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1. Introduction

Whilst nonlinear dynamic systems are widespread,
the analysis and design of such systems remains
relatively difficult.  In contrast, techniques for the
analysis and design of linear time-invariant systems are
rather better developed even though systems with
genuinely linear time-invariant dynamics do not, in
reali ty, exist.  It is, therefore, attractive to adopt a divide
and conquer philosophy whereby the analysis and design
of a nonlinear system is decomposed into the analysis
and design of a family of linear time-invariant systems.
Perhaps the most widespread approach is to approximate
a nonlinear system, locally to an equili brium operating
point, by its series expansion linearisation.  Whilst the
linearisation  is only valid locally to a specific
equili brium operating point, this approach has the
considerable advantage that it maintains continuity with
established linear analysis techniques for which a
substantial body of experience has been accumulated.

In contrast to the conventional series expansion
linearisation approach, the velocity-based analysis and
design framework associates a linear system with every
operating point of a nonlinear system, not just the
equili brium operating points.  The approach thereby
relaxes the restriction to near equili brium operation of
conventional linearisation approaches whilst maintaining
the continuity with linear methods.   In this note, the
velocity-based framework is briefly summarised and a
number of its principal features are highlighted.

2. Velocity-based linearisation families

Consider the nonlinear dynamic system�
x = F(x, r),  y = G(x, r) (1)

where r ∈ ℜm, y ∈ ℜp, x ∈ ℜn.  Suppose that the
nonlinear system, (1), is evolving along a trajectory,
(x(t), r(t)), and at time, t1, the trajectory has reached the
point, (x1, r1).  In the vicinity of the operating point, (x1,
r1), the solution, x(t), to the nonlinear system is
approximated (Leith & Leithead 1998a) by the solution,�
x (t), to the linear system� �

x  = 
�
w (2)� �

w = ∇xF(x1, r1)
�
w  + ∇rF(x1, r1)

�
r (3)� �

y  = ∇xG(x1, r1)
�
w  + ∇rG(x1, r1)

�
r (4)

There exists a velocity-based linearisation, (2)-(4), for
every operating point.  It follows that a velocity-based
linearisation family, with members defined by (2)-(4),

can be associated with the nonlinear system, (1).  Whilst
the solution to an individual velocity-based linearisation
is only accurate in the vicinity of the corresponding
operating point, the solutions to the members of the
velocity-based linearisation family can be pieced
together to globally approximate, to an arbitrary degree
of accuracy, the solution to the nonlinear system (Leith
& Leithead 1998a).  Hence, the velocity-based
linearisation family embodies the entire dynamics of the
nonlinear system, (1), with no loss of information and
provides an alternative representation of the nonlinear
system.

The relationship between the nonlinear system, (1),
and its associated velocity-based linearisation family is
direct.  Differentiating (1), an alternative representation
of the nonlinear system is�

x  = w (5)�
w = ∇xF(x, r)w + ∇rF(x, r)

�
r (6)�

y  = ∇xG(x, r)w + ∇rG(x, r)
�
r (7)

Clearly, the velocity-based linearisation, (2)-(4), is
simply the frozen form of (5)-(7) at the operating point,
(x1, r1).   It should be noted that the differentiation step
here is purely formal in nature and does not require
differentiation of noisy measurements.

Figure 1 - Validity of conventional and velocity-based
linearisations
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3. Velocity-based modelling & analysis

The velocity-based linearisation family is an
alternative representation of a nonlinear system which
involves no loss of information.  This representation

• Supports divide and conquer methodologies whereby
the analysis/design of a nonlinear system is

