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The Rate-Distortion Function of a Poisson

Process with a Queueing Distortion Measure
Todd P. Coleman Negar Kiyavash Vijay G. Subramanian

Abstract

This paper characterizes the rate distortion function of a Poisson process with a queuing distortion

measure that is in complete analogy with the proofs associated with the rate distortion functions of a

Bernoulli source with Hamming distortion measure and a Gaussian source with squared-error distortion

measure. Analogous to those problems, the distortion measure that we consider is related to the logarithm

of the conditional distribution relating the input to the output of a well-known channel coding problem,

specifically the Anantharam and Verdú “Bits through Queues” [1] coding problem. We show this problem

is equivalent to a standard rate-distortion problem due to: i) the independent increments property of the

Poisson process ii) the numerical entropy rate of any finite-rate point process tending to 0 , iii) the

existence of a reproduction with finite expected distortion, iv) the additive structure of the distortion

measure. Our Shannon lower bound involves a number of mutual information inequalities, one of which

exploits the maximum-entropy property of the exponential distribution. We also show that the rate-

distortion functions pertaining to expected distortion and deviation probability are equivalent. We conclude

with a comparison to other rate-distortion formulations of the Poisson process in the literature.

I. INTRODUCTION

In their landmark “Bits through Queues” paper Anantharam & Verdú [1] illustrated the fundamental

limits of coding through the timing of packets in queuing systems. For a first-come, first-serve (FCFS)
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queuing system with exponentially distributed service times - also termed the exponential server timing

channel (ESTC), the capacity was elegantly established in closed form. The remarkable aspect of [1] is

that despite a queueing system being nonlinear, and non-stationary with infinite memory, there still exists

a closed-form solution. This fact, along with the fact that an ESTC can be seen as an “entropy-increasing

operator” [2, Sec. 2],[3, Thm 1] and also the saddle-point property of mutual information for the ESTC

[1, Thm 3], makes the ESTC appear to be analogous to the binary symmetric channel (BSC) and additive

white Gaussian noise (AWGN) channels.

The latter two channels have canonical rate-distortion problems associated with them, where the

distortion measure is related to the logarithm of the conditional distribution relating the input to the

output of the channels. A thorough discussion of this and the applicability of this to optimality of uncoded

transmissions can be found in [4]. In these two cases (AWGN and BSC), for the associated rate-distortion

problems, simple mutual information inequalities exploiting maximum-entropy distributions and entropy

manipulations lead to a closed-form lower bound - which can be shown to be tight by developing elegant

“test-channel” achievability arguments [5, Sec. 10.3].

This paper considers the continuous-time development of the rate-distortion function of a Poisson

process, with a queuing distortion measure. The distortion measure is dual - in the same sense as the

BSC/Hamming and AWGN/squared-error dualities - to the ESTC. Specifically, the distortion measure

that we consider is proportional to the logarithm of the conditional distribution relating the input to the

output of an ESTC. This illustrates that one can reason about this rate-distortion problem completely

from a traditional memoryless, expectation-based additive expected distortion measure perspective, by

exploiting four key properties:

1) the independent increments property of the Poisson process,

2) the numerical entropy rate of any finite-rate point process tending to 0 (Lemma 2.1),

3) the existence of a reproduction with finite expected distortion (Lemma 2.2), and

4) the additivity of the discrete-time distortion measure (25).

This allows us to equate the rate-distortion function - with an expected distortion criterion, as well as

a probability-of-deviation distortion criterion - to the standard Shannon lower bound. We then exploit a

number of simple mutual information inequalities - one of which exploits the maximum-entropy property

of the exponential distribution - to develop a Shannon lower bound. The ‘test-channel’ to characterize the

joint distribution achieving the lower bound with equality exploits Burkes’ theorem from queuing theory

[6], [7]. We conclude with a comparison to other rate-distortion formulations of the Poisson process, with
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a variety of distortion measures, in the research literature.

A. Notation on Point Processes

As this discussion revolves around considering timings, we consider a point process P with occurrence

times {P1, P2, . . .}. The counting function NP(t) of a point process depicts the number of arrivals that

have occurred up to and including time t:

NP(t) = sup {n ∈ N : Pn ≤ t} .

Define ST to be the set of all counting functions on [0, T ]:

ST , {N : [0, T ] → Z+ s.t. N is nondecreasing and right-continuous }. (1)

The entropy on [0, T ] of a point process P with arrival times {P1, P2, . . .} is defined [8] as the sum of

its numerical entropy and its positional entropy:

hT (P) := H (NP(T )) + h
(
P1, . . . , PNP(T )|NP(T )

)
,

where H(·) is discrete entropy, h(·) is differential entropy, and {P1, . . . , PNP(T )} are the locations (in

time) of the arrivals. The entropy of a Poisson process of rate λ over (0, T ] is given in closed form by

[8]

hT (P) = Tλ(1− log λ).

