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Abstract— Gaussian process prior models offer a nonpara- current state and local data (called smoothing in some frame
metric approach to modelling unknown nonlinear systems from  works). The uncertainty of model predictions is dependent
experimental data. These are flexible models which automati- on local data density, noise on data, and model mismatch
cally adapt their model complexity to the available data, and The final del ,I ity i ¢ ’ ticall lated to th )
which give not only mean predictions but also the variance € Tinal model complexity 1S automatically related to the
of these predictions. A further advantage is the analytical amount and distribution of available data (more complex
derivation of derivatives of the model with respect to inputs, models need more evidence to make them likely), as well
with their variance, providing a direct estimate of the locally  as the complexity of the target system. These aspects are

linearized model with its corresponding parameter variance. especially useful in transient regimes with sparse data, in
We show how this can be used to tune a controller based on . P
system identification tasks.

the linearized models, taking into account their uncertainty.
The approach is applied to a simulated wheel slip control task

illustrating controller development based on a nonparametric Il. GAUSSIAN PROCESS PRIOR
model of the unknown friction nonlinearity. Local stability and .
robustness of the controllers are tuned based on the uncertaipt In a Bayesian framework the model must be based on
of the nonlinear models’ derivatives. a prior distribution over the infinite-dimensional space of
functions. As illustrated in [5], such priors can be defined
. INTRODUCTION as Gaussian processes. These models have attracted a great

deal of interest recently, in for example reviews such as [6]
IJgasmussen [7] showed empirically that Gaussian processes
yere extremely competitive with leading nonlinear identifi

Robust control is a fairly mature field, in particular for
the controller synthesis problem for linear systems, whe

numerous approaches exist, [1] and [2]. However, robu

control synthesis relies on a description or model of plan(iafllﬁn ?e:;lods ((j)n atrang;ehof :)henchmarlg examlplt(_as. di
uncertainty. Although system identification methods as in € Iuriher advantage that they provide analylic predic-

[3] and [4], may provide uncertainty information, this maytlons of moc_iel _uncertainty makes them_ very interesting for
be difficult to apply directly in robust control synthesiscontrOI gpp_hcatlons. _Early use of G.P$ In a pontrol systems
since this information may prove to be misleading in cas ontextis (;Ilscussed In [8]' [9]. Avanapon which can inéu

of structural model mismatch. The availability of reliable RI\/I_A_nmse moqel§ IS de;cnb_ed in [10F-step ahe_ad
uncertainty estimates is a major concern in applications ediction with GP's is described in [11]! [12]' [13] proes .
robust control, in particular for nonlinear systems. a number of chapters on recent applications of Gaussian

Many model-based nonlinear control problems are stiffrocesses n control contexts.
based on parametric models, where the functional form E
fully described by a finite number of parameters, often a”
linear function of the parameters. Even in the cases whereAssume we are modelling a nonlinear target functfér)
flexible parametric models are used, such as neural networkghere the observed outpug$ to inputsx’, subject to noise
spline-based models, multiple models etc, the uncertainty €; can be described by the equation
usually expressed as uncertainty of parameters (even lthoug i i ‘ 1
the parameters often have no physical interpretation),dand =) e (1)
not take into account uncertainty about model structure, @nd that we can observe a $ebf input/output pairsX, y, or
distance of current prediction point from training dataduse{(x’,4%)} are given, wherex’ ¢ R”, y' ¢ R, i=1...N,

Inference with Gaussian processes

to estimate parameters. hence: ) )
In such cases, an alternative approach is that some parts X Y
or even the whole structure, may be given by nonparametric : :
models, such as Gaussian Process prior (GP) models. In X — x'i Ly = yl @)

this paper, we study an approach which has the following
properties. It is a non-parametric model which retains the : :
available data and performs inference conditional on the xN yN



