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1. Introduction

Whilst nonlinea dynamic systems are widespread,
the aaysis and design of such systems remains
relatively difficult. In contrast, techniques for the
analysis and design of linea time-invariant systems are
rather better developed even though systems with
genuinely linea time-invariant dynamics do not, in
redity, exist. It is, therefore, attradive to adopt a divide
and conquer phil osophy whereby the analysis and design
of a nonlinea system is decomposed into the analysis
and design of a family of linea time-invariant systems.
Perhaps the most widespread approach is to approximate
a nonlinea system, locdly to an equili brium operating
point, by its sries expansion lineaisation. Whilst the
lineaisation is only vaid locdly to a spedfic
equilibrium operating point, this approach has the
considerable alvantage that it maintains continuity with
established linea andysis tedniques for which a
substantial body of experience has been accumulated.

In contrast to the onventional series expansion
lineaisation approad, the velocity-based analysis and
design framework associates a linea system with evey
operating point of a nonlinea system, not just the
equili brium operating points. The gproac thereby
relaxes the restriction to nea equili brium operation of
conventional lineaisation approaches whil st maintaining
the ontinuity with linea methods. In this note, the
velocity-based framework is briefly summarised and a
number of its principal feaures are highlighted.

2. Veocity-based linearisation families

Consider the nonlinea dynamic system

X=F(,r), y=G(x,r) D
where r O O™ y 0O 0O°, x O 0" Suppose that the
nonlinea system, (1), is evolving aong a trgedory,
(x(1), r(t), and at time, t;, the trgjectory has readed the
point, (X1, r1). Inthe vicinity of the operating point, (s,
ry), the solution, x(t), to the nonlinea system is
approximated (Leith & Leithead 1998) by the solution,
X (t), to the linea system

R =W 2
W= OF (X, r) W+ O;F(Xq, ro) £ 3
Y = 06Xy, r) W + 0,G(Xq, ry) 4

There exists a velocity-based lineaisation, (2)-(4), for
every operating point. It follows that a velocity-based
lineaisation family, with members defined by (2)-(4),

can be ssciated with the nonlinea system, (1). Whilst
the solution to an individual velocity-based lineaisation
is only accurate in the vicinity of the mrresponding
operating point, the solutions to the members of the
velocity-based lineaisation family can be piecal
together to globally approximate, to an arbitrary degree
of acauracy, the solution to the nonlinea system (Leith
& Leithead 1998&). Hence, the velocity-based
lineaisation family embodes the entire dynamics of the
nonlinea system, (1), with no loss of information and
provides an aternative representation of the nonlinea
system.

The relationship between the nonlinea system, (1),
and its associated velocity-based lineaisation family is
dired. Differentiating (1), an alternative representation
of the nonlinea systemis

X =w (%)
w = OF(x, r)w + O.F(x, r) ¢ (6)
y = 0O0G(x, r)w + O,G(x, r) ¢ @)

Clealy, the velocity-based lineaisation, (2)-(4), is
simply the frozen form of (5)-(7) at the operating point,
(X1, r1). It should be noted that the differentiation step
here is purely formal in nature and daes not require
differentiation of noisy measurements.
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Figure 1 - Validity of conventional and veocity-based
linearisations
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Example — Sid-to-turn misdle
Consider a missile with pitch dynamics (Leith &
Leithead 1998)

q:ﬂ d:i+q
Iy mV
with
Z=qSC, M=7g<Cy

where, q is body axis pitch rate, a the angle of
incidence, V airspeed, q is dynamic pressure, M is
the mach rumber, & is the effedive devator defledion,
Z isthe normal force, M is pitching moment, m, |, S
c are ownstants. The aeodynamic force axd moment
coefficients, Z and M, depend on a, Sand M

Assuming that the short period approximation is
acawrate and 0Z/00 is sufficiently small that its
contribution to the pitch dynamics can be negleded, the
pitch dynamicsin velocity-based form are

X=w
W :|:2 '\Z/I:((pp))j|w+|:M50(p)j|'6 (8)
with
1 0m 1 oM 1 8z
Mu(p) =T Mé(p) =, ZG(p) = "W
l,, oa l, 00 mvV da

here x=[q a]", w=[q d]T, p:[v g Ma %T. The
members of the velocity-based lineaisation family
asciated with the nonlinea dynamics are obtained by
simply “freeing” the scheduling variable, p, in (8).
The transfer function, of the velocity-based
lineaisation corresponding to the value p; of the
scheduling variable, is