We can define the joint entropy on [0, T ] of two point processes Pa and Pb by

hT (Pa,Pb) := H(Ma,Mb) + EMa,Mb
[h(P a

1 , . . . , P a
ma

, P b
1 , . . . , P b

mb
|Ma = ma,Mb = mb)],

where Ma and Mb are the random variables denoting the number of arrivals of processes Pa and Pb

respectively, and {P a
1 , . . . , P a

ma
} and {P b

1 , . . . , P b
mb
} are the locations (in time) of the arrivals of processes

Pa and Pb given Ma = ma and Mb = mb. From this we can define the conditional point process entropy

simply as

hT (Pa|Pb) := hT (Pa,Pb)− hT (Pb).

B. Related Work

Given the entropy-maximizing property of the exponential distribution and the pre-eminence of the

Poisson process in point-process theory [9], rate distortion functions under various distortion measures

have been sought in the literature [10], [11], [12], [13], [14]. A large class of distortion measures, including
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those that consider a magnitude error criterion and the reproduction of the number of events in a given

interval and the times between successive events, lead to non-causal reproductions [10], [11]. Gallager [12]

considered transmission of point processes through a causal system such that the output point process

always follows the input but the order of messages need not be preserved. Considering the output of

such a system to be a reproduction of the input point process and using average delay per message as the

distortion measure, Gallager [12] derived a minimum information rate for the Poisson process for a given

fidelity of reproduction that included both the timing information and the message ordering. Verdú [13]

considered a different approach where the message inter-arrival times were reproduced to a fidelity of

D seconds under the constraint that the last arrival is declared no sooner than it occurs. Bedekar [14]

insisted upon in-order delivery of the messages through the system and defining the distortion measure

to be the average service-time D of a hypothetical FCFS queue that would result in the output. Related

work pertaining to minimizing mutual information across special classes of causal systems is the jamming

work of Giles and Hajek [15].

C. Queuing Timing Channels

Now consider a FCFS queuing system with an arrival point process A = {a1, a2, . . .} at its input,

service times S = {s1, s2, . . .}, and a departure process D = {d1, d2, . . .} at its output, as depicted in

Figure 1(a). As an example, consider Figure 1(b). Note that the service time s1 for the first packet is

given by d1 − a1 = 6. Note that the first packet does not depart from the queue until after the second

packet arrives. Thus, the service time s2 for the second packet is given by s2 = d2 − d1, because the

server starts working on the second packet once the first packet departs. The second packet departs before

the third arrival a3. Thus, the third service time is simply s3 = d3 − a3. So in general, for any FCFS

queuing system [7], [16]:

si = di −max(ai, di−1) (2)

A special case of FCFS queuing timing channel is the “exponential server timing channel (ESTC)”

where service times are i.i.d. and exponentially distributed of rate µ. On the interval [0, T ], the likelihood

is known to have the structure [6], [17]

P (d|a) ∝





exp
{
−µ

∫ T
0 1{ND(t)>NA(t)}dt

}
if ND(t) ≥ NA(t) ∀ t ∈ [0, T ]

0 otherwise
. (3)

In their landmark “Bits through Queues” paper Anantharam & Verdú [1] considered the information-

theoretic problem of coding through the timing of packets in packet systems. For a memoryless arrival
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A FCFS queue D a1 a3a2 d2 d3d1
s1 s2 times3

(a) (b)

Fig. 1. FCFS queue: (a) The arrivals (blue) and departures (red) from a FCFS ·/M/1 Queue. (b) Note that the service time

s1 for the first packet is given by d1 − a1 = 6. Note that the first packet does not depart from the queue until after the second

packet arrives. Thus, the service time s2 for the second packet is given by s2 = d2 − d1, because the server starts working on

the second packet once the first packet departs. The second packet departs before the third arrival a3. Thus, the third service

time is simply s3 = d3 − a3.

process of rate λ, the First-Come First-Serve (FCFS) ·/M/1 continuous-time queue with service rate

µ > λ > 0 has a capacity C(λ) given by

C(λ) = λ log
µ

λ
, λ < µ nats/s. (4)

Then the capacity of the FCFS ·/M/1 continuous-time queue with service rate µ is given by the maximum

of C(λ) over all possible arrival rates λ < µ, namely,

C = e−1µ nats/s, (5)

where the maximum corresponding to (5) is achieved in (4) at λ = e−1µ.

D. Canonical Rate-Distortion Formulations

The remarkable aspect of the “Bits through Queues” result [1] is that despite a queueing system

having non-linearities, memory, and non-stationarities, there still exists a closed-form solution for the

FCFS ·/M/1 queue. This fact, along with the fact that the exponential service timing channel (ESTC)

can be seen as an “entropy-increasing operator” [2, Sec. 2],[3, Thm 1] and also the saddle-point property

of mutual information for the ESTC [1, Thm 3], makes the ESTC appear to be analogous to the binary

symmetric channel (BSC) and additive white Gaussian noise (AWGN) channels. The BSC and AWGN

dualities are precise: the distortion measure is related to the channel probability model by

ρ(x, x̂) ∝ − log p(x|x̂) (6)

The BSC and AWGN dual distortion problems have proofs involving simple mutual information inequal-

ities exploiting maximum-entropy distributions, leading to a closed-form lower bound, which is shown to

be tight by developing an elegant “test-channel” [5, Sec. 10.3]. This dual relationship has been recently
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X̂ FCFS queue X

Fig. 2. The diagram of interpreting X as the output of a FCFS queueing system with X̂ as the input.

shown to have additional implications for uncoded transmission [4]. Wagner and Anantharam [17] em-

barked upon understanding the similarities between the BSC, AWGN, and ETSC channels by developing

a distance metric for the ·/M/1 queuing system that is analogous to Hamming/Euclidean distances for

BSC/AWGN channels; in that, it is related to the logarithm of the channel’s conditional density.