Instead of parameterising the system as a parametric modBl, Gaussian process derivatives

we are placing a prior directly on the space of functions pijtferentiation is a linear operation, so the derivativeaof
wheref is assumed to belong. A Gaussian process represe@gussian process remains a Gaussian process. We now use
the simplest form of prior over functions, we assume thahjs fact to infer from and to a mixture of observations of
any N points have aN-dimensional multivariate Normal yajues and derivatives. Suppose we are given new sets of
dlstrll_)uuon. In th_e GP framework, the output vaI_ugs_ Ipairs St ={(x",wh)}, j=1,...,D, i=1,...K, each

are viewed as being drawn from a zero-mean multivariable, corresponding to thé points of j** partial derivative of
Gaussian distribution whose covariance matrix is a functioy;,

. | AHIA LS G T he underlying functiony = f(x). In the noise-free setting
of the input vectorsc’. Namely the output distribution is ;g corresponds to the relation

(yl,...,yN|x1,...,xN)NN(O,A(X,X)). j,i_af(x) .

= iy
WhereA (x?,x7) = cov(y*, y’) is the covariance matrix of Iz b
the function observations. A general model, which reflects we now wish to find the joint probability of the vector
the higher correlation between spatially close (in somef 4’'s andw’s, which involves calculation of the covariance
appropriate metric) points — a smoothness assumption fietween the function and the derivative observations ak wel
target functionf(x) — uses a covariance matrix with theas the covariance among the derivative observations. Govar

K.

PR

following structure; ance functions are typically chosen to be differentiabte, s
A(x?,x7) = aexp(—lﬂxi —x7|12) + vodi (3) the covariance between a derivative and function obsenvati
2 and the one between two derivative points satisfy
whered; ; = 1 for i = j, and zero otherwise. The norim||r _ 9
is defined as ) cov(w"™, y") = 5 —cov(y™,y") (7)
|ullr = (uTTw)2, T = diag(y1,...,7D). 32
The D + 2 variables, a,1,...,7p,vo are the hyper- cov(wh™, wh") = Oz ;0 v y") ®)

parameters of the GP model, which are constrained to be ) i _
non-negative. In particular, is included to capture the noise Including these in our covariance function allows us to

component of the covariance. The GP model can be usigentify and predict from a data set which includes a mixture
to calculate the distribution of an unknown outpyt+!  ©Of function and derivative observations. Predictions cen b
corresponding to known inpw™+! as inferred function values or inferred derivative valuesthwi

7 standard deviations in both cases.

S N+1 1 N N+1 1 N 2 . . .
(y x,.LxTx Y ey ) ~ N, A), The use of derivatives of Gaussian processes is described

where in [15], [16], and in engineering applications in [8], [17],
p=ANT X)ATHX, X)y, (4) [18], [19]. This allows the integration of prior informatio
A= AN V) S AV XO)ATHX, XA, N in the form of state or control linearisations, as preseited

(5) [19], and importantly for this paper, GP models can provide
so we can usq: as the expected model output, with alocal Iinearisa_tior_1 information with mean and uncertain_ty
variance ofA. Note that the covariance matrix(X X)' will  estimates. This is useful for controller development with
be N x N dimensional, so the computational’ cost of itsmbusmeSS analysis in small regions arqund the. paint. of
inversion grows rapidly with the number of data points operation, and make GP models interesting candidates for

1) Nonstationary covariance functiorin this paper, in- nonlinear robust control problems.

stead of the stationary covariance function of (3) we use a I1l. CASE STUDY,WHEEL SLIP CONTROL
nonstationary one, An application to wheel slip control is studied to illus&at
o . e the controller development for a nonparametric nonlinear
A(x",x7) = vy sin” model.
\/(1 +2x " Tx?) (1 + %37 T'xd) . .
©) A. Equations of motion of a quarter car

With reference to Figure 1, the quarter car model consists
+ 0 of a single wheel attached to a massA tyre reaction force

as described in [14], using Rasmussen’s MATLAB im-F: is generated by the friction between the tyre surface and
plementatior. I' = diag(v1,...,7p4+1) Where the posi- the road surface, while the wheel moves driven by inertia
tive ~;, weight each inputi (and an additional constant of the massn in the direction of the velocity. A rolling

one acting as a bias term). The parameter ve@or= motion of the wheeb will be initiated by a torque caused by
log[v1,71...p+1,v0]L (the log is applied elementwise andthe tyre reaction force. A brake torque applied to the wheel
ensures positivity in the parameters) ahds the dimension Will act against the spinning of the wheel causing a negative
of vector x. The hyperparameter®, can be adapted as angular acceleration. The equations of motion of the quarte
the model is fit to the identification data, using numerica¢ar are
methods such as standard gradient-based optimisatios tool

to optimise hyperparameters. mi = —F, 9)

