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Abstract

We consider the problem of estimating tail probabili-
ties of waiting times in statistical multiplexing systems
with two classes of sources — one with high priority and
the other with low priority. The priority discipline is
assumed to be nonpreemptive. Exact expressions for
the transforms of these quantities are derived assuming
that packet or cell streams are generated by Markovian
Arrival Processes (MAPs). Then we numerically inves-
tigate the large-buffer asymptotic behavior of the the
waiting-time distribution for low-priority sources and
show that these asymptotics may be non-exponential.

1 Introduction

In this paper, we consider a MAP/GI/1 with non-
preemptive priorities, restricting our attention to two
priorities as the n priority system can be considered as
a two-priority system by superposition of the arrival
processes and the non-preemptive nature of the pri-
orities. M APs are very commonly used to described
arrival processes in high-speed networks. We assume
that the service-time distribution is the same for both
priority classes, a special application of this would be
in ATM networks where the cell size is a constant 53
bytes. Since the models we consider fall under the class
of M/G/1 type models defined by Neuts, we would
draw upon the substantial literature on such models

in [13, 11, 8, 9].

Our main results are follows: We derive exact ex-
pressions for the transforms of the waiting time and
queue length of the low-priority sources. The trans-
forms could be used to obtain the exact tail probabil-
ity of these quantities using Laplace transform inver-
sion techniques. We also numerically investigate the
asymptotic behavior of the tail probabilities. For our
numerical studies, we focus on the tail behavior of the
low-priority waiting time. Our principal conclusion is

that P(W > T) ~ aTPe=%T ag T — oo, where W is the
waiting time and 3 could be positive, negative or zero.
An inspiration for our work 1s the results of Abate and
Whitt [3] who showed the above asymptotic behavior
for the low-priority sources for the case when the ar-
rival processes for both classes are Poisson. Our results
generalize this to M AP/G/1 queues and provide exact
expressions for the transforms of the low priority wait-
ing times. In addition, using numerical results, we show
that the behavior of # is significantly different in the
case of general MAP arrivals as compared to the case
of Poisson arrivals. Specifically, in the case with Pois-
son arrivals, # = 0 when the low-priority arrival rate is
above a certain threshold. This is not necessarily true
in the case with MAP arrivals. Further, g is always
less than or equal to zero with Poisson arrivals whereas
B can also be positive with general MAP arrivals (see
Section 4).

An important application of tail probability computa-
tions is in the design of admission control schemes for
high-speed networks, where admitted sources are guar-
anteed a pre-specified Quality-of-Service (QoS). QoS is
typically specified in terms of quantities such as proba-
bility of cell loss, upper limits on waiting times, etc. A
popular technique is to convert these QoS requirements
into a single number called the effective bandwidth and
use this quantity very much like a bandwidth require-
ment in circuit-switched networks. The effective band-
width approximation relies on large-deviations results
of the following form:

. 1 .
Bh_}rrgo Elog P(X > B) = =4, (1)

where X is the workload and § > 0; see for example
[15]. Thus, given a finite buffer size B, a natural ap-
proximation to the loss probability, P(X > B), is

P(X > B)~ e %8, (2)

While there are several sources of error in using the
approximation (2), it has been shown that the approx-



imation can be refined as P(X > B) ~ ae™®B. Such
a refinement is considered to be reasonably accurate
for most practical applications. Further, for most well-
behaved service-time distributions, if a 1s exactly calcu-
lated, P(X > B) ~ ae%B [2]. Assuming a preemptive
resume model, large deviations results of the form (2)
can also be obtained for statistical multiplexers with
priorities [6, 4, 5, 12]. One of the contributions of our
paper 1s to point out that for non-preemptive priority
model (which should be very close to the preemptive
resume model when the packet sizes are small), the
asymptotic form P(X > B) ~ ae %8 does not hold,
in general, for the low-priority sources.

