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We consider the problem of estimating tail probabilities of waiting times in statistical
multiplexing systems with two classes of sources – one with high priority and the other with
low priority. The priority discipline is assumed to be nonpreemptive. Exact expressions
for the transforms of these quantities are derived assuming that packet or cell streams are
generated by Markovian Arrival Processes (MAPs). Then a numerical investigation of the
large-buffer asymptotic behavior of the the waiting-time distribution for low-priority sources
shows that these asymptotics are often non-exponential.
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1. Introduction

In this paper, we consider a MAP/GI/1 queue with two priority classes operating
under a non-preemptive priority service discipline, and we are interested in the behavior
of the waiting time of the low priority arrival. MAPs are very commonly used to
describe arrival processes in high-speed networks. We assume that the service-time
distribution is the same for both priority classes, a special application of this would
be in ATM networks where the cell size is a constant 53 bytes. Since the models we
consider fall under the class of M/G/1 type models defined by Neuts, we would draw
upon the substantial literature on such models in [24,25,27,31].

Our main results are follows. We derive exact expressions for the transforms of
the waiting time and queue length of the low-priority sources. The transforms could
be used to obtain the exact tail probability of these quantities using Laplace transform
inversion techniques. We also numerically investigate the asymptotic behavior of the
tail probabilities. For our numerical studies, we focus on the tail behavior of the low-
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priority waiting time. Our numerical results suggest that the tail of the low-priority
waiting time distribution is often non-exponential. An inspiration for our work is the
results of Abate and Whitt [4], who showed the non-exponential asymptotic behavior
for the low-priority sources for the case when the arrival processes for both classes
are Poisson. Our results generalize this to MAP/G/1 queues and provide exact ex-
pressions for the transforms of the low priority waiting times. While the results in [4]
show the exact nature of the asymptote, we present strong numerical evidence to only
demonstrate that the asymptote is non-exponential. In addition, also using numeri-
cal results, we show that the behavior of the asymptote is significantly different in
the case of general MAP arrivals as compared to the case of Poisson arrivals studied
in [4]. Specifically, in the case with Poisson arrivals, the low-priority waiting-time
distribution has an exponential asymptote when the low-priority arrival rate is above
a certain threshold. This is not necessarily true in the case with MAP arrivals. Other
differences are pointed out in section 4.

An important application of tail probability computations is in the design of
admission control schemes for high-speed networks, where admitted sources are guar-
anteed a prespecified Quality-of-Service (QoS). QoS is typically specified in terms of
quantities such as probability of cell loss, upper limits on waiting times, etc. A pop-
ular technique is to convert these QoS requirements into a single number called the
effective bandwidth and use this quantity very much like a bandwidth requirement
in circuit-switched networks. The effective bandwidth approximation relies on large
deviations results of the following form:

lim
B→∞

1
B

logP (X > B) = −δ, (1)

where X is the workload and δ > 0; see, for example, [16,23,36]. Thus, given a finite
buffer size B, a natural approximation to the loss probability P (X > B) is

P (X > B) ≈ e−δB . (2)

Similar large deviations results and approximations are also available for waiting times
and queue lengths [36]. In ATM networks, the cell size is constant. A common ap-
proximation to this is to use a Erlang service-time distribution with many phases, often
making the problem amenable to a matrix–geometric type analysis. This approxima-
tion of deterministic service times by a phase-type distribution is discussed extensively
in [11], but we do not address it here.

While there are several sources of error in using the approximation (2), it has been
shown that the approximation can be refined as P (X > B) ≈ α e−δB , where α can
be computed either numerically [11], or by capturing the gains of bufferless statistical
multiplexing using the Chernoff bound [17] or appropriate large deviations scaling to
account for a large number of sources [8,14]. Such a refinement is considered to be
reasonably accurate for most practical applications. Further, for most well-behaved
service-time distributions, if α is exactly calculated, P (X > B) ∼ α e−δB [2], where
f (x) ∼ g(x) denotes limx→∞ f (x)/g(x) = 1. Assuming a preemptive resume model,
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large deviations results of the form (2) can also be obtained for statistical multiplexers
with priorities [6,10], based on earlier work characterizing the large-deviations rate
function of the output process of a single-class, single-server queue [9,15]. A more
general case has been considered in [7,29], where large-deviation asymptotics have
been obtained for queue lengths and virtual waiting-times in two queues operating
under the generalized processor-sharing (GPS) discipline. One of the contributions of
our paper is to point out that for the nonpreemptive priority model (which should
be very close to the preemptive resume model when the packet sizes are small), the
asymptotic form P (X > B) ∼ α e−δB does not hold, in general, for the low-priority
sources.

Previously, Takine et al. [35] considered nonpreemptive priority queues with
Markovian arrivals and independent and identically distributed service times for each
packet. They derived expressions for the mean waiting time of each packet class and
also presented algorithms for evaluating the mean waiting times. Takine et al. [34]
derived expressions for the workload in a MAP/GI/1 queue with state-dependent
arrivals. This was used to derive the Laplace–Stieltjes transform (LST) for the waiting
time of packets in each class of a MAP/GI/1 queue with preemptive resume priority.
Sugahara et al. [32] analyzed a two-priority (nonpreemptive priority) queue with the
high class arrivals from a 2-state Markov Modulated Poisson process and the low class
arrivals from a Poisson process. Using a supplementary variable technique for solving
the partial differential equations for the system, they derived the joint probability
generating functions of the stationary queue-length distributions and the LST of the
stationary waiting time-distributions of high- and low-priority packets. Our derivation
of these quantities use a different approach primarily relying on the properties of MAP
arrival processes and the key renewal theorem for Markov renewal processes [20] as
in the derivation of the results in [26]. Further, we also extend the results to the case
where both the high- and low-priority classes are MAPs using Palm theory [5].

