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In this paper we outline a scheme to perform packet-level scheduling and resource
allocation at the wireless node that takes into account the notions of both efficiency and
fairness and presents a means to explore the trade-off between these two notions. As
a part of this scheme we see the scheduling problem as deciding not just the packet
transmission schedule but also the power allocation, the modulation and coding scheme
allocation and the spreading code determination since the latter three directly influence
the radio resources consumed. Using a utility maximization formulation based on the
data-rates that the mobiles can transmit at, we decide on the weights for a weighted
proportionally fair allocation based scheduling algorithm. We conclude with a simulation
based performance analysis for infinitely-backlogged sources on a UMTS system.

1. INTRODUCTION

The explosion of multimedia services on the Internet is leading to a demand of the same
services in the non-tethered wireless space. There are, however, many peculiarities that
a wireless channel possesses which makes supporting such services much tougher than
on wireline networks. One of the key elements in this is the scheduler used at various
nodes. Scheduling in traditional wireline networks consists mainly of deciding the order in
which users access the channel. This is because it is quite easy to use these channels very
close to their (information theoretic) capacity at any given power (used on the channel).
Thus, it is best to operate at the maximum capacity by using the maximum power all
the time. In addition, the channels, and thus the data rates, are not time-varying either.
On wireless channels, however, there are many considerations which do not allow for such
a mode of operation. The bandwidth available for transmission on a wireless channel
and the power levels allowed (both regulated) put a hard limit on the capacity1. Another
important element is the mobility of the end-user equipment which results in time-varying
multipath and fading. Further, the size, battery power, and processing power of the end
devices place additional constraints on system performance. Limited battery capacity also
makes it necessary to use transmission schemes that would prolong battery life as much as
possible. Finally, the multiuser nature of a wireless channel makes it interference-limited.
Thus, one user transmitting at maximum power could severely impair the transmissions

1The propagation characteristics of the atmosphere, and other media, are also deciding factors for the
band of operation and hence, the bandwidth.



of other users. Thus, using a traditional wireline scheduler is not a good approach on a
wireless channel.

Some of recent developments in wireless link scheduling include the work by Holtzman
[1], Jalali et al. [2], Tse [3], Shakkottai and Stolyar [4], Chawla et al. [5], Leelahakriengkrai
[6], and Berry and Gallager [7]. All of these works show that substantial benefits are
achieved when the higher layers are aware of the radio conditions and can adapt the
powers, the modulation schemes, the coding schemes, and spreading gains (and hence the
data rates) based upon this knowledge. The upshot of this is that scheduling policies
should be devised using the knowledge of channel conditions. In a cellular context there
is an additional benefit to the network layer control of transmission strategies. In such
a situation it is possible to trade capacity among cells (by changing the power levels, for
instance) to alleviate periods of congestion or high demand. From the discussion above it
is clear that a scheduler that jointly performs packet-level scheduling and radio-resource
allocation is the solution for the wireless-link scheduling problem. To be able to implement
such scheduling policies it is necessary to have a system that has controls in place to allow
for changing the transmission parameters easily. The third-generation (3G) technologies
are a first step in this direction. Nanda et al. [8] provide a fairly comprehensive overview
of the 3G technologies and how they have been designed with multimedia-type services
in mind. In all proposals it is possible for connections to not only choose from a variety
of data rates but also change the data rate in a flexible and quick fashion. There is
also added feedback, in terms of more frequent error and measurement reports, which in
conjunction with flexible data rate allocation, can in turn be used for a better monitoring
of QoS guarantees and provisioning of resources.

