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Abstract— Nonlinear observers for estimation of lateral and
longitudinal velocity of automotive vehicles are proposedbased
on acceleration and yaw rate measurements in addition to wred
speed and steering angle. The observer for lateral velocity
uses a tyre-road friction model. Exponential stability of the
observers are shown. A structural assumption on the frictio
model is discussed. The observer structure is validated usj
experimental data from cars.

I. INTRODUCTION

Feedback control systems for active safety in automotive
applications have over the last years entered producticn ca
Many of these systems have in common that the control ‘ v 1 ; :
action depend on information about vehicle velocity, oesid s} h 3 s b
slip. However, the velocity is seldom measured directly an : ‘
must therefore be inferred from other measurements such as
wheel speeds and acceleration measurements. am : :

The main goal of this work is to derive observers for vehi- v , N , V
cle velocity with stability guarantees. Towards this gaed, @ b bs 3
propose a cascaded observer structure, and prove stalfility
the observers under certain conditions. Nonlinear obsgrve
are used for taking the nonlinear dynamics (mainly due teig. 1. Horisontal axis systems, geometric definitions, siffierces, speed,
highly non-linear friction forces) into account, and to aint ~ slip angle and yaw rate.
simple designs with few tuning knobs (as opposed to exten-
dend Kalman filter designs). Another significant advantdge o
the proposed approach is that the Riccati equation is agipidesuggested in [11]. [12] considers the use of an Extended
such that the observer can be implemented efficiently in l&alman-filter, based on a nonlinear tyre-friction modeétth
low-cost embedded computer unit. also includes estimation of cornering stiffness. The st

Earlier works on observers for estimation of lateral veproposed in [13] combines dynamic and kinematic models
locity are mainly based on linear or quasi-linear technjqueof the vehicle with numerical bandlimited integration o&th
e.g. [1-4]. A nonlinear observer linearizing the observesre equations to provide a side-slip estimate. In [14] sidp-sli
dynamics have been proposed in [5], [6]. The same type @hgle is estimated along with yaw rate in an approach that
observer, in addition to an observer based on forcing tHeas similarities with the one considered herein, while gisin
dynamics of the nonlinear estimation error to the dynamideéwer measurements. The approach in [14] is validated using
of a linear reference system, are investigated in [7]. Thexperimental data, but there are no stability proofs.
problem formulation there assumes that the longitudinal
wheel forces are known, as the observer implemented in ESP
also does [8]. In our work, we do not make this assumptiorf). Rigid body dynamics
as such information is not always available. Nevertheléss, The geometry of the vehicle and the involved coordinate
this informationis available, it might be natural to use it systems are illustrated in Figure 1. The vehicle velocity
in the first module of our modular approach (estimation ofs defined in a coordinate system with the origin at the
longitudinal velocity). vehicle center of gravity (CG, assumed constant), with

The Extended Kalman-filter is used for estimating vehiclexis pointing forward andy-axis to the left. There is a
velocity and tyre forces in [9], [10], thus without the exgili  coordinate system in the centre of each wheel, aligned
use of friction models. A similar, but simpler, approach iswith the orientation of the wheel. The distance from CG
also suggested in [4]. An Extended Kalman-filter based o each wheel center is denotéd, with i being wheel
a tyre-road friction models that also included estimatiomdex. Together with the angleg, this defines the vehicle
of the adhesion coefficient and road inclination angle igeometry. We will assume that we can consider the vehicle a
rigid body, for which the rigid body dynamics (with respect
to the CG coordinate system) can be written

Mv+Cvv=r (1)

Il. VEHICLE MODELING
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wherewv is a vector containing the body generalized veloc- % . =
.- R . . . Estimation of
ities. The matricedM and C are the inertia matrix, and Jongitudinal

'

Coriolis and centripetal matrix, respectively. The vector velocity . & Y ——
consists of forces and torques on the vehicle, mainly @icti e % | Estimation of | T
forces acting via the wheels, but also gravitational, weath lateral Or
(wind), and aerodynamic (air resistance) forces are at work - velocity [
By making the following assumptions, P
e Only include motion in the horizontal plane (ignore
dynamics related to vertical motion, including roll and Fig. 2. Modular observer structure
pitch).