Elwalid and Mitra [18] consider a multi-service multiplexing system with Markov
modulated fluid inputs and derive approximations to the tail probabilities of the queue-
length distributions. The main idea there is an elegant Markovian approximation for the
busy-period of the high-priority packets. The Markovian approximation then naturally
provides a exponential tail for the low-priority buffer occupancy, which is used in an
admission control scheme for such a multiplexer. Since our model is not a fluid model,
the results in [18] do not directly apply. It may be possible to connect our results to
the results in [18] using appropriate fluid limits as in [12]. However, we do not pursue
this avenue of research in this paper. Using the results in [18], Presti et al. [30] have
obtained approximations for the more general case of GPS service discipline.

The rest of this paper is organized as follows. In section 2, we introduce MAPs
and present some known properties of MAPs and MAP/GI/1 queues that will be
used later. Priority queues are considered in section 3 and an exact expression for
the transform of the waiting-time distribution of the low-priority packets is derived.
Section 4 presents numerical results and discusses the conclusions from these re-
sults.
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2. MAPs and MAP/GI/1 queues

A MAP is a continuous-time Markov chain described by the following generator:

Q =


D0 D1 0 0 . . .

D0 D1 0 . . .

D0 D1
. . .

. . . . . .

 ,

where D ≡ D0 + D1 with D 6= D0, is also a generator. We assume that D is
irreducible. One can associate an arrival process with this Markov chain as follows:
an arrival occurs whenever there is a state transition into a state corresponding to a D1

block and there is no arrival otherwise. D0 and D1 are m×m matrices, where m is the
number of phases of the arrival process. This is a special case of versatile Markovian
point processes introduced by Neuts [27] and studied under various names [24,25,31],
most commonly referred to as the Batch Markovian Arrival Processes (BMAPs). We
have simply restricted our attention to the case where the batch size at each arrival
point can be at most 1. We will not discuss all the properties of MAPs here, the reader
is referred to [25] for an introduction. However, before we introduce priority queues,
we present some well-known properties of MAPs and MAP/GI/1 queues which will
be useful for our analysis later. These results can be found in [24–26,31].

If we let N (t) be the number of arrivals in (0, t] and J(t) be the phase of the
system at time t, then (N (t),J(t)) is a Markov chain on the state space {(n, j), n > 0,
j = 1, 2, . . . ,m} with generator Q. Define D(z) to be

D(z) ≡ D0 +D1z for |z| 6 1,

and let Pa(n, t) be an m×m matrix denoting the number of arrivals in (0, t] with the
(i, j)th element defined as[

Pa(n, t)
]
ij
≡ Prob

(
N (t) = n, J(t) = j | N (0) = 0, J(0) = i

)
.

Then, the matrix generating function P ∗(z, t) of the number of arrivals in [0, t]1 is
given by

P ∗(z, t) = eD(z)t, for |z| 6 1, t > 0,

where P ∗(z, t) =
∑∞

n=0 Pa(n, t)zn. Let π be the stationary distribution of D. Then
the steady-state mean arrival rate is given by

λ = πD1e,

and since D is irreducible, this is also the long-term arrival rate.

1 Most quantities in matrix-analytic theory are matrices such as Pa(n, t) and P ∗(z, t) with each element
corresponding to a particular phase transition. However, for convenience, we will often refer to
quantities such as “the number of arrivals in [0, t]” without referring to the phase transition, but this
should not cause confusion.
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In the rest of this section, we state a few lemmas listing some properties of
MAP/GI/1 queues that will be used later. Let H be the service-time distribution with
LST h (i.e, h(s) =

∫∞
0 e−st dH(t)) and mean 1/µ with µ > 0. The traffic intensity at

the MAP/GI/1 queue is given by ρ = λ/µ.

Lemma 1. Let A(z, s) be the 2-dimensional transform of the number of arrivals and
time interval between successive departure epochs given that the first departure did
not leave the system empty. A(z, s) is given by

A(z, s) = h
(
sI −D(z)

)
, where Re(s) > 0 and |z| 6 1.

In the previous lemma h(sI − D(z)) is a scalar function evaluated at a matrix
argument. This is evaluated in the standard manner by substituting the matrix argument
in the power series expansion of h. This same interpretation will be used in the rest
of the paper whenever a scalar function is evaluated at a matrix argument. For more
details, the reader is referred to [25, section 5.1].

Lemma 2. We have the following equation for the 2-dimensional transform of the
number served during, and the duration of, the busy period

G(z, s) = zh
(
sI −D

[
G(z, s)

])
.

Lemma 3. Define G ≡ G(1, 0). The matrix G has the following properties:

1. G is stochastic whenever ρ < 1. Let g be the invariant probability vector of G.

2. The jth component of vector g is the stationary probability that the arrival process
is in phase j at times of departures given that the system is empty.

