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Capacity and Reliability Function for Small Peak
Signal Constraints

Bruce Hajek, Fellow, IEEE,and Vijay G. Subramanian, Member, IEEE

Abstract—The capacity and the reliability function as the
peak constraint tends to zero are considered for a discrete-time
memoryless channel with peak constrained inputs. Prelov and
van der Meulen showed that under mild conditions the ratio of
the capacity to the squared peak constraint converges to one-half
the maximum eigenvalue of the Fisher information matrix and
if the Fisher information matrix is nonzero, the asymptotically
optimal input distribution is symmetric antipodal signaling.
Under similar conditions, it is shown in the first part of the
paper that the reliability function has the same asymptotic shape
as the reliability function for the power-constrained infinite
bandwidth white Gaussian noise channel. The second part of the
paper deals with Rayleigh-fading channels. For such channels,
the Fisher information matrix is zero, indicating the difficulty
of transmission over such channels with small peak constrained
signals. Asymptotics for the Rayleigh channel are derived and
applied to obtain the asymptotics of the capacity of the Marzetta
and Hochwald fading channel model for small peak constraints,
and to obtain a result of the type of Médard and Gallager for
wide-band fading channels.

Index Terms—Fisher information, peak constraints, Rayleigh
fading, reliability function, Shannon capacity.

I. INTRODUCTION

CONSIDER a discrete-time memoryless channel with input
alphabet equal to the-dimensional Euclidean space

for some and output space an arbitrary measurable space.
Assume that given a symbol is transmitted, the output has
density , relative to some fixed reference measure on.
Given , the peak constrained channel is obtained by re-
stricting the input alphabet to the ball of radiusin . For
many channels this means that the energy of each transmitted
symbol is constrained to . The peak constrained channel is it-
self a discrete memoryless channel, so that the channel capacity
and reliability function are well defined. The focus of this paper
is to study the asymptotic behavior of the capacity and relia-
bility function as . Prelov and Van der Meulen[18] showed
that under mild regularity conditions the ratio of the capacity to
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the squared peak constraint converges to one-half the maximum
eigenvalue of the Fisher information matrix. They also showed
that if the Fisher information matrix is nonzero, the asymptot-
ically optimal input distribution is equiprobable symmetric an-
tipodal signaling. We prove, under a set of technical conditions
somewhat different from those of [18], that the asymptotic be-
havior of both the capacity and channel reliability function can
be identified. Two examples of the capacity result are given:
application to a Rician channel and to a channel composed of
parallel subchannels. We then examine the asymptotics of the
capacity for the block Rayleigh-fading channel for which the
Fisher information matrix is zero, and relate this example to the
poor performance of nonbursty signaling schemes for certain
broad-band fading channels.

The paper is organized into two parts, as follows. The first
part of the paper consists of Sections II–VI. Section II presents
the theorems giving the limiting normalized capacity and lim-
iting normalized reliability function and two examples are con-
sidered. Preliminary implications of the regularity assumptions
are given in Section III, and the theorem regarding normalized
capacity is proved in Section IV. Upper and lower bounds on
the optimal probability of error are given in Sections V and VI,
respectively, yielding the proof of the theorem regarding nor-
malized reliability. The upper bounds follow by random coding,
while the lower bounds follow by sphere-packing, a low-rate
bound, and straight-line bound. The expression for the limiting
normalized capacity is the same as obtained in [18].

The second part of the paper consists of two sections dealing
with Rayleigh-fading channel models. Section VII describes
the asymptotic capacity of a multiple-antenna block Rayleigh-
fading channel of the type considered in [12], and Section VIII
applies the results of Section VII to provide additional under-
standing of the limitations of nonbursty spread-spectrum sig-
naling over wide-band fading channels with sufficiently fast
Rayleigh fading. Section VIII complements the work of [7],
which constrains burstiness by constraining the fourth moments
of the signal coordinates arising in a time–frequency decompo-
sition of the transmitted signal. Here the peak signal energy in
each time–frequency bin is constrained.

