

# Fairness in MIMD Congestion Control Algorithm

E. Altman, K. Avrachenkov, and B. J. Prabhu

Projet MAESTRO

INRIA Sophia-Antipolis, France.

http://www-sop.inria.fr/maestro



|                           | Standard TCP(AIMD)                                            | Scalable TCP(MIMD)                           |  |
|---------------------------|---------------------------------------------------------------|----------------------------------------------|--|
|                           | $W_{n+1} \leftarrow W_n + 1$                                  | $W_{n+1} \leftarrow \alpha \times W_n$       |  |
|                           | $\Rightarrow$ linear increase $\Rightarrow$ multiplicative in |                                              |  |
| no losses                 |                                                               |                                              |  |
|                           | $rac{dW}{dt} = rac{1}{	au}$                                 | $\frac{dW}{dt} = \frac{\log[\alpha]}{\tau}W$ |  |
|                           | $\Rightarrow$ linear growth                                   | $\Rightarrow$ exponential growth             |  |
|                           |                                                               |                                              |  |
| $\geq 1 \; \mathrm{loss}$ | $W_{n+1} \leftarrow 0.5 \times W_n$                           | $W_{n+1} \leftarrow \beta \times W_n$        |  |
|                           | $\Rightarrow$ multiplicative decrease                         | $\Rightarrow$ multiplicative decrease        |  |

Fairness



## How two sources share a link of capacity C?





Losses occur when the capacity is reached but could also occur before





In the absence of control signals (i.e., losses), rate increases as

$$\mathbf{r}_{\mathbf{i}}(t+\delta) = \alpha^{\delta/\tau_{\mathbf{i}}} \cdot \mathbf{r}_{\mathbf{i}}(t), \quad i = 1, 2.$$

Reaction to control signals

| control vector | $r_1(t_j+)$          | $\mathbf{r}_2(t_j+)$                           | -                 |
|----------------|----------------------|------------------------------------------------|-------------------|
| (0, 0)         | $r_1(t_j)$           | $\mathbf{r}_{2}(t_{j})$                        | -                 |
| (0,1)          | $r_1(t_j)$           | $\beta \cdot \mathbf{r}_2(t_j)$                |                   |
| (1,0)          | $eta \cdot r_1(t_j)$ | $\mathbf{r}_2(t_j)$                            | Asynchionous loss |
| (1, 1)         | $eta \cdot r_1(t_j)$ | $\beta \cdot \mathbf{r}_2(t_j) \longleftarrow$ | Synchronous loss  |

## Outline



Intra protocol (MIMD) fairness: same RTT



## Outline



Intra protocol (MIMD) fairness: different RTTs







## Inter protocol (MIMD & AIMD) fairness: same RTT





Intra protocol (MIMD) fairness: same RTT

- Intra protocol (MIMD) fairness: different RTTs
- Inter protocol (MIMD & AIMD) fairness: same RTT



Chiu and Jain (1989) studied the long term fairness index

$$F_{\infty} = \lim_{t \to \infty} \frac{1}{2} \frac{(\mathsf{r}_1(t) + \mathsf{r}_2(t))^2}{\mathsf{r}_1(t)^2 + \mathsf{r}_2(t)^2}.$$

- They showed that, in the presence of only synchronous losses, MIMD algorithm can be extremely unfair, i.e.,  $F_{\infty}$  strongly depends on the initial rate allocation vector,  $(r_1(0), r_2(0))$ .
- Gorinsky (2003) argued that MIMD can be fair in the presence of rate dependent (i.e., asynchronous) losses
- In this work, we
  - give a stochastic model for the rate allocation vector.
  - show that rate dependent losses indeed improve fairness by removing the dependence on initial state.

The Throughput ratio process



Let  $\theta(t) = \frac{r_2(t)}{r_1(t)}$  be the instantaneous throughput ratio process.





- Let  $\theta_n$  denote  $\theta(t)$  embedded before at the  $n^{th}$  control instant.
- For a given  $\theta_0$  there exists a  $\lambda \in (\beta^{-1/2}, \beta^{1/2}]$  such that  $\theta_0 = \lambda \beta^j$  for some  $j \in \mathbb{Z}$ .



Figure 1: State space,  $\mathbb{S}$ , of  $\theta$ .

