Distributed Congestion Control and
Related Problems in Complex Networks

A.L.Stolyar
Bell Labs, Murray Hill, NJ

September 27, 2005

Outline

¢ Motivation
¢ General network model, problem statement, GPD algorithm
¢ Scope of the model: several applications

¢ Analysis

One Motivation: Congestion control of a complex network

U U Previous work: Kelly problem
lml lmg mlaxZUn(xn)

subject to

Each link 2 is not overloaded:

Z Tn < ¢y

neF(£)

Capacity c,;
link

Capacity c;

link - TCP congestion control implicitly

tries to solve this problem

- Very large and very active field.
v F.Kelly et al., SLow etal., ..

One Motivation: Congestion control of a complex network

e

subject to

1371 lmQ Network queues are stable

__

Network nodes are time-varying
"switches", which need to be scheduled

- Sources may be dependent and
need to be scheduled jointly

Maintaining "desired” average injection
or service rates may not be practical -
need control strategy which uses
“current state” only.

- Network nodes may have power
usage constraints

Network control problem

and its underlying convex optimization problem

A "STANDARD" CONVEX NETWORK CONTROL
OPTIMIZATION PROBLEM PROBLEM

IMPLICIT (linear) constraints on the
underlying domain of x

No constraints on the
underlying domain of x

max 3" Un(zn) Find CONTROL | maximizing U(z)
X
n
subject to subject to
Each link ¢ is not overloaded: Network queues are St/a;ble
> zn<¢ /
IMPLICIT (linear) constraints on x,

neF(l)
g making queueing stability feasible

EXPLICIT (linear) UNDERLYING CONVEX
constraints OPTIMIZATION PROBLEM

5

General network model

“Utility” nodes “Processing” nodes N? [= {3,4,5}]
N* [={1,2}]

<::>b1(k) <::>bz(k)

p33(k)

Discrete time =0, 1,2, ...

Control £ at 7 1s chosen from a finite set K(m(%)),
m(t) 1s underlying random “network mode,” finite set of modes.

For any control £, it is allowed to “skip” service of any queue

Problem

b(k) = (bn(k),n € N'¥)

X = E[b(k(t))] “Steady-state” average commodity vector,

under a given control strategy

Q(t) = (Qn(t),n € NP)

max U (X)

s.t. Q(t) is stable

Utility function U 1s continuously differentiable concave

(possibly non-strictly concave)

(Asymptotically) Optimal solution:
Greedy Primal-Dual (GPD) algorithm

k(t) € argmax VU(X(#))-b(k) —BQ(t) - AQ(k)
8> 0 small parameter
X(t+1) =p6b(k(®) + (1 -6)X({1)
(AQ)n(k) = An(k) — pn(k) + jgjvp pj (k)P jn (k)

Q(k) = expected queue drift vector, assuming queues are large enough
(i.e. without worrying about empty queues effects)

MAIN RESULT (informally):
GPD algorithm is close to optimal when [is small.

GPD algorithm: Preliminary discussion

k(t) € argmax VU(X())-b(k) —BQ(E) AQ(k)

X(t+1) - X(t) = B[b(k(t)) — X(1)]

Q(k) = expected queue drift vector

GPD rule interpretation: “Greedily” maximize expected drift of

FOX®,Q0) = UCX®) = 568 3 Qu(@)?
neNP

[f NO processing nodes: GPD =>“Gradient” alg., U(X(t)) is “almost” Lyapunov function
[f NO utility nodes: GPD => “MaxWeight” alg., 2’Q, (¢)? is Lyapunov function

GPD may be viewed is a “naive” combination of Gradient and MaxWeight. Optimality is
non-trivial, because for this general model F(X(7),0(t)) is NOT a Lyapunov function

Example

Q1(t)

p (t) po(t)

S N

Slotted time t=0,1,2,...

