of an asymmetry in

the system: a station in class 1 sees 11 other class 1 sta-
tions and 24 class 2 stations; a station in class 2 sees 12
class 1 stations and 23 class 2 stations.

We have taken a large number of slices for ranges of val-
ues of n1 and n2. For smaller numbers of users, we have
found that while the predicted throughputs are accurate,
the predicted collision probabilities are typically underes-
timates. For larger number of stations, the estimates’ ac-
curacy increases.

As a case-study we consider the predictions of the model
in a situation that represents VoIP traffic in an ad-hoc net-
work. Parameters for the voice calls are taken from [12]:
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Fig. 7. Throughput for station-pairs sending 64kbps on-off traffic
streams.

64kbps on-off traffic streams where the on and off peri-
ods are distributed with mean 1.5 seconds. Periods of less
than 240ms are increased to 240ms in length, to reproduce
the minimum talk-spurt period. Traffic is between pairs
of stations; the on period of one station corresponds to
the off period of another. When modeled, we treat each
pair of stations as a single transmitter. Figure 7 shows
the predicted and simulated throughput, as the number of
station-pairs is increased. It can be seen that the model
makes remarkably accurate throughput predictions.

V. Throughput efficiency

The value of the CWmin parameter, W0, plays a key
role in the performance of the 802.11 MAC. In saturated
networks, where every station always has a packet, intu-
itively it is clear that a CWmin that is too large results in
the medium being idle when it could be used for transmis-
sion and thus reduced throughput efficiency. Conversely,
if CWmin is too small, then competing stations are more
likely to attempt transmission at the same time, resulting
in increased collision rates and this again leads to a reduc-
tion in throughput efficiency. Hence, there exists a value of
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CWmin (dependent on the number of stations) that max-
imizes throughput efficiency3.

In a network with saturated stations, it is known that
the default 802.11b value of CWmin, W0 = 32, does not
optimize network throughput. In [1], Bianchi determines
an approximate value of CWmin that optimizes through-
put. Throughput efficiency in unsaturated conditions is
more complex and less well understood. For example, it
is known that efficiency can be significantly higher in the
unsaturated setting than when saturated, see Figure 3. As
we know that peak throughput occurs below saturation,
we investigate what gains are potentially available by op-
timizing CWmin for a range of offered loads. Consider
a homogenous group of stations with parameters given in
Table I and three different payload sizes, 100 bytes, 500
bytes and 1000 bytes. Using the model we search for the
value of CWmin predicted to produce optimal throughput.
We compare this with the fixed value of CWmin, 32, from
802.11b.

Figure 8 shows the throughput and optimal CWmin
value for 2 stations. We can see that the default value
of CWmin is too large and that for moderate loads by re-
ducing CWmin throughput is increased. The optimized
throughput increases linearly with offered load until level-
ling off. The unoptimized throughput is always less that
optimized throughput, even when both stations are heavily
loaded. With a normalized offered load of 2, the gain in
throughput is 9% for 100 byte payloads, 5% for 500 byte
payloads and 3% for 1000 byte payloads.

Figures 9, 10 and 11 show the results for 10, 20 and
40 stations respectively. For light loads prior to the peak
throughput, tuning CWmin does not result in a significant
increase in throughput, but does create a linear relationship
between offered load and throughput. Once the offered load
is greater than peak throughput for CWmin=32, however,
the default value of CWmin is too low, resulting in loss of
throughput through collisions.

Observe that the optimal throughput plateaus at the
peak throughput, implying that the optimum unsatu-
rated throughput is no better than the optimum saturated
throughput achieved by tuning CWmin. We have seen the
same effects using the standard parameters from 802.11
and 802.11g, as well as 802.11b shown here. Using the sort
of reasoning that is employed in [13], we consider that in
a multi-access network of n homogenous independent sta-
tions there will be some transmission probability that will
produce optimum throughput. In the case of 802.11, this
transmission probability can be controlled by adjusting the
load or adjusting CWmin. As long as the optimal trans-
mission probability can be reached, the optimal throughput

3While we focus on throughput efficiency, we note that the average
MAC-delay is closely related to throughput in the saturated case.
Time on the medium can be used to counting down, for collisions
or transmissions. Maximum throughput corresponds to minimizing
the time spent during collisions and counting down. This, in turn,
minimizes the time between successful transmissions. In particular,
the least average MAC-delay is achieved by tuning CWmin for highest
throughput.
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Fig. 13. Per-station throughput for two classes of stations offering
different loads, n1 = 5, n2 = 15.

will be the same regardless of how it is achieved4.
As a case-study of the efficiencies available through tun-

ing CWmin, we return to the scenario introduced at the end
of Section IV of VoIP traffic between stations in a peer-to-
peer network. Voice call parameters are taken from [12].
Using our model, we calculated values of CWmin that op-
timize throughput. Simulations were then conducted using
these values of CWmin and the resulting throughput is
shown in Figure 12. It can be seen from Figure 12 that
while tuning CWmin increases throughput by up to 10%
for larger numbers of voice calls, the benefits are much less
for smaller numbers of calls.

