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Abstract—Dynamic Frequency Selection (DFS) is the technol-
ogy chosen by ETSI, FCC, and Industry Canada to provide
unlicensed access for broadband radios in licensed bands. It may
be viewed as a basic form of cognitive radio, where broadband
radios share spectrum with radar users, and is implemented by
the basestation or basestation/subscriber combination. This work
looks at the likelihood that a radar pulse burst can be detected
in a time-division duplexed (TDD) system with radar detection
restricted to the basestation. In such a system, a periodic ‘quiet
time’ is enforced. Compared to past assumptions on the structure
of the radar and radio transmission, namely that both are
random, the results shown here suggest that TDD systems will
find it difficult or impossible to achieve current FCC and ETSI
requirements with certain frame/schedule durations. We present
expressions for the number of detected pulses and simulations
that demonstrate the trade-offs of varying the uplink/downlink
rate and frame/schedule duration.

Index Terms—DFS, radar detection, cognitive radio, time
division duplexed systems

I. INTRODUCTION

Recently, the Federal Communications Commission (FCC)

opened the 5250 to 5350 MHz and 5470 to 5725 MHz bands

to unlicensed broadband wireless use [1], [2]; in Europe, the

5470 to 5725 MHz European Telecommunications Standards

Institute (ETSI) band is similarly used. As these bands are

traditionally used for radar purposes (primarily for weather

and military uses), the FCC and ETSI have imposed certain

restrictions for unlicensed broadband wireless use, and refer

to these restrictions as dynamic frequency selection (DFS).

The FCC and ETSI restrictions require the unlicensed

communications equipment to spend time sensing the active

channel for radar presence, before and after establishing a

session. During the communications session, the BS must

continuously look for radar pulses, an activity referred to

as ‘In Service Monitoring’. In the case that a radar pulse

train is detected, the basestation (BS) must organize the

communications session to be relocated to another channel.

Radar waveforms are seen as pulse trains from a radio LANs

(RLANs) point of view, due to rotation of the radar antenna.

These periodic radar pulses inherently provide a mechanism

to avoid false positives due to random interference (i.e. by

using a correlator). An intelligent, implementation specific

algorithm that uses the pulse widths and spacing after initial

pulse identification is necessary to determine whether a radar

pulse is present or not. For this work, we do not consider any
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Fig. 1. An example of the signal model, with t = 2.5, TR = TT = 5,
T = 10, ∆ = 0.625, N = 40. The dashed regions correspond to the
basestation receive schedule.

specific implementation, but assume that a defined number of

consecutive radar pulses must be identified in order for any

algorithm to be successful.

The FCC and ETSI DFS bands are not technology depen-

dent, and may be used by frequency or time division duplexed

radios. In a time-division duplexed (TDD) system, radar

detection may be done with sampled data from the RF receive

chain. However, one caveat in creating a DFS-compliant TDD

system (e.g. DFS-compliant WiMAX) is that the receive chain

must be muted during transmission. This cannot be avoided by

using a secondary receive chain, since the transmitter will still

drown out any signal into the secondary receiver. Hence, the

DFS system must account for this inherent ‘quiet time’. Our

goal is then to find the probability that a number of consecutive

pulses can be detected by the RLAN, given the restrictions of

the TDD schedule.

Both the FCC and ETSI have specified minimum detection

rates that radios must satisfy to pass certification. These rates

were calculated using a rudimentary packet model with ran-

dom packet sizes and rates [3] and a 50/50 split between uplink

and downlink. The model does not consider the adaptivity of

radio LANs (e.g. carrier sense), nor does it allow for complex

scenarios of multiple competing nodes. More importantly, the

certification model assumes that both the time between each

radar pulse in a burst and the duration of each receive period

are random.

However, the spacing between radar pulses in most of the

standard radar templates used in [1], [2] are constant, where

only the first arrival pulse of a radar burst is random, while in

TDD the frame/schedule structure is periodic. This points to a

potential model mismatch between the random model and the

TDD model. As shown in this work, it is possible to determine



the statistical overlap of a specific radar burst and the receive

period of the TDD system. This provides the focus of this

paper: to provide an analytical framework for determining the

probability that a radar pulse is detected by a TDD radio, and

thus permit a RLAN to co-exist with a radar system.

