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A normative model of attention: receptive #eld
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Abstract

When sensory stimuli are encoded in a lossy fashion for e-cient transmission, there are
necessarily tradeo.s between the represented #delity of various aspects of the stimuli. In the
model of attention presented here, a top-down signal informs the encoder of these tradeo.s. Given
the stimulus ensemble and tradeo. requirements, our system learns an optimal encoder. This
general model is instantiated in a simple network: an autoencoder with a bottleneck, innervated
by a top-down attentional signal, and trained using backpropagation. The modulation of neural
activity learned by this model qualitatively matches that measured in animals during visual
attention tasks.
c© 2003 Published by Elsevier B.V.
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1. Introduction

Normative models explain structure as being optimized to perform some function
well, and have recently found fruitful application in the study of low-level sensory
processing (e.g. [1]). Optimized representation models of visual receptive #elds have
to date used #xed and homogeneous #delity requirements. We introduce a normative
model of top-down attention in which an attentional signal (originating outside the
model) breaks this symmetry by modulating the tradeo.s in transmission #delity of
the features of an input pattern.
The limited capacity for processing information and the ability to #lter out unwanted

information are the basic phenomena that de#ne attention [4]. Physiological studies have
shown that when two stimuli are presented simultaneously inside a cell’s receptive #eld,

∗ Corresponding author. Tel.: +353-1-708-6100; fax: +353-1-708-6269.
E-mail addresses: sjara@ieee.org (S. Jaramillo), barak@cs.may.ie (B.A. Pearlmutter).

0925-2312/$ - see front matter c© 2003 Published by Elsevier B.V.
doi:10.1016/j.neucom.2004.01.103

mailto:sjara@ieee.org
mailto:barak@cs.may.ie


614 S. Jaramillo, B.A. Pearlmutter / Neurocomputing 58–60 (2004) 613–618

the cell’s response is strongly inGuenced by which of the two stimuli was attended
[7,8,11]. But the fashion in which this modulation occurs remains a subject of debate.
Previous computational models of top-down attention used gating mechanisms or

synaptic modulation to implement selective attention [3,5,6,9,12], and the particulars
of the modulation is thus built into those models. This paper introduces a new class of
model, in which the attentional signal is presented to the processing layers in the same
fashion as is the sensory input, and the system learns to assign resources to di.erent
parts of the stimulus, and to modulate this assignment according to the attentional sig-
nal, without any special structure or architectural bias. The only information concerning
the semantics of the attentional signal comes from the error measure, which for the
speci#c visual phenomena being modeled here penalizes the system more heavily for
errors in an attentional spotlight.

2. Methods

Network architecture: The system consists of an auto-associative network with #ve
layers (Fig. 1). The bottom layers encode the input signal, while the top layers decode
it. The central bottleneck layer represents the input pattern using fewer units 1 than
the input layer. Each layer is fully connected to the next, and they all receive an
additional top-down attentional signal input. The layer sizes are 256–20–10–20–256,
where the input and output layers are treated as 16 × 16 grids for display purposes.
The attentional signal consists of a two-element vector representing the center of the
attentional spotlight in Cartesian coordinates scaled into the range ±1. The hyperbolic
tangent activation function was used throughout.
Training: The encoder and decoder were jointly optimized to minimize E(p) =∑
i ci(p)(yi(p) − di(p))2, where i indexes locations in the 16 × 16 grids holding the

stimulus and its reconstruction, ci(p) is the intensity of the attentional spotlight, yi(p)
is the output of the network, di(p) is the desired output, which is in our case the same
as the input, and p represents the complete pattern of information coming into the
system at one point in time, i.e. the input pattern as well as the top-down attentional
signal. The gradient was calculated using backpropagation. Optimization used online
gradient descent with a weight decay term of 10−6 and a learning rate � = 0:005.
All weights were plastic during learning, and the attention coe-cients in the penalty
function formed a simple soft mask ci(p) = 1=(1 + k2‖i− a(p)‖2), with a(p) being the
attentional input (a two-dimensional vector in our case) and i being a location in the
plane. The width of the attentional spotlight was set by k, which was held constant at
k = 12 in our simulations.
Training set: The 2000-element training set consisted of 16× 16 pixel images, with

the pixels being zero mean and having standard deviation � = 1
3 . The images were

created by convolving (#ltering) white Gaussian noise images with a rotationally sym-
metric 2D Gaussian with �#lter = 2. Edge e.ects were avoided by extracting only the

1 Fewer units is not a strict requirement, as other means, such as injected noise, can serve to limit the
capacity of the bottleneck.
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Fig. 1. Network architecture. The network contains #ve layers forming an encoder/decoder system with a
bottleneck. Each layer receives the attentional signal.

