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Abstract— Nonlinear observers for estimation of lateral and
longitudinal velocity of automotive vehicles are proposed, based
on acceleration and yaw rate measurements in addition to wheel
speed and steering angle. The observer for lateral velocity
uses a tyre-road friction model. Exponential stability of the
observers are shown. A structural assumption on the friction
model is discussed. The observer structure is validated using
experimental data from cars.

I. I NTRODUCTION

Feedback control systems for active safety in automotive
applications have over the last years entered production cars.
Many of these systems have in common that the control
action depend on information about vehicle velocity, or side-
slip. However, the velocity is seldom measured directly, and
must therefore be inferred from other measurements such as
wheel speeds and acceleration measurements.

The main goal of this work is to derive observers for vehi-
cle velocity with stability guarantees. Towards this goal,we
propose a cascaded observer structure, and prove stabilityof
the observers under certain conditions. Nonlinear observers
are used for taking the nonlinear dynamics (mainly due to
highly non-linear friction forces) into account, and to obtain
simple designs with few tuning knobs (as opposed to exten-
dend Kalman filter designs). Another significant advantage of
the proposed approach is that the Riccati equation is avoided,
such that the observer can be implemented efficiently in a
low-cost embedded computer unit.

Earlier works on observers for estimation of lateral ve-
locity are mainly based on linear or quasi-linear techniques,
e.g. [1–4]. A nonlinear observer linearizing the observer error
dynamics have been proposed in [5], [6]. The same type of
observer, in addition to an observer based on forcing the
dynamics of the nonlinear estimation error to the dynamics
of a linear reference system, are investigated in [7]. The
problem formulation there assumes that the longitudinal
wheel forces are known, as the observer implemented in ESP
also does [8]. In our work, we do not make this assumption,
as such information is not always available. Nevertheless,if
this information is available, it might be natural to use it
in the first module of our modular approach (estimation of
longitudinal velocity).

The Extended Kalman-filter is used for estimating vehicle
velocity and tyre forces in [9], [10], thus without the explicit
use of friction models. A similar, but simpler, approach is
also suggested in [4]. An Extended Kalman-filter based on
a tyre-road friction models that also included estimation
of the adhesion coefficient and road inclination angle is
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Fig. 1. Horisontal axis systems, geometric definitions, wheel forces, speed,
slip angle and yaw rate.

suggested in [11]. [12] considers the use of an Extended
Kalman-filter, based on a nonlinear tyre-friction model, that
also includes estimation of cornering stiffness. The strategy
proposed in [13] combines dynamic and kinematic models
of the vehicle with numerical bandlimited integration of the
equations to provide a side-slip estimate. In [14] side-slip
angle is estimated along with yaw rate in an approach that
has similarities with the one considered herein, while using
fewer measurements. The approach in [14] is validated using
experimental data, but there are no stability proofs.

II. V EHICLE MODELING

A. Rigid body dynamics

The geometry of the vehicle and the involved coordinate
systems are illustrated in Figure 1. The vehicle velocity
is defined in a coordinate system with the origin at the
vehicle center of gravity (CG, assumed constant), withx-
axis pointing forward andy-axis to the left. There is a
coordinate system in the centre of each wheel, aligned
with the orientation of the wheel. The distance from CG
to each wheel center is denotedhi, with i being wheel
index. Together with the anglesγi, this defines the vehicle
geometry. We will assume that we can consider the vehicle a
rigid body, for which the rigid body dynamics (with respect
to the CG coordinate system) can be written

Mν̇ + C(ν)ν = τ (1)



whereν is a vector containing the body generalized veloc-
ities. The matricesM and C are the inertia matrix, and
Coriolis and centripetal matrix, respectively. The vectorτ

consists of forces and torques on the vehicle, mainly friction
forces acting via the wheels, but also gravitational, weather
(wind), and aerodynamic (air resistance) forces are at work.

By making the following assumptions,
• Only include motion in the horizontal plane (ignore

dynamics related to vertical motion, including roll and
pitch).

• The effect of caster and camber is ignored
• Only tyre friction and gravitational forces are affecting

vehicle motion
the vehicle dynamics are described by longitudinal velocity
vx, lateral velocityvy and yaw rater, resulting in the “two-
track model” [6], with

M =





m 0 0
0 m 0
0 0 Jz



 , C(ν) =





0 −mr 0
mr 0 0
0 0 0



 .

