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Abstract - This paper addresses the capacity of wide 
sense stationary uncorrelated scattering (WSSUS) fad- 
ing channels. Associated with a given input signal we 
define a quantity called the “fourthegy” of the signal, 
relative to a given WUSSUS channel. The name is 
inspired by the fact that the measure is fourth order 
in the input signal amplitude. The fourthegy depends 
on the signal through its ambiguity function, and on 
the channel through a simple channel response func- 
tion. The maximum possible mutual information for 
the channel per unit fourthegy is found. 

Roughly speaking, the fourthegy is a sum over 
time and frequency bins of the local signal energy 
squared. The fourthegy-to-energy ratio of direct- 
sequence spread spectrum signals is inversely propopor- 
tional to bandwidth. Therefore, for such signals, the ca- 
pacity per unit energy (or the capacity per unit time for 
fixed power) tends to zero as the bandwidth increases. 
This does not happen to signals that are more bursty 
in time-frequency space, such as frequency-hopped sig- 
nals or M-ary Frequency Shift Keyed signals. A similar 
result was found by Gallager and Medard for a less con- 
ventional channel model. Numerical evaluation of the 
bound shows it to be informative only for rather large 
bandwidths. 

I. WIRELESS CHANNEL MODELS 
A time-varying linear model of a wireless channel is adopted. 

The output y(t) of the channel is given by 

where u(t) is the input, h(t ,  T )  is the time-varying channel trans- 
fer function, and n( t )  is white Gaussian noise. It is assumed that 
h(t ,  T )  for fixed T is a wide-sense stationary (WSS) process, that 
h(t ,  T )  is a Gaussian random process. Uncorrelated scattering 
(US) is also assumed, meaning that the variables h( t ,  T )  for dif- 
ferent values of T are uncorrelated. 

11. CAPACITY A N D  RELIABILITY FUNCTION PER UNIT 
COST 

Gallager[2] in his seminal work discussed energy limited chan- 
nels, i.e., channels where the energy per degree of freedom is 
very small. Restricting the input to binary signals he computed 
the reliability function [I] per unit cost. The cost could be the 
energy or could be something else, but it is assumed that some 
input 0 has zero cost. Gallager showed that the reliability func- 
tion per unit cost is given by, 
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where cost(u) is the cost associated with input U,  and A = 
dPYIu=u/dPYIU=O is the likelihood ratio of the input U with 
respect to the 0 input. VerdQ’] considered capacity per unit 
energy cost and showed that 

where D(.ll .)  is the Kullback-Liebler distance between measures. 

111. CAPACITY AND RELIABILITY FUNCTION 
CALCULATIONS 

Consider signaling over a time interval of duration T ,  with 
T much larger than the coherence time and maximum delay 
spread of the channel, so that the capacity per unit time (or 
per unit energy or per other units) over the time interval is 
representative of the corresponding long-term capacity. Let 
a WUSSUS channel be given by (1) such that h is complex- 
valued and Gaussian with mean zero and autocorrelation func- 
tion R H ( t  - s, T ) ~ ( T  -U) = E[h(t ,  ~ ) h * ( s ,  U)], and suppose n ( t )  
is white, complex-valued Gaussian noise with one-sided power 
spectral density 6’. We also constrain the input waveforms to 
have finite energy. 

Equation (1) can be written in the following manner 

where, given U,  so,t ( t )  is a complex-valued, zero mean Gaussian 
random process independent of n( t )  with covariance function 
given by C(s, t )  = E [ s , , t ( s ) ~ ~ , ~ ( t ) ] .  Let { X ; } ~ o  be the eigen- 
values of the covariance operator, E. Mercer’s theorem using 
the Karhunen-Loeve expansion yields a simple expression for 
D ( P ~ X = ~ I I P ~ I X = O )  and A in terms of the eigenvalues. 