Lemma 4. Define A(z) ≡ A(z, 0) = h(−D(z)). The queue-length generating function
of a MAP/GI/1 queue at an arbitrary time is given by

Y (z) = (1− ρ)g(z − 1)A(z)
[
zI −A(z)

]−1
. (3)

3. Priority MAP/GI/1 queues

In this section, we derive the transforms of various quantities of interest for
MAP/GI/1 queues with two priority classes where the classes have separate buffers.
Throughout, we assume that the service-time distribution is the same for both classes.
For ease of exposition, we first consider the case where the low-priority arrivals are
Poisson. Later, we generalize this to the case where both classes generate arrivals
according to MAPs.
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3.1. Poisson low-priority arrivals

Let the low-priority arrivals be Poisson with rate λl. The high-priority arrival
process is a MAP with Dh

0 and Dh
1 as the relevant parameters and the rate is de-

noted as λh. The traffic intensity is given by ρl ≡ λl/µ and ρh ≡ λh/µ with
ρ ≡ ρh + ρl < 1 for stability. Note that the low-priority class can be considered as
a MAP with parameters Dl

0 = −λl and Dl
1 = λl. Define Dh(z) ≡ Dh

0 + Dh
1 z and

DS(z) ≡ Dh
0 + Dh

1 z + zλlI − λlI . Then, lemmas 1–4 can be applied to the single
class MAP/GI/1 obtained by considering the two buffers (high and low priority) to-
gether, and the arrival process being the superposition of the high- and low-priority
arrival processes. As in DS(z), throughout we will use the subscript S to denote this
single-priority-class MAP/GI/1.

We first derive an expression for the LST of the waiting-time distribution of the
lower priority packets. Since the low-priority and high-priority packets have the same
service-time distributions, we only need to monitor the total number of packets in the
system. We first note two useful facts:

• The low-priority arrival process is Poisson and, thus, we use the PASTA prop-
erty [37] to claim that upon arrival a low-priority packet sees YS(z)e as the distri-
bution of the number of packets in service, where YS(z) is given by (3) with D(z)
replaced by DS(z), and e is a vector with all elements equal to 1.

• The remaining service of the packet in service (if any) is given by the station-
ary excess distribution associated with H (again by PASTA). Denote the resid-
ual service-time distribution by R and its LST by r, where R is given by
R(t) = µ

∫ t
0 (1−H(u)) du and, thus, r(s) = (1− h(s))µ/s.

Now we proceed along the lines of the derivation of the Takàcs equation and
the Kendall functional equation for the busy period of the M/G/1 queue [13; 19,
chapter XIV]. Specifically, we note that if a lower-priority packet sees n packets (of
both classes together) ahead of it, then its waiting time is independent of the order
in which all the packets ahead of it (and any high-priority arrivals before it begins
service) are served. Thus, the waiting time is composed of

• W1: The service times of the packet in service and all high-priority packets that
arrive during the service of the packet currently in service.2

• W2: The n− 1 high-priority busy periods generated by the n− 1 packets ahead of
it in the queue.3

The LST of W1 can be easily seen to be

Gl(s) = r
(
sI −Dh

[
Gh(s)

])
.

2 Note that we need to consider the phase of the arrival process at the beginning of the service and at
the end. Thus, W1 is actually a matrix-valued random variable.

3 Again we need to take into account of the arrival process phases. Thus, W2 is also a matrix-valued
random variable.
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From lemma 2, the high-priority busy period is given by

Gh(s) = h
(
sI −Dh

[
Gh(s)

])
. (4)

Therefore, using the relationship between r(s) and h(s), Gl(s) can be rewritten as

Gl(s) = µ
(
I −Gh(s)

)[
sI −Dh

[
Gh(s)

]]−1
. (5)

Now we are ready to state and prove the following theorem.

Theorem 5. The LST of the complementary cumulative distribution function (ccdf)
of the low-priority waiting time is given by

wCl (s) =
1− wl(s)

s
,

where

wl(s) = (1− ρ) +
{
YS
(
Gh(s)

)
− (1− ρ)gS

}
G−1
h (s)Gl(s)e. (6)

Proof. Let yS(n) be distribution of the total number of customers in the system, i.e.,
the inverse transform of YS(z) given by (3) with D(z) replaced by DS(z). In other
words, YS(z) =

∑∞
n=0 yS(n)zn. Thus, yS(n) is a vector such that each element of the

vector corresponds to an arrival phase and gives the probability that the total number
(sum of high-priority and low-priority packets) is n. Therefore, from the discussion
prior to the theorem, we have that the LST of the waiting-time distribution of the
low-priority packets wl(s) is given by

wl(s) = (1− ρ) +
∑
n>0

yS(n)Gl(s)G
n−1
h (s)e, (7)

where we have used the fact that the waiting time is zero when a packet arrives when
the system is empty, which occurs with probability 1−ρ. From equation (4) we deduce
that Gh(s) is a power series in Dh[Gh(s)]. From equation (5) we can deduce that even
Gl(s) is a power series in Dh[Gh(s)]. Thus, Gl(s) and Gh(s) commute. Using this
we have the following form for wl(s):

wl(s) = (1− ρ) +

{∑
n>0

yS(n)Gnh(s)

}
G−1
h (s)Gl(s)e

= (1− ρ) +
{
YS
(
Gh(s)

)
− (1− ρ)gS

}
G−1
h (s)Gl(s)e. (8)

For the last equation above, we have used the interpretation of gS from lemma 3. �

The next result presents the transform of the stationary distribution of number of
high-priority and low-priority packets in the system, the proof of which is provided
in the appendix. By PASTA, this is also the same as the distribution of number of
high-priority and low-priority packets seen by a low-priority packet arrival.
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Theorem 6. Let y(n,m) be a vector such that its ith component is the proba-
bility that there are n high-priority and m low-priority packets in the system,
and the arrival process is in phase i. Its 2-dimensional transform Y (z,w) =∑∞

n=0

∑∞
m=0 y(n,m)znwm is given by

TY (z,w) =P (0, 0)
(
−
(
Dh

0 − λlI
)−1)(

zDh
1 + wλlI − I

)(
I −A(z,w)

)(
−D(z,w)−1)

+ P (0, 0)
[
−
(
I −A(z, 0)

)(
−D(z, 0)−1)+

(
−
(
Dh

0 − λl
)−1)]

+ P (z,w)
(
I −A(z,w)

)(
−D(z,w)−1)

+ P (z, 0)
(
I −A(z, 0)

)(
−D(z, 0)−1), (9)

where

T =
1

λh + λl
, D(z,w) = Dh

0 − λlI +Dh
1 z + λlIw,

P (z,w) =

{
P (0,w)

(
z

w
− 1

)
+ P (0, 0)

z

w

[
−w
(
Dh

0 − λlI
)−1(

Dh
1 + λlI

)
− I
]}

×A(z,w)
(
zI −A(z,w)

)−1
, (10)

and

A(z,w) =

∫ ∞
0

e(Dh0 −λlI+D
h
1 z+λlIw)x dH(x), (11)

P (0,w) =Q(w)
(
P (0, 1)e

)
, (12)

Q(0) =
P (0, 0)

(P (0, 1)e)
, (13)

Q(w) =Q(0)
{
−w
(
Dh

0 − λlI
)−1(

Dh
1 + λl

)
− I
}
GH (w)

(
wI −GH (w)

)−1
, (14)

GH (w) =Gh(λl − λlw), (15)

P (0, 0) =
1− ρ

λh + λlI
gS
(
−Dh

0 + λlI
)
, (16)

P (0, 1)e=
λl

λh + λl
+

1− ρ
λh + λl

gSD
h
1 e. (17)

We can now write out the expression for Y C(w) using the expression for Y (z,w) and
the following relation:

Y C(w) =
1− Y (1,w)e

1− w . (18)

3.2. MAP arrival process for the low-priority class

Here we let the high-priority class have Dh
0 , Dh

1 as the matrices associated with
the arrival process and, similarly, let Dl

0, Dl
1 be the matrix parameters of the low-
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priority arrival process. We still assume that the service-times are distributed identically
for the two classes. Let Ih, Il denote identity matrices of the same order as Dh

1 , Dl
1,

respectively.
From approaches standard in matrix-analytic theory, we have the following the-

orem which is the equivalent of theorem 6. The differences between the proofs of the
two theorem is outlined in the appendix. Note that we only need to make the appropri-
ate changes to the renewal function of the Markov process, the distribution of arrivals,
and the distribution of customers at departure epochs in the proof of theorem 6 given
in the appendix. While theorem 6 also gives the transform of the distribution seen
by low priority arrivals when they are Poisson, the following theorem gives only the
stationary distribution.

Theorem 7. Let y(n,m) be a vector such that its ith component is the probability
that there are n high-priority and m low-priority packets in the system, and the arrival
process is in phase i. Its 2-dimensional transform

Y (z,w) =
∞∑
n=0

∞∑
m=0

y(n,m)znwm

is given by (9) with the following modifications:

(i) Dh
0 replaced by Dh

0 ⊗ Il,
(ii) −λlI replaced by Ih ⊗Dl

0,

(iii) Dh
1 replaced by Dh

1 ⊗ Il,
(iv) λlI replaced by Ih ⊗Dl

1,

(v) Dh(z) = Dh
0 ⊗ Il +Dh

1 ⊗ Ilz,

(vi) D(z,w) = Dh
0 ⊕Dl

0 +Dh
1 ⊗ Ilz + Ih ⊗Dl

1w,

(vii) DS(z) = D(z, z), and

(viii) GH(w) solves

GH (w) =A
(
GH(w),w

)
=

∫ ∞
0

e(Dh0 ⊗Il+Ih⊗Dl0+(Dh1 ⊗Il)GH (w)+Ih⊗Dl1w)x dH(x)

= h
(
−Dh

0 ⊗ Il − Ih ⊗Dl
0 −

(
Dh

1 ⊗ Il
)
GH (w)− Ih ⊗Dl

1w
)
. (19)

In the rest of this subsection we provide expressions for the distribution of the
number of packets seen by a low-priority arrival and the waiting-time distribution
of the low-priority packets, i.e., wl(s). Since the stationary distributions remain the
same as before, we only need to derive the relevant customer (packet) averages. Let
πl be the stationary distribution of the state of the low-priority arrival process. The
proofs of these are essentially along the lines of [26, theorem 9] where the relationship
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between time averages and customer averages in [33] is generalized to MAP/GI/1
queues.