The generalized forcesτ = (fx, fy,mz)
T are forces and

torque generated by friction between the wheels and the
ground, and gravitational forces induced by road inclination
(θR) and road bank angle (φR):

τ =





fx

fy

mz



 =
∑

i

(

I2×2

gT

i

)

R(δi)Fi +





mg sinφR

−mg sin θR

0



 .

The friction forcesFi working at each wheel (see Figure 1)
are functions of vehicle velocity, see the next section. They
are transformed from the wheel coordinate systems to CG:

• The forces generated by the tyres in body-fixed coordi-
nates for each wheeli, is:

fi = (fi,x, fi,y)T = R(δi)Fi

where Fi = (Fi,x, Fi,y)T are the forces acting on
the wheel in the wheel-fixed coordinate system. The
rotation matrix induced by the steering angleδi is

R(δi) =

(

cos δi − sin δi
sin δi cos δi

)

.

• For the torque, it is convenient to define the geometry
vectorgi = (−hi sinψi, hi cosψi)

transpose where the
anglesψi are introduced to get a uniform representation,
ψ1 = −γ1, ψ2 = γ2, ψ3 = π + γ3 andψ4 = π − γ4.
The generated torque about the vertical axis through the
CG is then for each wheel

mi,z = gT

i fi. (2)

B. Friction models

In most friction models, the friction forces are functions
of tyre slips, which are measures of the relative differencein
vehicle and tyre velocity. One definition for the longitudinal
and lateral tyre slips are

λi,x =
ωiRdyn − Vi,x

Vi,x

, λi,y = sinαi,

whereωi is the wheel angular velocity,Rdyn is the dynamic
wheel radius, the tyre slip angles are calculated asαi =

ax
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Estimation of r̂

φ̂R

µ̂H

v̂y
longitudinal

velocity

Estimation of

wi

r

δi

ayθ̂R

v̂x

lateral

Fig. 2. Modular observer structure

δi−arctan
vi,y

vi,x
, andVi,x is the velocity inx-direction in the

wheel coordinate system,Vi,x =
√

v2
i,x + v2

i,y cosαi. The
longitudinal and lateral velocities of the wheel center in the
body-fixed coordinate system arevi,x = vx ± rbi andvi,y =
vy ± rbi. For the tyre slip angles to be well defined, we
assume that

Assumption 1:vi,x > 0 for i = 1, . . . , 4.
The tyre slips depend on the vehicle states and the time-

varying, measured parametersωi andδi. We will use the two
notationsFi = Fi(λi,x, λi,y) = Fi(x,θ) interchangably,
depending on context. Since the friction model is mainly
used in the estimation of lateral velocity werex = (vy, r)

T,
we let vx be part of the time-varying parameter vectorθ =
(δ1, . . . , δ4, ω1, . . . , ω4, vx).

The following assumption is made on the friction model:
Assumption 2:There exist a positive constantc1 and sets

Θ andX(θ), such that for allθ ∈ Θ, X(θ) is convex, the
friction model is continously differentiable wrtx with ‖∂F

∂x
‖

bounded onX(θ) × Θ, and

∑

i

∂Fi,y(x,θ)

∂vy

cos δi+
∂Fi,x(x,θ)

∂vy

sin δi<−c1, (3)

for all θ ∈ Θ, x ∈ X(θ).
This Assumption is discussed in Section V.

III. O BSERVER STRUCTURE

The overall observer structure is illustrated in Figure 2.
The first observer use information of (mainly) wheel speed
in addition to yaw rate and longitudinal acceleration to
estimate longitudinal velocity. Thereafter, this estimate is
used together with measurements of lateral acceleration, yaw
rate, wheel speeds, and wheel steering angle to estimate
lateral velocity. In this work, the road bank and inclination
angle (φR and θR) are ignored (assumed to be zero). The
maximal friction coefficientµH might also be estimated, or
be obtained from other sources (which is assumed herein).
The measurements used are summarized in the Table I.
Acceleration and yaw rate sensors are assumed placed in
CG. The acceleration measurements have bias removed.