Since the radio resource is quite expensive the efficient management of this resource is
critical. This, however, cannot be the only concern when QoS parameters have been agreed
to for various users and when the operator is obliged to uphold them. Thus, it is imperative
to have some fairness in the arbitration of resources amongst the various users. In this
paper we outline a scheme to perform packet-level scheduling and resource allocation
at the wireless (access) node that takes into account the notions of both efficiency and
fairness and presents a means to explore the trade-off between these two notions. This
trade-off between efficiency and fairness was not a concern of earlier cellular systems
because voice was the major application and thus, only coverage (which is in reality
just another terminology for fairness) was critical. It is only with the emergence of the
3G technologies and packetized data services that such a trade-off makes any sense. In
wireline networking there are two broad philosophies when QoS provisioning is considered.
One follows the IntServ approach and attempts to provide strict QoS guarantees [9].
Another approach uses the ideas in DiffServ to provide a class-based differentiation of
services [10]. Differentiated services are supported through various per-hop-behaviors
(PHBs) in DiffServ capable networks. For instance, expedited forwarding (EF) is aimed
at supporting real-time applications such as video conferencing. Other PHBs, such as
assured forwarding (AF) [11] and best effort (BE), support non-real-time applications
that do not require strict delay guarantees. AF can further have different services, for
instance, Gold, Silver, and Bronze services.

The work in [4,6] is more in the IntServ context and they schedule users based upon their
current backlog to satisfy statistical delay guarantees. With such scheduling mechanisms



one needs a good admission control policy and policing mechanism in place. The work in
this paper is based on the DiffServ philosophy where we provide a differentiation based
upon both class and channel-state. Further, we restrict our attention to non-real-time
(rate-adaptive) services. The reason we choose to provide a service differentiation based
upon channel-state is because this determines how much network resource is utilized by
the application. This is very much in keeping with similar differentiation in wireline
networks with protocols like TCP using quantities like round-trip time estimates and
hop-count as surrogates for measuring how much of the network resource is utilized by
various applications. The work in [1–3,5] also adheres to the DiffServ philosophy. In
the proposed algorithm in this paper we suggest a flexible way of trading off efficiency
for fairness as well as a flexible means of exploiting temporary fluctuations in channel
conditions.

In Section 2 we give a detailed introduction to the wireless link scheduling problem.
Thereafter, we introduce a related resource allocation problem in Section 3 and present
our scheduling algorithm in Section 4. A performance analysis of the algorithm with
infinitely-backlogged sources is discussed in Section 5. Finally, we conclude in Section 6.

2. THE WIRELESS LINK SCHEDULING PROBLEM

Consider a cellular system. In a given cell b let Jb be the set of users on the downlink.
Time is slotted into radio blocks (in GPRS and EDGE) or frames in (cdma2000 and
UMTS) of fixed duration (20, 10, or 3.33 ms depending on the technology). We shall refer
to these time slots as frames hereafter. The wireless link scheduling problem is one of
deciding which of these users transmit in each frame. In a TDMA system like GPRS and
EDGE only one user is allowed to transmit in a frame, whereas in a CDMA system like
cdma2000 or UMTS multiple users may transmit in a frame. When a user transmits, we
also need to decide what power level, modulation and coding scheme, time slot (in case
of TDMA) and spreading factor (in case of CDMA) it will use.

Due to different base site to user distances, shadow fading and multipath, the channel
conditions of different users vary with time. This fluctuation in channel conditions results
in a variation of the effective data rate (per channel per unit power) R̂j(t) available to
the different users j ∈ Jb in different frames t = 0, 1, . . .. This effective data rate per
unit resource may be calculated in a variety of ways. We outline two simple ones below.
Consider the signal to interference plus noise ration (SINR) of user j

SINRj(t) =
Pj(t)Gjj(t)∑

i6=j Pi(t)Gij(t) + σ2
, (1)

where Pj(t) is the transmit power of user j, σ2 is the receiver noise variance and Gij(t) is
the energy gain from base station of mobile station i to mobile station j. Once SINRj(t)’s
are available for the users (either using the above formula or direct measurements), one
can compute the data rates and frame error rates (FER) corresponding to different choices
of modulation and coding schemes (MCSs) and/or spreading factors (SFs). Hence, one
can find the choice of MCS and/or SF that maximizes Rj(1−FER), where Rj and FER
are the data rate and frame error rate of user j corresponding to the MCS and/or SF,
respectively.



In case of a TDMA system where we do not share the transmit power of the base station
across multiple users in the same frame, we may consider the transmit power fixed. In
this case the resulting optimum above may be considered to be the effective data rate per
unit resource R̂j(t).

