Modeling of TCP flows

Analysis of TCP

Image: A matrix

< ∃⇒

Dynamics and Stability of AIMD Algorithms

Fabian Wirth

The Hamilton Institute, NUI Maynooth

Hamilton Institute Workshop on Congestion Control September 27–28, 2005

based on joint work with: Abraham Berman, Christopher King, Douglas Leith, Robert Shorten, Rade Stanojević

Modeling of TCP flows

The AIMD algorithm A linear model I A linear model II Model Validation

Analysis of TCP

Analysis A fairness result Model Validation

A Markov Model

<□▶ <⊡▶ < 글▶

イロト イロト イヨト イヨト 三星

< □ ▶

< A >

< ≣ >

Many sources, one bottleneck

 $w_i(k) \stackrel{\circ}{=}$ the number of packages sent by the *i*-th source at the *k*-th congestion event.

-3

4 何

⇒ →

< 🗆 🕨

Time evolution for one source

 $w_i(k) \stackrel{\circ}{=}$ the number of packages sent by the *i*-th source at the *k*-th congestion event.

\sim		
()		0

<□▶ <@▶ < 글▶

\sim		
()		0

<□▶ <@▶ < 글▶

\sim		
()		0

<□> <⊡> <⊡> < ⊡>

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

<□▶ <@▶ <필▶

イロト イロト イヨト イヨト 三星

< □ ▶

< A >

< ≣ >

Many sources, one bottleneck

 $w_i(k) \stackrel{\circ}{=}$ the number of packages sent by the *i*-th source at the *k*-th congestion event.

Assumptions I

- Congestion occurs in a single bottleneck.
- Congestion is noticed one RTT after it happens.
- Buffer size of bottleneck is small, i.e. RTT can be approximated by a constant.
- ▶ RTT is the same for all sources.
- The network is synchronized.

< ∃⇒

Many sources, one bottleneck

▲□▶ ▲@▶ ▲ 글▶

Analysis of TCP

A linear model

A little manipulation shows that

$$w(k+1) = Aw(k), \quad k \ge 1$$

where A is given by

$$\begin{bmatrix} \beta_1 & 0 & \dots & 0 \\ 0 & \beta_2 & & \vdots \\ \vdots & & \ddots & \\ 0 \dots & 0 & & \beta_n \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1 & \dots & 1 - \beta_n \end{bmatrix}.$$

Here α_i is the additive increase parameter of the *i*-th source and β_i is the multiplicative decrease parameter.

3

(日) (四) (三) (三)

Digression: Different RTT's

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

<ロ> (四) (四) (三) (三) (三)

Image: A matrix

< ∃⇒

Digression: Different RTT's

A little manipulation leads to a linear equation

$$w(k+1) = \widetilde{A}w(k)$$
.

The similarity transformation

$$\hat{w} := \begin{bmatrix} \operatorname{RTT}_{1}^{-1} & 0 & \dots & 0 \\ 0 & \operatorname{RTT}_{2}^{-1} & \dots & 0 \\ & & \ddots & \\ 0 & \dots & \operatorname{RTT}_{n}^{-1} \end{bmatrix} w$$

leads to an evolution equation for \hat{w} of the same form as in the case for equal RTT's.

Modeling of TCP flows

Analysis of TCP

A Markov Model

A linear model

$$w(k+1) = Aw(k), \quad k \ge 1$$

where *A* is given by

$$\begin{bmatrix} \beta_1 & 0 & \dots & 0 \\ 0 & \beta_2 & & \vdots \\ \vdots & & \ddots & \\ 0 \dots & 0 & & \beta_n \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1 & \cdots & 1 - \beta_n \end{bmatrix}.$$

Here α_i is the additive increase parameter of the *i*-th source and β_i is the multiplicative decrease parameter.

Analysis of TCP

(日) (四) (E) (E) (E)

Image: Image:

4 E b

The Synchronized Case

Assumption: Every source experiences all congestions

$$A = \begin{bmatrix} \beta_1 & 0 & \dots & 0 \\ 0 & \beta_2 & & \vdots \\ \vdots & & \ddots & \\ 0 \dots & 0 & & \beta_n \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1 & \cdots & 1 - \beta_n \end{bmatrix}.$$

The matrix A is positive and column stochastic. Thus by the Perron-Frobenius Theorem the evolution of A^k is very well understood.

Image: Image:

< ≣ >

The Synchronized Case

$$A = \begin{bmatrix} \beta_1 & 0 & \dots & 0 \\ 0 & \beta_2 & & \vdots \\ \vdots & & \ddots & \\ 0 \dots & 0 & & \beta_n \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1 & \cdots & 1 - \beta_n \end{bmatrix}.$$

Theorem (Berman, Shorten, Leith)

1. A has an eigenvalue one with eigenvector

$$\mathbf{v} = \begin{bmatrix} rac{lpha_1}{1-eta_1} & \cdots & rac{lpha_n}{1-eta_n} \end{bmatrix}$$

2. For all initial conditions w_0 we have

$$A^k w_0 \to \theta v$$
.