Capacity per unit fourth-moment cost 

Define the fourthegy of an input signal U by Jc(u) = 
A?. ’ Another representation for the fourthegy Jc( U )  

IS 

J C ( U )  = s, JI Ix(4 T ) I 2 4 H ( 4  T)dTdV, (5) 

where x ( r , v )  is the symmetric ambiguity function [5]  of the 
signal u(t) which is defined as follows 

u(t 3- T / 2 ) U * ( t  - ~ / 2 ) e - ” ” ~ ~ d t ,  ((I;) 

‘Admittedly the name “fourthegy” lacks luster, but we feel t ha t  a 
postive sounding name, like energy, is needed, rather than a negative 
sounding name, like fourth moment cost. Our bounds show tha t  a 
certain amount of fourthegy is needed per bit for diffuse \VUSSIJs 
fading channels, just  as  a certain amount of energy per bit is needed 
for either WUSSUS or additive Gaussian channels. 
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and where the channel response function +H(T ,  v) is given by 

Note that the fourthegy Jc(u) is fourth-order in the signal in- 
put, and that Jc(u) captures both time and frequency aspects 
of the signal. It can be shown that Jc(u) 5 G&JIu(t)l4dt 
and similarly that Jc(u) 5 G& IU(f)14a’f where U ( f )  is the 
Fourier transform of u(t). We can, thereafter, show the follow- 
ing 

(7) 

Considering Jc(u) as a cost function and applying the result 
of Verdh [7] we can derive the capacity of the channel per unit 
fourthegy. 

Theorem 111.1 The capacity per unit fourthegy, C J ,  of the 
WSSUS fading channel i s  given by 

A s  a consequence we have for any input random process U ,  

where Y is the output random process and the expectation i s  
carried out with respect to  the measure of U .  

A point that we must emphasize here is that Kennedy [4] 
defines the number of effective diversity paths, D to be the 
reciprocal of Jc(u). In [4] U is the M-ary FSK waveform while 
here it is the on signal for on-off keying. Thus, D increasing 
without bound implies that Jc(u) decreases to zero and the 
result of the error exponent going to zero in [4] is mirrored by 
the mutual information between the input and the output going 
to zero. 

Before going to the next topic we state an important p rop  
erty of ambiguity functions. The volume invariance property [5] 
states that 

Note also that Ix(v, .)I 5 x(0,O) = E(u).  

Reliability function per unit fourthegy 

We can show that E,(k) is given as follows 

It is interesting to note that we get an expression for the reli- 
ability function which does not depend on the channel except 
through rn’. Also, the shape of the reliability function is exactly 
that of the reliability function per unit energy for an infinite 
bandwidth AWGN channel [l, p. 3811. 

IV. APPLICATIONS TO DS-CDMA CAPACITY 

We concentrate on DS-CDMA signals of the type 

N-1 

where a, are i.i.d., zero-mean, complex-valued random variables 
and s ( t )  with support [0, Tc] is the chip waveform. All moments 
and integrals that appear are assumed to be finite. Using the 
result in Theorem 111.1 we consider E[Jc(u)] and from Equa- 
tion ( 5 )  it suffices to concentrate on E[ l~ ( r ,v )1~] .  From the 
independence and zero mean assumptions for the ans we get 
the following 

E[lx(y,~)l’l = [ 1’1’ Cf;’,,, (N-lml) exp(--12~mvT=) 

tN(EIIan l41--E[lan l’l’)] I X S  (~,r)l’ 

t E[lan 1212 (N-m)(lX.(u,r+mT,) I’+lx. ( Y , ~ - ~ T c )  1’: 

= [ E [ l ~ ~ 1 2 1 2 ( ~ ~ ) ’ + N ( E [ I ~ n 1 4 1 - E [ l ~ ~ 1 2 1 ’ )  1 Ix.(v,r)l’ 

t E[lan l’l’ (N-m)(lxs(u,rtmT,)IZtlx,(u,r-mT,) 1’: 

where xe(v , r )  is the ambiguity function of s ( t ) .  If s ( t )  is a 
rectangular pulse, then 

Ixs(v, .)I = (Tc - l.l)tl.~nc[v(Tc - 1.1)11, 
where xt = max(x, 0). The general form of the ambiguity func- 
tion is used to devise simpler upper bounds on the capacity. 

Bound on CDMA capacity per unit time 

We would like to obtain a bound on the DS-CDMA capacity 
per unit time. For this we need to let T tend to infinity. For 
simplicity, take a separable channel, i.e., a channel for which 
each path fades similarly. Thus, we have 

 RH(^, .) = R H , F ( ~ ) & , T ( T ) .  and 

$ J H ( ~ , T )  = + H , F ( ~ ) + ’ R , T ( T ) .  