In a CDMA system we may consider the energy per bit to noise power-spectral-density
ratio (Eb/N0) given by:(
Eb
N0

)
j

(t) =
W

Rj(t)
SINRj(t) =

W

Rj(t)

Pj(t)Gjj(t)∑
i6=j Pi(t)Gij(t) + σ2

(2)

where W is the channel bandwidth and W/Rj is user j’s spreading factor. As a surrogate
to controlling the FER we may attempt to satisfy an Eb/N0 target Γj. Let the smallest
bit rate allowed (corresponding to the largest SF) be Rmin. We may think of this as a
CDMA channel. Then we can define the effective data rate per channel per unit power as

R̂j(t) =
Rj(t)/Rmin

Pj(t)
=

W

RminΓj

Gjj(t)∑
i6=j Pi(t)Gij(t) + σ2

(3)

What follows does not depend on precisely how R̂j(t) is defined and measured. The
key idea is that it will be monotonically increasing in the users’ own channel gain and
decreasing in interference plus noise.

Let Mb channels be available and let Pb be the power available per channel at base site
b. In each frame t we have to decide what fraction ρj(t) > 0 of the resources (channels
and powers) will be allocated to the different users j ∈ Jb;

∑
j∈Jb ρj(t) ≤ 1. In which case

it gets a throughput rj(t) = R̂j(t)ρj(t)PbMb (if all of the channel and power resources are

given to user j, then it would get a throughput rj = R̂j(t)PbMb). Typically there will be
additional constraints on ρj(t) depending on the technology as described below.

In a TDMA system, like GPRS or EDGE, Mb denotes the number of time slot channels
available (Mb = 1, . . . , 8). One and only one user can transmit in a time slot in a frame,
so ρj(t)Mb must be an integer. Additional restrictions on allocation of time slots to users
may further constrain ρj(t).

In a CDMA system like cdma2000 or UMTS, Mb may be the number of spreading codes
(a code representing the smallest data rate allocation Rmin) available and Pb be the power
per code available, in which case MbPb is the total power budget at base site b. Let fj(t)
be the fraction of spreading codes given to user j and let pj(t) be the fraction of per code
power to be used by user j. Then fj(t)Mb will be the number of codes given to user j and
must be an integer (it may even have to be a power of 2). pj(t) may be an arbitrary real
number; pj(t)Pb will be the power per code and fj(t)Mbpj(t)Pb the total power given to
user j. We may require that the power per code given to user j be such that it satisfies
a certain Eb/N0 target (2). Of course we will need that

∑
j∈Jb fj(t)Mbpj(t)Pb ≤ MbPb or

that
∑
j∈Jb ρj(t) ≤ 1, where ρj(t) = fj(t)pj(t).

In summary, the wireless link scheduling problem requires that in each frame t we
decide what fraction ρj(t) ≥ 0 of the resources (channels and powers) will be allocated
to the different users j ∈ Jb;

∑
j∈Jb ρj(t) ≤ 1, in which case it gets a throughput rj(t) =

R̂j(t)ρj(t)PbMb. Since R̂j(t) varies with both the user and time we would like to do
the scheduling in such a way that we capitalize on these variations to get high system
throughput while providing some level of QoS differentiation.



3. BASIC ALGORITHM

In the previous section we have considered the resource allocation problem on a frame-
by-frame basis. This requires that the number of resources allocated to the users need be
an integer. However, in the following sections as a first step of designing the scheduling
algorithm we relax this constraint and consider the framework where we are interested
in finding the fraction of resources to be allocated to the users over a sufficiently large
period.

Given the effective data rate per unit resource R̂j of the users as described in Sec-
tion 2 we compute the fraction of the resources that will be allocated to each user j for
transmission by solving the following optimization problem:

max
ρj

∑
j∈Jb

Uj(ρjR̂jPbMb) (4)

subject to
∑
j∈Jb

ρj ≤ 1

ρj ≥ 0,

where Uj(·) is the utility function of user j as a function of the throughput it receives. The
optimization problem in (4) computes the solution that maximizes the aggregate utility
of the users given the resource and non-negativity constraints.