2 MAPs and MAP/GI/1 Queues

A MAP i1s a continuous-time Markov chain described
by the following generator:

Dy Dy 0 O
B Dy Dy 0
Q - DO D1 . )

where D = Do + Dy with D # Dy, is also a generator.
One can associate an arrival process with this Markov
chain as follows: an arrival occurs whenever there is
a state transition into a state corresponding to a Ds
block and there is no arrival otherwise. Dy and D
are m x m matrices, where m is the number of phases
of the arrival process. This 1s a special case of ver-
satile Markovian point processes introduced by Neuts
[11] and studied under various names [13, 8, 9], most
commonly referred to as the Batch Markovian Arrival
Processes (BMAPs). We have simply restricted our at-
tention to the case where the batch size at each arrival
point can be at most 1. We will not discuss all the
properties of MAPs here, the reader is referred to [9]
for an introduction. However, before we introduce pri-
ority queues, we present some well-known properties of
MAPs and MAP/GI/1 queues which will be useful
for our analysis later. These results can be found in

[13, 10, 8, 9).

If we let N (¢) be the number of arrivalsin (0,¢] and J(¢)
be the phase of the system at time ¢, then (N (¢), J(¢))
is a Markov chain on the state space {(n,j),n > 0,j =
1,2,...,m} with generator Q). Define D(z) to be

D(z) = Do+ D1z for |z| < 1,

and P,(n,t) be a m x m matrix denoting the number
of arrivals in (0,¢] with the (¢, j)th element defined as

[Pa (n,t)]i;=Prob(N(t)=n,J(t)=7|N(0)=0,J (0)=i).

Then, the matrix generating function P*(z,?) of the
number of arrivals in [0,] ! is given by

P*(z,t) = PGl for|z| <1, >0,

where P*(z,t) = Y207 Py(n,t)z". Let 7 be the sta-
tionary distribution of D (assuming that it irreducible).
Then the mean arrival rate is given by

A=mDje.

In the rest of this section, we state a few lemmas listing
some properties of M AP/G1I/1 queues that will be used
later. Let H be the service-time distribution with LST
h(i.e, h(s) = fooo e”*'dH (t)) and mean 1/u with u > 0.
The traffic intensity at the M AP/GI/1 queue is given
by p= A p.

Lemma 2.1 Let A(z,s) be the 2-dimensional trans-
form of the number of arrivals and time nterval be-
tween successive departure epochs given that the first
departure did not leave the system empty. A(z,s) is
given by

A(z,8) = h(sT — D(z)), where Re(s) > 0 and |z| < 1.

Lemma 2.2 Define A(z) = A(z,0) = h(—D(z) —
zhI + NI). We have the following equation for the
2-dimensional transform of the number served during,
and the duration of, the busy period

G(z,s) = zh(sI — D[G(z, s)]).

Lemma 2.3 Define G = G(1,0). The matriz G has
the following properties:

1. G 1s stochastic whenever p < 1. Let g be the
wnvariant probability vector of G.

2. The jth component of vector g is the stationary
probability that the arrival process is in phase j
given that the system is empty.

Lemma 2.4 The queue-length generating function of
a MAP/GI/1 queue is given by

Y(2) = (1= p)glz — VAR - AN (3)

IMost quantities in matrix-analytic theory are matrices such
as Py(n,t) and P*(z,t) with each element corresponding to a
particular phase transition. However, for convenience, we will
often refer to quantities such as “the number of arrivals in [0, ¢]”
without referring to the phase transition, but this should not
cause confusion.




3 Priority MAP/GI/1 Queues

In this section, we derive the transforms of various
quantities of interest for M AP/GI/1 queues with two
priority classes where the classes have separate buffers.
Throughout, we assume that the service-time distribu-
tion is the same for both classes. For ease of exposition,
we first consider the case where the low-priority arrivals
are Poisson. Later, we generalize this to the case where
both classes generate arrivals according to M A Ps.