A complete model for predicting the probability of correctly

detecting pulsed radar in a TDD system would require con-

sideration for received pulse power, detection thresholds and

hysteresis, analog-to-digital gain, false positives, fading chan-

nels, and antenna characteristics such as gain and beamwidth.

This work presents a step in that direction, and provides

an expression for the number of radar pulses that arrive

during an RF receive period and analysis of the probability

that a given number of radar pulses are witnessed. We also

consider the aforementioned model mismatch between the

DFS certification values and the TDD model. Finally, we

demonstrate a simple approach that can reduce the receive

mute effect, which will allow a TDD system to pass the FCC

and ETSI certification criteria.

II. BACKGROUND

DFS radios must exceed specified minimum radar detection

probabilities, e.g. an aggregated detection probability of 80%

for 4 different radar burst templates, and a lower limit of 60%

for each individually [1]. Thus, the very nature of DFS radio

certification is probabilistic.

Since the DFS standards were introduced, studies have

looked at co-existence issues of radar and wideband commu-

nication signals [4]. In [4], [5], DFS was tested using an IEEE

802.11a radio LAN (RLAN) system operating in the vicinity

of a Doppler weather radar system. The conclusion was that,

from the radars’ perspective, the RLAN introduced additive,

uncorrelated noise. The authors note that the DFS would detect

the radar sooner than the RLAN would corrupt the radar, an

idea also quantified in [5].

Surprisingly, the literature is largely silent on the analysis

of radar detection probabilities. Some effort has been made

to spur research in this direction [5]; mention was made of

TDD radio operation, but no consideration to TDD operation

was provided in the analysis, and a random probability of pulse

detection was used. Calculation of radar detection probabilities

used in the FCC and ETSI standards were initially simulated

using a basic random RLAN transmission model [3]. These

probabilities are also limited to a 50% RLAN uplink ratio,

as are the certification guidelines in [1], [2]. Oddly enough,

once a radio is out in the field, there does not appear to

be any mechanism to stop an operator from modifying the

uplink ratio, thereby completely altering the DFS detection

probabilities (as shown in this paper). Otherwise, the literature

on DFS for radar appears restricted to detection algorithms [6]

and policy review [7]. To date, there does not appear to be any

work looking at the dynamics of DFS operation in a TDD

system. This work presents an significant extension of the

original TDD work in [8], including a more exact expression

for the number of pulses landing in the receive window and

suggestions for improving a DFS radar detector.

III. SYSTEM DEFINITION

Let T denote the period of a packet schedule for a TDD

system. The packet schedule is partitioned into a transmit

period [0, TT ] and a receive period [TT , T ]. For now, we

restrict TT to be fixed. Consider a packet schedule period

during which a radar transmission starts. Let t ∈ [0, T ]
be a uniformly distributed continuous random variable (r.v.)

that denotes the start time within the packet schedule, N ∈
{Nmin, Nmin + 1, · · · , Nmax} be a uniformly distributed

discrete r.v. that denotes the number of radar pulses in the

current pulse train, and ∆ ∈ [∆min,∆max] be a uniformly

distributed continuous r.v. that denotes the pulse repetition

interval (PRI). Note that the variables t, N , and ∆ are defined

as uniform in the certification procedure [1], [2]. The pulse

train duration, TP , is

TP = ∆(N − 1). (1)

The contribution from the pulse widths is not included in this

model, since the ratio of pulse width to pulse repetition interval

is quite small (< 10%) [8]. Note that we allow any end time

for the pulse train, and so the pulse train may extend across

multiple packet schedules. Fig. 1 shows the signal model:.

A. Problem Definition

Our goal is to analyze the probability of detecting at least

n0 pulses of a radar pulse train at the receiver of a TDD

DFS radio. This statistic would be useful for analysis of a

system where the detector must detect n0 periodic bursts

before a radar detect interrupt is asserted. We begin by

assuming that the pulse detector will detect 100% of all

incoming radar pulses, provided they land during a receive

period [(i− 1)T + TT , iT ], where i = 1, 2, 3 . . . . None of the

pulses that land in the transmit period are counted.