_ M;(p,) 8(s)
s*=Z,(p)s~ M, (p)

It should be noted that, whilst the incidence and
elevator angles are related at equili brium operating
points, thisis not the cae a non-equili brium operating
points. Since the incidence and elevator angles, o and
0, are dements of the scheduling variable, p, the
velocity-based lineaisation family contains members
which do not correspond to the series expansion
lineaisation about any equili brium point. It follows
that, for example, a gain-scheduled controller designed
on the basis of the euilibrium dynamics may not be
valid during aggressive manoeuvring which takes the
missil e far from equili brium.

a(s) =

3. Velocity-based modelling & analysis

The velocity-based lineaisation family is an
dternative representation of a nonlinea system which
involves no lossof information. This representation

e Suppats divide and conquer methoddogies whereby
the aaysigdesign of a nonlinea system is

decompaosed into the analysisdesign of a number of
linea systems. Continuity is thereby maintained with
well-establi shed linea methods.

e Is not confined to nea equilibrium operation but
rather ac@mmodates both transitions between
equili brium operating points and sustained operation far
from equilibrium (in marked contrast to conventional
lineaisation-based representations).

« Does not require an equilibrium operating point to be
determined in order to anayse a system: indeed, no
distinction is made between equilibrium and non
equili brium operating points. Trimming, which is highly
non-trivial for complex nonlinea systems, is therefore
not required.

¢ Avoids the numericd differentiation associated with
conventional numerica lineaisation of a nonlinea
model about an equilibrium point. Numericd
differentiation is an undesirable ill-conditioned
operation. The velocity-based lineaisation aswociated
with an operating point is obtained simply by “freeing’
the velocity form of the system.

e Is particularly appropriate for complex nonlinea
integrated systems snce, in contrast to conventional
lineaisation-based representations it supparts modular
analysisand design. (The equili brium operating point of
a sub-system is dependent on the charaderistics of the
overal system in which it is embedded. Hence
conventional lineaisation-based analysis does not
suppat de-coupled modular anaysis of complex
systems. In contrast, the velocity-based representation
of asub-system is entirely independent of its equilibrium
points. Moreover, the velocity-based representation of a
combination of sub-systems is just the combination of
the velocity-based representations of the individual sub-
systems (Leith & Leithead 1998) . Hence, analysis and
design results for a spedfic sub-system can be integrated
in a dired and transparent manner with those obtained
for other sub-systems).

4. Velocity-based control design

The velocity-based lineaisation of the feedbadk
combination of a plant and controller is smply the
feedbadk  combination of the velocity-based
lineaisations of the plant and controller.  This
immediately suggests a control design procedure of the
form (Leith & Leithead 1998k

1. Determine the velocity-based lineaisation family
asciated with the nonlinea plant dynamics.

2. Design a linea controller corresponding to ead
member of the plant velocity-based lineaisation
family.

3. Implement a nonlinea controller with velocity-based
lineaisation family corresponding to the linea
controll er family designed at step 2.



This design procedure retains a divide axd conquer
approach and maintains the continuity with linea design
methods which is an important feaure of the
conventional gain-scheduling approadh. However, in
contrast to the wnventional gain-scheduling approad,
the resulting ronlinea controll er

e Is valid throughout the operating envelope of the
plant, not just in the vicinity of the eguilibrium
operating points.

e Does not inherently involve a dow variation
requirement. Rather, a number of fadors which are a
function of the antroller design, and which the
designer is free to adjust, contribute towards any
restriction on the rate of evolution of the trgjedories.
A primary factor which contributes towards any slow
variation requirement is the degree of similarity
between the dynamics of the velocity-based
lineaisations, of the dosed-loop system, associated
with different operating points.  This determines the
degree of nonlineaity of the dosed-loop system and
is largely dependent on the performance
spedfication.

¢ May be designed such that the dosed-loop velocity-
based lineaisations have the same input-output
dynamics at every operating point. In this case the
gain-scheduled controller may be interpreted as a
dynamic inversion controller (Leith & Leithead
199&). The dynamic inversion controller is valid
globally and involves no slow variation constraint
whatsoever. The velocity-based dynamic inversion
approach is adired generalisation of linea pole-zero
inversion which decmpaoses the nonlinea inversion
problem into a number of straightforward linea pole-
zeo inversion tasks. In contrast to Feedbadk
Lineaisation, the velocity-based dynamic inverse
does not require full state feedback.
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