1Code available at http://www.kyb.tuebingen.mpg.de/bsgiecarl/code/gp/ Jw =rF, — Tysign(w) (10)
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Fig. 1. Quarter car forces and torques. 02
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where Aw
longitudinal speed at which the car travels Fig. 2. Linearizationuo(\) = A+ (solid line) of the nonlinear function
angular speed of the wheel p(X, pp) (thin line) atpy = 0.9 and A = Ay

vertical force

tyre friction force

brake torque

wheel radius

wheel inertia Further denoting3 = r?F./J, a = r/J and adding
hydraulic actuator dynamics, with time constdnt

= S3ATeE =

Further, the tyre friction force is given by, = F, -

- . : : ) 1 1
ﬁ;ﬁé{ﬁ{ g% where the friction coefficienj: is a nonlinear T, = _ET” i Ti“ (14)
A tyre slip M = —Bu(\, pu) + Ty (15)
pg  maximum friction coefficient between tyre and road
slip angle of the wheel Further, a simplification is made by linearizing the nonlin-
The slip A\ = (v — wr)/v describes the normalized €&f functionu(-) at a point of operation,,, as seen in Figure

difference between horizontal speednd speed of the wheel 2- ThiS new linearized function is given by (A) = I'A+ ¥,
perimeterwr. The slip value ofA = 0 indicates that the Wherel' is the slope of the line and is the y-intercept.

wheel is in free motion and no friction forcg, is exerted.  The total slip dynamics model may now be written as:
If the slip attains the value. = 1 then the wheel is locked 1 1
which means that it has come to a standstill. A change of Ty = ——T, + —u (16)
variables is carried out where the angular speed of the wheel ) T, T,
w is replaced by the slip. (assumingv > 0 andv > 0): A =—FTA+T)+aT, a7)
: 1(1 r? 1 r Assuming zero initial conditions the transfer function b6)
A—‘U{m“‘”*J}FZW’“H’“)H'JTb and (17) is:
(12) a
1 hy(s) = v (18)
m

It can be seen that the time scale of the slip dynamics (1Yy& remark thail’ is to be considered a highly uncertain
scales with speed. The qualitative dynamic behavior of Parameter, depending on both the operating point (referenc

slip is not affected by speed. Further assuming the slipeangf!IP Value\*), and tyre/road properties. A GP model of the
of the wheel,x, being zero, an example of such nonlinea riction curve will be used to extract information about the

tyre slip/friction curve, u(\, up), is shown in Figure 4. Uncertain parameters.
Several structural models of different complexities exist
the literature [20], [21], [22] and [23], but the detailed
friction curve also depend on highly uncertain propertie
such as wear and tear of the tyres. A non-parametric
model may therefore be a suitable alternative.

1) PID-controller: The literature presents a range of ap-
Qroaches to the use of PID-controllers in ABS problems, [25]

d [26], to mention some. Here a different approach using
a PID-controller to solve the ABS problem is presented.

B. Control strategy An ideal PID-controller is given by:

As in [24], assuming the velocity of the car varies much ho(s) = K (1+T3s)(1 +Tus) (19)
more slowly than the other variables involved and in additio ¢ P T;s

. J . ) )
that we have in general’s (1 —A) < 1, one obtains the choosingT,; = 7, leads to the open loop transfer function
dynamics of the tyre slip:

. 7"2F r h, — KP%S + I’-Z({): 20
S =" ) + L, 13) o) = T an €0



which gives the following closed loop transfer function:

Gls) = Ts+1

- 2
1+202 + ()

wo

(21)

where2Cwy = 2T + K,2, w3 = 522 and T = T;. This

V! Tiv
gives the relative damping = (%F + Kp%) ,/% and
Kya
undamped resonance frequengy = T

2) Control performance requiremenEor the closed loop
system (21), the poles are given by the solutions of its
characteristic equation. If the parameters of the chariatite
equation of (21) is given as random variables with amig. 4. Simplified tyre slip/friction curveg (), 1) by Daiss and Kiencke
expectation and variance, the poles are then also given 6.
random variables.