Theorem 8. Let Y a
S (z) be the z-transform of the distribution of the total number of

packets in the system seen by a low-priority arrival. Y a
S (z) is given by

Y a
S (z) = YS(z)

(Ih ⊗Dl
0)e

πlD
l
0el

, (20)

where e is a column vector of ones of size given by the size of Ih ⊗Dl
0 and el is a

column vector of ones with size the same as Dl
0. Thus, the ccdf has a z-transform

given by

Ỹ a
S (z) =

1− Y a
S (z)

1− z . (21)

Theorem 9. The 2-dimensional transform of the number of high-priority and low-
priority packets seen by a low-priority arrival, denoted by Ya(z,w) is given by

Y a(z,w) = Y (z,w)
(Ih ⊗Dl

0)e

πlD
l
0el

, (22)

where Y (z,w) is given in theorem 7. Therefore, the tail of the distribution of the
number of low-priority packets seen by a low-priority arrival has a z-transform given
by

Ỹa(w) =
1− Ya(1,w)

1−w . (23)

Theorem 10. The virtual waiting-time distribution of the low-priority arrivals is given
by

W l
V (s) = (1− ρ)gS +

∑
n>0

yS(n)Gl(s)G
n−1
h

= (1− ρ)gS +
{
YS
(
Gh(s)

)
− (1− ρ)gS

}
G−1
h (s)Gl(s). (24)

Theorem 11. The waiting-time distribution of the low-priority arrivals is given by

wl(s) = W l
V (s)

(Ih ⊗Dl
0)e

πlD
l
0el

. (25)

Thus, the LST of the low-priority waiting time ccdf is given by

wCl (s) =
1− wl(s)

s
. (26)
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4. Asymptotics of the tail probabilities

In this section, we present results to show that the low-priority tail asymptotics
for waiting times are non-exponential. Assuming an asymptote of the form

P (W > T ) ∼ αT−β e−δT , (27)

we present numerical evidence to show that often β 6= 0. For general MAPs, it is
difficult to obtain closed-form expressions for α, β and δ. Therefore, we compute
these numerically using the transform expressions obtained in the earlier section. For
this purpose, we use the techniques in [1]. However, to use these numerical results,
one has to first hypothesize a form for the asymptotics and, then, proceed to obtain the
parameters of the asymptotic form. Therefore, we first present a simple model which
suggests asymptotics of the form (27). This example proving the asymptotic form is
not for MAP processes but it is for fluid models which are closely related to MAPs
when the service times are small, as shown in [12]. However, it should be noted
that nonpreemptive and preemptive priorities are the same in fluid models, and thus,
we lose the detailed structure of the MAP queueing system when considering the fluid
model. Thus, this example only suggests the asymptotics, but is not a conlcusive proof
that the asymptote is indeed of the assumed form. Nevertheless, it serves as a simple
example to illustrate why one might suspect non-exponential asymptotic behavior for
the low-priority tail probability.

Our principal conclusion from the numerical study does not depend on the as-
sumption that the asymptotic form is given by (27). Our principal conclusion is simply
that the asymptote is non-exponential, which is arrived at by showing that β converges
to a nonzero value. Hence, the assumption of the asymptotic form is not important
to reach this conclusion. But the fluid-model example and the results in [4] suggest
the form (27), and, thus, it is interesting to study whether the parameter β behaves as
it does for the case of Poisson arrivals studied in [4]. The numerical evidence will
show that, in general, the behavior is different with general MAP arrivals, i.e., either
the asymptotic form is not of the type given in (27), or, if it is, then the behavior of
β is different.

4.1. Fluid model example

As mentioned earlier, non-exponential tails for waiting times of low-priority wait-
ing times was shown in [4] for M/GI/1 models. The key idea was to use a geometric
random sum representation for the transform of the low-priority waiting times where
the stationary excess of the “service time” of the low-priority packets includes the
effect of the busy period due to the high-priority sources. The example we provide
here complements the results in [4] by considering a high-priority source that is an
on–off Markov-modulated rate process which is commonly used in modeling arrival
processes. However, as we shall see, our example which considers the tail of the
low-priority workload has a simpler direct interpretation in terms of the busy period of
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the M/GI/1 queue. Since we are considering a fluid model, it is simpler to consider
workload, instead of waiting times, and hence, we do so.

Consider a multiplexer with two buffers. Buffer 1 is fed by source 1 that alternates
between on and off states. It spends an exponentially distributed amount of time in
each state with the mean on and off times given by 1/qd and 1/qu, respectively.
When source 1 is on, it produces fluid at rate λ1. Source 2 is a constant rate source
producing fluid at rate λ2. The server rate is c and its service discipline is generalized
processor sharing (GPS) with weights φ1 and φ2 for sources 1 and 2, respectively [28].
Comparing this to our MAP models earlier, this would be the fluid-equivalent of a two-
state Markov-modulated Poisson process (MMPP) for source 1 and a Poisson process
for source 2 with the service times being a Erlang-k distribution for large k. Note that
the choice of φ2 = 0 leads to a strict priority scheme with lower priority for source 2
as we had been considering in the previous sections. But here we let φ2 be possibly
nonzero to allow us to study the more general case of GPS.

We assume that

λ1 >
φ1c

φ1 + φ2
and λ2 >

φ2c

φ1 + φ2
.

We will denote service rate guaranteed to source i as gi where gi = cφi/(φ1 + φ2).
Clearly, when λ2 < g2, buffer 2 is always empty. In what follows, we show that
one can exactly determine the asymptotic form of the workload in buffer 2 and when
λ2 > g2, this asymptotic form is non-exponential. For stability, we assume that(

qu
qu + qd

)
λ1 + λ2 < c.

We first note the following two facts that we will use:

• Due to our assumptions on the arrival rates λ1 and λ2, whenever source 1 is either
on or back-logged, it receives service at rate g1, and source 2 receives service at
rate g2.

• When buffer 1 is empty, source 2 receives service at rate c when it is back-logged
and at rate λ2 when its buffer is empty.

