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Downlink Scheduling and Resource Allocation for
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Abstract—We consider scheduling and resource allocation for
the downlink of a cellular OFDM system, with various practical
considerations including integer carrier allocations, different
subchannelization schemes, a maximum SNR constraint per
tone, and “self-noise” due to channel estimation errors and
phase noise. During each time-slot a subset of users must
be scheduled for transmission, and the available tones and
transmission power must be allocated among the selected users.
Employing a gradient-based scheduling scheme presented in
earlier papers reduces this to an optimization problem to be
solved in each time-slot. Using dual decomposition techniques, we
give an optimal algorithm for this problem when multiple users
can time-share each carrier. We then give several low complexity
heuristics that enforce an integer constraint on the carrier
allocation. Simulations show that the algorithms presented all
achieve similar performance under a wide range of scenarios, and
that the performance gap between the optimal and suboptimal
algorithms widens when per user SNR constraints or channel
estimation errors are considered.

I. INTRODUCTION

Channel-aware scheduling and resource allocation is essen-
tial in high-speed wireless data systems. In these systems, the
users scheduled and the allocation of physical layer resources
among them are dynamically adapted based on the users’
channel conditions and quality of service (QoS) requirements.
Many of the scheduling algorithms considered can be viewed
as “gradient-based” algorithms, which select the transmission
rate vector that maximizes the projection onto the gradient of
the system’s total utility [1]–[4]. Several such algorithms have
been studied for time-division multiplexed (TDM) systems,
such as the “proportionally fair rule” [4], [5] first proposed for
CDMA 1xEVDO and is based on a logarithmic utility function
of each user’s throughput. A larger class of throughput-based
utilities is considered in [2] where efficiency and fairness are
allowed to be traded-off. The “Max Weight” policy (e.g. [7]–
[9]) can also be viewed as a gradient-based policy, where the
utility is now a function of a user’s queue-size or delay.
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In TDM systems, the scheduling and resource allocation
decision is simple: schedule one user in a time-slot and choose
the modulation and coding scheme for that user. In many cur-
rent systems, multiple users may be multiplexed within a time-
slot. Orthogonal Frequency Division Multiplexing (OFDM) is
a common option for broadband wireless networks (e.g. IEEE
802.16/WiMAX [11] and 3GPP LTE [12]). This paper ad-
dresses gradient-based scheduling and resource allocation for
the downlink in a cellular OFDM system. In this setting,
in addition to determining which users are scheduled, the
allocation of physical layer resources (e.g. transmission power
and subcarriers) must be specified.

In prior work [10], we considered a related problem when
code division multiple access (CDMA) is used to multiplex
users within a time-slot, as in CDMA 1xEVDV and HSDPA.
In [10], the physical layer resources are the number of spread-
ing codes assigned to each user and the transmission power;
allocating these according to a gradient-based policy requires
maximizing the weighted sum rate in each time-slot, where
the weights vary dynamically based on the gradient of the
system utility. When the rate per code is given by the Shan-
non capacity formula, this maximization becomes a tractable
convex optimization problem, enabling the development of low
complexity near-optimal algorithms. Here, we follow a similar
approach for an OFDM-based system. Compared to [10], the
key difference is that we have more degrees of freedom (i.e.,
the tones) to allocate resources across. This enables exploiting
both multi-user diversity and frequency diversity at a finer
granularity, but also significantly increases the complexity
of the optimization. Furthermore, we include the following
considerations that are important in practical OFDM systems:
1) integer constraints on the tone allocation, i.e., a tone can be
allocated to at most one user; 2) different subchannelization
techniques in which resource allocation is performed at a
larger granularity (i.e, groups of tones or symbols) in order
to reduce the channel measurement and feedback overhead;
3) constraints on the maximum SNR (i.e., rate) per tone,
which models a limitation on the available modulation and
coding schemes; and 4) “self-noise” on tones due to channel
estimation errors (e.g., [13]) or phase noise [24].

At the beginning of each scheduling interval, the gradient-
based scheduling algorithm maximizes the weighted sum
throughput over the current set of feasible rates. In Section II,
we describe our model for this rate region, taking into account
the preceding considerations. In Section III, we consider a
dual formulation for the resulting optimization problem, which
enables us to exploit the problem’s structure and develop
both optimal and simple sub-optimal algorithms with low
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complexity. In Section IV, we present simulation results when
the scheduling weights are dynamically adjusted according to
a gradient-based scheduling rule. We study the performance
of the optimal and suboptimal algorithms under different
choices of utility functions, subchannelization schemes, chan-
nel estimation errors and phase noise (self-noise), and SNR
constraints. We conclude in Section V.

In terms of related work, a number of formulations for
downlink OFDM resource allocation have been studied in-
cluding [14]–[21]. In [15], [16], the goal is to minimize the
total transmit power given target bit-rates for each user. In
[16], the target bit-rates are determined by a fair queueing
algorithm, which does not take into account the users’ channel
conditions. In [18]–[20], the focus is on maximizing the sum-
rate given a minimum bit-rate per user; [17] also considers
maximizing the sum-rate, but without any minimum bit-rate
target. A special case of the problem we study that assumes a
fixed set of weights, no constraints on the SNR per carrier,
and no self-noise was considered in [14], [21]. In [14], a
suboptimal algorithm with constant power per tone was shown
in simulations to have little performance loss. Other heuristics
that use a constant power per tone are given in [17]–[19].
We also consider such a heuristic in Section III-D. In [21],
a similar dual-based algorithm to ours is considered and
simulations are given which show that the duality gap of this
problem quickly goes to zero as the number of tones increases.
We will revisit the conclusions of [21] in Section III-B. Finally,
in [22], the capacity region of a downlink broadcast channel
with frequency-selective fading using a TDM scheme is given;
the feasible rate region we consider, without any maximum
SNR constraints, can be viewed as a special case of this region.
None of these papers consider self-noise or per user SNR
constraints, which we do here. Moreover, most of these papers
optimize a static objective function, while we are interested
in a dynamic setting where the objective changes over time
according to a gradient-based algorithm. It is not a priori clear
if a good heuristic for a static problem applied to each time-
step, will be a good heuristic for the dynamic case since the
optimality result in [1]–[4], [7]–[9] is predicated on solving
the weighted-rate optimization problem exactly in each time-
slot. Our simulation results show that the good performance of
heuristics holds, at least for the utility maximization models
considered in this paper. Finally, we note that in a companion
paper [26] we use similar methods to solve a centralized uplink
scheduling and resource allocation problem, the ‘dual’ of the
downlink problem in a 802.16/WiMax setting.