» The effect of caster and camber is ignored . _ o S
« Only tyre friction and gravitational forces are affectingd; —arctan 7=, andV; . is the velocity inz-direction in the

vehlcle m0t|oh ) o _wheel coordinate systenV; , = |/v?, +v? cosa;. The
the vehicle dynamics are described by longitudinal vejocit T " X Y .
; 9 B longitudinal and lateral velocities of the wheel centerhi t
v, lateral velocitys, and yaw rater, resulting in the “two- body-fixed coordinate system arg, = v, % rb; andv; , =
track model” [6], with vy £ rb;. For the tyre slip angles to be well defined, we

m 0 0 0 —mr O assume that
M=|0 m 0], C)=|mr 0 0f. Assumption 1w; , >0fori=1,...,4.
0 0 J, 0 0 0 The tyre slips depend on the vehicle states and the time-

_ - varying, measured parametersandd;. We will use the two
The generalized forces = (fs,fy,m:) are forces and notationsF; = F;(\i., \i,) = Fi(x,0) interchangably,
torque generated by friction between the wheels and thfzpending on context. Since the friction model is mainly
ground, and gravitational forces induced by road inclovati ysed in the estimation of lateral velocity wexe= (vy,m)T,

(0r) and road bank angleyg): we letv, be part of the time-varying parameter vecebr=
: (51,...,54,(4}1,...,(4}4,’[}1).
S ;”” _ Z (szz> R(0))F; + _mrggsgfé; The following assumption is made on the friction model:
myz - ; . 0 ' Assumption 2:There exist a positive constant and sets

© and X (0), such that for all@ € ©, X(0) is convex, the
The friction forcesF; working at each wheel (see Figure 1)friction model is continously differentiable wst with || £ ||
are functions of vehicle velocity, see the next section.yThepounded onX (8) x ©, and
are transformed from the wheel coordinate systems to CG:
« The forces generated by the tyres in body-fixed coordi- Z 9F;,y(x,0) oS 5i+w
nates for each wheé| is: - vy dvy

f; = (fiws fiy)" = R(6:)F; forall @ € ©, x € X(8).
This Assumption is discussed in Section V.

sind; <—c1, (3)

where F;, = (Fm,FLy)T are the forces acting on
the wheel in the wheel-fixed coordinate system. The
rotation matrix induced by the steering angleis
5 Q06 The overall observer structure is illustrated in Figure 2.
R(4;) = (0956? - blrgf) ) The first observer use information of (mainly) wheel speed
S0 Cos0; in addition to yaw rate and longitudinal acceleration to
« For the torque, it is convenient to define the geometrgstimate longitudinal velocity. Thereafter, this estiends
vectorg; = (—h; sin;, h; cos;)iranspose where the used together with measurements of lateral acceleratawm, y
anglesy; are introduced to get a uniform representation;ate, wheel speeds, and wheel steering angle to estimate

Ill. OBSERVER STRUCTURE

Y1 = =71, Y2 = Yo, Y3 = ™+ 3 andyy = m — 4. lateral velocity. In this work, the road bank and inclinatio
The generated torque about the vertical axis through tlengle ¢r and dr) are ignored (assumed to be zero). The
CG is then for each wheel maximal friction coefficientuy might also be estimated, or
T be obtained from other sources (which is assumed herein).
mi. = g; fi. (2)  The measurements used are summarized in the Table I.
B. Friction models Acceleration and yaw rate sensors are assumed placed in

I - . CG. The acceleration measurements have bias removed.
In most friction models, the friction forces are functions

of tyre slips, which are measures of the relative differeénce TABLE |

vehicle and tyre v_elocity. One definition for the longitudin MEASUREMENTS

and lateral tyre slips are

WiRdyn Vi Measurement  Explanation
Aiw = v = Aiy =sina, az, ay Long./lat. corrected acceleration measurements
bt r yaw rate
wherew; is the wheel angular velocity ., is the dynamic w; Rotational speed wheel
‘ 8; Steering angle wheel

wheel radius, the tyre slip angles are calculatednas=



The model described in Section Il will be simplified for Based on this model, we propose the following observer:
each of the observers: For estimating longitudinal veypcit
we will ignore lateral ¢, and r) dynamics, and when i . -
estimating lateral dynamyics, we assume thatis known by =0zl ay =Ko, (may—Z[O 1] R(éi)FZ) (72)
(thus using only two dynamic states). The main motivation 1 R !
for structuring the observer in this way, is that it resulfts i F=— ZgiTR(dl-)Fi+KT (r—7) (7b)
a modular design with few tuning knobs. Jz i

This observer structure is cascaded, since there are no . . o
feedback loops between the observers. A simple stabilityhereF; = Fi(x, 6) are the friction forces calculated on
result for this cascade is given in Section IV-C. basis of estimates = (¢, 7).