Example 1:First assume for the system in (21) the para-
meter ¢ is given as a random number with an expectatiog: Results
E(¢) and a variance?(¢) and the parameten, is known ] ] o
exactly. The locations of the two complex conjugated poles N the simulation that follows, a simplified model by [22]
are given by mean and standard deviation in a set of tw§ used for the tyre friction curve(, ux),
arcs as seen in Figure 3 a). If instead the uncertainty is in kX
the parametersy, and ¢ is known exactly, two lines will #A) = A2 LA+ 1 (26)
characterize locations of the mean and standard deviafion
the poles, Figure 3 b). Finally, ity and( are independent
random parameters, the mean and standard deviation of iff
poles are given as two areas, illustrated in Figure 3 c).

3) Controller Parameter tuningAssume the controller is

I I 1 I T T T T
0.1 0.2 03 04 05 06 07 08 09 1

Note that this model is linear in the parametersand b,
herek is the slope at = 0.

GI‘Zirst assuming the slope to be = 28, and the slip at
maximum friction to be given by, = 0.2uy, whereuy

tes th i fricti fficient at sli |
supposed to regulate the set-poit= A*. The controller denotes the maximum friction coefficient at slip valtig

parameters may be tuned according to a linear model gyrther assuming the two parameters in (26) to be given as

_ 2 — _ [
the quarter car around this point. The GP model provid%ﬁo\}v{%@?ﬂi{;gﬁ EUE\IZ‘_O 2pa)/(Aopirr), one obtains the

estimates of the expectatidi(I") and variancer?(T').

In this case studyl’ is randomly given, hence the rel- 1O\, prr) = kA 27)
ative damping¢ will be a random parameter in (21), i.e ’ A\ KO.2um—2un
B T4 .. 020 + 0.2upy A +1
E¢) = (%E(F)Jr p%) \/ e This is exactly the
situation depicted in Figuré 3 a)f) This simplified tyre friction curve is shown in Figure 4.

Assume the desired bandwidth and the desired nominall) Modelling simulated data with a Gaussian Process:
bandwidthwn is k f d ai /K, Standard deviationy = 0.05) observations of the simulated
andwidthwy is known exactly, and given byo = /7 5. curve is used to train a GP-model. Figure 4 shows curves

If the relative damping; is assumed to be less than 1, th§yhich have significantly nonuniform curvatures, showing a
bandwidth may be chosen to be equalg. Further, since 5niq change for small values af with more gradual change

the best we can do regarding tuning the relative damping, jster Because of this, we use a nonstationary covariance
given by E(() = (4, we get the following expressions for q,nction, as defined in eq. (9). The parameté&swere

the controller parameters: optimized for the given training data using a conjugate-

2v S gradient algorithm.
Ky = deo‘lz - aE@) (22) Figures 5 and 6 show the resulting GP model of the
K, a function value¥ and the corresponding slofie In addition
T = ng; (23) {0 the noise property described above, also #heriori

) ] ) knowledge of the friction curve vanishing at the origin is
Given the above and the assumptionlobeing normally jncluded in the training data set.

distributed with variancer(T'), stability is ensured with at ~ The advantage of using a GP as a modelling tool is easily
least95% of confidence, i.e. behavior insider-contours, if motivated by looking at Figure 5. Even with no structural
0 < ¢~ <¢F <1 where: knowledge of the nonlinear function and with fairly small,
3 o T sparsely populated training set, the GP model is close to the
¢t = <(E(F) +20(T)) + Kp> : (24) correct one. The GP model in Figure 5 is based on a training
2v 2v Kpa set of 10 noisy data points, taken from a region where data
3 o T typically are accessible. Note how the uncertainty inasas
(" = <2(E(F) —20(1)) + Kp2> K’ (25) in regions with no data, as would be expected.
v v r® Assume the controller is supposed to control a fixed slip
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Fig. 3. Different pole locations. The vertical dotted linedicates the real part of the mean with standard deviatichepole placement. The uncertainties
are shown as gray arcs, lines and areas; apcertain. bxvg uncertain. ¢) bothug and ¢ uncertain.
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Fig. 5. GP model of friction coefficient. In addition to the sétaccessible
training data (sparsely populated dots), the model mean (tiéh and 20
contours (dashed pair of lines) are shown. Also the real modele (bold

line) is shown for reference.