State space of  $\theta_n$  is

 $\mathbb{S} = \{\lambda \beta^i, \forall i \in \mathbb{Z}\}\$ 



- The process,  $\{s_n = i\} \Rightarrow \{\theta_n = \lambda \beta^i\}$ .  $\{s_n, n \ge 0\}$  is modelled as a discrete-time Markov chain with state space  $\mathbb{Z}$ .
- **Probability of asynchronous loss is**  $\epsilon$ **.**





Transition probabilities can be state independent or state dependent.



### $\checkmark$ $F_{\infty}$ defined as

$$\lim_{n \to \infty} F_n = \lim_{n \to \infty} \frac{1}{2} \frac{(r_1(n) + r_2(n))^2}{r_1(n)^2 + r_2(n)^2}$$
$$F_{\infty} = \frac{1}{2} + \sum_{i=-\infty}^{\infty} P(s_{\infty} = i) \frac{\beta^i}{1 + \beta^{2i}}.$$

Other characterstics : Mean first passage time to "Fairness line", rate of convergence.



Each source gets a decrease signal with equal probability.

$$s_{n+1}|(s_n = i) = \begin{cases} i - 1 & \text{w.p.} \quad \frac{\epsilon}{2} \\ i + 1 & \text{w.p.} \quad \frac{\epsilon}{2}, \\ i & \text{w.p.} \quad 1 - \epsilon \end{cases} \forall i$$

 $\boldsymbol{\mathcal{S}}_n$  is null-recurrent.

- **•** Two accumulation points (C, 0) and (0, C).
- Asynchronous rate independent losses are insufficient to improve fairness.



- Source with a larger rate has a higher probability to get a decrease signal.
- Probability of getting a decrease signal  $\propto \frac{r_i}{(r_1+r_2)}$

$$s_{n+1}|(s_n = i) = \begin{cases} i+1 & \text{w.p.} \quad \epsilon \frac{\beta^i}{1+\beta^i} \\ i-1 & \text{w.p.} \quad \epsilon \frac{1}{1+\beta^i} \\ i & \text{w.p.} \quad 1-\epsilon \end{cases}$$

▶  $s_n$  is positive recurrent for all  $\beta \in [0, 1)$ .

Asynchronous rate dependent losses improve fairness by removing dependence on initial state.



- Steady state probability  $p_i \stackrel{\text{def}}{=} P(s=i)$  is independent of  $\epsilon$ .
- $p_i \propto \beta^{i(i-1)/2}(1+\beta^i) \Rightarrow$  tail decreases rapidly.

#### Fairness index

| eta          | 0.95  | 0.875 | 0.75  | 0.6  | 0.5  | 0.1   |
|--------------|-------|-------|-------|------|------|-------|
| $F_{\infty}$ | 0.987 | 0.97  | 0.942 | 0.91 | 0.88 | 0.777 |

Mean first passage time is proportional to  $\epsilon^{-1}$ , and can be computed using recursion.

## Outline



- Intra protocol (MIMD) fairness: same RTT
- Intra protocol (MIMD) fairness: different RTTs
- Inter protocol (MIMD & AIMD) fairness: same RTT



- Xu et al (2004) showed that the MIMD algorithm is RTT unfair, i.e., the session with the shortest RTT grabs all the capacity.
- We provide a sufficient condition to reduce the RTT unfairness.
- Increase algorithm

$$\mathbf{r}_{\mathbf{i}}(t+\delta) = \alpha^{\delta/\tau_i} \cdot \mathbf{r}_{\mathbf{i}}(t), \quad i = 1, 2.$$

• Let 
$$z(t) = \log \left[ \frac{r_2(t)}{r_1(t)} \right]$$
.

In the absence of asynchronous losses,

$$\mathbf{z}(t+\delta) = \mathbf{z}(t) + \gamma \delta,$$

where  $\gamma = \log[\alpha] \left( \frac{1}{\tau_2} - \frac{1}{\tau_1} \right)$ .







Figure 3: Evolution in time of z(t).  $\tau_2 < \tau_1$ .