II. CAPACITY AND RELIABILITY FUNCTION FORSMALL PEAK

SIGNAL CONSTRAINTS

Let denote the gradient of with respect to
and let denote expectation with respect to the probability

measure on with density . Let denote the Euclidean
norm of a vector . Let and
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Regularity Assumption : The function
is continuously differentiable in with

(1)

for some nondecreasing function such that as
and some measurable functionon . Let

. Then

Some remarks about the regularity assumption are in order.
Condition (1) implies that the gradient is uniformly
continuous in for each . On the other hand, if
is twice continuously differentiable in, then (1) is satisfied
by taking and an upper bound on the spectral
radius of the Hessian of with respect to . For the
purpose of this paper, condition (1) need only be satisfied for
and in some neighborhood of , but for ease of exposition
it is assumed the condition holds for alland . Often in this
paper the constant is taken to be zero.

Define to be the capacity of the channel with peak con-
straint , described above, and define if the
limit exists. Here “ ” stands for “small signal.”

Theorem II.1: Suppose the regularity assumption
RA holds for some and some finite
Then exists and , where is the maximum
eigenvalue of the Fisher information matrix for evaluated
at , given [2] by .

Remarks: The investigation of channel capacity and mutual
information in the limit of small signals has been of interest for
a long time. The most closely related to this paper is that of [18].
See [18] for comments on early papers including [10], [11], and
[17]. There is also a variety of more recent work involving in-
formation for certain random processes with small input signals
[13]–[16].

The basic setting of Theorem II.1 is the same as that of [18].
Both assume that the density is continuously differen-
tiable in . On the other hand, the exact technical conditions are
rather difficult to compare, and in practice one or the other may
be easier to verify. The conclusion of Theorem II.1 is the same
as the conclusion of the corollary in [18] (with the parameter

of [18] set equal to ). The same technical conditions as in
Theorem II.1 are used in Theorem II.2, giving the asymptotics
of the reliability function. The proof of Theorem II.1 helps pre-
pare the reader for the similar proof of Theorem II.2.

Example (Rician Channel):Say that has
the complex normal distribution with mean and variance

, and write , if and are inde-
pendent, Gaussian random variables with means and

, respectively, and with variance each. Consider a
discrete-time memoryless channel such that for inputin one
channel use, the output is given by ,
where , , and .
Without loss of generality it is assumed that . This
channel is the Rician-fading channel if and the

Fig. 1. A discrete-time memoryless channel.

Rayleigh-fading channel if . This channel satisfies the
conditions of Theorem II.1; in fact, is given by

and satisfies (1) with . Therefore, . If
then . A higher order expansion for in this case is
given in Section VII.

Example (Parallel Subchannels):Consider the channel
depicted in Fig. 1. The transmitter chooses an input

and each coordinate is transmitted
through a subchannel to yield the output . The sub-
channels are statistically independent but are tied together
through the peak constraint on the input vector, namely, the
requirement that for some . This can model a
remote-sensing scenario where a low-power measuring device
sends measurements to a set of collection centers. Assume that
each of the subchannels satisfies the conditions of Theorem
II.1. The Fisher information matrix for the overall channel
is block diagonal, with the blocks being the Fisher information
matrices for the subchannels. The maximum eigenvalue ofis
thus the maximum of the eigenvalues of the blocks. Therefore,

for the overall channel is the maximum of over the sub-
channels. Moreover, if then an asymptotically optimal
signaling scheme is to use only one of the subchannels (one
with maximum value of ), and to use antipodal signaling on
that subchannel.