We first characterize the solution of (4) with the most commonly used utility functions
of

Ui(ri) = fα(ri) =

{
sgn(α) · rαi , if α 6= 0, α < 1
log(ri), if α = 0.

(5)

With the utility functions of fα(·), one can show that the solution of the optimization
problem in (4) is given by

ρj =
(R̂j)

β−1∑
k∈Jb(R̂k)β−1

∝ (R̂j)
β−1, (6)

where β = 1
1−α . Note that if α is greater than zero, the allocation favors users with higher

R̂j, and if α is less than zero, the allocation favors users with lower R̂j. The value of α
equal to one leads to efficiency only solution in that all slots are allocated to the users
with the highest R̂j, while a value of α close to −∞ yields a fairness only solution in that
every user receives approximately the same rate. In this sense the parameter α controls
the extent to which this bias is enforced and hence how efficiency, i.e., throughput, is
traded off in favor of fairness.

After computing the solution ρ∗ to (4) we compute the credits Cj for the users, where

the credit of user j is Cj = ρ∗j · R̂j. Note that the credit, Cj, of user j would be the
throughput of the user normalized by PbMb if it indeed received ρ∗j of the resources.
However, due to various system constraints a user’ throughput may differ from its credit.
For instance, in EDGE users are placed on one or more time slots, depending on whether
they are single or multiple slot capable. A user’s actual rate depends both on its ρ∗j
and time slot configuration. In a CDMA system users may have maximum data-rate



constraints or maximum power constraints. Incorporating these system constraints into
the optimization problem leads to a weighted proportionally fair2 (WPF) allocation [12,
Eqn. (2)] with weights Cj

R̂j
as proved in the following proposition.

Proposition 3.1 The weighted proportionally fair rates with the weights Cj
R̂j

s are also

the optimal solution to the problem in (4) with the addition of the system constraints
mentioned above.

Proof: See [13].

4. THE CLASS AND CHANNEL CONDITION BASED WEIGHTED PRO-
PORTIONAL FAIR (C3WPF ) SCHEDULER

In our algorithm that is described in this section we use users’ credits to allocate
the available bandwidth. The idea behind the algorithm is to mimic the behavior of
weighted fair queueing (WFQ) without explicitly computing the virtual times for the
arriving protocol data units (PDUs). The credits Cj are similar to the weights φj in
WFQ. We show that our algorithm leads to a weighted proportionally fair (WPF) rate
allocation in the sense that the users that have the same set of bottlenecks or system
constraints receive rates that are proportional to their credits.

We first consider the simple case where the channel conditions and thus the effective
data rates per unit resource of the users are time-invariant so as to explain the key idea
behind our algorithm. Then, we describe the actual algorithm that uses the values of
current and average effective data rates per unit resource of the users.

4.1. A Simple Algorithm for Time-invariant Channels
Each user has a traffic class associated with its connection. For instance, in EDGE

there are six traffic classes: conversational, streaming, interactive best-effort (I1, I2, and
I3), and background best-effort. Associated with each traffic class is a weight w. This
weight may reflect the price charged to the traffic class per unit time of usage [14,15] and
is used in the computation of credits in order to provide differentiated services among the
traffic classes.

The scheduling algorithm described below attempts to deliver throughtputs propor-
tional to credits Cj = wjR̂

β
j , which reflects both users’ traffic classes and channel con-

ditions. However due to additional constraints on slots, powers, codes, etc., this precise
proportion may not be obtainable. We would therefore like to obtain the weighted pro-
portional fair (WPF) solution with weights equal to the credits. In order to achieve this
we use the following algorithm described below:

Let Wj(t) be the total throughput of user j up to time t. Let W̄j(t) := Wj(t)/Cj
be the throughput normalized by credits. At time t + 1 we sort users in increasing
order of their W̄j(t). The scheduler then picks the user at the front of this list and
schedules it for transmission in frame t + 1. At the same time it determines the channel
and power resources needed for this user. Should resources remain, it goes down the

2A vector of rates r∗ is said to be weighted proportionally fair with weights p if and only if it is feasible
and for any other feasible rate vector r it satisfies

∑
j pj

rj−r∗j
r∗
j
≤ 0.



sorted list, in order, to select additional users for transmission in that frame. Users
selected for transmission should obviously have data to send in that frame. Note that
by favoring users with low W̄ (t) for transmission, this algorithm tries to equalize the
normalized throughputs W̄j(t) over all users j ∈ Jb as time t→∞ so as to get throughputs
proportional to their credits Cj. However as mentioned earlier this may not be feasible due
to additional constraints. The best achievable in that case would be the WPF throughput
allocation in the sense that the users with the same system constraints would receive rates
proportional to their credits. We show below that this algorithm does deliver the WPF
throughputs asymptotically.