3. the rate of convergence is exponential, bounds for this rate can be given in terms of the β_i .

Assumptions II

- Congestion occurs in a single bottleneck.
- Congestion is noticed one RTT after it happens.
- Buffer size of bottleneck is small, i.e. RTT can be approximated by a constant.
- RTT is the same for all sources.
- ► The network is synchronized.

Image: A matrix

< ≣ >

★□> ★□> ★目> ★目> 目 のQQ

<□▶ <@▶ <필▶

★□> ★□> ★目> ★目> 目 のQQ

<□▶ <@▶ <≧▶

<□> <⊡> <⊡> < ⊡>

4 m b

The unsynchronized case

$$w(k+1) = A(k)w(k), \quad k \geq 1$$

where A(k) is given by

$$\begin{bmatrix} \beta_1(k) & 0 & \dots & 0 \\ 0 & \beta_2(k) & \vdots \\ \vdots & & \ddots \\ 0 \dots & 0 & & \beta_n(k) \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1(k) & \cdots & 1 - \beta_n(k) \end{bmatrix}$$

Here α_i is the additive increase parameter of the *i*-th source and $\beta_i(k)$ is equal to the multiplicative decrease parameter or 1, depending on whether the *i* - *th* source experiences congestion at the *k*-th congestion event or not.

The unsynchronized case

In the analysis of the dynamics of TCP flows we are led to the consideration of a linear inclusion of the form

$$w(k+1) \in \{Aw(k) \mid A \in \mathcal{M}\},\$$

where $\mathcal{M} \subset \mathbb{R}^{n \times n}$ is the set of 2^{n-1} matrices obtained by setting $\beta_i, i = 1, \ldots, n$ either to 1 or to a constant in (0, 1). (Note that the identity is omitted.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Modeling of TCP flows

Analysis of TCP

A Markov Model

Model Validation I

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ● のへの

↓□▶ ↓@▶ ↓ E▶

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Image: Image:

4 E b

Application to the TCP model

The matrices modeling TCP flows were of the form

$$\begin{bmatrix} \beta_1(k) & 0 & \dots & 0 \\ 0 & \beta_2(k) & \vdots \\ \vdots & & \ddots \\ 0 \dots & 0 & & \beta_n(k) \end{bmatrix} + \frac{1}{\sum_i \alpha_i} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_n \end{bmatrix} \begin{bmatrix} 1 - \beta_1(k) & \dots & 1 - \beta_n(k) \end{bmatrix}$$

The matrices are all column stochastic. The set \mathcal{M} is irreducible on the invariant subspace

$$S := \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^{\perp}$$

(日) (四) (E) (E) (E) (E)

4 m b

Weak ergodicity

Theorem Let $\{A(k)\}_{k\in\mathbb{N}} \subset \mathcal{M}^{\mathbb{N}}$ be a sequence with the property that at most one source does not see a drop infinitely often, then

$$\lim_{k\to\infty}A(k)A(k-1)\ldots A(0)_{|S}=0.$$

In other words, the sequence $\{A(k)\}_{k\in\mathbb{N}}$ is weakly ergodic. This result extends results of Leizarowitz (LAA, 2000) in this special case. Proof builds on properties of extremal norms

A fairness result

Assume now that the matrices A(k) are i.i.d. random variables. These random variables induce for the *i*-th source a probability

 $\lambda_i := P($ source *i* experiences congestion at the *k*-th congestion event).

Theorem

If for each $i = 1, \ldots, n$ we have

 $\lambda_i > 0$,

then, almost surely, (for the right γ)

$$\lim_{k\to\infty}\frac{1}{k+1}\sum_{l=0}^{k}w(l)=\gamma\begin{bmatrix}\frac{\alpha_1}{\lambda_1(1-\beta_1)}&\cdots&\frac{\alpha_n}{\lambda_n(1-\beta_n)}\end{bmatrix}^T$$

+ < </p>
 + < </p>

(□) (□) (Ξ) (Ξ) (Ξ) Ξ

(日) (四) (注) (注)

3

< 🗆 🕨

Model Validation II, NS Simulation

Variation of mean of $w_1(k)$, $w_2(k)$ with propagation delay T_1 . Key: +NS simulation result; · mathematical model; • Theorem on long time-averages; solid lines correspond to synchronised case.

Model Validation III, Data from a Real Network

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへで

<□▶ <⊡▶ < 글>

Model Validation III, Data from a Real Network

	-			
Queue		rtt=21ms	rtt=34ms	rtt=55ms
20	Measurement	0.4055	0.3014	0.2931
	Theorem 3.3	0.4054	0.3061	0.2886
	% difference	0.0247	1.5594	1.5353
40	Measurement	0.4122	0.2849	0.3029
	Theorem 3.3	0.4121	0.2915	0.2964
	% difference	0.0243	2.3166	2.1459
60	Measurement	0.4024	0.3093	0.2882
	Theorem 3.3	0.4204	0.3087	0.2709
	% difference	4.4732	0.1940	6.0028
80	Measurement	0.416	0.3293	0.2547
	Theorem 3.3	0.3835	0.2891	0.3274
	% difference	7.8125	12.2077	28.5434

(ロ) (個) (目) (目) (日) (の)

<□▶ <⊡▶ < 글▶

Analysis of TCP

<ロ> (四) (四) (三) (三) (三)

< • • •

< A >

< ≣ >

A Markov model

We are interested in the system

$$W(k+1) = A(k)W(k), \quad A(k) \in \mathcal{M} := \{M_1, \ldots, M_{2^n-1}\}.$$

All matrices A_i are column stochastic, and window sizes are non-negative.