II. THE CANONICAL RATE-DISTORTION FUNCTION IN ANALOGY WITH “BITS THROUGH QUEUES”

A. Distortion Measure

Consider two point processes X and X̂ over [0, T ]. Denote the occurrence times (counting functions)

of X by {Xi} (NX (t)) and the occurrence times (counting functions) of X̂ by {X̂i} (NX̂ (t)). For any

X and X̂ such that

NX̂ (t) ≥ NX ∀t ∈ [0, T ], (7)

define

S = X ¦ X̂ (8)

as the sequence of induced service times {Si} of a FCFS queuing system with X̂ as the input and X as

the output, as shown in Figure 2. Specifically, Si = Xi −max(Xi−1, X̂i); see Figure 1 for the validity

of this relationship.

With this definition, define the distortion between any two realizations x and x̂ of point processes X
and X̂ as:

ρT (x, x̂) =





1
T

∫ T
0 1{NX̂ (t)>NX (t)}dt if NX̂ (t) ≥ NX (t) ∀t ∈ [0, T ]

∞ otherwise
(9)

We note that
∫ T
0 1{NX̂ (t)>NX (t)}dt is intimately related to the sum of the service times. If NX̂ (T ) =

NX (T ), then we note from Figure 3 that
∑NX (T )

i=1 si =
∫ T
0 1{NX̂ (t)>NX (t)}dt. Otherwise, if NX̂ (T ) >
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NX̂ (t)
NX (t)

0 Ts1 s2 s3 s4

Fig. 3. An example sample path realization of the counting functions for X and X̂ as well as the induced service times

NX (T ), then
∑NX (T )

i=1 si contribute to the integral, along with the remaining time from the final departure

time, dNX (T ), until T . Thus it follows that

∫ T

0
1{NX̂ (t)>NX (t)}dt =

NX (T )∑

i=1

si + 1{NX̂ (T )>NX (T )}(T − dNd(T )) (10)

Figure 3 illustrates an example sample path realization of the counting functions for X and X̂ as

well as the induced service times. Note that the measure (9) satisfies ρ(x, x̂) ∝ − log p(x|x̂), where the

channel model is given by (3).

We now illustrate that our distortion measure is of the “single-letter” type [10]. By defining

ρ(nx, nx̂) ,





0, nx = nx̂

1, nx < nx̂

∞, nx > nx̂

, (11)

it follows that

ρT (X , X̂ ) =
1
T

∫ T

0
ρ

(
NX (t), NX̂ (t)

)
dt. (12)

Also note from (11) that for any c:

ρ(nx, nx̂) = ρ(nx + c, nx̂ + c). (13)

B. Rate-Distortion Definitions

For the rate-distortion problem, consider a class of codebooks {CT = (eT , dT ) : T ≥ 0} consisting

of an encoder map eT : ST → {1, . . . , MT } and a decoder map dT : {1, . . . , MT } → ST . We denote

|CT | , MT . We say the class of codebooks {CT = (eT , dT ) : T ≥ 0} is of rate R if

lim
T→∞

log |CT |
T

= R.

In this paper we will consider two types of rate-distortion formulations:
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• Expected Value Criterion: For a fixed D ≥ 0, we define RE(D) to be the infimum of all R for

which there exists a class of codebooks {CT = (eT , dT ) : T ≥ 0} of rate R such that

lim sup
T→∞

E [ρT (X , dT (eT (X )))] ≤ D. (14)

• Deviation Probability Criterion: For a fixed D ≥ 0, we define RP (D) to be the the infimum of all

R for which there exists a class of codebooks {CT = (eT , dT ) : T ≥ 0} of rate R such that

lim sup
T→∞

P (ρT (X , dT (eT (X ))) > D) = 0. (15)

In general, in most scenarios, RP (D) ≥ RE(D) [18, Thm 1]. It will be shown later that for the problem

of interest in this setting, RE(D) = RP (D) = −λ log D.

a) Shannon Information definitions: Define the Shannon Information I(D) as

I(D) = lim sup
T→∞

inf
PX ,X̂ :E[ρT (X ,X̂ )]≤D

1
T

IT (X ; X̂ ). (16)

Now given that

IT (X ; X̂ ) = hT (X )− hT (X|X̂ )

= hT (X )−H
(
NX (T )|X̂

)
− hT

(
X1, . . . , XNX (T )|NX (T ), X̂

)
, (17)

we define ĨT (X ; X̂ ) as

ĨT (X ; X̂ ) = hT (X )− hT

(
X1, . . . , XNX (T )|NX (T ), X̂

)
. (18)

We now show that the term H
(
NX (T )|X̂

)
that is present in IT (X ; X̂ ) and missing in ĨT (X ; X̂ ) is

asymptotically negligible [10]:

Lemma 2.1: For any joint distribution on point processes X and X̂ such that limT→∞ 1
T E[NX (T )] =

λ < ∞,

lim
T→∞

1
T

H
(
NX (T )|X̂

)
= lim

T→∞
1
T

H (NX (T )) = 0.