Two dependent traffic sources n=1,2.
“Source switch”

A(t) = (A1(2), A2(2))

x = (x1,22) Average traffic rates

Two dependent servers n=1,2.
“Processing switch”

(p1(8), p2(t))

max U(x)

s. T. queues are stable

Example: Mapping to general model

Utility nodes Processing nodes

Pk Pk

COnm () rm

lul(k) luz(k)

Control k = Source switch control (4,,4,) + Processing switch control (i, 1,)

Example: GPD algorithm instance

Source switch. Knows ifs utility function, keeps track of
""""""""""""""""""""""""""""""""""" . its average traffic injection rates X(2)=(X,(1),X,(1)),
. uses queue lengths of the nodes it directly injects
. traffic into:

) ol | | A® argmax [VU(X(1) ~ B@Q1(E), Qa()] - A
- l _________________________ i ________________ _ X(t41) = BA®) + (1 — BX ()
---------------- Q(t) Processing switch: Uses its own queue lengths:

t -7 i
Q1) 2(0) (u1(0), 1a(0)) €
p1(t) po(t)

arg max_Q1(t)p1 + Q2(t)uo

l l (p1,12)

Source switch:
A(t) € arg max [VU(X (1)) — 8(Q1(1),Q2(t))] - A

A1(t) A2(t) X(t+1) = A() + (1 — B)X (1)
""""""""""""""""""""""""""""""""" Processing switch. Uses its own queue
lengths + queue lengths of the nodes it
Q1(t) Q2(t) directly forwards traffic to:
L @) po(t) | (u1(8), p2(t)) €
l i arg max Q1(Du1 + Q2()p2 — Q3(nz
N T | (k1,2
. Qs(t) Another processing switch:
; maximize pz(t)
)

Application: Adding average rate constraints

.....................................

la ______________ max U (x)
O3 (%) S. t. queues are stable
¥ O) o (1) Ao () Additional constraint:

Q1(t)

i Previous work: Similar “virtual token queue”
p (t) p2(t) mechanism for rate constraint(s) enforcement for a
| single “source switch” [Andrews-Qian-Stolyar’05].

a — - m

Application: Adding average power usage constraints

@) Ao(t) |
l l max U ()
‘‘‘ p(t) s. T. queues are stable
Q1(t) [7Q2(%) [Qa(t) Additional constraint:

un (t) o (t) C Elp()] <

b

(p1(2), n2(t),p(t)) € arg Mrlnl?;mQl(t)ul—i-Qz(t)uz_sz(t)p

__

Some previous work on models with power constraints (special models, alg’s different from GPD):
Tse-Hanly’98, Klein-Viswanathan’03, Yeh-Cohen’03. K

Application: Minimizing average power usage

Q1(t) Q2(t)

p (t) po(t)

1

1 1
1 1
1 [N i
i , \ !
! ; \ i
| | 1
. \ .
1 \) 1
. N P .
1 S~ 1
i i
1 1
L [I |

———————

(p1(t), ua(t),p(t)) € arg max | —p+BQ1(t)u1+B8Q2(t)uo

W1,42,P)

Some previous work on minimizing average power usage (different alg’s):
Cruz-Santhanam’03, Giaccone-Prabhakar-Shah’03

Application: “Distributed” algorithm for linear programs

max cixq1 + coxo
a11x1 +a12z2 +a13 <0
ap1x1 + axor2 + a3 < 0
x1,x> € [£, h]

x; is the commodity rate, b;(t) € {¢, h}

Each inequality constraint i has assoc. processing node with queue length Q;(t)

Arbitrary X1(0),X»(0) € R, Arbitrary Q1(0),Q>(0) >0

b;(t) = arg yren{g’ﬁ}[CJ—ﬁalel(t)—ﬁaszz(t)]y, j=1,2

X;i(t+1)=pb;(t) + (1 -p)X,(), j=1,2
Q;i(t+1) = [Q;(t)+a;1b1 (t)+aba(t)+a;3] T, i = 1,2

""

(X1(t), X>(t)) — neighborhood of optimal set
(BQ1(t), BQ2(t)) — neighborhood of opt. set of the dual

General model analysis: Unified treatment of all nodes

“Utility” nodes a\u “Processing” nodes A/P

l/\n(m:o l l l/\n(m

1 Qn

bn(k) = [AQn](k)
pn (k)

/1 \Pnj(k)
(VRN

Set of all nodes N = N¥UNP

Problem

b(k) = (bn(k),n € N)

X = E[b(k(t))] “Steady-state” average commodity vector,

under a given control strategy

Q(t) = (Qn(t),n € N)

max U (X)

s.t. Q(t) is stable

Utility function U 1s cont. diff. concave (possibly non-strictly)

Underlying convex optimization problem

A

N Rate region V= {Set of all possible long-term
R “commodity rate” vectors X = E[b(k(t))]}

equivalently

> Rate region V= {Set of all possible long-term
L/ “queue drift” vectors E[AQ(k(1))],

assuming queues are large}

Convex compact

max U (x)

TeV .
V* optimal set

subject to Q* optimal set for the dual

20

Convergence to a greedy primal-dual dynamic system

~-o

-

Convex open Concave cont. diff.