Remark: Closely related to the capacity for small peak signal
constraints is the notion of capacity per unit cost studied by
Verdú [22] with the cost of an input symbolbeing the energy

. The capacity per unit energy is the supremum over
of , where is the capacity subject to the constraint that
the average energy per symbol of each transmitted codeword be
at most . Moreover, the supremum overis achieved as
[22]. Every valid codeword in the definition of has peak en-
ergy per channel use at most, and therefore average energy per
channel use at most , so for all . Therefore,

. The inequality can be strict. For example, for the Ri-
cian channel whereas . Verdú
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also noted that is lower-bounded by , and he discussed
an interesting connection between the channel capacity per unit
energy and the significance of the Fisher information in signal
estimation.

Next considered is the first-order asymptotics of the relia-
bility function for channels with small peak constraints under
the same regularity assumptions regarding the channel. For
, let be the minimum average probability of error for

any block code with peak constraint, block length , and rate
at least . The reliability function is then defined as [5,
p. 160]

Define

if the limit exists. The main result is presented in the following
theorem.

Theorem II.2: Suppose the regularity assumption
RA holds for some and some finite
Then is well defined and

.

(2)

Remarks: The function has the same shape as the
reliability function of the power-constrained infinite-bandwidth
additive white Gaussian noise channel [5, p. 381]. Reference
[5, Example 3, pp. 147–149, and Exercise 5.31, p. 541] dis-
cussed a similar case where instead of the inputs being small
the channel transition probabilities were almost independent of
the input. This channel, Reiffen’s very noisy channel, also has
a reliability function with the same shape. Finally, [23], [24]
showed that the reliability function for the Poisson channel in
the limit of large noise also has the same shape. All these chan-
nels can be viewed as infinite-bandwidth channels or as very
noisy channels, so perhaps it is not surprising that they all have
the same reliability function. A somewhat more technical reason
for why they have the same reliability function is that, as shown
in the proof, the relevant log-likelihood ratios under the relevant
measures asymptotically have the same exponential moments as
if they were Gaussian. Intuitively this makes sense because the
log-likelihood ratios are sums of a large number of random vari-
ables that tend to be small.

The limit is related to the reliability function per unit
energy defined by [6], just as is related to the ca-
pacity per unit energy . Therefore, by the
same reasoning we used to deduce that .

III. PRELIMINARY IMPLICATIONS OF THE REGULARITY

ASSUMPTIONS

Let . Let denote the unit ball cen-
tered at the origin in and let denote the ball of radius
Let denote the set of all probability measures onand let

denote the set of all probability measures on. Given a mea-
sure let

There is a one-to-one correspondence betweenand . To
each corresponds given by
where is a Borel subset of . Equivalently, a random variable

has distribution if and only if has distribution .

Lemma III.1: Given finite positive constants , , ,
, , , and , suppose holds, and sup-

pose satisfies the following three conditions:

a) is three times continuously differentiable over
with , for .

b) , for .

c) .

Then, for all

(3)

where as , uniformly over and over
all functions satisfying the given assumptions. In addition

(4)

where is a random variable in such that has distribution
, and as , uniformly over and

over all functions satisfying the given assumptions.
Proof: The idea of the proof is to apply Taylor’s theorem,

but first some moments of under are examined.
The continuous differentiability of in yields that

(5)

Suppose is so small that . In view of (1), if
and , then

Inserting this into (5) yields that for

(6)

Using (5) again yields that for

(7)

where, also using (1),
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Note that the first moment of under is simply
given by

(8)

Next, we investigate higher order moments of . Expand
in a power series, assume thatis small enough that

, and use (7) to obtain

(9)

where the error term is bounded by

Therefore, given any , if is so small that and
then

which means that

for some function on with bounded by a finite
constant depending only on and . Using (9) and the
observation just made with yields that

(10)

where the is uniform over all . Similarly, if

so that if and then

(11)

for all , where the constant in (11) depends only on
and .

Taylor’s theorem can now be applied to prove (3). Write

Replacing by and applying (8) and (10) yields
(3), except it remains to show that the contribution of the error
term is covered by the term in (3). If
then Taylor’s theorem and the Mean Value theorem imply that

for some in the closed interval
with endpoints and , Therefore, if

. If then

for . Thus,

for all . Therefore, the bound (11) applied for
and yields that

whenever , if is so small that and .
This completes the proof of (3).