Proof: Note that a geometric random variable of parameter p has mean given by m = 1
p−1, entropy

given by −1−p
p log(1− p)− log p, and thus its entropy expressed in terms of m is given by

HG(m) = m log
(

1 +
1
m

)
+ log(m + 1).

Now, for any ε > 0 and for all T > Tε,
E[NX (T )]

T < λ + ε. So since the geometric random variable

maximizes the entropy of all discrete non-negative random variables of fixed mean, we have that for all
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T > Tε:

0 ≤ 1
T

H
(
NX (T )|X̂

)
≤ 1

T
H (NX (T )) ≤ 1

T
HG ((λ + ε)T )

= (λ + ε) log
(

1 +
1

(λ + ε)T

)
+

1
T

log ((λ + ε)T + 1) .

⇒ lim
T→∞

1
T

H
(
NX (T )|X̂

)
= lim

T→∞
1
T

H (NX (T )) = 0. (19)

The above Lemma will become useful in developing two-stage coding schemes, where one of the stages

has asymptotically negligible rate, and the other stage corresponds to standard source coding of an i.i.d.

process with an additive distortion measure. Also, note that with Lemma 2.1, we have that

Ĩ(D) , lim sup
T→∞

inf
PX ,X̂ :E[ρT (X ,X̂ )]≤D

1
T

ĨT (X ; X̂ ) (20)

= I(D). (21)

C. Source Coding Theorems for the Poisson Process with Queuing Distortion Measure

We now note that even thought the Poisson process is neither stationary nor ergodic, it has independent

increments. Secondly, the cost in rate to communicate

{NX (T )−NX (0), NX (2T )−NX (T ), . . ., NX (nT )−NX ((n− 1)T )} in bits per second, by virtue of

Lemma 2.1, is arbitrarily small for increasing T . This motivates the following coding scheme [10]:

• First communicate the sequence of n duration-T jumps {NX (T )−NX (0), NX (2T )−NX (T ), . . .,

NX (nT )−NX ((n− 1)T )} using a standard lossless entropy code. Since each duration-T jump is

a Poisson random variable of rate λT , from Lemma 2.1, this will require an arbitrarily small bits

per second for sufficiently large T .

• Given knowledge of the n duration-T jumps:

– By defining the duration-T increments of the counting process,

Xk , (NX (t)−NX ((k − 1)T ) : t ∈ ((k − 1)T, kT ]) ∈ ST , k = 1, 2, . . . , (22a)

X̂k ,
(
NX̂ (t)−NX ((k − 1)T ) : t ∈ ((k − 1)T, kT ]

) ∈ ST , k = 1, 2, . . . , (22b)

it follows that, since Poisson processes have independent increments, the sequence {Xk} is

i.i.d.
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– The discrete-time distortion measure ρ
n
(Xn, X̂

n
) , ρnT (X , X̂ ) is additive:

ρ
n
(Xn, X̂

n
) =ρnT (X , X̂ )

=
1

nT

∫ nT

0
ρ

(
NX (t), NX̂ (t)

)
dt (23)

=
1
n

n∑

i=1

1
T

∫ iT

(i−1)T
ρ

(
NX (t), NX̂ (t)

)
dt

=
1
n

n∑

i=1

1
T

∫ iT

(i−1)T
ρ

(
NX (t)−NX ((i− 1)T ), NX̂ (t)−NX ((i− 1)T )

)
dt (24)

=
1
n

n∑

i=1

ρ
1
(Xi, X̂i). (25)

where (23) follows from (12), (24) follows from (13), and (25) follows from (22) and (12). So

we have developed a standard rate-distortion problem with additive distortion measure over abstract

alphabet ST .

Given the above developed approach, we can reason about this rate-distortion problem in terms of

classical discrete-time rate-distortion theory with additive distortion measure and abstract symbol alphabet

ST . In order for those classical theorems to apply [19, Sec 7.2], the following Lemma establishing a

required technical condition is presented:

Lemma 2.2: There exists an x̂∗ ∈ ST such that for X1 ∈ ST :

E[ρ
1
(X1, x̂

∗)|X1(T ) = m] < ∞ (26)

Proof: Simply select x̂∗ to be the counting function for which x̂∗(0) = x̂∗(T ) = m. Since for any

τ ∈ [0, T ), X1(τ) = NX (τ) ≤ XT (τ) = NX (T ) = m, it follows that x̂∗ will always lead X1 on

(0, T ]. Thus, from the distortion measure, (12), the conditional expectation in (26) will be upper bounded

by 1.