II. PROBLEM FORMULATION

We consider downlink transmissions in an OFDM cell from
the base station to a set of K = {1, . . . ,K} of mobile
users. Time is divided into TDM time-slots that contain an
integer number of OFDM symbols. In each time-slot, the
scheduling and resource allocation decision can be viewed as
selecting a rate vector rt = (r1,t, . . . , rK,t) from the current
feasible rate region R(et) ⊆ RK+ , where et indicates the time-
varying channel state information available at the scheduler at
time t. This decision is made according to the gradient-based

scheduling framework in [1]–[4]. Namely, an rt ∈ R(et) is
selected that has the maximum projection onto the gradient of
a system utility function U(W t) :=

∑K
i=1 Ui(Wi,t), where

Ui(Wi,t) is an increasing concave utility function of user i’s
average throughput, Wi,t, up to time t. In other words, the
scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(W t)T · rt = max
rt∈R(et)

∑
i

U ′i(Wi,t)ri,t, (1)

where U ′i(·) is the derivative of Ui(·). For example, one class
of utility functions given in [2], [6] is

Ui(Wi,t) =
{

ci

α (Wi,t)α, α ≤ 1, α 6= 0,
ci log(Wi,t), α = 0, (2)

where α ≤ 1 is a fairness parameter and ci is a QoS weight.
In this case, (1) becomes

max
rt∈R(et)

∑
i

ci(Wi,t)α−1ri,t. (3)

With equal class weights, setting α = 1 results in a scheduling
rule that maximizes the total throughput during each slot. For
α = 0, this results in the proportionally fair rule.

In general, we consider the problem of

max
rt∈R(et)

∑
i

wi,tri,t, (4)

where wi,t ≥ 0 is a time-varying weight assigned to the
ith user at time t. In the above example these weights are
given by the gradient of the utility; however, other methods
for generating these weights (possibly depending upon queue-
lengths and/or delays [7]–[9]) are also possible. We note that
(4) must be re-solved at each scheduling instance because of
changes in both the channel state and the weights (e.g., the
gradients of the utilities). While the former changes are due to
the time-varying nature of wireless channels, the latter changes
are due to new arrivals and past service decisions.

A. OFDM capacity regions

The solution to (4) depends on the channel state dependent
rate region R(e), where for simplicity we suppress the depen-
dence on time. We consider a model appropriate for downlink
OFDM systems; related models have been considered in [14],
[22]. In this model, R(e) is parameterized by the allocation
of tones to users and the allocation of power across tones.
In a traditional OFDM system, at most one user may be
assigned to any tone. Initially, as in [15], [16], we make
the simplifying assumption that multiple users can share one
tone using some orthogonalization technique (e.g. TDM).1 In
practice, if a scheduling interval contained multiple OFDM
symbols, we can implement such sharing by giving a fraction
of the symbols to each user; of course, each user will be
constrained to use an integer number of symbols and the

1We focus on systems that do not use superposition coding and successive
interference cancellation within a tone, as such techniques are generally
considered too complex for practical systems.
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required signaling overhead will increase.2 We discuss the case
where only one user can use a tone in Section III-C.

Let N = {1, . . . , N} denote the set of tones. For each
j ∈ N and user i ∈ K, let eij be the received signal-
to-noise ratio (SNR) per unit power. We denote the power
allocated to user i on tone j by pij and the fraction of that
tone allocated to user i by xij . The total power allocation
must satisfy

∑
i,j pij ≤ P , and the total allocation for each

tone j must satisfy
∑
i xij ≤ 1. For a given allocation,

with perfect channel estimation, user i’s feasible rate on tone
j is rij = xijB log(1 + pijeij

xij
), which corresponds to the

Shannon capacity of a Gaussian noise channel with bandwidth
xijB and received SNR pijeij/xij .3 This SNR arises from
viewing pij as the energy per time-slot user i uses on tone j;
the corresponding transmission power becomes pij/xij when
only a fraction xij of the tone is allocated. Without loss of
generality we set B = 1 in the following.

In a realistic OFDM system, imperfect carrier synchro-
nization and channel estimation may result in “self-noise”
(e.g. [13], [24]). We follow a similar approach as in [13] to
model self-noise. Let the received signal on the jth tone of
user i be given by yij = hijsij + nij , where hij , sij and
nij are the (complex) channel gain, transmitted signal and
additive noise, respectively, with nij ∼ CN (0, σ2).4 Assume
that hij = h̃ij +hij,δ , where h̃ij is receiver i’s estimate of hij
and hij,δ ∼ CN (0, δ2

ij). After matched-filtering, the received
signal will be zij = h̃∗ijyij resulting in an effective SNR of

Eff-SNR =
‖h̃ij‖4pij

σ2
ij‖h̃ij‖2 + δ2

ijpij‖h̃ij‖2
=

pij ẽij
1 + βijpij ẽij

, (5)

where pij = E(‖sij‖2), βij = δ2ij

‖h̃ij‖2
and ẽij = ‖h̃ij‖2

σ2
ij

.5 Here,
βijpij ẽij is the self-noise term. As in the case without self-
noise (βij = 0), the effective SNR is still increasing in pij .
However, it now has a maximum of 1/βij . For the sake of
presentation, we assume that β = βij for all i and j.6 The
analysis is almost identical if users have different βij’s.

With self-noise, user i’s feasible rate on tone j becomes
rij = xij log(1 + pij ẽij

xij+βpij ẽij
), where again xij models time-

2With a large number of tones, adjacent tones will have nearly identical
gains, in which case this time-sharing can also be approximated by frequency
sharing. As the number of tones increases, this approximation once again
becomes tight.

3To better model the achievable rates in a practical system we can re-
normalize eij by γeij , where γ ∈ [0, 1] represents the system’s “gap” from
capacity. The simulations results in Section IV take an appropriate γ into
consideration.

4We use the notation x ∼ CN (0, b) to denote that x is a 0 mean, complex,
circularly-symmetric Gaussian random variable with variance b := E(‖x‖2).

5This is slightly different from the Eff-SNR in [13] in which the signal
power is instead given by ‖hij‖4pij ; the following analysis works for such
a model as well by a simple change of variables. For the problem at hand,
(5) seems more reasonable in that the resource allocation will depend only
on h̃ij and not on hij . We also note that (5) is shown in [23] to give an
achievable lower bound on the capacity of this channel.