We also assume that st R H , T ( t ) d t  = 1. The expected rate of 
the fourthegy is upper bounded by 

E t J  (Wl 5 [ 
E [ I ~ ,  1’1’ I R H , F ( ~ T = ) I ’ T =  1 IimT-+m $ 

x JrljT, + ~ , ~ ( r ) d r  

x J,r,5Tc + H , T ( T ) ~ ~  

t T ~ ( E I l ~ n l 4 l - - E ~ l ~ ~ I 2 l 2 )  s, + H , F ( u ) ~ ~  (14) 

t ~ T ~ E [ l a n I ’ l ~  s, + H , P ( . ) ~ U ~ ~  + H , T ( T ) ~ ~ .  

Note that we need IRH,F(~T,)I’ < CO for the bound 
to be finite. We also need the sum to well-behaved in T,. I f  
S H , F ( ~ )  is band-limited with bandwidth Fd, i.e., if there is finite 
maximum Doppler spread, then by the sampling theorem we 
have 

t W  

for all T, 5 L. 
bound is infinite for the Clarke spectrum. 
show that 

Also note that S , $ ~ , F ( v ) d v  = GL. 

+ CO in this case. 

This 
Moreover, we can Fd  
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Figure 1: Plot of the upper bound for different values of a. 

We now plot the bound given in Equation (15) and compare 
it with the capacity of the AWGN channel. We fix 6 where 
P is the receive power, to compare various channels. In terms 
of our symbols P = E[IU,,~~] and NO = a’. The channel gain is 
assumed to be 1. We take 6 = 1.15 x lo5 H z .  This numerical 
value is obtained by considering a typical IS-95 CDMA cellular 
system, corresponding to $ = 6 dB and bit rate 28,800 bps. 
We take the distribution accross path delay to be uniform over 
[O,T,, where the maximum path delay is taken to be T, = 

seconds, and the maximum maximum doppler frequency 
is taken to  be Fd = 200 Hz. The channel power spectral density 
for a given path is assumed given by: 

where a is a parameter with 0 5 a < 0.5. The well-known 
Clarke spectrum for uniform angles of arrival in two dimensions, 
is the limiting case a = 0.5 (for which case our upper bound is 
infinite.) 

Figure 1 shows the upper bound on the mutual information 
per unit time as a function of signal bandwidth, for different 
valudes of a. The region of interest is when the upper bound falls 
below the capacity of an AWGN channel with the same &. The 
figure illustrates that for any a with 0 5 a < 0.5, the capacity 
tends to zero as the bandwidth tends to infinity. However, the 
rate of convergence of the bound it rather slow. For example, 
if a = 0 (corresponding to a flat power spectrum for each path 
delay T ) ,  then the capacity upper bound based on fourthegy 
crosses the upper bound based on energy considerations only 
for signal bandwidths in excess of 500 MHz. 

Specular Multi-path channels 

In this subsection we concentrate on specular WSSUS multi- 
path fading channels. Since we are considering a Gaussian chan- 
nel we only need to specify the correlation function, RH(t,T). 
For an L-path specular WSSUS multi-path channel we have the 
following form for  RH(^, T ) ,  

L 

(1.5) 

where {TI ,  ~ 2 , .  . . , T L }  are the time-offsets of the various multi- 
path components. We can write the following expression for 

Now letting T, tend to 0, we get 

If we now assume that all paths have equal energy, then pi = 
and E,”=, p: = i. Therefore, the capacity per unit time is in- 
versely proportional to the number of paths. Specializing to the 
case of Telatar and Tse [SI with Gaussian fading and realizing 
that E[Ian121 = P and  RH(^) = l t - ~ ~ ~ h ~ ~ ~ ~ ~ ~ , ~ ~ ~ h ~ ~ ~ ~ ~ ~ ~ ( t )  where 
Tcoherence is the coherence time of the channel, we can recover 
their upper bound on the capacity per unit time for very large 
spreading factors, namely, r. P a  T 
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