In the context of voice traffic it is important to consider
the delays experienced by a frame in the MAC layer as
well as throughput. Figure 12 also shows the delays for
these simulations and mean plus 1.96 times the variance of
the MAC-delay, corresponding to a 95% confidence inter-
val for normally distributed data. From Figure 12 we see
that the MAC delay (associated with channel contention
and collisions) quickly increases when the number of voice
calls rises above 10. The horizontal line marked in this
figure indicates the inter-packet spacing of a single voice
call; hence queueing delays quickly become unacceptable
for QoS as the MAC delay approaches this value. While
tuning CWmin reduces the MAC-delay’s mean and vari-
ance, it has only a marginal effect for numbers of voice
calls for which the delay lies below the packet duration
and hence appears to offer limited practical benefit.

We conclude that while the optimal CWmin is a com-
plex function of the traffic and the network, performance
is relatively insensitive to adjustments in CWmin and the
default value of 32 for 802.11b is not far from optimal in a
variety of situations.

VI. Fairness

Having validated the 2-class model in Section IV, we con-
sider the model’s predictions regarding protocol fairness.

4This explanation was suggested to us by an anonymous reviewer.
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Fig. 8. Throughput for 2 stations as the offered load is varied for CWmin= 32 and with CWmin optimized. Results for various payload
sizes, L, are also shown.
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Fig. 9. Throughput for 10 stations as the offered load is varied for CWmin= 32 and with CWmin optimized. Results for various payload
sizes, L, are also shown.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.5  1  1.5  2

no
rm

al
is

ed
 th

ro
ug

hp
ut

normalised offered load

W=32, L=1000 bytes
W=optimum, L=1000 bytes

W=32, L=500 bytes
W=optimum, L=500 bytes

W=32, L=100 bytes
W=opt, L=100 bytes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  0.5  1  1.5  2

op
tim

um
 m

in
um

um
 c

on
te

nt
io

n 
w

in
do

w

normalised offered load

L=1000 bytes
L=500 bytes
L=100 bytes

Fig. 10. Throughput for 20 stations as the offered load is varied for CWmin= 32 and with CWmin optimized. Results for various payload
sizes, L, are also shown.
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Fig. 11. Throughput for 40 stations as the offered load is varied for CWmin= 32 and with CWmin optimized. Results for various payload
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As a working definition of fairness, we consider the network
to be fair if each station achieves a long-term throughput
that is either at least (a) its demand or (b) a 1/n share
of the total achieved throughput. With n1 = 5, n2 = 15,
Figure 13 shows the normalized throughput of a station
in each class against the normalized offered load of a sta-
tion in each class. Station parameters are those in Table I,
but with 1500byte payloads. Taking a slice along the line
where the offered load from stations in both classes are
equal, shown in Figure 14, demonstrates fairness in this
case. The collision probabilities and throughputs of all sta-
tions are equal.

Taking slices through Figure 13 when the offered loads
of stations in each class differ, however, reveals long term
unfairness that is different to the well-studied short-term
issue [14], [15], [16]. We fix the normalized arrival rate in
class 1 per-station to be each of the four values 0.01, 0.02,
0.05 and 0.1 and vary the arrival rate per-station in class 2.
Note that when class 1 stations offer 0.1 normalized load,
although they are not saturated the offered load exceeds
the network’s capacity, even when no class 2 stations are
present.

Overall normalized throughput and per-station collision
probabilities are shown in Figure 15. Collision probabilities
of stations in each class are approximately equal, with a
maximum difference of 5% for the lowest class 1 offered
load (0.01) and heavily loaded class 2 stations. At higher
loads the overall channel throughput is insensitive to the
class 1 arrival rate, but the bandwidth share does depend
on the class 1 arrival rate; this is shown in Figure 16 where
normalized throughput for a source in each class is shown
against normalized offered load per source for a station in
class 2.

In Figures 16 (a), (b) and (c), the network is underloaded
for small class 2 offered load, so that the class 1 stations
are not adversely affected by class 2. When the class 2 sta-
tions offer the same load as class 1 stations, the system is
homogeneous and each station gets the same share of band-
width. However, when the class 2 load ramps up beyond
this level, class 1 stations lose their bandwidth share. The
biggest drop from bandwidth fairness occurs when class 2
station are saturated, i.e. always have a packet (q2 = 1).
The percentage drop in throughput from fair share for these
four class 1 offered loads are 16%, 32%, 22% and 8% for
Figures 16 (a), (b), (c) and (d) respectively. The network
is far from being fair, with greedy stations being able to
steal bandwidth.