The proof of (4) is similar. To begin, integrate each side of (9)
against to yield the similar equation

(12)

where has distribution , and

Therefore, it follows that .
Using (12) we can establish (8), (10), and (11) withreplaced
by , and apply Taylor’s theorem to obtain (4). The proof of
Lemma III.1 is complete.

Lemma III.1 and its proof can be generalized to functions
of several variables. The following is a version that applies to
one function, rather than a family of functions, since that is the
only generalization that is needed in this paper. The proof is a
straightforward modification of the proof of Lemma III.2 and is
omitted.

Lemma III.2: Given finite positive constants , , , and
. Suppose holds, suppose and

suppose , such that all derivatives of
up to order three exist and are continuous in a neighborhood
of , and

Then

where as , uniformly over
.

IV. PROOF OFTHEOREM II.1

Given , let be a random variable with probability
measure and let denote the corresponding channel output.
Then has the probability density . By well-known
results in information theory [5], .
The first step of the proof is to establish that

where is the relative entropy of and
is the conditional relative entropy of given , both

relative to

(13)

(14)
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To establish that we need only
show that .

Application of Lemma III.1 with shows that
not only are and finite for sufficiently small ,
but also

where has distribution , and each term is uniform in
. Using these approximations of and yields

where again the term is uniform in . Thus, taking limits
yields that

(15)

Since is positive semidefinite, it can be diagonalized by a uni-
tary transformation. For a diagonal, and therefore in general,
it is clear that the right-hand side of (15) cannot exceed half the
largest eigenvalue. To attain equality, it is necessary and suffi-
cient that , , and be distributed
within the eigenspace of the largest eigenvalue. For example, if

is a unit eigenvector corresponding to the largest eigenvalue
of , then choosing to be and equiprobably achieves
the supremum in (15), and the theorem follows.

V. RANDOM-CODING UPPERBOUND ON ERRORPROBABILITY

The following lemma is established in this section.

Lemma V.1 (Random-Coding Bound):For

where denotes the right-hand side of (2).
Proof: Let be a distribution on with finite sup-

port and respective probability masses
, let , and let . The well-known

random coding bound for finite input channels [5, pp. 138–145]
yields that

(16)

where

The function can be expressed as

where is defined on by

Calculation yields that and

Lemma III.2 and the fact thus yields
that

(17)

where has distribution . Select , , let
be the eigenvector corresponding to the maximum eigenvalue of

(which is ), and let . Then

For this choice of , combining (16) and (17) yields that

(18)

Therefore,

(19)

Taking to maximize the right-hand side of (19) and
using completes the proof of Lemma V.1.

VI. L OWER BOUNDS ONERRORPROBABILITY

The proof of Theorem II.2 is completed in this section by
providing a complement to Lemma V.1. First, a subsection with
some further implications of the regularity assumption is given.
Next a sphere-packing lower bound on error probability is given
which matches the random coding bound for rates greater than
or equal to , and a low-rate lower bound on error probability
is given which matches the random coding bound at .
The sphere-packing bound and the low-rate bound then combine
by well-known arguments [2], [4], [5], [20], [21] to provide a
straight-line bound. The straight-line bound for rates below
and the sphere-packing bound for rates aboveexactly match
the random coding bound.

A. Further Implications of the Regularity Assumptions

The regularity assumption at a point implies that the regu-
larity assumption (with a change of constant) holds uniformly
in a neighborhood of the point, as shown in the next lemma.

Lemma VI.1 (Local Uniformity of the Regularity Assump-
tion): Suppose RA holds. Then, for some
and , RA holds for all .

Proof: Concentrate on the second part of the regularity
assumption, since the first part does not depend on. By (1)

By (6), if is so small that then
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Select so small that and , and select
so that . Then

Let and . Define the density on by

where denotes the reference measure on, and let de-
note expectation for the probability measure on with

density . Let .