6Also, to simplify our presentation, we assume that β does not depend on
the channel quality. If the main cause of self-noise is channel estimation error,
this may not be the case. We discuss this more in Section. III.A.

sharing of a tone. Under these assumptions, we have

R(e) =
{
r : ri =

∑
j

xij log
(

1 + pij ẽij

xij+βpij ẽij

)
,

∑
i,j

pij ≤ P,
∑
i

xij ≤ 1 ∀j, (x,p) ∈ X
}
, (6)

where X :=
∏N
j=1 Xj , and for all j ∈ N ,

Xj :=
{

(xj ,pj) ≥ 0 : xij ≤ 1, pij ≤ xij s̃ij

ẽij
∀i
}
, (7)

with xj := (xij ,∀i ∈ K) and pj := (pij ,∀i ∈ K). Here, s̃ij =
Γij

1−Γijβ
, where Γij < 1/β is a maximum SNR constraint on

tone j for user i, e.g., to model a constraint on the maximum
rate per tone due to a limitation on the available modulation
and coding schemes. At the cost of additional complexity, we
could also include minimum rate constraints to model inelastic
traffic, and maximum rate constraints to incorporate buffer
sizes. While the former is a convex constraint, the latter is
not (but it can still be proved that there is no duality gap).
Similar techniques can be applied in these cases; however, in
the interests of brevity we will not discuss the details here.

We assume that ẽij is known by the scheduler for all i
and j as is β (equivalently, the estimation error variance). In
a frequency division duplex (FDD) system, this knowledge
can be acquired by having the base station transmit pilot
signals, from which the users can estimate their channel gains
and feedback to the base station. In a time division duplex
(TDD) system, these gains can also be acquired by having the
users transmit uplink pilots; the base station can then exploit
reciprocity to measure the channel gains. In both cases, this
feedback information would need to be provided within the
channel’s coherence time.

B. Subchannelization

With many tones and users, providing pilots and/or feed-
back per tone can require excessive overhead; e.g., in IEEE
802.16e [11], a channel with bandwidth 1.25Mhz to 20Mhz
is divided from 128 to 2048 tones. One way to reduce
this overhead is to form subchannels from disjoint sets of
tones. Feedback and resource allocation are then done at the
granularity of subchannels, i.e., constant power is used and
coding is done across the tones in each subchannel. Our model
can be adapted to this setting by viewing N as the set of
subchannels and ẽij as the effective SNR per unit power for
user i on the jth subchannel. Specifically, assuming that k
tones are bundled into subchannel j, ẽij is chosen so that
the total rate for user i in this subchannel is approximately
kxij log(1 + pij ẽij

xij+βpij ẽij
). Since log(1 + pe

x+βpe ) is a concave
function of e, it follows from Jensen’s inequality that the rate
achieved over a sub-channel is upper bounded by setting ẽij
equal to the arithmetic average of the channel gains of tones
belonging to subchannel j. We can also lower bound the rate
using the strict convexity of log(l + exp(y)) for y ∈ < (with
l > 0) and Jensen’s inequality. If β = 0, taking y = log

(
pe
x

)
and l = 1 we obtain a lower bound on the rate by setting ẽij
equal to the geometric average of the subchannel gains. When
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β > 0 we take y = − log
(

1 + x
βpe

)
and l = β, apply Jensen’s

inequality followed by the arithmetic-mean geometric-mean
inequality to obtain a lower bound on the rate by setting
ẽij equal to the harmonic average of the subchannel gains.
The gap between the upper and lower bounds is quite small
for reasonable values of pe. Indeed, for the range of SNRs
achieved by scheduled users in our simulations, we do not
see much difference.7 From this point onwards we will use
the terms tone/carrier/subchannel to mean the basic allocation
unit; the specific distinctions will be clear from the context.

We consider the following three approaches for forming
subchannels: (1) adjacent channelization, where adjacent tones
are grouped into a subchannel; (2) interleaved channelization,
where tones are (perfectly) interleaved to form subchannels;
and (3) random channelization, where tones are randomly
assigned to subchannels. In IEEE 802.16d/e [11], interleaved
channelization is primarily used; the optional “band AMC
mode” allows for adjacent channelization. Randomized chan-
nelization can model systems that employ frequency hopping
as in the Flash OFDM system [25]. Using adjacent channeliza-
tion enables the resource allocation to better exploit frequency
diversity. Interleaved or random channelization reduces the
variance of the effective SNR across subchannels for each
user. One advantage to this is that when the variance is small,
user i can simply feed back a single ei value that will be
representative of all its subchannels, further reducing overhead.
Another advantage of random channelization is in managing
inter-cell interference.

III. OPTIMAL AND SUBOPTIMAL ALGORITHMS

From (4) and (6), the scheduling and resource allocation
problem can be stated as:

max
(x,p)∈X

V (x,p) :=
∑
i

wi
∑
j

xij log
(

1 + pij ẽij

xij+βpij ẽij

)
subject to:

∑
i,j

pij ≤ P, and
∑
i

xij ≤ 1, ∀j ∈ N .

(8)

Here, we are still assuming that multiple users can time-
share each subchannel (i.e. no integer constraints on xij).
We next give an algorithm to solve this problem via a dual
decomposition. The resulting algorithm leads to a solution that
has a computational complexity of O(NK). We then consider
the problem with integer constraints and propose three sub-
optimal algorithms, each also with complexity O(NK).

A. Optimal Dual Solution

Consider the Lagrangian,

L(x,p, λ,µ) := λP +
N∑
j=1

Lj(xj ,pj , λ, µj), (9)

7For example, our simulations show that for the optimal algorithm with β =
0.01, the differences between long term achievable utilities under arithmetic
average and harmonic average approximations are 0.005%, 0.1%, and 0.4%
under adjacent, interleaved and random subchannelizations, respectively.

where

Lj(xj ,pj , λ, µj) := µj+
K∑
i=1

wixij log
(

1 +
pij ẽij

xij + βpij ẽij

)

− µj
K∑
i=1

xij − λ
K∑
i=1

pij , (10)

and µ = (µj)Nj=1. The corresponding dual function is then

L(λ,µ) := max
(p,x)∈X

L(x,p, λ,µ)

= λP +
N∑
j=1

max
(pj ,xj)∈Xj

Lj(xj ,pj , λ, µj).

By directly evaluating the Hessian of x log(1+ p
x+βp ) it can be

seen that this is jointly concave in (x, p). It then follows that
Problem (8) is convex and satisfies Slater’s condition. Hence,
there is no duality gap and so V ∗ := minλ≥0,µ≥0 L(λ,µ) is
the optimal objective value [27].

Next we show that the maximization over p and x leads to
a closed-form representation of L(λ,µ). We then show that
minimizing L(λ,µ) over µ only requires searching for the
maximum of user dependent metrics for each tone j. The only
numerical search needed is for the minimization over λ, which
is just a one-dimensional search with low complexity.

1) Computing the Dual Function: First, we maximize
Lj(xj ,pj , λ, µj) over pj given xj , µj and λ. The optimal
solution is given by

p∗ij(x, λ,µ) = xij

ẽij

[
q

(
β,
(
wiẽij

λ − 1
)+
)
∧ s̃ij

]
, (11)

where (x)+ = max(x, 0), a ∧ b = min(a, b), and

q(β, z) :=

{
z, if β = 0,(

2β+1
2β(β+1)

)(√
1 + 4β(β+1)

(2β+1)2 z − 1
)
, if β > 0.