Define h(x,0) = >, [0 1]R(J;)F;(x,0), and the error

IV. NONLINEAR OBSERVERS FOR VELOCITY ESTIMATION  variables?, = v, — 9, and# = r — 7, andx = (3,,7)
A. Estimation of longitudinal velocity The following result regarding the friction forces holdsedu
to Assumption 2:

Lemma 1:There exist positive constants, i = 1,...,4
such that for alkk, x € X(0), 6 € ©, the following holds:

In estimation of longitudinal velocity, we will use a model
including forward velocity only, with acceleration as irpu

Vg = Q. (4)

The measurements are the wheel rotational spegdshich

are transformed ta,, longitudinal velocity of CG, using 1 - . ~ ~
Vig = Vg £7b; and v, = Rgynw; cosd; (@assuming zero 7 Zgi R(0;) (Fz - Fi) < 3|ty | + ca 7| (8b)
slip). The transformed measurement from wheel speid Z
denotedv, ;. Using this, we propose the following observer:

5 20 R (Fs — F) < —at + calfl[5y | (82)

Proz;f: From the Mean Value Theorem,

: X oh(x',0)_  Oh(x,0
b= e+ Y Kilaa) (v — 00), (5) h(x.0) — h(%,0) = f;;y g, + 21x.0)

T

The observer gainds; depends on the acceleration meawherex’ is some point on the line segment betweeand
surement, to reflect when the wheel speed measurements &réVultiplying this with o, we get
good estimates of velocity.
. Large positive a,: Large gain on non-driven wheels, %Z [0 1] R(0;) (Fz - Fi) =
small gain on driven wheels. i

« Small positive a,: Very large gain on non-driven L OF,(X,0) . OF; . (X,0)
wheels, large gain on driven wheels. Z cos d; v, +sind; av, vyt
« Small negativea,: Large gain on non-driven wheels, ¢ ey oy
large gain on driven wheels. 3 (COS5_3E,y(X .0) 4 sins, OF; . (x 79)) .
. . . 7 - 7 y-
« Large negativea,: Small gain on non-driven wheels, - or or

small gain on driven wheel. ) ]
IFrom Assumption 2, we arrive at (8a). From [15, Lemma

In [6], similar rules are used to construct a Kalman f||te3.1]’ (8b) holds onX (8) since from Assumption 2F has

and a fuzzy logic estimator for vehicle velocity. Other tinuous and bounded partial derivatives -
measurements (such as flags for ABS-system, brake assist&%'\/ : P : .
e will also make use of the following fact:

etc.) that provide information on validity of the zero slip ) .
assumption can also be used. Fact 1: By completing the squares,

Simple outlier detection is used to avoid that block- b2 b
ing/spinning affect the velocity estimate. —a&? +bl&1||&] = Eg% — [ Val|&| - ﬂ|§2|

Assumingv, ; = v, (which requires that the lateral and .
o vy : . Define the seiX(p; 0) = {x: B(x,p) C X(0)} C X(0)
longitudinal slip is zero, or known), the observer is unifiby where B(x, p) = {2+ |z — x|| < p} is the ball of radius

globally exponentially stable, since the gains are p&sitivaroundx
(proof is trivial, and hence omitted). Viewing the effect of Theorém 1:Assume thatp and © are such thati(¢) e
slips (and missing Coriolis term) as a time-varying bounde 0) Vit ] 0. Let the ob ins be ch h
disturbance, it is easy to show that the error dynamics a +(p:0), - 0. Let Ihe observer gains be chosen suc
uniformly ultimately bounded [15], where the size of the

2

“ultimate bound” depends on the bound on the disturbance. K, >0 9)
. Estimati i Uz + Ky, ca + c3)?

B Est|m<'_;\t|on of lateral veIouty_ _ _ Ko >k + i+ (v ,C2 + ¢c3) (10)
Assuming (for now) the longitudinal velocity, known, 2Ky, 1

the model we use for estimation of lateral velocity is _. .
where v, is an upper bound on,, and k. > 0 is a

Uy = —VeT + ay (6a) positive constant. Then, jfx(0)|| < p, the statex(t) of the
1 . observer (7) converges to the statg) of the system (6),
r= Zgi R(6;)F;. (6b) and the origin of the observer error dynamics is uniformly
2 exponentially stable.



Proof: The observer error dynamics are

by = —vaf + Ky, > [0 1] R(6;)(F; — Fy)

| T . _
r= zi:gi R(5;)(F; — F;) — K, 7.

