Analysis of Multiuser Diversity in Wireless Data Networks

Vijay Subramanian Mathematics of Communication Networks GTSS, Motorola.

Joint work with Rajeev Agrawal.

Outline

Wireless Scheduling

Time Invariant Channel

Weighted Proportionally Fair Allocation

Time-Varying Channels

Analysis

Future Work

Conclusions

Wireless Scheduling

Problem: How to dynamically share a wireless link efficiently and fairly amongst various users?

Wireless scheduling paradigm:

- Wireless link is resource limited bandwidth, spreading codes, power, interference.
- Time-varying.
- Means to achieve capacity often involves varying rates of transmission based upon channel state. Scheduler not aware of radio-conditions cannot wait till good channel state to transmit.

Great benefits to be had with higher layers knowing the physical layer parameters. Thus, joint approach seems more natural - Collins and Cruz'1999, Zhang and Wasserman'2000, Berry and Gallager'2001, Tse'2000, Holtzman'2000, Jalali *et al.*'2000, Chawla *et al.*'2000, Shakkottai and Stolyar'2000, Agrawal, *et al.*'2001, Rangsan L and Agrawal'2001.

Efficiency and fairness compete:

- 1. In 2-G systems only voice was present. Coverage (fairness) was the only concern. Very good conditions for certain users never exploited nothing to be gained really. Not very efficient!
- 2. Consider packet data and the policy of service only to the best user(s). Most efficient system. ONLY on-off nature of traffic would allow other users to transmit. No fairness!

It is clear from (1) that such concerns are important only for packetized services.

Time-invariant channels

We consider non-realtime applications - specifically rateadaptive services - and downlink case.

Let user j get rate \bar{R}_i at time.

Define ρ_j to be the fraction of time (over a long time) that the resources are given to user j.

Throughput of user j - $\rho_j \bar{R}_j$. Choose ρ_j such that

$$\max_{\rho_j} \sum_{j \in \mathcal{J}} U_j(\rho_j \bar{R}_j P_b M_j) \tag{1}$$

subject to:

$$\sum_{j}^{
ho_{j}} \stackrel{\geq}{\leq} 0$$

 $U_j(\cdot)$ is a utility function belonging to the family

$$U^{\alpha}(x) = \begin{cases} \operatorname{sgn}(\alpha)x^{\alpha} & \alpha < 1, \ \alpha \neq 0 \\ \log(x) & \alpha = 0 \end{cases}$$

The solution to (1) is

$$\rho_j = \frac{\bar{R}_j^{\beta - 1}}{\sum_{i \in \mathcal{J}_i} \bar{R}_i^{\beta - 1}}, \forall \alpha < 1,$$

where $\beta = \frac{1}{1-\alpha}$.

Therefore, $ho_j \propto ar{R}_j^{eta-1}$ and throughput $\propto ar{R}_j^{eta}$.

Define $C_j = \bar{R}_j^{\beta}$.

Observations:

- $\alpha = 1$, i.e., $\beta = +\infty$ results in $\rho_j = 1$ for $j = \arg\max \bar{R}_j$ or the policy that serves the best user.
- $\alpha=0$, i.e., $\beta=1$ results in proportionally fair allocation resulting in ρ_j being equal for all the users the trade-off assumed in the HDR solution of Tse et al.
- $\alpha = -\infty$, i.e., $\beta = 0$ results in users getting a throughput independent of their channels Equal throughput solution!

Weighted Proportionally Fair Allocation

$$\max_{\rho_j} \sum_{j \in \mathcal{J}} Wt_j \log(\rho_j \bar{R}_j) \tag{2}$$

subject to the constraints of (1). Solution is

$$\rho_j^* = \frac{Wt_j}{\sum_i Wt_i}.$$

and $Thput_j^* = \frac{Wt_j\bar{R}_j}{\sum_i Wt_i}$.

Solution of (1) same as (2) with weights $Wt_j = \frac{C_j}{\bar{R}_i}$.

Question: How does one achieve the wpf allocation?