Now enabled with the additivity of the distortion measure (25), the required technical condition given

by Lemma 2.2, the independent increments property of the Poisson process, and the negligible numerical

entropy of the duration-T jumps given by Lemma 2.1, we are in position to state the following theorem,

due to to Rubin:

Theorem 2.3 ([10], Thm 1): Consider the Poisson source X = {NX (t), t ≥ 0} having rate-distortion

function RE(D) with respect to the single-letter fidelity criterion (12). Then RE(D) = I(D).

The essence of the proof of [10, Thm 1] is the fact that a Poisson process has independent increments,

and that Lemma 2.1 holds. So for additive distortion measures for which the technical condition pertaining
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to Lemma 2.2 holds, this is simply a standard rate-distortion problem over an abstract alphabet - where

it is known that the information rate RE(D) = I(D) [19, Sec 7.2].

Next, we show that the rate-distortion functions RE(D) and RP (D), pertaining to expected distortion

and deviation probability of distortion, are equivalent. The essence of this statement is that even though

the distortion measure given by (25) can possibly be infinite, if it is finite, then it is upper bounded

by 1. Also note that there is a simple way to generate encoders such that ∞ is never attained: use

the reproduction specified in the proof of Lemma 2.2. Specifically, given the n duration-T jumps

{NX (iT )−NX ((i− 1)T ), i = 1, 2, . . .} at the encoder and decoder, simply use a codebook with one

possible reproduction being (x∗1, . . . , x
∗
n), where x∗i (0) = x∗i (T ) = NX (iT ) − NX ((i − 1)T ). Thus we

arrive at:

Theorem 2.4: Consider the Poisson source X = {NX (t), t ≥ 0} having rate-distortion function RE(D)

with respect to the single-letter fidelity criterion (12). Then RE(D) = RP (D) = I(D).

The proof basically follows in in two parts. The strong converse statement, that RP (D) ≥ RE(D)

follows from Kieffer [18]. The opposite direction, that RP (D) ≤ RE(D), directly follows Steinberg and

Verdú ’s proof of [20, Thm 11] and basically exploits the strong converse and the continuity of I(D).

The details are in Appendix I.

At this point, we have shown that RE(D) = RP (D) = I(D), namely that the rate-distortion function

operationally, for this distortion measure, is given by the Shannon bound on mutual information. We are

now able to characterize the structure of I(D):

Theorem 2.5: Consider the Poisson source X = {NX (t), t ≥ 0} having rate-distortion function RE(D)

with respect to the single-letter fidelity criterion (12). Then

RE(D) = RP (D) = I(D) =




−λ log D bits/second D ∈ (0, 1);

0 D ≥ 1.

Proof: Fix a distortion value D ∈ (0, 1). Define

µ , λ

D
. (27)

Note that for any joint distribution PX ,X̂ such that

E[ρT (X , X̂ )] ≤ D (28)
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holds, we have:

ĨT (X ; X̂ ) = hT (X )− hT

(
X1, . . . , XNX (T )|NX (T ), X̂

)

= λT (1− log λ)− hT

(
X1, . . . , XNX (T )|NX (T ), X̂

)
(29)

= λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX (T ), X̂

)
(30)

≥ λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX (T )

)
(31)

≥ λT (1− log λ)− λT (1− log µ) (32)

= −λT log D. (33)

where (29) follows because X is a Poisson(λ) process; (30) follows from Appendix II, (31) follows

because conditioning reduces entropy; (32) follows from the maximum-entropy argument in Appendix III,

and (33) follows from (27). Thus Ĩ(D) = I(D) ≥ −λ log D.

Now, to show that −λ log D is tight, consider the output of an ESTC with rate µ > λ in steady-state

with input process X̂ , and denote the output process as X . Note that by Burke’s theorem [6], [7] the

departure process X is also a Poisson process with rate λ. Note then that:

ĨT (X ; X̂ ) = λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX (T ), X̂

)

= λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX (T )

)
(34)

= λT (1− log λ)− λT (1− log µ) (35)

= −λT log D,

where (34) holds since service and arrival times are independent in M/M/1 queues; and (35) holds because

M/M/1 queues have i.i.d. exponential service times - so the bound in Appendix III is tight.

III. DISCUSSION

The rate distortion function in bits per second given here is equivalent to that in [14]. The distortion

measure (9) and the measure in [14] are related and the achievability of the minimum rate using Poisson

code-words passed through an M/M/1 queue in steady-state is also similar. However, in Bedekar [14]

a) considers the distortion formulation in terms of n arrivals and n departures, rather than the [0, nT ]

interval as we do here.

b) relies completely on the probability of deviation distortion criterion,

c) requires the reproduction codewords X̂ to always follow X , i.e. X is the arrival process to the queue,

and X̂ is the output.
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Distinction a) forces his approach to rely upon the information spectrum and sup-information rates [20]

to characterize the rate-distortion function. We were able to reason about this problem completely from

a traditional memoryless, expectation-based rate-distortion perspective, by exploiting four key properties:

i) the independent increments of the Poisson process, ii) the numerical entropy rate tending to 0 (Lemma

2.1), iii) the technical condition pertaining to existence of a reproduction with finite expected distortion

(Lemma 2.2), and iv) the additivity of the discrete-time distortion measure (25).