Define the Lyapunov function candidaltgx) = 1 (22 +72).
The time derivative along the trajectories of (11) is

By Lemma 1, this can be upper bounded:
V <~y — Ky, e10, + Ky, || |3y
+ c3F|by| + caF|F| — K, 72
< (v + Ky, 2 + c3)|F|[oy| — Ky, 10, + caf || — K72
By Fact 1 and (9),

s+ Koe2 C3)2f2 _ Ky,
=TT K,a 9 v

Kuy C1
2

(vz + Ky, c2 + c3)

Kl, C1
Yy
2\/ 2

7]

|ﬁy| -

+ c4F|F| — K,
We see that due to (10),

Kv C1
e

= ke

V-

is uniformly negative definite fok,x € X(0).
By assumptionx(t) € X,(p,0(t)) € X(0(t)) ¥t > 0,
and we must show that(¢) € X (0(t)) vt > 0. Sincex(t) €

Xs(p;0) and||x(0)|| < p, %(0) € X (6(0)). From the above,

1%l = %7 < 0, which means thaix(t)[| < p ¥t > 0,

and thusx(¢) will remain in X (60(¢)). Thus, from (12) and

standard Lyapunov theory [15], we conclude t&#t) — 0

with exponential convergence rate. ]

C. Cascaded stability

(11a)

(11b)

(12)

above, it can be shown that the cascaded system with this
disturbance is uniformly ultimately bounded. This follows
from [15, Lemma 9.4]. Again, the size of the “ultimate
bounds” depends on the bound on the disturbance.

V. DISCUSSION OFASSUMPTIONZ2

This section discusses Assumption 2 for two friction
models. Most friction models can be written as a function
of (lateral and longitudinal) tyre slip¥; = F;(\i 2, \iy)
only, and depend thus on vehicle velocity only indirectly.
Therefore, we can write the partial derivatives

ov, Oz Ovy,  ONiy Ov,  ONiy Ovy
6Fi7y - 6Fi7y 8)\11 + 8Ey 8/\17@/ - 6Fi7y 60@

Cos ;

SO — 14
Dv, i Ovy Oy Ovy iy Ou, (14)
where we have assun%;i = 0. Since
; -1
Oa (15)

v, 1y tan?(8; — ;)
is always negative, we see that it is the lateral slip partial
derivatives that are significant (assumipg| < 7/2).

A. Linear friction models

“Linear” friction models says that the friction forces are
proportional to the slips,

Fi,m (X7 0) _ OI)\’LCE
F;,(x,0) CyAiy
whereC, andC, are tyre stiffness coefficients. In this case,
Assumption 2 holds with
O={0 : |6] <6 v, >7b, i=1,....4},
X(0) = {x=(vy,r) :|au| <@, |r| <7, i=1,...,4}.
B. The magic formula tyre model

The “magic formula tyre model” [16] is a widely used
semi-empirical model for calculating steady-state tyreés.
The “combined slip” magic formula provides similar formu-
las for lateral and longitudinal tyre forces

Fr(Day Ay = Go(\y) Fro(A\2),
Fy(\as Ay) = Gy (M) Fyo(Ny)

Assuming that the longitudinal velocity estimate converge o )
to its true value (that is, the slips are (eventually) zetiod, where we have simplified somewhat since one of the param-

following stability result hold on the overall system:

eters inG, (G,) that according to [16] depends og (\,)

Theorem 2:Under the same conditions as in Theorem 1iS assumed constant. For notational convenience we drop the
there exists a seb C R* such that for initial observer error dependence on wheel indeéxn this section.
states in this set, the origin of the observer error dynamics The functionsF;o and Fyo are the “pure slip” formulas,

is exponentially stable.

The proof follows from [15, Section 9.3] by treating the lon-

Fro(Az) = DysinGy, Fyo(Ay) = Dysing,

gitudinal velocity observer error as a vanishing pertudrat \yhere
to the lateral observer error dynamics, and is omitted for

brevity.

Cr = Cparctan{ B, Ay — B (By Ay —arctan By A, )}

As mentioned in Section IV-A, the presence of slips (and ¢, — ¢, arctan{B,\,— E,(B,\, —arctan B,\,)}
the neglected Coriolis term in the longitudinal dynamics)
can be V|ewed _UDO” as a time-varying, bo_unded_ d'_Stu.rbancaWe use\, = sin « instead oftan « as in [16], but this is not significant
to the longitudinal observer error dynamics. Similarily tofor the conclusions drawn here.