- Let  $z_n$  denote z(t) embedded just before the  $n^{th}$  control signal.
- Let  $a_n$  be the interarrival time of the control signals.  $a_n$  is i.i.d. with mean  $\lambda^{-1}$ .

$$z_{n+1} = z_n + \gamma a_n + c_n,$$

where  $c_n$  is defined as

$$c_n = \begin{cases} -\log[\beta] & \text{w.p. } \frac{1}{e^{z_n} + 1} \\ +\log[\beta] & \text{w.p. } \frac{e^{z_n}}{e^{z_n} + 1} \end{cases}$$

 $\boldsymbol{\mathcal{I}}_n$  is positive recurrent if

$$\lambda > \frac{\gamma}{-\log[\beta]}.$$

#### **Simulation Results**





Figure 4:  $\epsilon=0$  .

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_1.jpeg)

Figure 5:  $\epsilon=0.00015$  .

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_1.jpeg)

Figure 6:  $\epsilon=0.0003$  .

![](_page_24_Picture_0.jpeg)

#### $\tfrac{\eta_1+\eta_2+\eta_3}{C}$ $\eta_1$ (Mbps) $\eta_2$ (Mbps) $\eta_3$ (Mbps) $\epsilon$ 178 2.8 0.91 0 1 0.00015 148 25.5 7.14 0.905 0.0003 101 0.89 48 28.4

#### Table 1: Throughput for each RTT class and overall efficiency

## Outline

![](_page_25_Picture_1.jpeg)

- Intra protocol (MIMD) fairness: same RTT
- Intra protocol (MIMD) fairness: different RTTs
- Inter protocol (MIMD & AIMD) fairness: same RTT

![](_page_26_Picture_1.jpeg)

- Capacity sharing between MIMD and AIMD sources.
- $N_m$  : number of MIMD sessions.  $N_a$  : number of AIMD sessions.
- **9** Same RTT  $\tau$ .
- Losses are synchronous.

![](_page_27_Picture_0.jpeg)

#### Rate evolution:

$$r_i(t+\delta) = \alpha_m^{\delta/\tau} r_i(t) \qquad i = 1, ..., N_m$$
$$r_i(t+\delta) = r_i(t) + \frac{\alpha_a}{\tau^2} \delta \qquad i = 1, ..., N_a$$

If a loss ocuurs at time t

$$r_i(t+) = \beta_m r_i(t) \quad i = 1, ..., N_m$$
  
 $r_i(t+) = \beta_a r_i(t) \quad i = 1, ..., N_a$ 

![](_page_27_Picture_5.jpeg)

![](_page_28_Picture_0.jpeg)

• Let 
$$t_n, n \ge 0$$
 denote the  $n^{th}$  loss instant.

• 
$$\Delta_n = t_{n+1} - t_n$$
 is the inter-loss time.

$$r_i(n+1) = \begin{cases} \beta_m r_i(n) \alpha_m^{\Delta_n/\tau} & i = 1, ..., N_m \\ \beta_a \left( r_i(n) + \frac{\alpha_a}{\tau^2} \Delta_n \right) & i = 1, ..., N_a \end{cases}$$
$$\sum_{i=1}^{N_m} \frac{r_i(n)}{\beta_a} + \sum_{i=1}^{N_a} \frac{r_i(n)}{\beta_m} = C.$$

Assumption : rate of each session has an equilibrium behaviour, i.e., inter loss time is constant.

$$\lim_{n \to \infty} \Delta_n = \Delta, \quad \lim_{n \to \infty} r_i(n) = \psi_i.$$

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

Figure 7: Rates of four AIMD and four MIMD sources sharing a link.

![](_page_30_Picture_1.jpeg)

- Inter-loss time depends only on the increase and decrease parameters of the MIMD algorithm.  $\Delta = -\tau \frac{\log[\beta_m]}{\log[\alpha_m]}$ .
- Rate of an AIMD session,  $\psi = \alpha_a \frac{\beta_a}{1-\beta_a} \frac{\Delta}{\tau^2}$ ,
  - is independent of C.
- C
  - depends only on the increase and decrease parameters of the algorithms.
- Total rate of MIMD sessions: they utilize the rest of the capacity.

![](_page_31_Picture_0.jpeg)

- As capacity increases, MIMD user gets a larger share of the bandwidth.
- There exists a  $\Lambda_l$  below which AIMD user gets a better throughput compared to a MIMD user.
- AIMD user can improve its throughput by opening multiple connections whereas the same is not true for the MIMD user.

![](_page_32_Picture_0.jpeg)

## Thank You.