TABLE I

MEASUREMENTS

Measurement Explanation

ax, ay Long./lat. corrected acceleration measurements
r yaw rate
ωi Rotational speed wheeli
δi Steering angle wheeli



The model described in Section II will be simplified for
each of the observers: For estimating longitudinal velocity,
we will ignore lateral (vy and r) dynamics, and when
estimating lateral dynamics, we assume thatvx is known
(thus using only two dynamic states). The main motivation
for structuring the observer in this way, is that it results in
a modular design with few tuning knobs.

This observer structure is cascaded, since there are no
feedback loops between the observers. A simple stability
result for this cascade is given in Section IV-C.

IV. N ONLINEAR OBSERVERS FOR VELOCITY ESTIMATION

A. Estimation of longitudinal velocity

In estimation of longitudinal velocity, we will use a model
including forward velocity only, with acceleration as input

v̇x = ax. (4)

The measurements are the wheel rotational speedsωi, which
are transformed tovx, longitudinal velocity of CG, using
vi,x = vx ± rbi and vi,x = Rdynωi cos δi (assuming zero
slip). The transformed measurement from wheel speedi is
denotedvx,i. Using this, we propose the following observer:

˙̂vx = ax +
∑

i

Ki(ax)(vx,i − v̂x), (5)

The observer gainsKi depends on the acceleration mea-
surement, to reflect when the wheel speed measurements are
good estimates of velocity.

• Large positive aaaxxx: Large gain on non-driven wheels,
small gain on driven wheels.

• Small positive aaaxxx: Very large gain on non-driven
wheels, large gain on driven wheels.

• Small negativeaaaxxx: Large gain on non-driven wheels,
large gain on driven wheels.

• Large negativeaaaxxx: Small gain on non-driven wheels,
small gain on driven wheel.

In [6], similar rules are used to construct a Kalman filter
and a fuzzy logic estimator for vehicle velocity. Other
measurements (such as flags for ABS-system, brake assistant,
etc.) that provide information on validity of the zero slip
assumption can also be used.

Simple outlier detection is used to avoid that block-
ing/spinning affect the velocity estimate.

Assumingvx,i = vx (which requires that the lateral and
longitudinal slip is zero, or known), the observer is uniformly
globally exponentially stable, since the gains are positive
(proof is trivial, and hence omitted). Viewing the effect of
slips (and missing Coriolis term) as a time-varying bounded
disturbance, it is easy to show that the error dynamics are
uniformly ultimately bounded [15], where the size of the
“ultimate bound” depends on the bound on the disturbance.

B. Estimation of lateral velocity

Assuming (for now) the longitudinal velocityvx known,
the model we use for estimation of lateral velocity is

v̇y = −vxr + ay (6a)

ṙ =
1

Jz

∑

i

gT

i R(δi)Fi. (6b)

Based on this model, we propose the following observer:

˙̂vy =−vxr̂+ay−Kvy

(

may−
∑

i

[0 1]R(δi)F̂i

)

(7a)

˙̂r=
1

Jz

∑

i

gT

i R(δi)F̂i+Kr (r − r̂) (7b)

where F̂i = Fi(x̂,θ) are the friction forces calculated on
basis of estimateŝx = (v̂y , r̂)

T.
Define h(x,θ) =

∑

i [0 1]R(δi)Fi(x,θ), and the error
variablesṽy = vy − v̂y and r̃ = r − r̂, and x̃ = (ṽy, r̃).
The following result regarding the friction forces holds due
to Assumption 2:

Lemma 1:There exist positive constantsci, i = 1, . . . , 4
such that for allx, x̂ ∈ X(θ), θ ∈ Θ, the following holds:

ṽy

∑

i

[0 1]R(δi)
(

Fi − F̂i

)

≤ −c1ṽ2
y + c2|r̃||ṽy| (8a)

1

Jz

∑

i

gT

i R(δi)
(

Fi − F̂i

)

≤ c3|ṽy | + c4|r̃| (8b)

Proof: From the Mean Value Theorem,

h(x,θ) − h(x̂,θ) =
∂h(x′,θ)

∂vy

ṽy +
∂h(x′,θ)

∂r
r̃

wherex′ is some point on the line segment betweenx and
x̂. Multiplying this with ṽy, we get

ṽy

∑

i

[0 1]R(δi)
(

Fi − F̂i

)

=

∑

i

(

cos δi
∂Fi,y(x′,θ)

∂vy

+ sin δi
∂Fi,x(x′,θ)

∂vy

)

ṽ2
y+

∑

i

(

cos δi
∂Fi,y(x′,θ)

∂r
+ sin δi

∂Fi,x(x′,θ)

∂r

)

r̃ṽy.

