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TCP does not work well

1. Slow additive increase means flows take a long time to      
acquire spare capacity

2. Unsustainable large equilibrium window; requires extremely 
small loss 

3. Puzzled by lossy links -- low throughput in wireless links 

4. Unfair bandwidth sharing: Flow throughput 

5. Inefficient Slow Start

• Flows made to last multiple round trip times

• Instability -- exponential increase in aggregate traffic

6. Large queueing delay

∝
1

RTT

p = 3/(2w2)



Explicit Control Protocol (XCP)

• Proposed by Katabi et. al Sigcomm 2002; part of 
NewArch project

• Explicit feedback on congestion from the network

• Flows receive precise feedback on window 
increment/decrement

•  Routers do detailed per-packet calculations



XCP -- Pros and Cons

• Pros:
• Long-lived flows: Works very well -- convergence to 

fair-share rates, high link utilization, small queue 
occupancy, low loss. 

• Cons: 
• With a mix of flow lengths: Deviates far from 

Processor Sharing. Unfair and inefficient. 
• Flow durations: Makes the flows last two orders of 

magnitude higher than necessary. Worse than TCP.
• Complexity: Requires detailed per-packet 

computations



Bandwidth-limited vs. Latency-limited

mean flow size >~ “pipe” size

mean flow size << “pipe” size



Example: XCP vs. TCP vs. PS
Flow Duration (secs) vs. Flow Size # Active Flows vs. time



Wish List 

I. Emulate Processor Sharing
1. Performance is invariant of flow size distribution
2. Mix of flows: Results in flows finishing quickly -- close to 

the minimum achievable
3. Long flows: Results in 100% link utilization -- even under                     

high bandwidth-delay, lossy links... 
4. All flows get fair share of bottleneck bandwidth

II. Want stability -- convergence to equilibrium operating point 
III. Want all the above under any network conditions (mix of 

RTTs, capacities, topologies) and flow mixes
IV. Without any per-flow state, per-flow queue or per-packet 

computation in the routers



RCP: Picking the Flow Rate

• Is there one rate a router can give out to all the flows so 
as to emulate Processor Sharing ?

• Rate 

• RCP is an adaptive algorithm to emulate PS:

•         picked by the routers based on queue size and 
aggregate traffic

• Router assigns a single rate to all flows

• Requires no per-flow state or per-packet calculation

R(t) = C/N(t)

R(t)



RCP: The Basic Mechanism
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RCP: The Algorithm

R(t) = R(t − d0) +
α(C − y(t)) − β q(t)

d0

N̂(t)

Average RTT

Link Capacity
Aggregate Traffic queue

Estimate of # flows

R(t) = R(t − T )[1 +
T
d0

(α(C − y(t)) − β q(t)
d0

)

C
]

N̂(t) =
C

R(t − d0)



Understanding RCP
• How good is the estimate,             ?

•

• RCP performs well and is stable for a broad range of it’s 
parameters      and     α β

C/R(t)



RCP Performance
• When traffic characteristics vary
• Different flow sizes
• As mean flow size increases
• Different flow size distributions
• Non Poisson arrivals of flows 
• As load increases

• When Network Conditions vary
• As link capacity increases
• As RTT increases
• Flows with different RTTs
• Multiple bottlenecks
• Compared with:  

• In each case RCP achieves the goals we set out 

AFCT ≥ 1.5RTT +
E[L]

C
;FCTPS = 1.5RTT +

L

C(1 − ρ)



Example 1: Achieves PS for different Flow Sizes

Max. FCT



Example 2: Achieves PS for different Flow Sizes
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RCP vs. TCP vs. XCP



Example 3: Achieves PS for any flow size distribution



RCP Stability

Ṙ(t) = R(t − T )[
α(C − y(t)) − β q(t)

d(t)

Cd(t)
]

d(t) = d0 +
q(t)

C

q̇(t) =
[y(t) − C] if q(t) > 0

[y(t) − C]+ if q(t) = 0

y(t) = N × R(t − d0)

RCP System:

Equilibrium:
Ṙ(t) = 0; q̇(t) = 0

(R∗, q∗) = ( C

N
, 0)



RCP is Stable

α

β

Stable Independent of  C, RTT and # Flows



RCP’s weakness
A lot of flows starting at once: N × R(t) >> C

Spike can be arbitrarily high



Intuition: Spectrum of Protocols
• RCP is aggressive --- incoming traffic could be unbounded

• Acceleration: Control how aggressively flow-rates converge to R(t) 

• Protocol Spectrum:

- acceleration: small

- Latency-limited:
finishes flows fast 

- bandwidth-limited: 
works well, small 
queues, near-zero 
losses, XCP-like

- Latency-limited: long 
flow completion times

- acceleration: large

- bandwidth-limited: 
aggressive

Best of both: Adaptive Algorithm?



Conclusion

• Making network faster doesn’t help; Flow durations and 
performance is constrained by protocols

• XCP: bold attempt in clean-slate design but there is more to do 

• Network bandwidth increases => more flows capable of completing 
in fewer RTTs

• Metrics: Flow completion time vs. link utilization

• RCP: a simple algorithm that completes flows quickly