We begin by defining the number of pulses that land in the

receive period as n(t,∆, N), where t, ∆ and N are random

variables, as noted above. Our metric of interest is

Pn(n0) = Prob [n ≥ n0]

=
∞
∑

n=n0

∫

t,∆,N

pn(n, t,∆, N)dt d∆ dN,

where pn(·) and Pn(·) are the probability density function

(pdf) and complementary cumulative distribution function of

n, respectively. Obviously, we require pn(n, t,∆, N) for this

calculation. In the next section we present a parameterised

expression for n(t,∆, N), and follow with discussion of an

analytical approach for finding pn(n). We then move on to

simulations which provide upper bounds on the number of

observed arrivals. Note that TR = T − TT , the receive period

duration, and RR = TR/T , the uplink ratio, play a key role

in determining Pn(n0).

IV. ANALYSIS

A. Parameterisation of Number of Detected Radar Pulses

We derive a parameterised expression for the number of

pulses, n(t,∆, N), landing within the periodic TDD receive



window. This will be used to simplify Monte Carlo simulations

of pulse trains in TDD systems in Section V.

Consider a single radar pulse train. Let t0 represent the

absolute arrival time of the first pulse in the train. Then,

t = t0 mod T is the arrival time relative to the start of the

scheduling period, where mod is the modulus function. We

define i as an index for the scheduling periods, starting with

i = 1 for the first one. The train spans NT scheduling periods,

where NT =
⌈

t+TP

T

⌉

. The scheduled receive periods can be

represented as a series of intervals, {[(i− 1)T + TT , iT ]} for

i = {1, 2, · · · , NT }. The expression for n(t,∆, N) can be

formed over this periodic window, given the random arrival

time t, number of pulses N and pulse interval ∆. Briefly, we

calculate n(t,∆, N) in a two-stage process. First, we form

an expression for the number of pulses that arrive up to the

end of every schedule. Second, we form an expression for the

number of pulses that arrive up to the end of every transmit

period. The difference between the two terms, plus a few

correction factors, is the number of pulse arrivals during the

receive schedule.

Define xi(t,∆, N) as the number of pulses that arrive

between the initial radar arrival time t to the end of the ith

schedule, and yi(t,∆, N) as the number of pulses that arrive

between the initial radar arrival time t to the end of the transmit

period of the ith schedule. Then we can define the number

of pulses landing in the receive interval for schedules i ∈
{1, 2, · · · , NT−1} as zi(t,∆, N) = xi(t,∆, N)−yi(t,∆, N),
where

xi(t,∆, N) =

⌊

iT − t

∆

⌋

+ 1 (2)

and

yi(t,∆, N) =

⌊

iT − TR − t

∆

⌋

+ 1. (3)

Then, after adding in some correction factors for the last

scheduling interval and for pulse trains that terminate be-

fore the end of the first receive period, the expression for

n(t,∆, N) can then be found to be

n(t,∆, N) =

NT−1
∑

i=1

zi(t,∆, N) + β(N −A)−B, (4)

where β = u((t + TP mod T ) − TT ), A =
u(t + TP − T )

(⌊

NTT−TR−t
∆

+ 1
⌋)

, B = u(t + TP −
TT )min

(

α
(⌊

TT−t
∆

⌋

+ 1
)

, N
)

− u(NT − 2)y1(t,∆, N),
α = u(TT − t), and u(·) is the Heaviside unit step function.

Note that NT = 1 corresponds to the case when the pulse

train ends during the first scheduling interval. An example

for NT = 3, β = 0, and A = 37 is illustrated in Fig. 1.

B. Probability Distribution of n

In this section, we consider calculating the pdf of

n(t,∆, N). Ideally, we would like to have an expression for

the distribution of n after marginalisation of t, ∆ and N .

Although we do not obtain a closed form expression for pn(n),
it does provide some insight and potentially a starting point

for future research.

1) Random Pulse Trains: Examining the three random

variables that compose n(t,∆, N), our first challenge is the

discrete random variable N . The radar pulse train duration

TP in (1) is dependent on N , and thus the pdf of TP has

stepped intervals. To continue, we will make the assumption

that N is continuous and uniform. We can then take a simple

transform on N̂ = N − 1, so that v = ∆N̂ , where v is a

continuous random variable approximating the pulse duration

TP . Analysis of this approximate pulse train duration then

falls to the product of two uniform random variables. This

assumption that pTP
(v) may be approximated as a continuous

function stems from the fact that p∆(∆) is continuous. We

can use the technique in [9] to find the pdf, which is shown

to be piecewise with linear and log components (not shown

here due to space constraints).