Figure 1 shows p∗ij in (11) as a function of ẽij for three
different values of β = 0, 0.01, 0.1. When β = 0, (11) be-
comes a “water-filling” type of solution in which p∗ij(x, λ,µ)
is non-decreasing in ẽij . For a fixed β > 0, this is not
necessarily true, i.e., due to self-noise, less power may be
allocated to “better” subchannels. The constant β case is
applicable when the self-noise is due to phase noise as in
[24]. On the other hand, when self-noise arises primarily from
estimation errors, β may not be constant but could depend
on the channel quality. The exact dependence will depend
on the details of channel estimation. As an example, using
the analysis in [23, Section IV] for the estimation error of a
Gauss-Markov channel from a pilot with known power, we
consider the cases when the pilot power is either constant or
inversely proportional to channel quality subject to maximum
and minimum power constraints (modeling power control). In
both cases β is inversely proportional to channel condition for
large e; e.g., β(e) = 10/e in Fig. 1. It can be seen that the
curve has a different shape and amplitude compared with the
β = 0 case. For simplicity of presentation, we assume constant
β’s in the remainder of the paper.
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Fig. 1. Optimal power p∗ij(x, λ,µ) as a function of the channel condition
eij . Here xij = 1, wi = 1, and λ = 15.

Notice from (11) that the optimal value of p∗ij is always
a linear function of xij . Interestingly, substituting (11) into
Lj(xj ,pj , λ, µj) also results in a linear function of xij .
Namely,

Lj(xj ,pj,∗, λ, µj) =
∑
i

xij (µij(λ)− µj) + µj ,

where µij(λ) := wih
(
β,

wiẽij

λ , s̃ij

)
, and

h (β, ω, s̃ij) := log
(

1 +
q(β,(ω−1)+)∧s̃ij

1+β(q(β,(ω−1)+)∧s̃ij)

)
− 1

ω

(
q
(
β, (ω − 1)+

)
∧ s̃ij

)
.

From this it follows that any choice

x∗ij(λ,µ) ∈


{1}, if µij(λ) > µj ,

[0, 1], if µij(λ) = µj ,

{0}, if µij(λ) < µj

(12)

will maximize Lj(xj ,pj,∗, λ, µj). Hence, L(λ,µ) := λP +∑N
j=1 Lj(λ, µj), where

Lj(λ, µj) := Lj(xj,∗,pj,∗, λ, µj) =
∑
i

(
µij(λ)−µj

)+ +µj .

(13)
2) Optimizing the Dual Function over λ and µ: First we

consider the optimization over µ.
Lemma 1: For all λ ≥ 0,

L(λ) := min
µ≥0

L(λ,µ) = λP +
∑
j

µ∗j (λ), (14)

where for every tone j, the minimizing value of µ∗j is achieved
by

µ∗j (λ) = max
i
µij(λ). (15)

The proof of Lemma 1 follows from a similar argument as
in [10]. Note that (15) requires searching for the maximum
value of the metrics µij across all users for each tone j.

Since L(λ) is the minimum of a convex function over a
convex set, it is a convex function of λ; hence, it can be

minimized using an iterated one dimensional search (e.g., the
Golden Section method). Since there is no duality gap, at
λ∗ = arg minλ≥0 L(λ), L(λ∗) gives the optimal objective
value of Problem (8).

B. Optimal primal variables with time-sharing

Next we turn to finding optimal values of the primal
variables (x,p). For a given λ ≥ 0, let

(x∗(λ),p∗(λ)) := arg max
(x,p)∈X

L (x,p, λ,µ∗(λ)) , (16)

where µ∗(λ) is given in (15). Problem (16) can be solved
using the same procedure as in computing the dual function
(i.e., (11) and (12)). Given that λ = λ∗, it follows from duality
theory, that if the corresponding (x∗(λ∗),p∗(λ∗)) are primal
feasible and satisfy complimentary slackness, then they are
optimal primal values. In particular, if for each tone j there
exists a unique user i that achieves the maximum in (15), then
since there is no duality gap, allocating tone j only to that user
must be a primal optimal solution.

However, if there are multiple users for a given tone whose
metrics µij are tied at the maximum value in (15), then there
will be multiple primal values that satisfy (16), not all of which
may be primal feasible (e.g.,

∑
i x
∗
ij > 1 or

∑
ij p
∗
ij > P ).

Breaking these ties is necessary to find an optimal primal
solution. A key point is that when ties occur at a given λ,
L(λ) is not differentiable at that λ. However, since L(λ) is a
convex function, subgradients exist.

Definition 1: Subgradients [28, pg. 214]: For a convex
function F (x) : <n → < with domain C ⊆ <n (a convex
set), a vector x∗ ∈ <n is a subgradient of F (x) at x if

F (z) ≥ F (x) + 〈x∗, z − x〉, ∀ z ∈ C,

where 〈·, ·〉 is the inner product in <n. We denote the set of
subgradients of F (x) at x by ∂F (x).

For an arbitrary λ, a subgradient (a scalar) for L(λ) at λ
can be found as follows:

Proposition 1: Let (x̂(λ), p̂(λ)) be a solution to (16) for
a given λ that satisfies

∑
i x̂ij(λ) ≤ 1 for all j and

µ∗j (λ) (1−
∑
i x̂ij(λ)) = 0 for each j, then P −

∑
i,j p̂ij(λ)

is a subgradient of L(λ) at λ.
In the Appendix we prove that the conditions of Propo-

sition 1 are, in fact, necessary and sufficient, i.e., every
subgradient of L(λ) at λ is characterized in the manner stated
above.

For a given λ, let Aj := {i|µ∗ij(λ) = maxı̂ µ∗ı̂j(λ)} be
the set of users who achieve the maximum metric on tone j,
and |Aj | be the size of set Aj . From the previous analysis it
follows that the set of all x(λ) that solve (16) are those that
satisfy the following properties:

i) for i 6∈ Aj , x∗ij(λ) = 0;
ii) if |Aj | = 1, then x∗ij(λ) = 1 for i ∈ Aj ; and

iii) if |Aj | > 1, then for all i ∈ Aj , x∗ij(λ) ∈ [0, 1] and∑
i∈Aj

x∗ij(λ) = 1.
In case (iii), we must break ties to determine the allocation

for that tone. We refer to an allocation as an extreme point if
it satisfies (i)-(iii) and x∗ij(λ) ∈ {0, 1} for all i and j; such an
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allocation can be represented by a function f : N → K, so
that f(j) indicates the user who is allocated channel j, i.e.,
x∗f(j)j(λ) = 1. To satisfy (i)-(iii), it must be that f(j) ∈ Aj
for all j. Let B = {j : |Aj | = 1} and Bc = N \ B. For
each j ∈ B, there are no ties, and so f(j) is unique. For each
tone j ∈ Bc, there are |Aj | users in the tie, and so f(j) can
take |Aj | values. Hence, the total number of extreme points
is
∏
j∈Bc |Aj |.