From Assumption 2, we arrive at (8a). From [15, Lemma
3.1], (8b) holds onX(θ) since from Assumption 2,F has
continuous and bounded partial derivatives.

We will also make use of the following fact:
Fact 1: By completing the squares,

−aξ21 + b|ξ1||ξ2| =
b2

4a
ξ22 −

(√
a|ξ1| −

b

2
√
a
|ξ2|
)2

Define the setXs(ρ; θ) = {x : B(x, ρ) ⊂ X(θ)} ⊂ X(θ)
whereB(x, ρ) := {z : ‖z − x‖ ≤ ρ} is the ball of radiusρ
aroundx.

Theorem 1:Assume thatρ and Θ are such thatx(t) ∈
Xs(ρ; θ), ∀t > 0. Let the observer gains be chosen such
that

Kvy
> 0 (9)

Kr > kr + c4 +
(v̄x +Kvy

c2 + c3)
2

2Kvy
c1

(10)

where v̄x is an upper bound onvx, and kr > 0 is a
positive constant. Then, if||x̃(0)|| ≤ ρ, the statêx(t) of the
observer (7) converges to the statex(t) of the system (6),
and the origin of the observer error dynamics is uniformly
exponentially stable.



Proof: The observer error dynamics are

˙̃vy = −vxr̃ +Kvy

∑

i

[0 1]R(δi)(Fi − F̂i) (11a)

˙̃r =
1

Jz

∑

i

gT

i R(δi)(Fi − F̂i) −Krr̃. (11b)

Define the Lyapunov function candidateV (x̃) = 1

2
(ṽ2

y + r̃2).
The time derivative along the trajectories of (11) is

V̇ = ṽy

(

−vxr̃ +Kvy

∑

i

[0 1]R(δi)(Fi − F̂i)

)

+

r̃

(

1

Jz

∑

i

gT

i R(δi)(Fi − F̂i) −Kr r̃

)

.

By Lemma 1, this can be upper bounded:

V̇ ≤ −vxr̃ṽy −Kvy
c1ṽ

2
y +Kvy

c2|r̃||ṽy|
+ c3r̃|ṽy| + c4r̃|r̃| −Krr̃

2.

≤ (vx +Kvy
c2 + c3)|r̃||ṽy | −Kvy

c1ṽ
2
y + c4r̃|r̃| −Kr r̃

2.

By Fact 1 and (9),

V̇ ≤ (vx +Kvy
c2 + c3)

2

2Kvy
c1

r̃2 − Kvy
c1

2
ṽ2

y

−





√

Kvy
c1

2
|ṽy| −

(vx +Kvy
c2 + c3)

2

√

Kvy c1

2

|r̃|





2

+ c4r̃|r̃| −Kr r̃
2

We see that due to (10),

V̇ ≤ −Kvy
c1

2
ṽ2

y − kr r̃
2 (12)

is uniformly negative definite forx, x̂ ∈ X(θ).
By assumption,x(t) ∈ Xs(ρ,θ(t)) ⊂ X(θ(t)) ∀t > 0,

and we must show that̂x(t) ∈ X(θ(t)) ∀t > 0. Sincex(t) ∈
Xs(ρ; θ) and||x̃(0)|| ≤ ρ, x̂(0) ∈ X(θ(0)). From the above,
d
dt
||x̃|| = V̇

||x̃|| < 0, which means that‖x̃(t)‖ ≤ ρ ∀t > 0,
and thusx̂(t) will remain in X(θ(t)). Thus, from (12) and
standard Lyapunov theory [15], we conclude thatx̃(t) → 0
with exponential convergence rate.

C. Cascaded stability

Assuming that the longitudinal velocity estimate converges
to its true value (that is, the slips are (eventually) zero),the
following stability result hold on the overall system:

Theorem 2:Under the same conditions as in Theorem 1,
there exists a setD ⊂ R

3 such that for initial observer error
states in this set, the origin of the observer error dynamics
is exponentially stable.
The proof follows from [15, Section 9.3] by treating the lon-
gitudinal velocity observer error as a vanishing perturbation
to the lateral observer error dynamics, and is omitted for
brevity.