A* = 0.15. At the point of linearization (selected to be
equal to the slip set-point, i.e\.,, = A*) the nominal slope

0.9. But instead knowledge
of an expectation and variance exist at this point, fro
our GP model.E(I') = —0.0787 and o?(I") = 0.1610.

Further assume the parameters of the quarter car are givent

r=0.35, F, =250-9.81 andJ = 0.68. Henceg = 441.8

and o« = 0.51. The time constant of the actuator dynamic
is T, = 0.014 s. The desired closed-loop property is given
by wgq = 207 and {; = 0.5. Since the relative damping is
assumed to be less than 1, the bandwidth may be selecte
be equal to the desired one, i®. = wpq. Plugging the mean
into (22) and (23), a set of controller parameters, scheduld’

with speedv, are inferred:

S

30

25

20

Fig. 6. Friction coefficient derivativ%(/\). The model mean derivative
(thin line) and2c contours (dashed pair of lines) are shown. Also the real
model derivative curve (bold line) is shown for reference.

parameter calculations with th@5% confidence interval,
and the actual placement of the nominal poles. The are
only 10 training points and we have set= 30 m/s. The
confidence interval is entirely inside the region of staili

Mence stability is ensured with at le@8t% of confidence.

Iﬁcreasing the size of the training set, will tend to deczeas

€ 95% confidence interval, Figure 8 shows the situation
with 100 training points.

Only one road condition is considered in the case study,
l.e. uy fixed. An alternative approach would be to include

0o{qer road conditions as well. By training the model using

data from different road conditions, a less certain model
ill lead to a more robust but hence a more conservative
controller. Alternatively, an adaptive control approachhw

online training of the GP model could be implemented.

20 B In this case, tradeoffs between computational capacity and
K, = = _ZR() = 122.07v + 67.55 28 ' comp pacity
» = Gatoa a o« (T) v (28) model update rate must be considered. Also, precautions due
K 1
T, = =22 = 0.0159 + 0.0088= (29)
Woa U v 20n a cautionary note, however, where we state e.g. ‘95% e

also with this given set of controller parameters9%%

boundary of where the poles may be located inside is giveyaximum likelihood optimisation to find appropriate paramstésr GP
by an upper and lower bound. For a given speed 30 m/s,

these bounds arg"™ = 0.5940 and¢~ = 0.4060, obtain from

(24) and (25).

intervals’, these are conditioned on the GP with covariapaeameters
being an appropriate model. For simplicity, the examples is plaiper used

covariance function parameters. GPs are very flexible mobetgptimisa-
tion will tend to make the model overconfident in its predictiofiaking the

Bayesian approach of integrating over hyperparameteilaisions, possibly
implemented using MCMC algorithms, would be more robust, esfigdor

Figure 7 shows the pole placement of the controllesmall data sets [7].
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The actual pole is indicated with the circle. The GP model iseblaon a
training set of size 100. The dotted line is the lineugf. [16]
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to persistence of excitation must be made, e.g by turning off
the estimator when information loss. [18]

IV. CONCLUSIONS

We have shown that a nonparametric Gaussian process
prior model can be used to model nonlinear, simulated tyre
slip/friction curves, to a high degree of accuracy considgr
the sparseness of the training data. The inference based on
the GP model provides not only mean predictions, witlpo]
uncertainty estimates for the curves themselves, but also
mean and uncertainty estimates of local linearisations ¢fy;
these curves, which is useful for robust control. We illatsr

this with a pole-placement task for a PID controller. [22]
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