Let $W_i(t)$

= amount of data transmitted by user j upto t (present) = $W_j(t-1)$ + data transmitted at time t.

Let $\bar{W}_j(t) = \frac{W_j(t)}{C_j}$ be the normalized throughput.

Policy: At BS b serve user $j^*(t) = \arg\min_{j \in \mathcal{J}_b} \overline{W}_j(t)$.

We have the following

Proposition 1 As $t \to \infty$ the algorithm outlined gives the wpf allocation, and hence, the optimal allocation.

Time-Varying Channels

Assume that user j gets rate $R_i(t)$ at time t.

Try simple approach of using $C_j = \bar{R}_j^{\beta}$.

Then $Thput_j(t) \to Thput_j^*(\bar{R})$ (a.s.) under fairly general conditions (Proof for i.i.d. with $1 + \epsilon$ moment).

Is this the best that can be done? NO!

If we transmit to user j when his rate is better than his average, then we can do better.

If there are many users, then it is very likely that some user will be in a good state - **Multiuser Diversity**.

Compute the average effective data rate $\hat{R}_{j}^{\mathrm{avg}}(t)$ as follows

$$R_j^{\text{avg}}(t+1) = (1-\psi)R_j^{\text{avg}}(t) + \psi R_j(t).$$

Define

$$C_{j}(t) = w_{j}[R_{j}^{\text{avg}}(t)]^{\beta} \left[\frac{R_{j}(t)}{R_{j}^{\text{avg}}(t)}\right]^{\gamma}$$

$$= w_{j}[R_{j}^{\text{avg}}(t)]^{\beta-\gamma}[R_{j}(t)]^{\gamma}$$

$$= C_{j}^{1}(t)C_{j}^{2}(t),$$
(3)

where $0 \le \gamma \le \beta$.

Let $D_j(t)$ be the amount of data transmitted in frame t for user j. Update \overline{W}_j as follows

$$\bar{W}_j(t+1) = (1-\phi)\bar{W}_j(t) + \phi \frac{D_j(t)}{C_j^1(t)}.$$
 (4)

Policy: Rank users in increasing order of $\tilde{W}_j(t) = \bar{W}_j(t)/C_j^2(t)$ and serve user j^* with minimum $\tilde{W}_j(t)$, i.e., $D_j(t) = 1_{[j=j^*]}R_j(t)$.

3 Variations possible:

- 1. Variant 1: Use $C_j^1(t) = C_j(t)$ and $C_j^2(t) = 1$. This resembles the algorithm analysed earlier.
- 2. Variant 2: Use $C_j^1(t)=w_j[\hat{R}_j^{\text{avg}}(t)]^\beta$ and $C_j^2(t)=[\frac{\hat{R}_j(t)}{\hat{R}_j^{\text{avg}}(t)}]^\gamma$.
- 3. Variant 3: Use $C_j^1(t) = 1$ and $C_j^2(t) = C_j(t)$.

The algorithm in Tse'2000 is similar to **Variant 3** with $\beta = \gamma = 1$. We assume that $\psi = \alpha \phi$.

Define

$$T\tilde{hput}_j(t+1) = (1-\phi)T\tilde{hput}_j(t) + \phi D_j(t).$$
 (5)

Performance

CDMA case:

25 cells, 15 users per cell Data rates - 2400, 1800, 1200, 600, 300 bits per frame (10ms).

Max thput per cell - 1.44 Mbps.

β	Variant 1, $\gamma = 0$	Variant 1	Variant 2	Variant 3
0	294.39, 5.83	294.39, 5.83	294.39, 5.83	294.39, 5.83
1	353.14, 7.97	385.84, 8.85	421.82, 9.27	442.36, 9.77
2	423.43, 10.00	457.74, 10.83	480.86, 10.95	522.15, 11.73

Comparison of average throughput per cell for different values of β and variations of the scheduling algorithm.

In columns 2, 3 and 4: for

- $\beta = 0$, $\gamma = 0$.
- $\beta = 1$, $\gamma = 1$ HDR proposal.
- $\beta = 2$, $\gamma = 1$.