We may thus restrict our attention to the simplex

$$\Sigma := \left\{ x \in \mathbb{R}^n_+ \mid \sum_{i=1}^n x_i = 1 \right\} \,,$$

◆□> ◆□> ◆目> ◆目> ◆日> ● のへの

< • • •

< A >

< ≣ >

We may thus restrict our attention to the simplex

$$\Sigma := \left\{ x \in \mathbb{R}^n_+ \mid \sum_{i=1}^n x_i = 1 \right\} \,,$$

Assume the random variables A(k), k = 0, 1, ... are i.i.d. and

$$P(A(k) = M_i) = \rho_i, \quad i = 1, \dots, \mu.$$

Assume also the "everyone drops" condition

$$\lambda_j = \sum_{\beta_j(M_i) < 1} \rho_i > 0 \,,$$

Modeling of TCP flows

Analysis of TCP

The assumptions lead to a Markov process on Σ . The transition kernel of that process acts on continuous functions $h: \Sigma \to \mathbb{R}$ through

$$Ph(x) = \int_{\Sigma} h(y)P(x, dy) = \sum_{i=1}^{\mu} \rho_i h(A_i x).$$

For each continuous h the sequence

$$P^kh$$
, $k \in \mathbb{N}$,

is equicontinuous.

Markov chains with this property are called e-chains.

>> 《토· 토· 《토· <

イロト イヨト イヨト イヨト

Theorem(Meyn & Tweedie)

Consider an e-chain on a compact space Σ . If there is a positive and aperiodic state $z \in \Sigma$, then

- (i) there exists a unique invariant probability π ,
- (ii) for every $x \in \Sigma$ and every continuous function $h: \Sigma \to \mathbb{R}$ we have that if W(0) = x, then

$$\lim_{k\to\infty}\frac{1}{k}\sum_{j=0}^{k-1}h(W(j))=\int_{\Sigma}h(y)d\pi(y)\,,\quad\text{ in probability},$$

(iii) for every $x \in \Sigma$ and every continuous function $h : \Sigma \to \mathbb{R}$ we have

$$\int_{\Sigma} h(y) \mathcal{P}^k(x, dy)
ightarrow \int_{\Sigma} h(y) d\pi(y) \,, \quad ext{ as } k
ightarrow \infty \,.$$

< □ ► < /□ ►

4 = 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

< • •

< A >

< ∃→

Positive and Aperiodic States

 $\mathcal{L} := \{ \{A_k\}_{k \in \mathbb{N}} \in \mathcal{M}^{\mathbb{N}} \mid \{A_k\}_{k \in \mathbb{N}} \text{ each source sees infinitely many drops} \}$

$$\mathcal{R}_{\mathcal{L}} := \{ R \mid \operatorname{rank} R = 1, \exists \{A_k\}_{k \in \mathbb{N}} \in \mathcal{L}, k_l \to \infty : \lim_{l \to \infty} \Pi(k_l) = R \}.$$

$$\mathcal{C} := \{ z \in \Sigma \mid zy^T \in \mathcal{R}_{\mathcal{L}} \}.$$

Positive and Aperiodic States

Proposition

- (i) $\ensuremath{\mathcal{C}}$ is compact and forward invariant,
- (ii) for any $z \in C$ and any open neighborhood $U \subset \Sigma$ of z there is a $k_0 > 0$ such that $P^k(x, U) > \delta > 0$, for all $k \ge k_0$ and all $x \in \Sigma$,

(iii) For any initial condition $\mathit{W}_0\in\Sigma$ we have almost surely

$$\lim_{k\to\infty}\operatorname{dist}(W(k),\mathcal{C})=0\,.$$

By (ii)& (iii): C is the set of positive, aperiodic states. C is the support of the unique invariant probability measure π .

Modeling of TCP flows

Analysis of TCP

$$W(k+1) = A(k)W(k).$$

Theorem

Consider the Markov chain W on Σ . For this chain there is a positive and aperiodic state $z \in \Sigma$, and so

- (i) there exists a unique invariant probability π ,
- (ii) for every $x \in \Sigma$ and every continuous function $h : \Sigma \to \mathbb{R}$ we have that if W(0) = x, then

$$\lim_{k\to\infty}\frac{1}{k}\sum_{j=0}^{k-1}h(W(j))=\int_{\Sigma}h(y)d\pi(y)\,,\quad\text{ in probability},$$

+ < </p>
 + < </p>

<ロ> (四) (四) (三) (三) (三)

What does the support look like ?

<□▶ <⊡▶ <⊇▶

Thank you !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