Distinction b) can be relaxed: we have shown here that the deviation probability criterion and the

expected distortion criterion lead to the same rate-distortion function.

Distinction c) is the opposite of our requirement, but it is in essence equivalent. Specifically, if the

roles of X and X̂ in the distortion measure are reversed, i.e. if we are to interpret X as the input to a

queue and X̂ as the output, we arrive at the same rate-distortion function:

1) Since the rate of the departure process of a stable queuing system is equal to the rate of the arrival

process of any stable queuing system [16], and since the arrival process will now be Poisson of rate

λ, the departure process X̂ will also have rate λ, i.e. limT→∞
NX̂ (T )

T = λ. Thus Lemma 2.1 still

holds.

2) Lemma 2.2 still holds, by simply selecting x∗ to now be the all-zero counting function: x∗(0) =

x∗(T ) = 0.

3) Theorems 2.3 and 2.4 directly still hold.

4) Theorem 2.5 still holds by simply replacing the functional roles of X as now the input to the queue,

X̂ as the output of the queue; defining the service time accordingly: si = x̂i −max(xi, x̂i−1); and

modifying (29)-(33) as follows:

ĨT (X ; X̂ ) = λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX (T ), X̂

)

≥ λT (1− log λ)− hT

(
S1, . . . , SNX (T )|NX̂ (T )

)
(36)

≥ λT (1− log λ)−E[NX̂ (T )](1− log µ) (37)

where (37) follows from the maximum-entropy argument in Appendix III. As mentioned above, for

any stable queuing system, the departure process will have rate equal to the arrival process (which
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is Poisson), so limT→∞
NX̂ (T )

T = λ. Thus we have:

lim sup
T→∞

1
T

ĨT (X ; X̂ ) ≥ λ(1− log λ)− lim
T→∞

NX̂ (T )
T

(1− log µ)

= λ(1− log λ)− λ(1− log µ)

= −λ log D (38)

where (38) follows from (27). Thus Ĩ(D) = I(D) ≥ −λ log D. The tightness of −λ log D follows

directly from Burke’s Theorem.

The rate-distortion function, in bits per second, is also equivalent to that of [13]. However, the

motivation for [13] appears to be the extremal properties of the exponential distribution rather than

on queuing. Note that all the code-words in [13] are such that the arrival points (except for the last

arrival) of the reproductions can either lead or follow the arrival points of X . There are also other subtle

differences in the constraints and distortion measures in our approach vis-a-vis [13], namely,

1) Distortion measure: [13] uses the following distortion measure for the reproductions given the source

realization

X̂i − X̂i−11{i>1} ≤ Xi −Xi−11{i>1} + D, ∀ i ∈ {1, . . . , m},

where D is a length of time while we consider 1
T E[

∑NX (T )
i=1 Si] ≤ D where D is a dimension-less

number;

2) Timing constraint: [13] imposes the constraints that the reproductions produce the same number of

arrivals as the source realization with the last arrival of the reproduction being after the last arrival

of the source realization, i.e.,

NX (T ) = NX̂ (T ) and xNX (T ) ≤ x̂NX̂ (T ),

whereas we insist that the reproductions completely lead/lag the original, i.e.,

∀ t ∈ [0, T ] : NX (t) ≤ NX̂ (t) (lead)

∀ t ∈ [0, T ] : NX̂ (t) ≤ NX (t) (lag)

3) Nature of Reproductions: A final but important distinction is that our reproductions are always

Poisson processes whereas those in [13] are not even renewal processes, although they are, in a

sense, close to being renewal processes.
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IV. CONCLUSIONS

In conclusion we would like to emphasize that our main motivation for this work was to develop a

mutual information lower-bounding technique using maximum-entropy arguments, and show achievability

with an appropriate test-channel - to be in complete analogy to the methodology developed for the AWGN

and BSC dualized rate-distortion problems. Also note that the exact same line of analysis follows for the

discrete-time queueing case [21], [3].
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APPENDIX I

PROOF OF THEOREM 2.4

We discuss the proof in two parts. The strong converse statement, that RP (D) ≥ RE(D) follows from

Kieffer [18]. The opposite direction, that RP (D) ≤ RE(D), directly follows Steinberg and Verdú ’s

proof of [20, Thm 11] and basically exploits the strong converse and the continuity of I(D).