Lemma VI.2: Let hold. Then

where in each equation the term is uniform over
and over in bounded subsets of the real line.

Proof: It suffices to prove the lemma for restricted to
and for restricted to . By symmetry, it

suffices to consider only one of these cases, so we establish the
lemma under the added assumption that . By Lem-
ma III.1 and the continuity of at

it suffices to prove the theorem for . In summary,
it must be shown that

(20)

(21)

(22)

where the terms are uniform in and in over
bounded subsets of .

Take . Note that for in a bounded subset of
the constants in Lemma III.1 can be selected so that

satisfies the hypothesis of the lemma for allin the bounded
set. Thus,

where the term is uniform in and in the bounded
subset of . Since , (20)
is proved.

The left-hand side of (21) is

for and . The left-hand side of
(22) is the same, but with in place of

. Equations (21) and (22) thus follow by applying Lem-
ma III.1.

Based upon the result of Lemma VI.2, define the distance
between and by .

Let and . Let denote expectation
for where are mutually indepen-
dent, and has density . Denote the corresponding

measure on by , and let

Also define

Similarly, let denote expectation for independent
with having density , and let

denote the corresponding probability measure on. The
following lemma holds.

Lemma VI.3: Let . The following hold:

(23)

(24)

(25)

where in each equation

uniformly over and over in bounded subsets of.
Proof: The first three equations are immediate from

Lemma VI.2. The fourth is the same as the second with

Remark: Take in (23) and (24) to see that under
, has, up to small-order terms, mean

and variance . The first equation of Lemma VI.3 thus
shows that asymptotically has the same exponential mo-
ments under as if it had a Gaussian distribution.

B. Sphere-Packing Lower Bound on Error Probability

The following lemma is established in this subsection.

Lemma VI.4 (Sphere-Packing Bound):For
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Proof: Let satisfy

Then it suffices to show that . By the
choice of there exists arbitrarily small such that for
some sequence with as , there exist

codes with the maximum proba-
bility of error . Here we can use the maximum
error probability because a code with codewords and av-
erage error probability can be thinned to a produce a code with

codewords and a maximum error probability. For brevity,
the subscripts will henceforth be dropped from, , and .

The decoding sets partition the output
space . Let denote the vector of all zeros. The idea of
the sphere-packing bound (and the reason for the name) is that
the decoding sets cannot be too small, or else the probability
of error will be too large. This limits the number of the sets,
and hence the rate of the code. In the setting of this paper,
there is a natural measure of the size of these sets, namely, the
probability measure .

Since , there exists a codeword indexsuch
that defined by satisfies . On the other
hand, write for the th codeword, define

and define by . Then . It is useful
to view the numbers and as the Type I and Type II error
probabilities for the test of hypotheses has
measure versus has measure . Since
refinement cannot decrease divergence distance

Thus, . Combining this with (25) of
Lemma VI.3 (with ) shows that

(26)

This inequality is used later when Chebychev’s inequality is
applied to get a large deviations lower bound.

By the Neyman–Pearson lemma, there is a thresholdso that

(27)

(28)

Next, large deviations type lower bounds are applied to (27)
and (28). The standard method of changing the measure and
applying the law of large numbers under the new measure is
applied. This is done uniformly in (subject to (26)).

Let us examine (27) first. By (23) and (24) of Lemma VI.3
with and , (26), and Chebychev’s inequality, it fol-
lows that the thresholdmust satisfy . Equation
(27) will be used to show that . The

argument is by contradiction. If false, then for any the
threshold can be taken to lie in the bounded interval

(29)

for some subsequence of and arbitrarily large . By (27),
for any and

(30)

where is defined as in Lemma VI.3 (with
and ).

The next step is to specifyso that the term in (30)
is at least . To that end, let be defined by

(31)

It must be checked that as required, and for application
of Lemma VI.3 it must also be checked thatis bounded for all
sufficiently small and large enough. But since

, it follows that , so that for
sufficiently small and sufficiently large (depending on).