Each extreme point satisfies Proposition 1 and so provides
a subgradient for L(λ). From Proposition 1 it is also clear
that all the subgradients of L(λ) can be obtained as a convex
combination of the values at the extreme points. Let

p̃ij := 1
ẽij

[
q

(
β,
(
wiẽij

λ − 1
)+
)
∧ s̃ij

]
. (17)

Given an extreme point f , from (11), the resulting power
allocation to tone j is given by p̃ij1{i=f(j)} where we use
1X to denote the (regular) indicator function of set X . Hence,
the corresponding subgradient d(f) is given by

d(f) = P −
∑
j∈B

p̃f(j)j −
∑
j∈Bc

p̃f(j)j . (18)

Choosing different extreme points only effects the last term
on the right of (18). It follows that the maximum subgradient
of L(λ) corresponds to the extreme points given by

f̂(j) := arg min
i∈A(j)

p̃ij , ∀j. (19)

Likewise, the minimum subgradient is given by extreme points
that satisfy

f̄(j) := arg max
i∈A(j)

p̃ij , ∀j. (20)

At λ∗, the maximum subgradient given by an extreme point
in (19) is always nonnegative, and the minimum subgradient
given by an extreme point in (20) is always non-positive. If
any of them is zero, then an optimal primal solution is found.
Otherwise, we can find an optimal primal solution by time
sharing as follows:

Proposition 2: There exists an optimal primal solution
(x∗(λ∗),p∗(λ∗)), where x∗(λ∗) is given by time-sharing
between the two extreme points in (19) and (20), and p∗(λ∗)
is given by (11).

Proposition 2 implies that there is always an optimal primal
solution for which at most two users time-share any tone.
Moreover, each tone that is time-shared is shared in the same
proportion. The optimal time-sharing factor can be found by
the convex combination of the subgradients corresponding to
(19) and (20) that is equal to zero.

The above steps give us an algorithm for finding the optimal
solution to (8) in two stages:

1) First, find λ∗ that minimizes L(λ) as in Section III-A.
This involves evaluating L(λ) for a fixed value of λ
as an inner loop, and a one-dimensional search over
λ as an outer loop. The outer loop has a constant
complexity that is independent of N and K8. The inner
loop has a complexity of O(NK) due to searching for

8The computational complexity of a bi-section search is O(log(1/ε)),
where ε is the relative error bound target for the search.

the maximum of K metrics (15) on each of the N tones.
Thus the total complexity of this stage is O(NK).

2) Second, given λ∗, compute the maximum and minimum
extreme points and find the optimal primal variables as
in Proposition 2. The complexity of the second stage is
also O(NK), since for each tone we need to find the
maximum and minimum in (19) and (20), respectively.

It follows from the above that the overall complexity of the
optimal algorithm is O(NK).

In our simulations, the actual complexity of the second stage
is typically much smaller than O(NK). This is due to the
fact that “typically” only a few ties occur. For example, Table
V in Section IV shows that for a system of 64 subchannels
(grouped from 512 tones) and 40 users in a high mobility
environment, there are on average only two extreme points
at each scheduling interval (averaged over 3000 scheduling
intervals) under either adjacent or random subchannelization.
This arises because there is a tie on only one subchannel,
and involving only two-users. The number of extreme points
can be very large under interleaved subchannelization. This is
because if two users are tied on one subchannel, it is very
likely that they will also be tied on the other subchannels
since all subchannels have roughly the same channel gain for
the same user. However, if all the ties are due to the same
two users, we can just allocate all subchannels with a tie
to the same user and this will lead to either the largest or
smallest subgradient. These observations are consistent with
the work in [21], which argues that for a OFDM system with
β = 0 in which no time-sharing is allowed, the duality gap
as defined in [21] is small for a reasonable number of sub-
channels (roughly 8 in their numerical examples). Problem
(8) can be viewed as the dual of the dual problem studied
in [21, eqn. (9)] and the duality gap in [21] can be viewed
as a measure of the accuracy of approximating the OFDMA
scheduling problem by the time-sharing version of it from
(8). Note that when there is exactly one extreme point then
the duality gap is clearly zero (since this will correspond to
an integer solution). The arguments in [21] for a vanishing
duality gap roughly corresponds to showing that the spread
in the power consumption of different extreme points (i.e. the
difference in the corresponding subgradient values) is typically
small for a reasonable number of carriers. When this spread
is small, one expects that fewer ties are occurring which is
consistent with the above discussion. Furthermore, it can be
seen that the arguments in [21] extend to the β > 0 case as
well.

C. Single user per tone

In this section we consider the case where no time sharing
is allowed, i.e., xij ∈ {0, 1} for all i and j. Suppose we
still find the optimal value of λ∗ as in Section III-A. If there
are no ties on any of the tones or if there is an extreme
point with

∑
j∈N p̃f(j)j = P , the optimal primal solution

given in Section III-B only allows one user per tone, and
we are done. If not, Proposition 2 will no longer give a
feasible primal solution, i.e., one that satisfies the integer
constraints. In this case, a reasonable heuristic is to simply
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choose one extreme point allocation. In our simulations, we
choose the extreme point corresponding to the subgradient
with the smallest non-negative value; i.e., the extreme point f ,
for which

∑
j∈N p̃f(j)j is closest to P , without exceeding it.

Other rules for choosing an extreme point could also be used.
Note that this requires searching over all extreme points, which
has a worst-case complexity of O(KN ) (if all users were
tied on every tone). However, as discussed above, typically
there are only two users tied on one tone and so this has
almost constant complexity. If instead the largest or smallest
subgradient was used, the worst-case complexity would again
be O(NK).

For a given extreme point f , the total transmit power∑
j∈N p̃f(j)j will be either greater or lesser than the constraint

P (unless this point is optimal). We then need to re-optimize
the power allocation for the given fixed feasible tone allocation
x (i.e., xij = 1 if i = f(j), otherwise xij=0), i.e., solve

max
p:(p,x)∈X

V (x,p) s.t.
∑
i,j

pij ≤ P. (21)

Let Lx(λ) be the dual function for this problem. Given
λ̃ = arg minλ≥0 Lx(λ), the optimal power allocation to (21)
is given by (11) with λ = λ̃ and the given tone allocation x.
A simple one-dimensional search can again be used to find
the optimal λ. This will have a complexity of O(N) (to get
within ε of the optimal) since each tone has at most one user.