A busy period of source 1 begins in the on state and ends when its buffer is
empty. We denote the LST of its busy period as B(s). We derive an expression for
B(s) by exploiting a connection between the fluid model and an appropriately defined
M/GI/1 queue as in [21,22].

Let X1(t) be X2(t) be the workload in buffers 1 and 2, respectively. Define
Y1(t) ≡ X1(t)/g1. Let tn be the begin time of the nth off period of source 1. Then,

Y1(tn) =
[
Y1(tn−1)− an

]+
+
λ1 − g1

g1
bn, (28)
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Figure 1. (a) Actual busy period due to source 1. (b) Busy period considering only the off-times of
source 1.

where an is the duration of the (n − 1)th off period and bn is the duration of the on
period following the (n− 1)th off period. Further, for 0 6 δ < an+1,

Y1(tn + δ) =
[
Y1(tn)− δ

]+
. (29)

Compare (28) and (29) to Lindley’s difference equations for the workload in a G/GI/1
queue, with the beginning of an on-time corresponding to an arrival epoch. We im-
mediately recognize that, by restricting our attention to off times alone, Y1(O(t)) is the
workload in an M/M/1 queue with arrival rate qu and mean service-time (λ1−g1)/g1qd,
where O(t) is the total off time in [0, t]. From figure 1, it is also immediate that the
busy-period of source 1 is λ1/(λ1 − g1) times the busy-period of the M/M/1 queue.
If we denote the LST of the busy-period of the M/M/1 queue, then the busy-period
LST of source 1 is given by

B(s) = BM

(
λ1s

λ1 − g1

)
. (30)

Having characterized the busy-period of source 1, we now turn our attention
to buffer 2 whose asymptotic behavior we would like to characterize. Based on our
analysis of the busy-period of source 1, source 2 can be thought of being served by a
server that alternates between an up and a down state as follows:

• Up state: Server stays in this state for an exponentially distributed duration 1/qu
and the server capacity is c in this state.

• Down state: Duration in this state has an LST B(s), and the server capacity is g2

in this state.
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Now, define Y2(t) ≡ X2(t)/(c − λ2). Let F (y) be the steady-state cdf of of Y2,
F̂u(y) be the steady-state P (Y2 < y | server is up) and F̂d(y) be the steady-state
P (Y2 < y | server is down). In a manner similar to the busy-period analysis for
buffer 1, it is easy to see that F̂ c

u(y) = F c
w(y), where Fw(y) is the waiting-time cdf in

an M/GI/1 queue with arrival rate qu, and service-time distribution LST B̂(s) given by

B̂(s) = B

(
λ2 − g2

c− λ2
s

)
, (31)

and the superscript c denotes ccdf. Thus, the LST of F̂ c
u(y), denoted by f̂ c

u(s), can
be written as f̂ c

u(s) = (1 − f̂u(s))/s, where f̂u(s) is given by the Kendall functional
equation for the busy-period of an M/GI/1 queue

f̂u(s) = B̂
(
s+ qu − f̂u(s)

)
. (32)

Now, let F c
u(y) = P (Y2 > y and server is up) and F c

d (y) = P (Y2 > y and server
is down) in steady-state. Equating probability drifts, which can be justified rigorously
using level-crossing analysis, it is easy to see that

F c
u(y) =

λ2 − g2

c− λ2
F c
d (y).

Therefore,

F c(y) = F c
u(y) + F c

d (y) =
c− g2

λ2 − g2
F c
w(y) =

(
c− g2

λ2 − g2

)
γF̂ c

u(y), (33)

where

γ ≡ 1− qu
qu + qd

λ1

g1

is the probability that the server is up.
Now it is easy to see that the F c(y) ∼ αy−3/2 e−δy as follows: The asymptotic

form of F c(y) is the same as that of F c
u(y) except for a constant. Since F c

u(y) has the
same LST as that of the busy-period of an M/M/1 queue, from [3], its asymptotic form
is as desired. The exact values of α and δ can be calculated from [3, equation (4.1)]
using (31)–(33).

4.2. Numerical results

We generate high and low MAP sources using a superposition of on–off sources
each with an average rate of 0.0125 as in [11]. As in [11], the mean on and off times
are 436.36 and 4363.63, with the arrival rate during an on period being 0.1375. Thus,
a high-priority mean arrival rate of 0.05 would mean that there are four independent
high-priority MMPP sources. The service times are exponential with mean 1. Of
course, the arrival processes and service times could be more general, but the model
considered here is sufficient to illustrate the asymptotic behavior. We use the results in
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Table 1
Parameters of the tail asymptote for low-priority waiting times for various

values of arrival rates for high-priority and low-priority sources.

ρh ρl δ β α× 103

0.025 0.025 0.2322 −0.7170 5.9
0.025 0.0375 0.2356 −0.3710 3.2
0.0625 0.025 0.04 −1 2.5
0.0625 0.0375 0.0411 −0.845 3
0.0625 0.05 0.0425 −0.5 1.4

Table 2
Parameters of the low-priority tail asymptote with ρh = 0.0125.

ρl δ β α

0.0125 0.399 −1.18 0.148
0.025 0.4088 −0.38 0.0388
0.0375 0.4089 2.3 1.3 · 10−6

0.05 0.4197 4.85 9 · 10−10

the previous sections to calculate the exact tail probabilities and use the moment-based
technique in [1] to compute the asymptote. To ensure the accuracy of the numerical
examples, we use a large number of moments (>40) and also stop the computation
only when there is less than a 10% change in the computed parameters. For instance,
if δ is computed to be 0.4, then the number of moments used in the computation would
be large enough to ensure that the value of δ changed by less than 0.01 in successive
steps of the iteration given in [1].