2) Random Arrival Time: Using the above pdf for TP and

that the arrival time of the radar pulse from the perspective

of the DFS radio is uniformly distributed, we can form an

expression for pn(n). First, the total time overlap between the

pulse train and consecutive receive windows is

g(t, v) =

∫ t+v

t

∞
∑

i=1

(u(τ − (i− 1)T − TT )− u(τ − iT )) dτ.

(5)

An approximation to n is

n̂(t,∆, v) ≈
g(t, v)

∆
. (6)

Obviously, this approach is less accurate the more receive

windows are overlapped by the pulse train, on account that

the transmit/quiet periods are not accounted for; this approxi-

mation does not account for the additional temporal diversity.

Finally, pn̂(n̂, t,∆, v) can be found by calculating the pdf

of (6) using the uniform pdfs pt(t) and p∆(∆) and the

piece-wise pdf pTP
(v) from Section IV-B1. Note that this

transformation is not straightforward due to the piecewise

nature of pTP
(v), the integral used to calculate g(t, v) and

the correlation between v and ∆.

To simplify, the expression in (5) can be lower bounded

by considering only the first TDD schedule. This was done

in the parameterised expressions in [8] and resulted in a tight

approximation. Restricting g(t, v) to the first receive window,

we get

g(t, v) = (T − t)u(T − t)− (TT − t)u(TT − t)

−(T − t− v)u(T − t− v)

+(TT − t− v)u(TT − t− v). (7)

For the combination of small uplink ratio RR = TR/T and

radar types where TP < T , this bound is quite tight (within

6%). However, for radar types with a larger TP , the gap is

severe, up to 100%. As RR is increased, the bound for TP < T
also becomes quite loose. The temporal diversity of having

multiple, closely spaced observation windows becomes more

evident as TP exceeds T . Since we are already relying on two

other approximations, namely a continuous N distribution and

a simple time to PRI ratio in (6), this lower bound proves
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Fig. 2. Probability density function of various FCC pulse types; 10 ms
schedule, with RR = 0.5.
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Fig. 3. Probability distribution function of various FCC pulse types; 10 ms
schedule, with RR = 0.5.

too loose to be useful. Note that compared to the results in

[8], where the lower bound considered only the number of

consecutive radar pulse arrivals during a single receive period,

this lower bound considers all radar pulse arrivals summed

across all receive periods, which is closer to how a practical

radar correlator/detector would operate. From here on, we rely

on the concise parameterised expression in (4), and present

simulation results based on Monte Carlo simulations for the

arrival time and radar characteristics.

V. SIMULATIONS

In the following, we use the standard frame/schedule size of

T = 10 ms unless otherwise stated. We focus on five different

FCC specified radar types (FCC1, FCC2, FCC3, FCC4, and

FCC6), as specified in [1] (FCC5 is left out as it has a different

pulse train structure from the other 5 types. A summary of the

parameters for each of the radar types can be found in [8], [10].

We use equation (4) in Monte Carlo simulations with 105 runs

to generate the results.

A. A First Look at pn(n0) and Pn(n0)

Fig. 2 shows the probability density pn(n). It is clear from

the variety of these curves that deriving an expression for

the marginalised pdfs is a difficult task. The associated ccdf

is shown in Fig. 3, which provides a more explicit way of

finding the probability of having n0 pulses land in the receive
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Fig. 4. Probability distribution function of FCC3 pulse type; 10 ms schedule,
with RR = 0.2, 0.4, 0.6 and 0.8.
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Fig. 5. Pn(n0) versus RR for n0 = 3 to 7, FCC pulse type 6; 10 ms
schedule.

period. For example, these curves show that the probability

of detecting 5 pulses of the FCC1 pulse type is 100%. This

owes to the fact that we account for all pulses landing in all

receive periods that overlap with the interval [t, t+TP ], where

TP = 24.276 ms > T .

B. Effect of Changing RR

In the FCC and ETSI standards, an uplink ratio of RR =
0.5 is used for all tests. However, once in the field, there

is no restriction on what uplink ratio is used. The following

shows the effect on Pn(n0) of changing RR. Fig. 4 shows

the ccdf Pn(n) for RR = 0.2, 0.4, 0.6, and 0.8 for FCC3.