When the self-noise term β = 0, we can actually find the
optimal λ̃ in finite steps based on the following alternative
characterization for the correct λ̃, the proof of which is based
on a similar argument as in [10].

Proposition 3: Consider the case where β = 0. A given
λ̂ is the unique optimal solution to the dual problem
minλ≥0 Lx (λ) if and only if

λ̂ =

∑
i,j xijwi1{λ̂∈Wij}

P −
∑
i,j

Γij

eij
1{λ̂∈Yij} +

∑
i,j

1
eij

1{λ̂∈Wij}

, (22)

where Wij =
[
xijwieij

1+Γij
, xijwieij

)
, and Yij =

[
0, xijwieij

1+Γij

)
.

Proposition 3 suggests the following algorithm for finding
λ̃. First check if the power constraint is violated when all
users use maximum power on the allocated tones, i.e., if∑

(i,j)
xij

eij
Γij > P . If this is not true, the problem is solved.

If this is true, we need to search for λ̃. Let b be a vector of
length 2N containing the values of xijwieij and xijwieij

1+Γij
for

all (i, j) such that xij = 1, sorted in descending order. Define
two additional vectors z and y such that for any k = 1, ..., 2N ,
z (k) = 1 if b (k) = xijwieij

1+Γij
for some (i, j) and 0 otherwise,

and y (k) = {i, j} if b(k) = xijwieij or xijwieij

1+Γij
.

The complete λ search algorithm is given in Algorithm 1.
The basic idea is to start from the largest λ, and calculate the
right-hand side of (22). If it is less than the current value of
λ, decrease λ and recalculate, until a fixed-point is found. It
can be shown that the algorithm will stop in at most 2N steps
with λ (k) = λ̃.

This algorithm requires a complete sort of the 2N values
in the vector b and so has a complexity of O(N logN).
Note that this is larger than the O(N) complexity required

Algorithm 1 Search Algorithm for Optimal λ under a Fixed
Tone Assignment (with β = 0)

1) Initialization: k = 0, Gxw = 0, Gs/e = 0 and G1/e = 0.
2) k = k + 1.
3) Let {i (k) , j (k)} = y (k).
4) If z (k) = 0, then Gxw = Gxw + xi(k)j(k)wi(k) and

G1/e = G1/e + 1
ei(k)j(k)

.

5) If z (k) = 1, then Gs/e = Gs/e + Γi(k)j(k)

ei(k)j(k)
, Gxw =

Gxw − xi(k)j(k)wi(k), and G1/e = G1/e − 1
ei(k)j(k)

.
6) Let λ (k) = Gxw/

(
P −Gs/e +G1/e

)
.

7) If λ (k) ≤ b (k) and λ (k) ≥ b (k + 1) , stop. Otherwise,
go to step (2).

by a one-dimensional search, but yields the exact optimal
solution in finite time as opposed to an ε-optimal solution.
Regardless of how the power allocation is determined, this
algorithm still requires finding the optimal λ∗, which as
complexity O(NK) as before. Combining these observations,
it follows that if the largest or smallest subgradients are used
to break ties, the overall algorithm will have a complexity of
O(NK) or O(NK + N logN) depending on if the power
is re-optimized using a one-dimensional search over λ or
Algorithm 1, respectively.

D. Single sort suboptimal algorithm

The optimal tone allocation is determined by assigning each
tone j to the user with the largest metric µ∗j (λ

∗) on that tone
(breaking any ties as discussed above). This requires iterating
to find the optimal Lagrange multiplier λ∗ in the first place.
Now we introduce two sub-optimal algorithms that do not
require finding the optimal λ∗ iteratively. Instead, a carrier
allocation is determined by a single sort on each tone based
on some easily calculated metric. These heuristic algorithms
are much faster than the previous algorithms, although their
complexity is again O(NK).

1) HEURISTIC 1: Each subchannel j is allocated to the
user with the largest value of wiR̄ij , where

R̄ij = log

[
1 +

(
Γij ∧

(
ẽijP/N

1 + βẽijP/N

))]
is the rate user i could achieve on subchannel j under
a constant power allocation of P/N . Any ties are broken
arbitrarily. Constant power is allocated on all subchannels.
This metric was motivated in part by work in [14], [17] where
a uniform power allocation (not necessarily over all tones) was
shown to be nearly optimal.

2) HEURISTIC 2: Here subchannels are allocated as in
HEURISTIC 1. However, after the allocation is determined,
an optimal power allocation is performed as in Section III-C
(instead of constant power allocation). It may turn out that no
power is assigned to some subchannels.

IV. SIMULATION STUDY

We report simulation results based on a realistic OFDM
simulator with parameters and assumptions commonly found
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in IEEE 802.16 standards [11]. We focus on the following
three algorithms: the OPTIMAL algorithm which finds the
optimal λ∗ and then chooses a tone-allocation with one
user per tone as described in Section III-C9, and the two
algorithms (HEURISTIC 1 and HEURISTIC 2) described in
Section III-D.

We simulate a single OFDM cell with M = 40 users and
a total transmission power of P = 6W at the base station.
The channel gains eij’s are the products of a fixed location-
based term for each user i and a frequency-selective fast time-
scale/short-term fading term. The location-based components
are picked using an empirically obtained distribution for many
users in a large system. The fast time-scale fading term is
generated using a block-fading model based upon the Doppler
frequency (for the block-length in time) and a standard refer-
ence mobile delay-spread model (for variation in frequency).
For a user’s fast time-scale fading term, each multi-path
component is held fixed for 2msec (i.e., a fading block length),
which corresponds to a 250Hz Doppler frequency. The delay-
spread is set to 1µsec. The users’ channel conditions are
averaged over the applicable channelization scheme and fed
back to the scheduler at the base station.

We consider a system bandwidth of 5MHz consisting of
512 OFDM tones, grouped into 64 subchannels (8 tones per
subchannel). The symbol duration is 100µsec with a cyclic
prefix of 10µsec, which roughly corresponds to 20 OFDM
symbols per fading block (i.e., 2msec). This is one of the
allowed configurations in the IEEE 802.16 standards [11].
The resource allocation is done once per fading block. All
the results are averaged over the last 2000 OFDM symbols
out of 60000 OFDM symbols (i.e., 3000 fading blocks) by
which time we can be reasonably confident that the system has
reached stationarity. All users are infinitely back-logged and
assigned a throughput-based utility as in (2) with parameter
ci = 1 and the same fairness parameters (α) across users. We
solve problem (3) once at each scheduling instance.