The parameters of the asymptote, α, β and δ are shown in table 1 for various
values of ρh and ρl. As can be seen from the table, β can be non-negligible, thus,
leading to non-exponential asymptotics, in general. It is also interesting to note that
the so-called effective bandwidth approximation, e−δT , does not change very much as
ρl is changed with ρh = 0.0625. However, the true asymptote changes significantly
as revealed by the different values for α and β.

In the M/G, G/1 model studied in [4], it was observed that, as the low-priority
arrivals increased, the value of β exhibited the following behavior: β is equal to −3/2
till a threshold value of the low-priority arrival rate is reached. At this threshold, β is
equal to −1/2 and above this threshold, β is equal to zero. We numerically study if this
behavior holds with MAP arrival processes. We consider an example with the same
type of on–off sources as before. We set the high-priority arrival rate λh = 0.0125, and
increase the low-priority arrival rate. The results are presented in table 2. From table 2,
we see that the behavior of the asymptote is different with general MAP arrivals than
with Poisson arrivals: either the asymptotic form of the tail distribution is different or
the behavior of β is different. As an example, if the asymptotic form that has been
hypothesized is correct, then β can be positive with MAP arrival processes which is
different from the behavior with Poisson arrivals.
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While the form of the asymptote is yet to be proven, due to the fluid example
and the results in [4], it is interesting to verify how well the expression (27) performs
as an approximation to the exact tail probability. The analysis of M/G/1 queues with
priorities in [4] suggests that, when β 6= 0, the asymptote may not lead to a good
approximation of the exact tail probabilities. This is illustrated in figures 3, 4. The

Figure 2. Non-exponential asymptote (dashed) and exact low-priority waiting-time tail probability (solid)
for ρh = 0.0125, ρl = 0.0375.

Figure 3. Non-exponential asymptote (dashed) and exact low-priority waiting-time tail probability (solid)
for ρh = 0.0625, ρl = 0.025.
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Figure 4. Non-exponential asymptote (dashed) and exact low-priority waiting-time tail probability (solid)
for ρh = 0.0625, ρl = 0.0375.

figures also show another important feature: even if the asymptote is valid, it need not
be an upper bound for the exact tail probability. However, in general, it is not always
optimistic either. For instance, in the case of Poisson arrivals for both high-priority
and low-priority sources, the non-exponential asymptote in [4, table 14.2] provides a
conservative approximation to the exact tail probability.

Figure 2 shows the plots of the exact tail and the asymptote for the case with
ρl = 0.0375. The asymptote increases slightly for small values of T and then decreases
since β > 0. Figure 2 again illustrates that the asymptote may not be very accurate even
when T is large enough such that the tail probability is small (around 10−7). Further,
the tail probability estimate is optimistic, which may not be suitable for applications.
This points to a need for further work on proving the exact form of the asymptote, and
exploring other approximations (other than the asymptote) which are both accurate as
well as faster than computing the exact tail probability.

Appendix

Proof of theorem 6
Our proof is a generalization of a similar proof for vacation models in [26].

Consider the Markov renewal process obtained by sampling the system at departure
epochs. Let p(n,m) be the stationary probability vector at departure epochs, i.e., the
jth component of p(n,m) gives the stationary probability that there are n high-priority
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and m low-priority customers, and the arrival process is in phase j at a departure
epoch. From [35], the 2-dimensional transform of p(n,m), denoted by P (z,w), is
given by (10), where

• A(z,w) is the transform of the number of arrivals of each class (z denotes the high
priority and w the low priority) in a service-time,

• Q(w) is the stationary distribution of the number of low-priority packets in the
system obtained by sampling the system just after departures which leave no high-
priority packets in the system, and

• GH (w) is the transform of the number of low-priority packet arrivals in a high-
priority busy-period.

From the stationary distribution obtained by sampling the system just after departures,
we need to derive the stationary distribution of the queueing process. Using PASTA
we would then have the distribution of packets including the number of each class,
seen by a low priority arrival.

Let Y (z,w) =
∑∞

n=0

∑∞
m=0 y(n,m)znwm be the transform of the stationary dis-

tribution of the number of packets of each class in the queue.
Let y(n,m, t) be a a vector whose ith component is the probability that there

are n packets of high priority, m packets of low priority, and the phase of the in-
put process is i, at time t, starting at some initial state at time 0. The initial state
is irrelevant because we will be considering only steady-state quantities and the key
renewal theorem helps us remove the dependence on the initial state. Thus, we sup-
press the initial state in the analysis that follows. Let Mn,m(t) denote the renewal
function (here a vector) associated with the Markov regenerative process (with the
above initial state), i.e., the ith component of the vector Mn,m(t) is the mean number
of visits to the state (n,m) and phase i in [0, t). The following equations hold for
y(n,m, t):

(i) n > 0, m > 0,

y(n,m, t)

=

∫ t

0
dM0,0(u)

∫ t−u

0
dPa(1, 0, v)Pa(n− 1,m, t− u− v)

(
1−H(t− u− v)

)
+

∫ t

0
dM0,0(u)

∫ t−u

0
dPa(0, 1, v)Pa(n,m− 1, t− u− v)

(
1−H(t− u− v)