) U(z), €V

=TT T -

THEOREM 1:

Consider GPD alg., and let g | O.

Assume (X (0),5Q(0)) — (2(0),q(0)) € VxRY.

Then, (X(t/8),8Q(t/8)) — (x(t),q(t))

such that

ST 2/ (t) = v(t) — z(t)

v(t) € argmax[VU (z(t)) —q(t)] - v
veV

Convex compact
g (t) = v(t), and ¢(t) must stay in RJ_I\Z

21

Greedy primal-dual dynamic system

(z(t),4q(t)),t > 0,

z'(t) = v(t) — x(t)

g (t) = v(t), and ¢(t) must stay in RJ_X

FIRST INTERPRETATION (LAGRANGIAN):

—————————————————————————————————

SECOND INTERPRETATION:

Greedily maximize %[U(x(t)) _ %q(t) (D]

22

Main result: attraction property of the dynamic system

Convex open

-

~<

Convex compact

if (x(0),q(0)) within a compact.

Concave cont. diff.
U(z), eV
Dynamic system: (x(t),q(t)),t > 0,
' (t) = v(t) — z(t)

v(t) € argmax[VU (z(t)) —q(t)] - v
veV

¢ (t) = v(t), and ¢(t) must stay in R]_i_f

THEOREM 2:

Suppose v €V, v, < 0 Vn.

Then, ¥(2(0),¢(0)) € 7 x RY,

z(t) - V*, q(t) —q" € Q.

Conv. (x(t),q(t)) — V* x Q* uniform,

23

Proof outline

~-o

-

Convex open

P Auinininil s T

Dynamic system: (x(t),q(t)),t > 0,
' (t) = v(t) — x(t)
v(t) € argmax[VU (z(t)) —q(t)] - v
veV

qd(t) = v(t), and ¢(t) must stay in RJ_X

Convex compact

Step (1) z(t) >V
(Same as for Gradient alg. [S’05])

Step (2) q(t) is bounded

Use U(a()) - Sa(®) - a(t)

24

Proof outline

~<

-

Convex open

Dynamic system: (x(t),q(t)),t > 0,
' (t) = v(t) — x(t)
v(t) € argmax[VU (z(t)) —q(t)] - v
veV

qd(t) = v(t), and ¢(t) must stay in RJ_X

Step (3) " € Q" is fixed.

~<

Convex compact

If z(t) € V, then

U(z(t)) —q" - =(t) — %[q(t) —q']-[a(t) — q"]

iIS non-decreasing.
(3a) @(t) — V™ =argmax(U(z) —¢*-2] 2 V"
X

(3b) qt) = ¢ €Q”

25

Proof outline

~-o

-

Convex open

P Auinininil s T

Dynamic system: (x(t),q(t)),t > 0,
' (t) = v(t) — x(t)
v(t) € argmax[VU (z(t)) —q(t)] - v
veV

¢ (t) = v(t), and q(t) must stay in RJ_X

>

S~

Convex compact

Step (4) (3b) = z(t) — RY

Step (5) If z(t) € VN RY, then

U(x(t)) — %q(t) - q(t) non-decreasing

Step (6) (3b),(5) = =z(t) — V*

26

Paper

¢ “Maximizing Queueing Network Utility subject to Stability:
Greedy-Primal Dual Algorithm,” Queueing Systems, 2005, Vol.
50, No.4, pp.401-457.
http://cm.bell-labs.com/cm/ms/who/stolyar/pub.html

27

Related parallel work

¢ Erylmaz-Srikant, INFOCOM 2005.
¢ Lin-Shroff, INFOCOM 2005.
¢ Neecly-Modiano-L1, INFOCOM’2005.

Network congestion control;
strictly concave increasing traffic source utility functions U,
U=2XU;
dual algorithms

28

Conclusions

¢

¢

¢

¢

GPD = Naive combination of Gradient and MaxWeight algorithms
Applies to a wide range of models

Provably (asymptotically) optimal

Quite simple and often easy to implement

Can be used in many cases where standard primal-dual algorithms
(e.g., Arrow-Hurwicz-Uzawa) are not implementable

29