3.1 Poisson Low-Priority Arrivals

Let the low-priority arrivals be Poisson with rate ;.
The high priority arrival process is a M AP with D}
and D as the relevant parameters and the rate is de-
noted as Ap. The traffic intensity is given by p; = \/p
and p, = Ap/p with p = pp + g < 1 for stability.
Note that the low-priority class can be considered as a
M AP with parameters D) = —X and D} = X. De-
fine Dg(z) = DE 4+ Dz — 2\ T — NI, Then, Lem-
mas 2.1 through 2.4 can be applied to the single class
MAP/GI/1 obtained by considering the two buffers
(high and low priority) together, and the arrival pro-
cess being the superposition of the high and low-priority
arrival processes. As in Dg(z), throughout we will
use the subscript S to denote this single-priority-class

MAP/GI/1.

We first derive an expression for the LST of the wait-
ing time distribution of the lower priority packets.
Since the low-priority and high-priority packets have
the same service-time distributions, we only need to
monitor the total number of packets in the system. We
first note two useful facts:

e The low-priority arrival process is Poisson and
thus, we use the PASTA property to claim that
upon arrival a low-priority packet sees Yg(z)e as
the distribution of the number of packets in ser-
vice, where Yg(z) is given by (2.4) with D(z) re-
placed by Ds(z), and e is a vector with all ele-
ments equal to 1.

e The remaining service of the packet in service (if
any) is given by the stationary excess distribu-
tion associated with H (again by PASTA). De-
note the residual service-time distribution by R
and its LST by r, where R is given by R(t) =
i fot(l — H(u))du, and thus, r(s) = (1—h(s))u/s.

Now we proceed along the lines of the derivation of the
Takacs equation and the Kendall functional equation
for the busy period of the M/G/1 queue. Specifically,
we note that if a lower-priority packet sees n packets

(of both classes together) ahead of it, then its waiting
time is independent of the order in which all the pack-
ets ahead of it (and any high-priority arrivals before it
begins service) are served. Thus, the waiting time is
composed of

e Wi : The service times of the packet in service
and all high-priority packets that arrive during
the service of the packet currently in service.

e Wy : The n — 1 high-priority busy periods gen-
erated by the n — 1 packets ahead of it in the
queue.

The LST of Wj can be easily seen to be

Gi(s) = r(sI — Dg[Gr(s)]).
From Lemma 2.2, the high-priority busy period is given
by

Gr(s) = h(sI — Ds[Gh(s)]). 4)
Therefore, using the relationship between r(s) and h(s),
Gi(s) can be rewritten as

Gi(s) = p(1 = Ga(9))[s] = Ds[Ga(s)]] 7", (5)

Now we are ready to state the following theorem.

Theorem 3.1 The LST of the complementary cumu-

lative distribution function (ccdf) of the low-priority

1

waiting time is given by wf (s) = Jﬂ;’ﬂ, where

(1= p) +Ys(Ga())Gy (5)Gis)e
(1= pgs Gy (5)Gi(s)e. (6)

wi(s) =

Proof: See [14].

The next result presents the transform of the stationary
distribution of number of high-priority and low-priority
packets in the system, the proof can be found in a longer
version of this paper [14]. By PASTA, this is also the
same as the distribution of number of high-priority and
low-priority packets seen by a low-priority packet ar-
rival.

Theorem 3.2 Let y(n,m) be a vector such that its
ith component s the probability that there are n high-
priority and m low-priority packets in the system, and
the arriwval process is in phase j. Its 2-dimensional

transform v ,w=y"" 5"

P(0,0)(=(DE =3 )" 1)z DI pwr T-T) (- A(z,w)) (=D (5,w)

_, v(mm)s"w™ 1S gIven by

TY (2,w) =
+  P(0,0)[-(T=A(2,0))(=D(z,0)"1)+(=(Dr =x)~ )]
+  P(z,w)(I-A(z,w))(-D(z,w)~1)

+ P(=,0)(T-A(2,0)(=D(=,0)7 1),

-1

(7)