The functionsG, and G, are defined ags,(\,) = cosn,
andG,(\;) = cosn, where

Mg = Cay arctan{ Bz Ay — Egz(Bgs Ay —arctan BggAy) }
1y = Cay arctan{ BayAs — EGy(BayAs —arctan Bay ;) }-

We then have that

g_f\vz _ Gy()\m)ByOyDy (1 — Eylg_1<—2 W)) cosCy.

v_ [m/s]

X

SinceG(\;) > 0 andE, <1 [16, p. 189],5,;’ > 0 as long

as|¢,| < m/2. For* shape factorC, < 1, this holds for all
Ay. ForC, > 1, the friction force declines for largg,s, and

I
5 10 15 20 25 30

BF v~ > 0 only to the left of the peak of the friction curve, ° Timels]
that is, for|\,| < X where\ is defined b
| yl - y Fig. 3. Estimate (solid) and measurement (dashed) of lodigial velocity,
B. X — tan -2 20 slalom maneuver.
E,= = .
Y By — arctan(B,)\) 8
Furthermore,
o, e 1+7n2

We see thatign 2%= = —sign(\, \,) (sincesign Fyo(\;) =
sign ¢, = sign A\, and signn, = sign Ay).
From the above, we make the following observations:
« For sufficiently small side-slip angles (that is,| <
)\) and smallg, the first part of (3) is negative and
dominates the second part.
o For ), =~ 0the second part of (3) is approximately zero, ‘ ‘ ‘ ‘ ‘
and hence dominated by the first part. ° 5 10 T 20 25 30
. . . . ime[s]
« For large side-slip angles, the first part of (3) will get
less negative, and even positive(if, > 1. However, in  Fig. 4. Estimate (solid) and measurement (dashed) of latetacity,
the case of braking\(; < 0), then the second part of (3) slalom maneuver.
wiII often contribute in fulfilling the assumption. Since
= sign \; signa, assuming thatigna = 40

S1gn5 glves an sind < 0.

In conclusion, (3) |s negative for realistic slip values and
sufficiently small steering angles for tyres with, < 1.

For tyres withC,, > 1, then for some combinations of,

and (large)\y, it mlght be positive. Since it is the sum for
all tyres that should be negative, a positive summand for
one (or two) wheel(s) might be weighed against negative
summands for the other wheels (for instance, rear wheells wil
often have lower side-slip angles due to small steeringeangl|
values). Finally, we remark that Assumption 2 is merely a
(conservativesufficientcondition for stability.

v_ [mis]

y

B

VI. EXPERIMENTAL RESULTS -30; s 0 5 P P o

Time[s]

The modular observer is applied to experimental data from
a car. The velocity estimates,(, o, and side slip anglg =  rig. 5. Estimate (solid) and measurement (dashed) of sige sihlom
arctan(—9,/0,)) are compared to velocity measurementsaneuver.
obtained using an optical sensor placed in front of the

vehicle.
The gains are chosen such ti#éf(a,.) vary between 0 and makes% independent o&y, hence implying fault tolerance
200 (but such tha}"F_, K;(a,) > 0 always), andK, and robustness to noise in this measurement.

1/m and K, = 20. Notably, this particular choice oK Initial conditions for the observers are one of the wheel
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Fig. 6. Estimate (solid) and measurement (dashed) of lodigial velocity,  Fig. 8. Estimate (solid) and measurement (dashed) of sigecsicle on

circle on ice. ice.

speeds (transformed to CG) for, ando for 4, and#. Exper- VII. CONCLUSION

imenting with the initial conditions indicate a large regiof A nonlinear observer for vehicle velocity and side-slip
attraction for reasonable maximum friction coefficient. was proposed, with exponential stability of the observer

1) Flat dry road, slalom maneuverThe maximum fric- error dynamics. The observer performs well when applied
tion coefficent used in the observer is setitg = 1. The to experimental data from a car. Compared to an extended
longitudinal velocity is shown in Fig. 3, while lateral velty ~ Kalman filter, the simple structure of the observer simifie
is shown in Fig. 4. The quality of both estimates are fine, stuning considerably, and the real-time computational com-
the vehicle side slip estimate, shown in Fig. 5, is also googblexity is significantly reduced as real-time solution oé th

2) Ice, driving in circle: The maximum friction coefficent Riccati equation is avoided.
used in the observer is set jgy = 0.3. The longitudinal REFERENCES
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Fig. 7. Estimate (solid) and measurement (dashed) of latekacity, circle
on ice.