Proposition 4.1 The average throughputs of the users, i.e., Wj(t)

t
, converge asymptoti-

cally to the weighted proportionally fair rates with the weights Cj
R̂j

s as t→∞.

Proof: See [13].
From this we have the following corollary.

Corollary 4.1 The average throughputs of the users, i.e., Wj(t)

t
, converge asymptotically

to the optimal rates as t→∞.

Note from the definition of the credits that two users with the same channel conditions
(R̂js) can ask for different service based upon the weight of the class they subscribe to.

4.2. The Actual Algorithm for Time-varying Channels
In the algorithm described above we have assumed that the channel conditions, as

captured in the effective data rate per unit resource R̂j, do not vary with time. We
now describe the actual algorithm that can take advantage of the time-varying channel
conditions of the users to improve the system throughput. The key change is in the
values of R̂j used above and in the update equation for W̄j. Let R̂j(t) be the current

effective data rate per unit resource based on current channel conditions. Let R̂av
j (t) be

corresponding average obtained using geometric IIR filtering, i.e.,

R̂av
j (t+ 1) = ψ · R̂av

j (t) + (1− ψ)R̂j(t) . (7)

The credits calculated use both R̂j(t) and R̂av
j (t) as

Cj(t) = wj(R̂
av
j (t))β

 R̂j(t)

R̂av
j (t)

γ = wj(R̂
av
j (t))β−γ(R̂j(t))

γ = C1
j (t)C2

j (t) , (8)

where 0 ≤ γ ≤ β. The value of γ should depend on how accurate or reliable R̂j(t)’s
are. We use different factorizations of Cj(t) into C1

j (t) and C2
j (t) to construct different

scheduling algorithms.
Let Dj(t) be the amount of data transmitted in frame t for user j. W̄ is updated as

per the following algorithm.

W̄j(t+ 1) = φ · W̄j(t) + (1− φ)
Dj(t)

C1
j (t)

(9)



In keeping with the algorithm described earlier, at the beginning of time frame t+ 1, we
sort users in increasing order of W̄j(t + 1)/C2

j (t) and select users for transmission based
on available resources.

Currently we have three different scheduling algorithms:

• Variant 1: For this we use C1
j (t) = Cj(t) and C2

j (t) = 1.

• Variant 2: Here we use C1
j (t) = wj(R̂

av
j (t))β and C2

j (t) = ( R̂j(t)

R̂av
j (t)

)γ.

• Variant 3: Here we use C2
j (t) = Cj(t) and C1

j (t) = 1. Note that this resembles
the algorithm analyzed earlier; the time-invariant credit value is substituted by a
time-varying definition of credit.

Note that choosing the credits as described above does two things. Since the effective
data rate per unit resource R̂j(t) is time varying, it uses an estimate R̂av

j (t) for its average.
The estimate is based on an IIR filter; other estimates may easily be substituted. If we
set γ = 0 above, then we will simply be biasing the throughput in proportion to this
average (raised to the power β). However, by dividing by non-unity values of the factor
C2(j(t) (in variants 2 and 3), we tend to favor those users that have better channel
conditions relative to their own average conditions. This second idea is also exploited in
the scheduling algorithms proposed by Holtzman [1], Tse [3], and Jalali et al. [2]. In
fact the algorithm proposed is similar to Variant 3 proposed above with β = γ = 1. One
major difference is that they use a time-average computation of W̄ instead of the IIR filter
estimator in (9). The time constant in the IIR filter estimator for the average must be
chosen depending on how frequently channel condition measurements are available and
the time constants involved in the channel fluctuations (distance based path loss, shadow
fading, and fast fading).