As mentioned in Section IV-A, the presence of slips (and
the neglected Coriolis term in the longitudinal dynamics)
can be viewed upon as a time-varying, bounded disturbance
to the longitudinal observer error dynamics. Similarily to

above, it can be shown that the cascaded system with this
disturbance is uniformly ultimately bounded. This follows
from [15, Lemma 9.4]. Again, the size of the “ultimate
bounds” depends on the bound on the disturbance.

V. D ISCUSSION OFASSUMPTION2

This section discusses Assumption 2 for two friction
models. Most friction models can be written as a function
of (lateral and longitudinal) tyre slipsFi = Fi(λi,x, λi,y)
only, and depend thus on vehicle velocity only indirectly.
Therefore, we can write the partial derivatives

∂Fi,x

∂vy

=
∂Fi,x

∂λi,x

∂λi,x

∂vy

+
∂Fi,x

∂λi,y

∂λi,y

∂vy

=
∂Fi,x

∂λi,y

cosαi

∂αi

∂vy

(13)

∂Fi,y

∂vy

=
∂Fi,y

∂λi,x

∂λi,x

∂vy

+
∂Fi,y

∂λi,y

∂λi,y

∂vy

=
∂Fi,y

∂λi,y

cosαi

∂αi

∂vy

(14)

where we have assumed∂λi,x

∂vy
= 0. Since

∂αi

∂vy

=
−1

1 + tan2(δi − αi)
(15)

is always negative, we see that it is the lateral slip partial
derivatives that are significant (assuming|αi| < π/2).

A. Linear friction models

“Linear” friction models says that the friction forces are
proportional to the slips,

(

Fi,x(x,θ)
Fi,y(x,θ)

)

=

(

Cxλi,x

Cyλi,y

)

whereCx andCy are tyre stiffness coefficients. In this case,
Assumption 2 holds with

Θ = {θ : |δi| ≤ δ̄, vx > r̄bi, i = 1, . . . , 4},
X(θ) = {x = (vy, r)

T
: |αi| ≤ ᾱ, |r| ≤ r̄, i = 1, . . . , 4}.

B. The magic formula tyre model

The “magic formula tyre model” [16] is a widely used
semi-empirical model for calculating steady-state tyre forces.
The “combined slip” magic formula provides similar formu-
las for lateral and longitudinal tyre forces1,

Fx(λx, λy = Gx(λy)Fx0(λx),

Fy(λx, λy) = Gy(λx)Fy0(λy)

where we have simplified somewhat since one of the param-
eters inGx (Gy) that according to [16] depends onλx (λy)
is assumed constant. For notational convenience we drop the
dependence on wheel indexi in this section.

The functionsFx0 andFy0 are the “pure slip” formulas,

Fx0(λx) = Dx sin ζx, Fy0(λy) = Dy sin ζy

where

ζx = Cx arctan{Bxλx−Ex(Bxλx−arctanBxλx)}
ζy = Cy arctan{Byλy−Ey(Byλy−arctanByλy)}.

1We useλy = sinα instead oftan α as in [16], but this is not significant
for the conclusions drawn here.



The functionsGx andGy are defined asGx(λy) = cos ηx

andGy(λx) = cos ηy where

ηx = CGx arctan{BGxλy−EGx(BGxλy−arctanBGxλy)}
ηy = CGy arctan{BGyλx−EGy(BGyλx−arctanBGyλx)}.

We then have that

∂Fy

∂λy

= Gy(λx)
ByCyDy

(

1 − Ey

(

1 − 1

1+B2
yλ2

y

))

cos ζy

1 + ζ2
y

.

SinceG(λx) > 0 andEy ≤ 1 [16, p. 189],∂Fy

∂λy
> 0 as long

as |ζy | < π/2. For “shape factor”Cy < 1, this holds for all
λy. ForCy > 1, the friction force declines for largeλys, and
∂Fy

∂λy
> 0 only to the left of the peak of the friction curve,

that is, for |λy| ≤ λ̄ whereλ̄ is defined by

Ey =
Byλ̄− tan π

2Cy

Byλ̄− arctan(Byλ̄)
.