This unfairness has Quality of Service (QoS) implica-
tions. To demonstrate this we consider a scenario repre-
senting a single voice-call between two stations compet-
ing with stations carrying TCP connections. The voice-
call pair is modeled as in Section IV. The stations with
TCP connections have 1500 byte payloads and are satu-
rated. Figure 17 shows that collision probabilities are ap-
proximately equal for the VoIP and TCP stations, but the
TCP sources steal bandwidth from the VoIP calls, with
5 TCP flows sufficient to reduce the VoIP throughput by
50%. Note that this is despite the fair-share of the channel

for the VoIP station being roughly an order of magnitude
above the throughput of the VoIP station (this share is
not accessible due to the non-saturated nature of the VoIP
traffic).

VII. Model Scope

We assume a perfect PHY, so transmission errors are
caused only by collisions and do not occur due to noise
on the medium. As collisions and transmission failure be-
cause of a noisy medium are treated by the MAC in the
same way, it is possible as a first approximation to add an
extra, independent component to the collision probabilities
to model this effect. For saturated 802.11 networks such a
procedure has been carried out, see [17].

We have presented this particular model because of its
accuracy, while it still remains attractively simple. Mi-
nor model variations, such as discounting carrier sense in
state (0, 0)e or disallowing packet arrival immediately after
transmission, are easy to consider. We have also consid-
ered a model with queue-empty probabilities conditioned
on being in a transmit state or a post-backoff state, de-
scribed in the Appendix. Such variations perturb the nu-
merical results, but do not result in qualitative changes
in the model’s predictions. It is also straight forward to
consider variations which have been studied for saturated
models, such as finite retry limits and per-station backoff
factors [18].

Except for saturated stations, we match mean simula-
tion offered loads to q as described in Section III-D, even
for non-Poisson traffic. As demonstrated by the examples
in this paper, this approximation works well if interface
buffers are short, which is a reasonable assumption for de-
lay sensitive traffic. If interface buffers are large, but the
station is not saturated, the effective offered load at the
MAC is increased. This can be captured by a more elabo-
rate queueing model, or by allowing q after a transmission
to depend on the backoff stage. Alternatively the Markov
chain may be extended to include buffering beyond the
MAC, but not without considerable effort.

VIII. Conclusions

We have presented a model and analysis of the 802.11
MAC under non-saturated and heterogeneous conditions.
The model’s predictions were validated against simulation
and seen to accurately capture many interesting features
of non-saturated operation, including predicting that peak
throughput occurs prior to saturation. We have shown that
a node can approach its saturation throughput from above
or below depending on factors such as the number of nodes
in the system and their relative loads. We address the
question of fairness between competing flows showing, for
example, that saturated data flows may significantly reduce
the bandwidth available to low-rate VoIP flows.
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Fig. 17. VoIP and TCP.
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Appendix

A. Model with state-dependent q

As an illustration of the breadth of models considered
before before settling on the one in Section III, here we de-
scribe the transition matrix and resultant equations for a
model that uses conditional information in arrival probabil-
ities. This model was not selected for two primary reasons:
its predictions are similar to the selected one; and there are
added computational complexities.

The variable qidle is the probability of arrival during a
state transition known to consist of an idle slot, qbusy is
the probability of arrival during a state transition known
to consist of a busy slot and qave is the probability of an
arrival during a state transition without conditional knowl-
edge. Thus qave = qidlePidle +qbusy(1−Pidle). The transition
probabilities are as follows. A typical, k > 0, (0, k)e tran-
sition can consist of any sort of medium state. Thus qave

is used and

0 < i ≤ m, P [(i, k − 1)|(i, k)] = 1,
P [(0, k − 1)e|(0, k)e] = 1 − qave,
P [(0, k − 1)|(0, k)e] = qave.

The state after a station attempts transmission is always a
long slot so that, for 0 ≤ i ≤ m and k ≥ 0, we have

P [(0, k)e|(i, 0)] =
(1−p)(1−qbusy)

W0
,

P [(0, k)|(i, 0)] =
(1−p)qbusy

W0
,

P [(min(i + 1, m), k)|(i, 0)] = p
Wmin(i+1,m)

.

For the remaining transitions from (0, 0)e, a mixture of
conditional information gives:

P [(0, 0)e|(0, 0)e] = 1 − qave,
P [(0, 0)|(0, 0)e] = qidlePidle,

P [(0, k)|(0, 0)e] =
qbusy(1−Pidle)

W0
.

Solving for the stationary distribution we get a normaliza-
tion in terms of b(0,0): 1/b(0,0) =

(1−qbusy)
qave

+ 1

+ 1
W0

(

(W0−1)W0

2 +
qbusy(1−Pidle)(1−qbusy)

W0q2
ave

(

(W0−1)W0

2 −
(1−qave)(1+(W0−1)(1−qave)W0−W0(1−qave)W0−1)

q2
ave

)

+
1−qbusy

qave

(

−W0 + 1−(1−qave)W0

qave

))

+W0p(1−(2p)m)
1−2p

+ p(1+W0(2p)m)
2(1−p) ,

and finally we solve for the transmission probability, τ =
b(0,0)/(1 − p). Figure 18 illustrates the minor differences
between this model’s predictions and that from Section III.
Thus, as this model is more computational involved, there
seems little advantage in employing it instead of the model
presented in the main body of this paper.
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