• RP (D) ≥ RE(D):

Proof: Consider a sequence of codes {Cn : n ≥ 0} consisting of encoders en : Sn
T → {1, . . . , 2nRT }

and decoders dn : {1, . . . , 2nRT } → Sn
T where clearly {Cn : n ≥ 0} is of rate R. Then note that

we can create an augmented code {C∗n : n ≥ 0} also of rate R, consisting of two parts. First,

from Lemma 2.1, it encodes the duration-T jumps, {NX (kT ) − NX ((k − 1)T )}, at arbitrarily

small rate for large T . Secondly, the sequence of encoders e∗n : Sn
T → {1, . . . , 2nRT + 1} and

decoders d∗n : {1, . . . , 2nRT + 1} → Sn
T act as the original code Cn except for any Xn ∈ Sn

T for

which ρ
n

(Xn, dn(en(Xn))) = ∞. For those xn, e(xn) = 2nRT + 1 and d(2nRT + 1) is given by

(x̂∗1, . . . , x̂
∗
n) where x̂∗i , given in the proof of Lemma 2.2. This allows for ρ

n
(Xn, d∗n(e∗n(Xn))) to

always be upper-bounded by 1. Specifically:

– e∗n(xn, x̂n) = en(xn, x̂n) if ρ
n

(Xn, dn(en(Xn))) < ∞. Otherwise, e∗n(xn, x̂n) = 2nRT + 1

– d∗n(1) = dn(1), . . . d∗n
(
2nRT

)
= dn

(
2nRT

)

– d∗n
(
2nRT + 1

)
= (x̂∗1, . . . , x̂

∗
n), where x̂∗k(0) = x̂∗k(T ) = NX (kT )−NX ((k − 1)T ).

Then note that for any Xn ∈ Sn
T , ρ

n
(Xn, d∗n(e∗n(Xn))) < ∞ and so from (9) it is upper bounded

by 1. Thus from the strong converse results of Kieffer [18, Thm 1], [20, Thm 12] we have that: for
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the sequence of codes ẽn and d̃n with uniformly bounded distortions, if R < RE(D), then

lim sup
n→∞

P
(
ρ

n
(Xn, d∗n(e∗n(Xn))) > D

)
= 1.

Since by construction, ρ
n

(Xn, dn(en(Xn))) ≥ ρ
n

(Xn, d∗n(e∗n(Xn))), and secondly, {Cn : n ≥ 0}
and {C̃n : n ≥ 0} are both of rate R, it follows that whenever R < RE(D):

lim sup
n→∞

P
(
ρ

n
(Xn, dn(en(Xn))) > D

)
≥ lim sup

n→∞
P

(
ρ

n
(Xn, d∗n(e∗n(Xn))) > D

)
= 1.

Thus from the definition of RP (D), we have that RP (D) ≥ RE(D).

• RP (D) ≤ RE(D):

Proof: This is essentially the same as the proof of [20, Thm 11]. This will be a proof by contradiction.

Suppose that RE(D) < RP (D). Consider a sequence of codes Cn with encoders and decoders

en, dn of rate RE(D) for which E[ρ
n

(Xn, dn(en(Xn)))] ≤ D. Since RE(D) = I(D) and I(D) is

continuous in D, there exists a sufficiently small δ > 0 such that R < RP (D + δ). Thus from the

definition of RP (D + δ), it must be that

lim sup
n→∞

P
(
ρ

n
(Xn, dn(en(Xn))) > D + δ

)
> 0.

So there must exist some α > 0 and a subsequence J for which αn > α : n ∈ J for which

P
(
ρ

n
(Xn, dn(en(Xn))) > D + δ

)
= αn, n ∈ J .

Then note that we have from the law of iterated expectations that

D ≥ E[ρ
n

(Xn, dn(en(Xn)))]

= E[ρ
n

(Xn, dn(en(Xn)))
∣∣ ρ

n
(Xn, dn(en(Xn))) ≤ D]P

(
ρ

n
(Xn, dn(en(Xn))) ≤ D

)

+ E[ρ
n

(Xn, dn(en(Xn)))
∣∣ ρ

n
(Xn, dn(en(Xn))) ∈ (D, D + δ]]P

(
ρ

n
(Xn, dn(en(Xn))) ∈ (D, D + δ]

)

+ E[ρ
n

(Xn, dn(en(Xn)))
∣∣ ρ

n
(Xn, dn(en(Xn))) > D + δ]P

(
ρ

n
(Xn, dn(en(Xn))) > D + δ

)

≥ 0 + D
(
1− αn − P

(
ρ

n
(Xn, dn(en(Xn))) ≤ D

))
+ (D + δ)αn

and thus we have that

P
(
ρ

n
(Xn, dn(en(Xn))) ≤ D

)
≥ δαn

D
>

δα

D
, n ∈ J .

But this implies then that for this sequence of codes at rate R = RE(D):

lim
n→∞P

(
ρ

n
(Xn, dn(en(Xn))) > D

)
6= 1,

which contradicts strong converse statement from above.
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APPENDIX II

PROOF OF (30)

Proof: First note from (2), and since NX̂ (T ) ≥ NX (T ), that {Si}, i ∈ {1, . . . , NX (T )} are uniquely

defined given {X1, . . . , XNX (T )} and X̂ . Also, from the queueing interpretation, it is clear that given X̂ ,

S uniquely defines X . However, the point process entropy contains both a discrete numerical entropy

component as well as a positional entropy, where the latter relies upon a differential entropy term - so

just illustrating this bijection does not suffice. We now focus on the differential entropy term pertaining

to the positional entropy and show there is no amplitude scaling. To do this, we consider conditioning

upon X̂ = x̂ and investigate the Jacobian of the mapping between X and S . Now it suffices to show that

h(X1, . . . , Xm|NX (T ) = m, X̂ = x̂) = h(S1, . . . , Sm|NX (T ) = m, X̂ = x̂).