_ 1 _ h h
where T' = 5—7, D(z,w) = D} — NI+ D7z + Nlw,
P(zw) =  {P(0,w)(z/w=1)+P(0,0)(z/w)[—w(Dh —x, )"H(Dh 43 1)-11}
X A(z,w)(zI—A(z,w))_l,and (8)
_ o (DR X 14D 24 Tw)z
A(z,w) = fo et 0T 1 l dH (z), (9)
P(O,w) = Q(w)(P(0,1)e), (10)
Q) = P(0,0)/(P(0,1)e), (11)
Qw) =  QO{-w(Df-3DTNDI+N)-1}
X Gpw)(wl-Gy(w)TL, (12)
Gp(w) = Gp(\—Mw), (13)
P(0,0) = ﬁgs(—D3+A11), (14)
P(0,1)e = ﬁ+ﬁgste. (15)

The following corollary immediately follows from the
definition of Y (z, w).

Corollary 3.1 The z-transform of ccdf of the number
of low-priority packets in the system seen by a low pri-
ority arrival is given by Y (w) = 1-Y(lwe

1-w

3.2 MAP Arrival Process for the Low-Priority
Class

Here we let the high-priority class have D{ D! as
the matrices associated with the arrival process and
similarly, let D}, D} be the matrix parameters of the
low-priority arrival process. We still assume that the
service-times are distributed identically for the two
classes. Let I, I; denote identity matrices of the same
order as D? D! respectively.

From standard matrix-analytic theory, we have the fol-
lowing theorem which is the equivalent of Theorem 3.2.
While Theorem 3.2 also gives the transform of the dis-
tribution seen by low priority arrivals when they are
Poisson, the following theorem gives only the station-
ary distribution.

Theorem 3.3 Let y(n,m) be a vector such that its
ith component s the probability that there are n high-
priority and m low-priority packets in the system, and
the arrival process is in phase j. Its 2-dimensional
transform Y (z,w) = Y oo S y(n,m)z"w™ s
given by (7) with the following modifications:

(i) D% replaced by D @ I,
(i1) =X\ replaced by I, ® D,
(iti) D? replaced by D} @ I,

(iv) M replaced by I, @ DY,

(v) Ds(2) = D@ I, + D! @ Iz

(vi) D(z,w) = D} @ D+ D% @ Lz + Iy ® D{w, and
(vii) G (w) solves

A(G g (w),w)

- [ (DO +1,@DL +(DP ©1)G gy (w)+1), @D} w)e
0

Gg(w) =

= n(-phen-1,0pl—(Phen )Gy (w)-1,@D! w).

In the rest of this subsection we provide expressions
for the distribution of the number of packets seen by a
low-priority arrival and the waiting time distribution of
the low-priority packets, i.e., w;(s). Since the station-
ary distributions remain the same as before, we only
need to derive the relevant customer (packet) averages.
Let m; be the stationary distribution of the state of the
low-priority arrival process. The proofs of these are
essentially along the lines of [10, Theorem 9].

Theorem 3.4 Let Y (z) be the z-transform of the dis-
tribution of the total number of packets in the system
seen by a low-priority arrival. Y& (z) is given by

Y§(z) = Ys(2)(In ® Dp)e/(m Dyer),

where e 1s a column vector of ones of size given by the
size of I, @ D} and e; is a column vector of ones with
size the same as D}. Thus, the ccdf has a z-transform
given by

(17)

oy 1= V()

Vo) = ——= (18)

Theorem 3.5 The 2-dimensional transform of the
number of high-priority and low-priority packets seen
by a low-priority arrival, denoted by Y,(z, w) is given
by

Yez,w) =Y (z,w)(Ip ® Dé)e/(ﬂ'lDf)el), (19)

where Y (z,w) is given in Theorem 3.3. Therefore, the
tail of the distribution of the number of low-priority
packets seen be a low-priority arriwal has a z-transform
given by

~ _1-Y, (1, w)

Yo (w) = (20)

1—w

Theorem 3.6 The virtual waiting time distribution of
the low-priority arrivals is given by