decomposed into the analysis/design of a number of
linear systems.   Continuity is thereby maintained with
well-established linear methods.
• Is not confined to near equili brium operation but
rather accommodates both transitions between
equili brium operating points and sustained operation far
from equilibrium (in marked contrast to conventional
linearisation-based representations).
• Does not require an equilibrium operating point to be
determined in order to analyse a system: indeed, no
distinction is made between equilibrium and non-
equili brium operating points.  Trimming, which is highly
non-trivial for complex nonlinear systems, is therefore
not required.
• Avoids the numerical differentiation associated with
conventional numerical linearisation of a nonlinear
model about an equili brium point. Numerical
differentiation is an undesirable il l-conditioned
operation.  The velocity-based linearisation associated
with an operating point is obtained simply by “ freezing”
the velocity form of the system.
• Is particularly appropriate for complex nonlinear
integrated systems since, in contrast to conventional
linearisation-based representations it supports modular
analysis and design.  (The equili brium operating point of
a sub-system is dependent on the characteristics of the
overall system in which it is embedded.  Hence,
conventional linearisation-based analysis does not
support de-coupled modular analysis of complex
systems.  In contrast, the velocity-based representation
of a sub-system is entirely independent of its equilibrium
points.  Moreover, the velocity-based representation of a
combination of sub-systems is just the combination of
the velocity-based representations of the individual sub-
systems (Leith & Leithead 1998f) .  Hence, analysis and
design results for a specific sub-system can be integrated
in a direct and transparent manner with those obtained
for other sub-systems).

4. Velocity-based control design

The velocity-based linearisation of the feedback
combination of a plant and controller is simply the
feedback combination of the velocity-based
linearisations of the plant and controller.  This
immediately suggests a control design procedure of the
form (Leith & Leithead 1998b)

1. Determine the velocity-based linearisation family
associated with the nonlinear plant dynamics.

2. Design a linear controller corresponding to each
member of the plant velocity-based linearisation
family.

 3. Implement a nonlinear controller with velocity-based
linearisation family corresponding to the linear
controller family designed at step 2.

Example – Skid-to-turn missile
Consider a missile with pitch dynamics (Leith &

Leithead 1998d)
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with
Z= q SCL,      M = q ScCM

where,  q is body axis pitch rate, α  the angle of
incidence, V airspeed, q  is dynamic pressure, M  is

the mach number, δ is the effective elevator deflection,
Z is the normal force, M is pitching moment, m , Iyy, S,
c are constants.  The aerodynamic force and moment
coeff icients, Z and M, depend on α, δ and M .

Assuming that the short period approximation is
accurate and ∂Z/∂δ is sufficiently small that its
contribution to the pitch dynamics can be neglected, the
pitch dynamics in velocity-based form are�
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here x=[q α]T, w =
� �

q α T
, ρρ= V q M

T
α δ .  The

members of the velocity-based linearisation family
associated with the nonlinear dynamics are obtained by
simply “ freezing” the scheduling variable, ρρ, in  (8).
The transfer function, of the velocity-based
linearisation corresponding to the value ρρ1 of the
scheduling variable, is
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It should be noted that, whilst the incidence and
elevator angles are related at equili brium operating
points, this is not the case at non-equili brium operating
points.  Since the incidence and elevator angles, α and
δ, are elements of the scheduling variable, ρρ, the
velocity-based linearisation family contains members
which do not correspond to the series expansion
linearisation about any equili brium point.   It follows
that, for example, a gain-scheduled controller designed
on the basis of the equili brium dynamics may not be
valid during aggressive manoeuvring which takes the
missile far from equili brium.



This design procedure retains a divide and conquer
approach and maintains the continuity with linear design
methods which is an important feature of  the
conventional gain-scheduling approach.  However, in
contrast to the conventional gain-scheduling approach,
the resulting nonlinear controller

• Is valid throughout the operating envelope of the
plant, not just in the vicinity of the equili brium
operating points.

• Does not inherently involve a slow variation
requirement.  Rather, a number of factors which are a
function of the controller design, and which the
designer is free to adjust, contribute towards any
restriction on the rate of evolution of the trajectories.
A primary factor which contributes towards any slow
variation requirement is the degree of similarity
between the dynamics of the velocity-based
linearisations, of the closed-loop system, associated
with different operating points.   This determines the
degree of nonlinearity of the closed-loop system and
is largely dependent on the performance
specification.

• May be designed such that the closed-loop velocity-
based linearisations have the same input-output
dynamics at every operating point.  In this case the
gain-scheduled controller may be interpreted as a
dynamic inversion controller (Leith & Leithead
1998c). The dynamic inversion controller is valid
globally and involves no slow variation constraint
whatsoever.  The velocity-based dynamic inversion
approach is a direct generalisation of linear pole-zero
inversion which decomposes the nonlinear inversion
problem into a number of straightforward linear pole-
zero inversion tasks.  In contrast to Feedback
Linearisation, the velocity-based dynamic inverse
does not require full state feedback.
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