But note that the service process {Si}, given {X̂i}, is related to the departure process {Xi} by the simple

(recursive) relationship [7], [16]

Si = Xi −max(Xi−1, x̂i).

Also see Figure 1. Considering specific realizations note that the mapping from (x1, . . . , xm) to (s1, . . . , sm)

is differentiable except on a set A ∈ <m
+ with Lebesgue measure zero (pertaining to the points of

discontinuity of the functions max(xi, si)). We can consider the Jacobian at any point (x1, . . . , xm) not

in A, and note that

|J(x1, . . . , xm)| =

∣∣∣∣∣∣∣∣∣∣∣∣

∂s1
∂x1

∂s1
∂x2

. . . ∂s1
∂xm

∂s2
∂x1

∂s2
∂x2

. . . ∂s2
∂xm

...
...

...
...

∂sm

∂x1

∂sm

∂x2
. . . ∂sm

∂xm

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0
−1±1

2 1 . . . 0
...

...
...

...
...

0 0 . . . −1±1
2 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 1.

The −1±1
2 simply denotes that if xi−1 > x̂i, then max(xi−1, x̂i) = xi−1 and thus the corresponding

Jacobian entry in the (i, i − 1) point of the matrix is equal to −1; otherwise, if xi−1 < x̂i then

max(xi−1, x̂i) = x̂i, and thus the corresponding Jacobian entry in the (i, i − 1) point of the matrix

is equal to 0. No matter what the specific values in the (i, i− 1) locations of the Jacobian are, note that

the determinant is always 1.

Thus it follows that

h(X1, . . . , Xm|NX (T ) = m, X̂ = x̂) = h(S1, . . . , Sm|NX (T ) = m, X̂ = x̂).

Consequently,

h
(
X1, . . . , XNX (T )|NX (T ), X̂

)
= h

(
S1, . . . , SNX (T )|NX (T ), X̂

)
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APPENDIX III

PROOF OF (32)

Proof: Consider the conditional entropy [22], [23] form of the maximum-entropy problem [5, Ch

12]. In general, for a fixed Q(x), we would like to maximize

H(P ) = −
∑
x,y

Q(x)P (y|x) log P (y|x)

subject to
∑
x,y

Q(x)P (y|x)f(x, y) ≤ C.

By introducing a penalized Lagrangian, we would like to maximize

L(γ, P ) = H(P ) + γ

(∑
x,y

Q(x)P (y|x)f(x, y)− C

)
.

The solution may be obtained by maximizing P and selecting γ so that the constraint is met. The solution

of such problems can be formed using Lagrange multipliers. The resultant equations become

P ∗(y|x) =
1

Z(x)
exp [γf(x, y)]

where Z(x) is a normalization obtained to guaranteed that
∑

y P (y|x) = 1.

So in going from (32) to (33), we are interesting in upper-bounding the conditional entropy

hT

(
S1, . . . , SNX (T )|NX (T )

)
,

subject to the constraint (28). We will consider maximizing according to a slightly weaker constraint:

E


 1

T

NX (T )∑

i=1

Si


 ≤ D (39a)

⇔ E




NX (T )∑

i=1

Si


 ≤ λT

µ
(39b)

We note from (9) and (10) that if any joint distribution satisfies (28), then it satisfies (39).

So now consider understanding the optimal structure of that the conditional density of the service time

process

fSn|NX (T ) (sn|n)
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in order to maximize

hT

(
S1, . . . , SNX (T )|NX (T )

)
= −

∞∑

n=0

∫

sn

PNX (T ) (n) fSn|NX (T ) (sn|n) log fSn|NX (T ) (sn|n) dsn

subject to the constraints (39) that
∞∑

n=0

∫

sn

PNX (T ) (n) fSn|NX (T ) (sn|n)

[
n∑

i=1

si

]
dsn ≤ λT

µ
.

Thus, using the maximum-conditional-entropy formulation from above, we have that the conditional-

entropy maximizing service time conditional pdf will have the form

f∗Sn|NX (T ) (sn|n) =
1

Z(n)
exp

[
γ

n∑

i=1

si

]
.

It follows using straight-forward calculations that γ = −µ and Z(n) = 1
µn :

f∗Sn|NX (T ) (sn|n) = µn exp

[
−µ

n∑

i=1

si

]
.

With this, it follows then that

hT

(
S1, . . . , SNX (T )|NX (T )

) ≤
∞∑

n=0

∫

sn

PNX (T ) (n) f∗Sn|NX (T ) (sn|n) log f∗Sn|NX (T ) (sn|n) dsn

=
∞∑

n=0

∫

sn

PNX (T ) (n) f∗Sn|NX (T ) (sn|n)

(
n log µ− µ

n∑

i=1

si

)
dsn

= E[NX (T )] log µ− µE




NX (T )∑

i=1

Si




= λT (1− log µ). (40)

where (40) follows from (39), (27), and since X is a Poisson process of rate λ.