Furthermore,

∂Fx

∂λy

=−Fx0(λx)
BGxCGx

(

1−EGx

(

1− 1

1+B2

Gx
λ2

y

))

sin ηx

1 + η2
x

We see thatsign ∂Fx

∂λy
= − sign(λxλy) (sincesignFx0(λx) =

sign ζx = signλx and sign ηx = signλy).
From the above, we make the following observations:
• For sufficiently small side-slip angles (that is,|λy | <
λ̄) and smallδ, the first part of (3) is negative and
dominates the second part.

• Forλx ≈ 0 the second part of (3) is approximately zero,
and hence dominated by the first part.

• For large side-slip angles, the first part of (3) will get
less negative, and even positive ifCy > 1. However, in
the case of braking (λx < 0), then the second part of (3)
will often contribute in fulfilling the assumption. Since
sign ∂Fx

∂vy
= signλx signα, assuming thatsignα =

sign δ, gives ∂Fx

∂vy
sin δ < 0.

In conclusion, (3) is negative for realistic slip values and
sufficiently small steering angles for tyres withCy < 1.
For tyres withCy > 1, then for some combinations ofλx

and (large)λy , it might be positive. Since it is the sum for
all tyres that should be negative, a positive summand for
one (or two) wheel(s) might be weighed against negative
summands for the other wheels (for instance, rear wheels will
often have lower side-slip angles due to small steering angle
values). Finally, we remark that Assumption 2 is merely a
(conservative)sufficientcondition for stability.

VI. EXPERIMENTAL RESULTS

The modular observer is applied to experimental data from
a car. The velocity estimates (v̂x, v̂y and side slip anglêβ =
arctan(−v̂y/v̂x)) are compared to velocity measurements
obtained using an optical sensor placed in front of the
vehicle.

The gains are chosen such thatKi(ax) vary between 0 and
200 (but such that

∑4

i=0
Ki(ax) > 0 always), andKvy

=
1/m andKr = 20. Notably, this particular choice ofKvy
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Fig. 3. Estimate (solid) and measurement (dashed) of longitudinal velocity,
slalom maneuver.
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Fig. 4. Estimate (solid) and measurement (dashed) of lateral velocity,
slalom maneuver.
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Fig. 5. Estimate (solid) and measurement (dashed) of side slip, slalom
maneuver.

makes ˙̂vy independent ofay, hence implying fault tolerance
and robustness to noise in this measurement.

Initial conditions for the observers are one of the wheel
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Fig. 6. Estimate (solid) and measurement (dashed) of longitudinal velocity,
circle on ice.

speeds (transformed to CG) forv̂x, and0 for v̂y andr̂. Exper-
imenting with the initial conditions indicate a large region of
attraction for reasonable maximum friction coefficientµH .

1) Flat dry road, slalom maneuver:The maximum fric-
tion coefficent used in the observer is set toµH = 1. The
longitudinal velocity is shown in Fig. 3, while lateral velocity
is shown in Fig. 4. The quality of both estimates are fine, so
the vehicle side slip estimate, shown in Fig. 5, is also good.

2) Ice, driving in circle: The maximum friction coefficent
used in the observer is set toµH = 0.3. The longitudinal
velocity is shown in Fig. 6. The estimate is rather inaccurate
between 16.5s-17.5s. In this period, the wheel speed mea-
surements are not used, and due to large lateral velocity, the
Coriolis term (neglected herein) dominates the longitudinal
acceleration. Work in progress adress this shortcoming, as
well as estimation of maximal friction coefficient.

The lateral velocity and side slip estimates are acceptable
(Fig. 7 and 8). Reasons for lower quality estimates in this
experiment are a less accurate friction model and varying
friction coefficient, combined with larger slip values. Fur-
thermore, driving in circle is a more difficult maneuver to
estimate.
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Fig. 7. Estimate (solid) and measurement (dashed) of lateral velocity, circle
on ice.
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Fig. 8. Estimate (solid) and measurement (dashed) of side slip, circle on
ice.

VII. C ONCLUSION

A nonlinear observer for vehicle velocity and side-slip
was proposed, with exponential stability of the observer
error dynamics. The observer performs well when applied
to experimental data from a car. Compared to an extended
Kalman filter, the simple structure of the observer simplifies
tuning considerably, and the real-time computational com-
plexity is significantly reduced as real-time solution of the
Riccati equation is avoided.
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