16 × 16 center of the resulting image. These images were later scaled to have the
desired variance. The center of the attentional mask was drawn independently of the
input image, and uniformly distributed within the input image.
Controls: To limit the capacity of the system, which is theoretically unbounded for

real-valued units, zero-mean Gaussian noise with standard deviation 0.1 was added
to each bottleneck unit’s total input during training. Moreover, we con#rmed that the
system is in fact reassigning resources appropriately, and not just degrading perfomance
for unattended location, by comparing results using a Gat attentional mask to those
exhibited with the peaked mask described above.

3. Results

Encoding/decoding: An example of the encoding/decoding results for a testing pattern
(i.e. a pattern not included in the training set) is shown in Fig. 2. This #gure presents
the output of the system when the center of the spotlight of attention is located in
di.erent corners of the image while the image itself is held constant. The dashed
circles indicate the location of the attentional spotlight, but should not be interpreted
as hard-edged masks. Obtaining a lower error inside the dashed circles is consistent
with the hypothesis that attention assigns more resources to attended locations, thus
giving better reconstruction of some features of the input stimulus.
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Fig. 2. Reconstruction example for a single input pattern and four di.erent attentional states as indicated by
the dashed circles. The error is calculated as the absolute intensity di.erence between input and output.

Modulation of unit activation: A linear approximation of the response of each neuron
in the bottleneck was found using the reverse correlation method [2,10]. These values
were used to de#ne “excitatory” and “inhibitory” stimuli for each bottleneck unit, with
respect to its activation. Images containing combinations of excitatory and inhibitory
regions were created and presented to the network. Fig. 3a shows the activation of
one bottleneck unit for two attentional states (right or left, as indicated by the dashed
ellipse) and four di.erent input images. The +=− symbols indicate which part of the
image contains excitatory/inhibitory input. The di.erence of activation of the bottleneck
units as attention is shifted from right to left is presented in Fig. 3b. The height of each
bar represents the average over all bottleneck units (10 in our case). Standard errors
are also shown. These #gures show a clear modulation of the activation of a unit:
when the same stimulus is presented (one side excitatory, and the other inhibitory)
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Fig. 3. Attentional modulation of activation. (a) Activation of one bottleneck unit for two attentional states.
Squares indicate stimuli, created by combining left and right halves of excitatory (+) and inhibitory (−)
inputs. Dashed ellipse indicates attentional spotlight. (b) Average change in activation over all units in the
bottleneck with right/left attentional shift, ± standard error. Squares at bottom represent stimuli.
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the activation changes dramatically depending on the top-down attentional signal. This
result is common for all units in the bottleneck, as indicated by the averages and
small standard errors in Fig. 3b. These results also show that stimulus changes in the
unattended location produce smaller changes in activation than changes in the attended
location. This can be seen by comparing the second and third dark bars (attention to
the left, with one half excitatory) with the #rst dark bar (attention to the left with both
halves excitatory) in Fig. 3a.
These results qualitatively match neuronal response changes found in animals during

selective visual attention tasks [8,11].

4. Conclusion

We presented an unstructured model that learns a covert top-down attentional mech-
anism. Top-down attentional signals innervate the entire network, and each unit treats
them no di.erently than bottom-up sensory signals. The only information received by
the network about the semantics of the attentional input comes from the objective
optimized during learning. This model accounts for attentional modulation of neural
response in a uni#ed framework that includes both attention and receptive #eld forma-
tion, and as a consequence of an underlying normative principle, rather than by tuning
a complex special-purpose architecture.
One general prediction of this class of models is that a system with a narrower bot-

tleneck (or richer input) will have stronger attentional modulation than a system with
su-cient capacity to represent its input with high #delity. This might be tested by rais-
ing animals in visually rich vs. impoverished environments and measuring di.erences
in the magnitude of attentional modulation of receptive #elds.
The model reproduces neuronal modulation observed in physiological experiments,

and can be naturally applied across tasks and across sensory modalities. The model
has the potential of being extended to attentional goals where modulation would be
less intuitive, such as acoustic source segregation, or feature-driven attentional goals
such as priming. It may also be possible to build a hierarchical system whose modules
not only receive top-down attention signals, but generate such signals for lower-level
modules.
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