Also, is bounded from above sinceis bounded from above
and is bounded from below. Thus, Lemma VI.3 can be applied
with and . Chebychev’s inequality, (26), (23)
and (24) yield that the term in (30) is at least . The

term in (30) is, by the first equation of Lemma VI.2 with
and

Thus,

where is given by (31). This gives

Recall that , so . Thus, for
sufficiently small and large (depending on)

so that

which is a contradiction to (29) for sufficiently small. Thus,
the inequality

is established. Since (28) remains true ifis increased, we can
and do assume

(32)
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By (28), for any and

(33)

By Lemma VI.3, (26), and Chebychev’s inequality, if we select
so that

(34)

then the term in (33) is at least for small enough and
all sufficiently large . Applying this and Lemma VI.3 yields

where is given by (34). Thus, for sufficiently small and all
sufficiently large

Using (32) to substitute for yields

Since it must be that for sufficiently small.
Since is arbitrary and

which establishes the sphere-packing bound.

C. Lower Bound on Error Probability for Low Rate Codes

The Bhattacharyya single letter distance for
is defined by

Using Lemma VI.2 with , for we get

It follows that for , the Bhattacharyya distance be-
tween and , is given by . Methods sim-
ilar to those used to prove the sphere-packing bound in the pre-
vious subsection are applied to prove the following lemma re-
garding the maximum , of the Type I and Type II
errors for the hypothesis testing problem versus .

Lemma VI.5: Let . Then

where

uniformly over .
Proof: If no subsequence of converges to at

a rate exponential in there is nothing to prove. Passing to a
subsequence if necessary, it can be assumed that

does indeed tend to zero exponentially in. It follows from the
reasoning used to derive (26) that grows linearly in .

By the Neyman–Pearson lemma

(35)

Both terms on the right-hand side of (35) can be bounded below
as follows. For any and

(36)

where by Chebychev’s inequality and (23) and (24) of Lemma
VI.3, the second inequality holds forsmall enough, large
enough, and selected such that

(37)

By symmetry, the second term in (35) is also bounded by the
right-hand side of (36). Equation (37) implies that

. Substituting this into the lower bound of (36) yields the
lemma.

The main result of this section is given by the following
lemma.

Lemma VI.6 (Low-Rate Bound):For any

Proof: Select any such that

It suffices to show that . There exist arbitrarily
small such that for some sequence , there exist codes
with block length and with codewords with

. Note that for any codeword

because for each .
Fix an integer . Then for large enough there are at least
words in the code, denoted by . Let denote

the sum of these codewords. The minimum pairwise distance
for these codewords satisfies (Plotkin bound)
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Now can be made arbitrarily close toby selecting
large. Thus, by Lemma (VI.5)

(38)

Thus, as required.

D. Straight-Line Bound and Completion of Proof of
Theorem II.2

The straight line traced by as ranges over the
interval starts from the low rate bound at and
meets the sphere-packing bound at . As explained in
the beginning of this section, the bounds of Lemmas VI.4 and
VI.6 can be combined by a well-known argument [2], [4], [5],
[20], [21] based on a simple extension of the sphere-packing
bound for list decoding. The result is that

for

This and the sphere-packing bound imply that for all

where denotes the right-hand side of (2). Combined with
Lemma V.1, this proves Theorem II.2.

VII. L OW SNR ASYMPTOTICS OFCAPACITY FOR BLOCK

RAYLEIGH FADING

Consider the model of [12]. There are transmit antennas,
receive antennas, and symbol periods during which the

matrix of fading coefficients is constant. The model
for each channel use of this discrete-time memoryless channel
is given by

where is the channel input taking values in and is the
channel output taking values in . The fading coefficients

and additive noise variables are all mutually inde-
pendent, random variables. Assume the transmitted
signal satisfies the constraint , so that the
signal-to-noise ratio (SNR) at each receive antenna, averaged
over the output samples, is at most. The notation for this
section adheres to that in [12]. To map to our notation think of

as the input signal and set so the peak
constraint becomes .