5. PERFORMANCE ANALYSIS

In this section we describe our experiments with the proposed scheduling algorithm.
In addition to evaluating the performance of the algorithm in a simplistic setting, we
are also interested in comparing the performance of a scheduling algorithm that is aware
of the channel conditions with a scheduling approach that does packet-level scheduling
separate from radio-resource allocation. Henceforth in this document we refer to the class
of schedulers that are not aware of channel conditions as split-schedulers. The specific
split-scheduler that we consider is one that tries to equalize the data rates that all the
users get. Note that this can be easily achieved in the framework of our algorithm by
setting β = 0. This is equivalent to a WFQ scheduler with equal weights. Throughout
the performance analysis section we concentrate on a UMTS system.

5.1. Simulation Set-up
In this sub-section we describe the set-up for our performance analysis. First we de-

scribe the physical constraints, and thereafter the network-level characteristics like traffic
sources, fragmentation and ARQ-mechanisms.

We consider a system with 25 cells, which use the same carrier and the same sector,
and 15 mobiles in each cell. The positions of the mobiles are chosen at random, spatially



Table 1
Parameters used for UMTS simulation experiments.
Number of data mobiles per cell 15
Number of voice users per cell 32
BTS max. transmit power 40 dBm = 10 W
Non-orthogonality factor α 0.4
Allowed bits / frame 2400, 1800, 1200, 600, 300
Max. total bits / frame 14400 (3/4 of code tree)
Power consumed by overhead channels 30% of BTS power
Inter Base-site spacing 2800 m
Shadow Fading off
Simulation time 25 s
Chip rate 3.84 Mcps
System bandwidth 5 Mhz
Noise Power 1.214× 10−10 mW = −99 dBm
Mobile speed 3 km/h

uniform in an annulus that extends half-way into the cell starting from the edge of the cell
and kept fixed for the entire simulation. The UMTS frames are 10 ms in duration. Since
the system is a CDMA system we use a reuse factor of one and for simplicity also assume
that we have no sectorization. We model fast fading using the Jakes simulator [16] but
do not incorporate log-normal shadow fading terms in the propagation loss coefficients.
Each cell has a power budget that cannot be exceeded. A part of this power budget is
consumed by control channels. After allocating power to the control channels we allocate
non-zero power values, such that their sum does not exceed the remaining power budget,
to the voice users and then add the data users in one at a time using the W̄ ordering.
In addition to a power-budget we also have a code-allocation check that checks to see if
a valid code is available. For all our simulation experiments we assume that there are
32 voice users in the system. Open-loop power control on a fast time-scale (1500 Hz)
is also implemented in the simulations. The parameters used for the experiments are
summarized in Table 1.

We assume that all the sources for our experiments are infinitely back-logged sources.
We also assume that we get instantaneous feedback for the transmissions on the wireless
channel and the erroneous frame is immediately put back at the head-of-the-line for
transmission. Thus, we are assuming that our ARQ mechanism transmits packets till
they are correctly received. The ARQ mechanism also reacts instantaneously to bearer-
type (data rate) changes recommended by the power-budget calculation and code-check
algorithm fragmenting in a way such that it transmits the right number of bits in each
frame.

5.2. Simulation Experiments
In this set-up we try β = 0, 1, and 2, which would allow us to compare the split round-

robin scheduler (β = 0) with a scheduler that uses U(x) = log(x) (β = 1) as the utility
function and another that uses U(x) =

√
x as the utility function (β = 2). We also seek



Table 2
Comparison of throughput per cell - mean and standard deviation - for different values
of β and variations of the scheduling algorithm. In the case of “Variant 1 - shuffling”,
“Variant 2” and “Variant 3”, γ = 1, for β = 1, 2; and for β = 0, γ = 0. The maximum
throughput possible is 1.44 Mbps.
β Variant 1, γ = 0 Variant 1 - shuffling Variant 2 Variant 3
0 294.39, 5.83 Kbps 294.39, 5.83 Kbps 294.39, 5.83 Kbps 294.39, 5.83 Kbps
1 353.14, 7.97 Kbps 385.84, 8.85 Kbps 421.82, 9.27 Kbps 442.36, 9.77 Kbps
2 423.43, 10.00 Kbps 457.74, 10.83 Kbps 480.86, 10.95 Kbps 522.15, 11.73 Kbps

Figure 1. Distribution of individual user throughputs for Variant 1 with γ = 0.

to document the improvements obtained using knowledge of current channel conditions
while making the scheduling decisions. The answers we seek are the rate-distance profiles
in each cell, the user throughput distribution as well as sum throughput average and
standard deviation (across multiple runs) per cell.