(1—p)gs + > us(n)Gi(s)Gp

= (1= plgs +Ys(Gn(s)Gy (5)Gu(s)
— (1= p)gsGy (s)Gu(s). (21)

Wéz(s) =

dH (z)

(16)



Theorem 3.7 The waiting-time distribution of the
low-priority arrivals s given by

wi(s) = W (s)(In © Dh)e/(mDher).  (22)

Thus, the LST of the low-priority waiting time ccdf s
given by
1—w(s o
wl (s) = L=wi(s) (23)

S

4 Asymptotics of the Tail Probabilities

In this section, we present results to show that the low-
priority tail asymptotics for waiting times are of the
form

P(W >T) ~aT Pe T, (24)

For general M APs, it is difficult to obtain closed-form
expressions for a, 8 and 4. Therefore, we compute these
numerically using the transform expressions obtained
in the earlier section. For this purpose, we use the
techniques in [1].

We generate high and low MAP sources using a super-
position of on-off sources each with an average rate of
0.0125 as in [7]. As in [7], the mean on and off times
are 436.36 and 4363.63, with the arrival rate during
an on period being 0.1375. Thus, a high-priority mean
arrival rate of 0.05 would mean that there are four in-
dependent high-priority MMPP sources. The service
times are exponential with mean 1. Of course, the ar-
rival processes and service times could be more general,
but the model considered here is sufficient to illustrate
the asymptotic behavior. We use the results in the pre-
vious sections to calculate the exact tail probabilities
and use the moment-based technique in [1] to compute
the asymptote.

The parameters of the asymptote, a, 3 and § are shown
in Table 1 for various values of p, and p;. As can be seen
from the table, # can be non-negligible, thus leading to
non-exponential asymptotics, in general. It is also in-
teresting to note that the so-called effective bandwidth
approximation, e~°T  does not change very much as p;
is changed with p, = 0.0625. However, the true asymp-
tote changes significantly as revealed by the different
values for a and .

(o [ [ 7 [ B [ax10]
0.025 0.025 | 0.2322 | -0.7170 5.9
0.025 | 0.0375 | 0.2356 | -0.3710 3.2

0.0625 | 0.025 0.04 -1 2.5
0.0625 | 0.0375 | 0.0411 | -0.845 3
0.0625 | 0.05 | 0.0425 -0.5 1.4

Table 1: Parameters of the tail asymptote for low-priority
waiting times for various values of arrival rates
for high and low priority sources

In the M/G, G/1 model studied in [3], it was observed
that, as the low priority arrival increased, the value of
B exhibited the following behavior: 7 is equal to —3/2
till a threshold value of the low-priority arrival rate is
reached. At this threshold, g is equal to —1/2 and
above this threshold, 3 is equal to zero. We numerically
study if this behavior holds with MAP arrival processes.
We consider an example with the same type of on-of f
sources as before. We set the high-priority arrival rate
Ap = 0.0125, and increase the low-priority arrival rate.
The results are presented in Table 2.

Lo [ 6 [ B8 [ o |
0.0125 ] 0399 | -1.18 | 0.148
0.025 | 0.4088 | -0.38 | 0.0388
0.0375 | 0.4089 | 23 | 1.3%10°°
0.05 | 04197 | 4.85 | 9+10-1

Table 2: Parameters of the low-priority tail asymptote
with pp, = 0.0125

From Table 2, we see that the 8 can be positive with
MAP arrival processes which is different from the be-
havior with Poisson arrivals. Figure 1 shows the plots
of the exact tail and the asymptote for the case with
pi = 0.0375. The asymptote increases slightly for small
values of 7" and then decreases since g > 0. Figure 1
again illustrates that the asymptote may not be very
accurate even when 7T is large enough such that the
tail probability is small (around 10~7). Further, the
tail probability estimate is optimistic, which may not
be suitable for applications. This points to a need for
further work on exploring other approximations (other
than the asymptote) which are both accurate as well as
faster than computing the exact tail probability.
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