We chose FCC3 as it provides a middle ground for the FCC

pulse types. With small uplink ratio RR = 0.2, it is clear

that the probability of seeing more than 5 pulses is less than

40%, while if RR = 0.8, the probability of seeing more than

5 pulses is 100%.

C. Evidence of Model Mismatch

Here we show an example where a TDD system cannot

achieve the performance required for DFS certification. Fig.

5 shows the probability of detecting at least n0 radar pulses

versus the uplink ratio RR for FCC6. The plots use the base

value of n0 = 3 pulses as a satisfactory value to avoid false

alarms due to noise. From the FCC memorandum 06-96 [10], it

is necessary that 70% of FCC6 pulse trains must be identified.

For n0 = 3, 4 and 5 pulses, the minimum RR that will satisfy



this constraint is approximately RR = 0.56, 0.63, and 0.7,

respectively. The choice of which n0 can be supported depends

on the probability of a false radar detect/miss.

These results can be compared to the random arrival model

used by the ITU in [3], and discussed further in [5]. The

model (briefly discussed in Section II) assumes a Bernoulli

distribution with probability p of detecting a single radar pulse.

Of course, we need to match the parameters between the two

models to provide a fair comparison. Our comparison uses the

single pulse detection probability p = 0.5 from the model in

[3] to our TDD model with RR = 0.5. We do this based on

the observation that as TP >> T , the probability of detecting

a randomly selected pulse in the TDD system converges to

0.5. The TDD technique will only detect 4 or more pulses

57% of the time, while the random analysis suggests this

will occur 75.4% of the time. This points out a significant

mismatch between TDD and the random RLAN assumptions

used to generate the FCC and ETSI criteria. The result is that

system designers working with TDD systems will have to find

inventive ways to pass DFS certification tests.

D. Increasing the Probability of Detecting a Radar Burst

In the simulations of Section V-C, it is shown that TDD

systems with an uplink ratio of RR = 0.5 and a 10 ms

schedule size are not able to meet the requirements set out

by the FCC for some radar pulse types. Increasing RR can

help meet this requirement. However, this is not acceptable

for DFS certification testing as RR must be fixed to 0.5, and

would also reduce the downlink throughput and reduce the

flexibility of the system. We suggest that the schedule duration

can play a major role in increasing Pn(n0) in a system with

RR = 0.5. By reducing T , the scheduled quiet times are

reduced in length, which has the benefit of increasing the

temporal aperture of the radar detector. Essentially, we are

sampling the channel at a higher rate.

In TDD WiMAX systems, frame/schedule sizes can be set

to T ∈ {2, 2.5, 4, 5, 8, 10, 12.5, 20} ms [11]. Fig. 6 shows the

results for T = 10, 5 and 2.5 ms. Curves for FCC1 and

FCC4 are shown to demonstrate the effect on the longest

and shortest pulse trains (24.276 ms for FCC1 and 2.4 ms

for FCC4). For FCC4 with a small PRI, decreasing T to 5

ms immediately shifts the ccdf to the right, increasing the

probability of seeing 5 pulses from 68% to 93%. For FCC1

with a large PRI and TP , the shift is marginal, but does not

decrease performance. For FCC6 (not shown), the probability

of detecting 4 pulses is 56%, 63%, 66% and 90% for T = 10,

5, 4 and 2.5 ms, respectively. This suggests that TDD systems

must be restricted to a short schedule size in order to pass

certification. Reducing the schedule size increases radar pulse

detection rates, however, system designers must balance this

benefit to radar detection with an increase overhead-to-payload

ratio [12].

VI. CONCLUSION

This work presents an analysis of detection of radar pulses

in a time division duplexed system. We assume that dynamic
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Fig. 6. Pn(n0) versus n for RR = 0.5, FCC pulse types 1 and 4, and
schedule size T = 10, 5, and 2.5 ms.

frequency selection (DFS) is implemented solely at the bases-

tation. We derive an expression for the number of pulses that

arrive during the receive period of a transmission. Keeping in

mind the strict requirements of the FCC and ETSI, detection

probability trade-offs are investigated by varying the uplink

ratio and the frame/schedule size. We find that by reducing

the schedule duration from 10 ms to 5 ms, the probability

that 5 pulses from the shortest radar pulse burst will land in

a receive window can be increased by around 25%. We also

detail a model mismatch between the ITU random channel

model and our TDD model.
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