For the first set of experiments we assume that we do not have the knowledge of the
current channel but only the knowledge of the average channel conditions obtained by the
IIR filter (7). We also assume that the average rate per unit resource R̂av(t) is available
to the scheduler once in 10 frames, i.e., once in 100 ms. In Table 2 this case is listed under
“Variant 1, γ = 0.” In Figure 1 we plot the distribution of individual user throughputs.
As expected the distribution gets more skewed as we increase β. An important point to
notice is that sacrificing a little bit for a user with a bad channel we can substantially
increase the throughput of the good user. In Figure 2 we plot the rate-distance profile
that is achieved in one cell.

For our next set of experiments we assume that we know the current channel conditions
and we use Variant 1 of the scheduling algorithm with γ = 1 for both β = 1 and β = 2.
The case of β = 0, γ = 0 is included for comparison. Thus, in the case of β = 2 scheduling



Figure 2. Typical rate-distance profile for Variant 1 with γ = 0.

is based on both the current and average channel conditions whereas for β = 1 it is based
only on the current conditions. In Table 2 this case is listed under “Variant 1- shuffling.”
Figures 3 and 4 display the same quantities as in the earlier two figures respectively.

For our final set of experiments we consider Variant 3 of the scheduling algorithm with
γ = 1 for β = 1, 2. Variant 3 with β = γ = 1 is similar to the algorithm proposed in
[1,3,2]. An important difference is that the algorithm in [1,3,2] allows for only one user
per frame. With maximum power constraints or maximum rate constraints this would be
wasteful of power. They also concentrated on a CDMA2000 system with 3.33ms frames.
In our simulation of their algorithm we allow for many users to be scheduled during each
frame and, in addition, use an IIR filter estimate of W̄ . This falls under the case of β = 1
and γ = 1. In Table 2 this set of experiments is listed under “Variant 3.” Figures 5 and
6 once again plot the same quantities as in Figures 1 and 2, respectively.

We see from Table 2 that the system throughputs increase dramatically with the knowl-
edge of channel conditions. It is interesting to note that with the knowledge of current
channel conditions the throughput of the worst user (in terms of distance) also improves.
Thus, a scheduler that does not use the knowledge of channel conditions has very poor
performance. We expect Variants 2 and 3 to outperform Variant 1. A close inspection
of Variant 1 reveals that the current channel conditions are only reflected for users who
get scheduled. On the other hand for the other two variants the relative gains of all the
users are accounted for in each scheduling step. It is interesting to note that Variant 3
performs the better than Variant 2. Note that all three variants of the algorithm rely on
an IIR filter for R̂av and W̄ calculation. The time constants in those updates need to be
chosen in a way that best captures the other time-scales in the system. This needs to be
quantified by further analysis and simulation.



Figure 3. Distribution of individual user throughputs for Variant 1 with γ = 1 for β = 1, 2
and γ = 0 for β = 0.

6. CONCLUSION

We have proposed a scheduling algorithm that provides a flexible means of trading
off efficiency for fairness as well as a flexible way of exploiting temporary fluctuations in
channel conditions. The efficiency-fairness trade-off is based on a utility optimization with
appropriate choices of utility functions and thus β parameters. The exploitation of the
variation in channel conditions is based on biasing the algorithm with the γ parameter, in
favor of users with better relative current channel condition. The analysis shows that with
an appropriate choice of utility function a substantial gain in system throughput can be
achieved while maintaining reasonable fairness amongst the users. The performance can
be further improved by using the current channel conditions in the scheduling decisions.
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