We calculate the rate of user i on subchannel j as

rij = 0.28Bxij log
(

1 +
0.56pij ẽij

xij + βpij ẽij

)
,

where B is the subchannel bandwidth. Here 0.56 accounts for
the “SNR gap” due to limited modulation and coding choices
and 0.28 accounts for various factors such as hybrid ARQ
transmission scheme and the overhead due to guard tones and
control symbols, etc. While the scheduling is based on the
geometric average for β = 0 and harmonic average for β > 0,
the decoded rate is based on per tone channel conditions.10

The first set of simulation results are for a system with
adjacent subchannelization, no self-noise (β = 0), and no per-

9We have simulated both the algorithms in Section III-B and III-C, and
found that they have identical performance under all parameter choices. This
could be due to the fact that the gap in making the time-sharing assumption
is small owing to there being very few significantly different extreme points
at each scheduling interval as discussed at the end of Section III-B. We thus
refer to the algorithm in Section III-C simply as the OPTIMAL algorithm.

10That is, the decoded rate is given by r̂ij =

0.28 B
|Nj |

xij
P
jk∈Nj

log

„
1 +

0.56pij ẽijk
xij+βpij ẽijk

«
, where Nj is the set

of tones in the jth subchannel and ẽijk is the SNR per unit power for tone
jk . This is reasonable if hybrid ARQ is used.

TABLE I
PERFORMANCE FOR DIFFERENT CHOICES OF α (ADJACENT

CHANNELIZATION, NO-SELF-NOISE, NO SNR CONSTRAINTS). RATE IS IN
KBPS.

α Algorithm Utility Log U Rate Num.
0 OPTIMAL 10.74 10.74 60.8 7.73
0 HEURISTIC 1 10.66 10.66 54.6 7.29
0 HEURISTIC 2 10.72 10.72 57.3 7.35

0.5 OPTIMAL 545.2 10.83 105.9 7.32
0.5 HEURISTIC 1 528.8 10.73 99.3 7.20
0.5 HEURISTIC 2 542.8 10.81 103.2 7.01

1 OPTIMAL 261677 6.79 261.7 2.58
1 HEURISTIC 1 261676 6.79 261.7 2.58
1 HEURISTIC 2 261676 6.77 261.7 2.58

TABLE II
PERFORMANCE OF DIFFERENT CHANNELIZATION SCHEMES (α = 0.5, NO

SELF-NOISE, NO SNR CONSTRAINTS). RATE IS IN KBPS.

Channelization Algorithm Utility Log U Rate Num.
Adjacent OPTIMAL 545.15 10.83 105.9 7.32
Adjacent HEURISTIC 1 528.83 10.73 99.3 7.20
Adjacent HEURISTIC 2 542.84 10.81 103.2 7.01

Interleaved OPTIMAL 494.61 10.53 92.4 1.79
Interleaved HEURISTIC 1 486.40 10.47 88.4 1.14
Interleave HEURISTIC 2 487.02 10.48 87.8 1.15

Random OPTIMAL 487.53 10.53 89.2 4.89
Random HEURISTIC 1 479.07 10.46 84.2 4.39
Random HEURISTIC 2 485.63 10.51 86.5 4.34

user SNR constraints (i.e., s̃ij = ∞ for all i and j). Table I
shows the results for all three algorithms under different
choices of the utility parameter α. The column “Utility”
gives the average utility per user for each algorithm. The
column “log U” shows the log utility per user; this gives
some indication of the “fairness” of the resulting allocation
(for α = 0 this is the same as the utility). The column “Rate”
is the average throughput per user, and the final column is the
average number of users scheduled. For each choice of α, the
three algorithms perform close to each other for each of these
metrics. HEURISTIC 2 performs better than HEURISTIC 1,
since the former re-optimizes the power allocation after tone
allocation, and the latter just uses constant power allocation.
When α = 1 (maximum throughput), all three algorithms have
almost identical performance.

Next we consider the effect of different channelization
schemes. Table II shows the performance of the three algo-
rithms for the adjacent, random, and interleaved channelization
schemes described in Section II-A. We set α = 0.5, β = 0,
and s̃ij = ∞ for all i and j. Again, both HEURISTIC
algorithms perform close to the OPTIMAL algorithm. For all
three algorithms, the interleaved and random channelizations
result in lower utility than the adjacent. This is likely due to
higher frequency diversity with the adjacent subchannelization
scheme. Indeed, for the channel model used here, in the
interleaved case all subchannels can be shown to be almost
identical, which explains why it typically schedules only one
or two users.

Next we consider the case when the self-noise coefficient
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TABLE III
PERFORMANCE OF DIFFERENT CHANNELIZATION SCHEMES (α = 0.5,

SELF-NOISE β = 0.01, NO SNR CONSTRAINTS). RATE IS IN KBPS.

Channelization Algorithm Utility Log U Rate Num.
Adjacent OPTIMAL 512.20 10.82 82.5 7.52
Adjacent HEURISTIC 1 489.32 10.70 73.7 7.40
Adjacent HEURISTIC 2 504.00 10.78 77.2 7.22

Interleaved OPTIMAL 467.00 10.51 73.5 1.98
Interleaved HEURISTIC 1 453.16 10.43 66.8 1.26
Interleave HEURISTIC 2 454.59 10.44 66.9 1.27

Random OPTIMAL 460.53 10.51 71.6 5.60
Random HEURISTIC 1 446.58 10.42 64.7 4.89
Random HEURISTIC 2 453.51 10.48 66.1 4.85
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Fig. 2. Empirical CDF of users’ throughputs (adjacent subchannelization,
α = 0.5, no per-user SNR constraints).

β = 0.01 in Table III. Here we assume α = 0.5, and there is no
per-user SNR constraint. With β = 0.01, the SNR values are
upperbounded by 1/β = 20dB. The performance gap between
the three algorithms is slightly larger compared to the case
without self-noise in Table II.

In Figure 2, we plot the throughput CDFs for all three
algorithms, with self-noise (β = 0.01) and without (β = 0).
Here adjacent channelization is used, α = 0.5, and s̃ij = ∞
for all i and j. It is clear that users achieve better throughput
when there is no self-noise (β = 0). The OPTIMAL algorithm
always achieves better rates compared with HEURISTIC ones
under the same value of β. In fact, the OPTIMAL algorithm
almost stochastically dominates the HEURISTIC ones (except
at values very close to the lowest achievable rates) for both
values of β.

In Table IV, we consider the effect of SNR constraints. In
particular, we choose the SNR constraints to be∞, 30dB, and
20dB, respectively, and the same across all users and all tones.
We choose adjacent subchannelization with utility parameter
α = 0.5 and no self-noise. Comparing with the case with
no SNR constraints, a constraint of 30dB does not change
the results significantly, while a constraint of 20dB leads to
substantial decrease in terms of achievable rates (13% for the

TABLE IV
PERFORMANCE OF DIFFERENT SNR CONSTRAINTS (ADJACENT

SUBCHANNELIZATION, α = 0.5, NO SELF-NOISE). RATE IS IN KBPS.