The conditional probability density for the channel is given
by

where for a matrix denotes the transpose of the complex
conjugate of . Therefore,

Thus, as tends to zero

(39)

Since is linear in as , it is quadratic in
as . Thus, is identically zero, so the Fisher
information is zero, and, therefore, as in the special case

discussed in Section II, as
. However, (39) is similar to (9) with replaced by , so

we can proceed as in Sections III and IV. Using (13), (14), and
the fact yields

while

and

Also,

while

Combining the above calculations yields

and

By Marzetta and Hochwald [12, Theorem 2] it can be as-
sumed that the input has the form , where is a

isotropically distributed unitary matrix independent of
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, and is a random matrix that has nonnegative en-
tries on the main diagonal and zeros off the main diagonal. The
input constraint becomes , where is the main
diagonal of , which has dimension . Let

if

else

and use properties of the distribution onto get

Therefore,

Also,

(40)

The coefficient of in (40) is given by

if

if

so that

Hence,

Next, find the distribution on to maximize the coeffi-
cient of in this expression for . For a given
value of and given the constraint ,
the quantity is maximized over distributions
on by taking to be distributed over the two point set

. That is, either the zero
signal is sent, or the peak energy is all put into the first transmit
antenna. Maximizing over the one-dimensional family of such
distributions for yields that the optimal “on” probability is
given by

if

if .

More generally, the single antenna used could be randomly
chosen, but the distribution of is not optimal if the event that
more than one antenna is used has positive probability.

Fig. 2. Capacity in nats as a function of� for the peak-constrained Rayleigh-
fading channel.

Therefore, if denotes the capacity per unit
time for the Marzetta and Hochwald model (obtained by di-
viding the mutual information by ), then

if

if .
(41)

Note that the limiting normalized capacity is proportional to the
number of receive antennas, while it does not depend at all
on the number of transmit antennas. Also, the capacity per unit
time increases linearly with . Such a large rate of increase
with reflects the fact that if very little energy is transmitted,
every increase in is very valuable in helping the channel to be
estimated.

Hassibi and Hochwald [8] consider the use of training-based
strategies. Comparing a tight bound they found for the capacity
of training-based schemes to (41), it follows that for small,
the training-based strategy using one transmit antenna achieves
about half of the peak-constrained channel capacity. This is con-
sistent with the fact that the strategies of [8] do not use a highly
peaked input distribution. Hassibi and Hochwald point out in [8]
that this is far from the capacity for average, rather than peak, en-
ergy constraints, for which the capacity tends to zero asrather
than as [19].

Although this paper focuses on the asymptotics of capacity
as the peak energy tends to zero, we briefly discuss computing
the capacity numerically for finite values of the peak constraint
for . Following the proof of [1], after re-
moving the average energy constraint, it is not hard to show that
a capacity achieving distribution for the peak-constrained dis-
crete memoryless Rayleigh channel is discrete with a nonzero
mass at . The capacity calculation problem is then equivalent
to finding the locations and masses of the components of the
distribution in order to maximize the mutual information. The
conditional gradient algorithm given in [1] can be used to nu-
merically compute the capacity. Fig. 2 displays
as a function of the peak SNR(not in decibels), and Fig. 3
displays . The limiting slope as in Fig. 3
is , as required by (41). To appreciate how much smaller
this capacity is than the capacity of an additive Gaussian noise
channel, or more generally a Rician channel, recall the first ex-
ample of Section II. As a function of, the capacity of the Rician
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Fig. 3. Capacitydivided by � as a function of� for the peak-constrained
Rayleigh-fading channel.

Fig. 4. A visualization of the WSSUS channel in a time-frequency band.

channel has slope at , so slope one for the Gaussian
channel.