)
+

n∑
k=1

m∑
l=0

∫ t

0
dMk,l(u)Pa(n− k,m− l, t− u)

(
1−H(t− u)

)
+

m∑
l=1

∫ t

0
dM0,l(u)Pa(n,m− l, t− u)

(
1−H(t− u)

)
; (A.1)
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(ii) n > 0, m = 0,

y(n, 0, t)

=

∫ t

0
dM0,0(u)

∫ t−u

0
dPa(1, 0, v)Pa(n− 1, 0, t− u− v)

(
1−H(t− u− v)

)
+

n∑
k=1

∫ t

0
dMk,0(u)Pa(n− k, 0, t− u)

(
1−H(t− u)

)
; (A.2)

(iii) n = 0, m > 0,

y(0,m, t)

=

∫ t

0
dM0,0(u)

∫ t−u

0
dPa(0, 1, v)Pa(0,m− 1, t− u− v)

(
1−H(t− u− v)

)
+

m∑
l=1

∫ t

0
dM0,l(u)Pa(0,m− l, t− u)

(
1−H(t− u)

)
; (A.3)

(iv) n = 0, m = 0,

y(0, 0, t) =

∫ t

0
dM0,0(u)Pa(0, 0, t− u), (A.4)

where Pa(k, l, t) is the matrix of probabilities of k high-priority arrivals, and l low-
priority arrivals in (0, t). We will explain equation (A.1); the other equations are
special cases. We implicitly take into account information of the state of the arrival
process by considering all quantities to be vectors or matrices. Equation (A.1) is
obtained by conditioning on the last epoch of the Markov renewal process as fol-
lows:

(i) The last epoch of the Markov renewal process is the vector (0, 0) and one of the
two following events occur so that the state at time t is (n,m):

(a) An arrival of high priority occurs first; this packet gets into service and
remains in service. During the service of this packet n − 1 high-priority
packets and m low-priority customers arrive.

(b) An arrival of low priority occurs first; this packet gets into service and remains
in service. During the service of this packet n high-priority packets and m−1
low-priority customers arrive.

(ii) The last epoch of the Markov renewal process is (k, l) with 0 < k 6 n, 0 6 l
6 m. One of the high-priority packets (the first actually) gets into service and
stays in service. During the service of this packet n− k high-priority customers
and m− l low-priority customers arrive.

(iii) The last epoch of the Markov renewal process is (0, l) with 0 < l 6 m. The first
low-priority packet gets into service and stays in service. During the service of
this packet n high-priority customers and m− l low-priority packets arrive.
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As in [26], taking limits as t →∞, and using the key renewal theorem, we get
the following equations for y(n,m) = limt→∞ y(n,m, t):

(i) n > 0, m > 0,

y(n,m) =P (0, 0)
/
T
(
−
(
Dh

0 − λlI
)−1)

Dh
1

∫ ∞
0

Pa(n− 1,m, t)
(
1−H(t)

)
dt

+ P (0, 0)
/
T
(
−
(
Dh

0 − λlI
)−1)

λlI

∫ ∞
0

Pa(n,m− 1, t)
(
1−H(t)

)
dt

+
n∑
k=1

m∑
l=0

P (k, l)
/
T

∫ ∞
0

Pa(n− k,m− l, t)
(
1−H(t)

)
dt

+
m∑
l=1

P (0, l)
/
T

∫ ∞
0

Pa(n,m− l, t)
(
1−H(t)

)
dt; (A.5)

(ii) n > 0, m = 0,

y(n, 0) =P (0, 0)
/
T
(
−
(
Dh

0 − λlI
)−1)

Dh
1

∫ ∞
0

Pa(n− 1, 0, t)
(
1−H(t)

)
dt

+
n∑
k=1

P (k, 0)
/
T

∫ ∞
0

Pa(n− k, 0, t)
(
1−H(t)

)
dt; (A.6)

(iii) n = 0, m > 0,

y(0,m) =P (0, 0)
/
T
(
−
(
Dh

0 − λlI
)−1)

λlI

∫ ∞
0

Pa(0,m− 1, t)
(
1−H(t)

)
dt

+
m∑
l=1

P (0, l)
/
T

∫ ∞
0

Pa(0,m− l, t)
(
1−H(t)

)
dt; (A.7)

(iv) n = 0, m = 0,

y(0, 0) = P (0, 0)
/
T
(
−
(
Dh

0 − λlI
)−1)

. (A.8)

The 2-dimensional transform of y(n,m) yields the desired expression for Y (z,w).

Proof of theorem 7
As in the proof of theorem 6 we can follow a detailed cookie-cutting argument

for the evolution of the distribution of customers in the queue. The resulting equations
are exactly like equations (A.1)–(A.4) in the proof of theorem 6 with the definitions
of Pa(k, l, t) and Mn,m(t) modified to take into account the joint phase of the high-
and low-priority arrival processes. Defining Pa(z,w, t) to be the (double) z-transform
of Pa(k, l, t), we have that Pa(z,w, t) = eD(z,w)t. The Key renewal theorem gives a
limit similar to that obtained in equations (A.5)–(A.8) with the changes given in the
statement of theorem 7. We only have to take into account the changed Pa(z,w, t).
For the renewal function, the dependence on the initial state disappears in the limit
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as a consequence of the Blackwell renewal theorem. The case of lower traffic being
Poisson is obtained as a special case with D(z,w) = Dh

0 − λlIh +Dh
1 z + λlIhw.
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