SNR Con. Algorithm Utility Log U Rate Num.
∞ OPTIMAL 545.15 10.83 105.9 7.32
∞ HEURISTIC 1 528.83 10.73 99.3 7.20
∞ HEURISTIC 2 542.84 10.81 103.2 7.01

30dB OPTIMAL 542.78 10.83 102.97 7.33
30dB HEURISTIC 1 519.81 10.72 91.87 7.25
30dB HEURISTIC 2 535.89 10.81 96.35 7.10

20dB OPTIMAL 522.48 10.82 88.11 7.40
20dB HEURISTIC 1 483.50 10.66 72.60 7.09
20dB HEURISTIC 2 505.81 10.77 78.61 6.92

TABLE V
DISTRIBUTION OF NUMBER OF TIES FOR THE ALGORITHM IN

SECTION III-B (SELF-NOISE β = 0.01).

α Channelization 2 ties 3 ties 4 ties >= 5 ties
0 Adjacent 50.80% 0.09% 2.8% 0.14%
0 Random 51.58% 0.08% 2.69% 0.12%

0.5 Adjacent 56.81% 0.08% 4.81% 0.33%
0.5 Random 56.56% 0.08% 4.81% 0.33%
1 Adjacent 12.93% 0.03% 4.16% 3.83%
1 Random 8.79% 0.01% 2.17% 1.06%

OPTIMAL algorithm and 27% for HEURISTIC 1 algorithm).
Finally, in Table V, we investigate the average number of

ties that occur under the algorithm described in Section III-B.
We present the results for different α values under both
adjacent and random subchannelizations with β = 0.01. For
each row, we record the number of ties over 30000 scheduling
time slots and calculate the percentages. Typically (around
99% of the time for most cases) very few ties occur (e.g.,
less than 5). Similar results were also observed for β = 0.

V. CONCLUSIONS

We have considered the problem of gradient-based schedul-
ing and resource allocation for a downlink OFDM system,
which essentially reduces to solving an optimization problem
in each time-slot. We studied this problem for a general
model that can accommodate various choices for user utility
functions, different sub-channelization techniques, and self-
noise due to imperfect channel estimates or phase noise. We
first studied a relaxed version of this problem in which users
can time-share each subchannel. Using duality theory we gave
an optimal algorithm for solving this problem. This involves
finding a maximum of a per user (closed form) metric for
each sub-channel and a one-dimensional search of an optimal
dual variable. More interestingly, a typical solution obtained
by the optimal solution automatically yields an integer carrier
allocation constraint (except on one or two tones). To enforce
such a constraint on all tones, we further propose an algorithm
that always picks an integer carrier allocation and re-optimizes
the power allocation accordingly. The numerical performance
of this algorithm is almost identical to the optimal solution
of the relaxed problem. Finally, we propose two even simpler
suboptimal algorithms that only perform a single sort on each
of the tones and avoid any iterative calculations. Simulations
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once again show that the suboptimal algorithms achieve close
to optimal performance under a wide range of scenarios, and
the performance gap widens when per user SNR constraints
or channel estimation errors are considered.

APPENDIX A
PROOF OF PROPOSITION 1

Before proceeding, define the (convex) indicator function of
a convex set C ⊆ <n to be

δ
(
x
∣∣C) :=

{
0, if x ∈ C,
+∞, otherwise.

(23)

From (14) and [29, Corollary 10.9, pp. 430-431] we have11

∂L(λ) = {P} +
∑K
j=1 ∂µ

∗
j (λ). Hence, it suffices to charac-

terize ∂µ∗j (λ) for every j.
Let L̂j(λ, µj) := µj − Lj(λ, µj), where Lj(λ, µj) is

defined in (13). Note that µ∗j (λ) = minµj≥0{µj − L̂(λ, µj)}.
Applying [29, Theorem 10.13, pp. 433-434], it follows that

∂µ∗j (λ) = {y : (y, 0) ∈[
(0, 1) +

(
0, ∂δ

(
µ̃i
∣∣{µi ≥ 0}

))
− ∂L̂j(λ, µ̃j)

]}
, (24)

for any µ̃j ∈ arg minµi≥0 µj − L̂j(λ, µj).
Similarly, let L̂j(xj ,pj , λ, µj) = µj − Lj(xj ,pj , λ, µj),

where Lj(xj ,pj , λ, µj) is defined in (10). It follows that
L̂(λ, µj) = min(xj ,pj)∈Xj

L̂j(xj ,pj , λ, µj). From another
application of [29, Theorem 10.13] we then have

∂L̂j(λ, µj) = {(y, z) : (0,0, y, z) ∈[
∇L̂j(x̃j , p̃j , λ, µj) +

(
∂δ
(

(x̃j , p̃j)
∣∣∣Xj), 0, 0)]} , (25)

for any (x̃j , p̃j) ∈ arg min(xj ,pj)∈Xj
L̂j(xj ,pj , λ, µj).

Note that ∂L̂j(λ,µj ,x
j ,pj)

∂λ =
∑K
i=1 pij ,

∂L̂j(λ,µj ,x
j ,pj)

∂µj
=
∑K
i=1 xij , and finally that (x̂(λ), p̂(λ))

satisfies (16) if and only if (x̂j(λ), p̂j(λ)) ∈
arg min(xj ,pj)∈Xj

L̂j(xj ,pj , λ, µ∗j (λ)) for all j. Hence,
from (25)

∂L̂j(λ, µ∗j (λ)) =

{(
K∑
i=1

x̂ij(λ),
K∑
i=1

p̂ij(λ)

)
:

(x̂j(λ), p̂j(λ)) ∈ arg min
(xj ,pj)∈Xj

L̂j(xj ,pj , )
}
.

Next note that µ̃j = µ∗j (λ) and that ∂δ
(
µ̃i
∣∣{µi ≥ 0}

)
=

{0}1{µ̃i>0} + (−∞, 0]1{µ̃i=0} + ∅1{µ̃i<0}, where ∅ is the
empty set (see e.g. [28, pg. 226]). Using this in (24), it
follows that we can write any subgradient of µ∗j (λ) in terms of
those elements of ∂L̂j(λ, µ∗j (λ)) for which the corresponding
allocation x̂j(λ) satisfies

1) if µ∗j (λ) > 0, then
∑K
i=1 x̂ij(λ) = 1; and

2) if µ∗j (λ) = 0, then 0 must lie in(
−∞, 1−

∑K
i=1 x̂ij(λ)

]
, i.e.,

∑K
i=1 x̂ij(λ) ≤ 1.

In either case, the value of the subgradient of µ∗j (λ) is P −∑K
i=1 p̂ij(λ). �

11The addition of sets A,B ⊆ <n is defined by A+B := {x+ y : x ∈
A, y ∈ B}.
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