VIII. A PPLICATION TOBROAD-BAND FADING CHANNELS

In this section, the result of the previous section is applied to
find the asymptotic capacity of a wide-band time-varying multi-
path channel with Rayleigh fading and a burstiness constraint on
the transmitted signal. A reasonable picture of a wide-sense-sta-
tionary and uncorrelated scattering (WSSUS) channel is shown
in Fig. 4. Let be the signal bandwidth, be the power of the
input signal, and be the noise power spectral density. The
time–frequency plane is divided into blocks of duration
and bandwidth , where is the coherence timewidth
and is the coherence bandwidth. Ignore the effects of in-
tersymbol interference and edge effects between blocks, to ar-
rive at the following model. Assume that during each block,

symbols can be transmitted and the channel gain
for a block is Rayleigh distributed and identical for all symbols
of the block. The gains for different blocks are assumed inde-
pendent. Assume that the transmitted signal energy in each co-
herence block is peak constrained to. Such constraint is sat-
isfied by modulation schemes that are not bursty in the time–fre-
quency plane, such as direct-sequence spread spectrum. Since
there are coherence blocks per unit time, the capacity per
unit time is given by , where . It is

reasonable to take with fixed with value . For ex-
ample, if 10 ms for 100-Hz doppler spread and
1 MHz for 1- s delay spread, then . The asymptotic re-
sult (41) yields (for fixed) that the capacity per unit time
of the wide-band fading channel with peak energy constraint per
coherence block is given by

Thus, as for fixed and , the capacity
per unit time tends to zero. This result was first derived by [7].
The model of Médard and Gallager is more extensive in that it
allows for continuous dependence among blocks in both space
and time. While Médard and Gallager constrain peakiness by
imposing a fourth moment constraint on the transmitted sym-
bols, we impose a peak constraint on the energy transmitted per
block.

IX. CONCLUSION

Under mild regularity conditions, both the capacity and
reliability function of channels with small peak constraints are
closely related to the Fisher information in a straightforward
way. The asymptotic shape of the reliability function is the same
as observed earlier for the power-constrained infinite-band-
width white noise channel [5, p. 381], Gallager’s very noisy
channel with finite inputs [5, Example 3, pp. 147–149], and the
very noisy Poisson channel studied [23], [24]. These channels
are similar in that they can be viewed as very large bandwidth
or very large noise channels, and the relevant log-likelihood
ratios asymptotically have the same exponential moments as
Gaussian random variables. These channels are among the very
few channels for which the reliability function is completely
known.

Two extensions of the first part of the paper may be possible,
but are left for future work. Recently, [3] extended Wyner’s re-
sults to identify the reliability function region for the two-user
multiple-access problem. Such an extension might hold in the
setting of this paper. Another idea is to find a single result that
includes the setting of this paper, Gallager’s finite input very
noisy channel, and discretized versions of the Poission and in-
finite bandwidth white Gaussian noise channels. The setin
the theorems of this paper would be replaced by any closed
bounded subset of . Gallager’s model correspondes to taking

to be the set of unit vectors pointing along the coor-
dinate axes in positive directions, and taking linear in

: for small . In addition, an
average constraint for each codeword could be imposed. The
capacity would be given by maximizing a quadratic form
involving subject to constraints. Such generalization in not
pursued in this paper, for apparently it would require a different
proof technique for the reliability function results. It might in-
volve showing that a large but finite input alphabet suffices to
approach capacity and error exponents to within.

As shown in the second part of the paper, small peak signal
asymptotics are informative in the case of Rayleigh fading,
even though the Fisher information matrix is zero. In particular,
an expression for the asymptotic capacity in the case of block
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fading with multiple transmit and multiple receive antennas,
shows that within the class of transmission strategies with
constant transmit energy per fading block, the training sequence
based scheme comes within a factor of two of optimality, in the
range of low SNR. Also, a simple result of the type of [7] is
obtained.
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