Stochastic Approximation

[Bucklew, Kurtz, Sethares]:

$$W_{k+1} = W_k + \mu H(W_k, Y_k, U_{k+1}),$$

where W_k represents the parameter estimation errors, Y_k some function of inputs, $U_k = q(W_k, Y_k, \Psi_k)$ is a disturbance process with $\{\Psi_k\}$ i.i.d. and independent of $\{Y_k\}$, and W_0 independent of $\{(Y_k, \Psi_k)\}$.

Define

$$\bar{H}(w,y) = \int H(w,y,u)\eta(w,y,du)$$

where η is the conditional distribution of U_{k+1} given \mathcal{F}_k and

$$\widehat{H}(w) = \int \overline{H}(w, y) \nu_Y(dy).$$

If $\{Y_k\}$ statinary and ergodic, $W_{\mu}(0) \to w_0$ in probability and $\bar{H}(w,y)$ continuous in (w,y), then as $\mu \to 0$, $W_{[t/mu]}$ converges weakly to

$$W(t) = w_0 + \int_0^t \widehat{H}(W(s))ds.$$

Variant 1

We have

$$\bar{W}_{j}(t+1) = \bar{W}_{j}(t) + \phi \left(1_{[j=j^{*}]} \frac{R_{j}^{1-\gamma}(t)}{(R_{j}^{\text{avg}}(t))^{\beta-\gamma}} - \bar{W}_{j}(t) \right), (6)$$

where $j^* = \arg\min_j \overline{W}_j(t)$.

As $\phi \to 0$ and for large t, $R_j^{\rm avg}(t) = \bar{R}_j$ and we get a version of the simple algorithm!!! Thus,

$$Thput_{j} = \frac{E[R_{j}]^{\beta - \gamma + 1} / E[R_{j}^{1 - \gamma}]}{\sum_{i} E[R_{j}]^{\beta - \gamma} / E[R_{j}^{1 - \gamma}]}.$$
 (7)

We do not exploit multiuser diversity (for small enough ϕ) and for $\gamma=1$ we get same performance as $\gamma=0$. In general expect performance to be worse (in terms of sum utility) than $\gamma=0$ case.

Variants 2 and 3

ODE - V2

$$\frac{d\overline{W}_j}{dt}(t) = E_R[\mathbf{1}_{[j=j^*]} \frac{R_j}{(R_j^{\text{avg}}(t))^{\beta}}] - \overline{W}_j(t) \quad (8)$$

$$\frac{dT\tilde{hput}_j}{dt}(t) = E_R[\mathbf{1}_{[j=j^*]}R_j] - T\tilde{hput}_j(t). \tag{9}$$

Scale \overline{W}_j by $E[R_j]^{\beta}$, then equilibrium solution of V2 and V3 the same!!!

Thus, for small ϕ and large t need to consider only one of them.

Variant 3

Assume $R_j(t)$ is χ -squared distributed with 2n degrees of freedom and mean $\frac{1}{\lambda_j}$.

For 2 users equilibrium point given by solution to

$$\bar{W}_{1} = \frac{1}{\lambda_{1}} \left[1 - \left(\sum_{l=0}^{n-1} \frac{n+l!}{n!l!} \frac{1}{(1+1/c)^{l}} \right) \frac{1}{(1+c)^{n+1}} \right],$$

$$\bar{W}_{2} = \frac{1}{\lambda_{2}} \left[1 - \left(\sum_{l=0}^{n-1} \frac{n+l!}{n!l!} \frac{1}{(1+c)^{l}} \right) \frac{1}{(1+1/c)^{n+1}} \right],$$

where

$$c = \left(\frac{\overline{W}_2}{\overline{W}_1}\right)^{1/\gamma} \left(\frac{\lambda_2}{\lambda_1}\right)^{\beta/\gamma}.$$

ODE has unique solution, therefore convergence (as $\phi \to 0$) is also in probability. Equilibrium point is locally stable. Numerical investigations indicate that it might be globally asymptotically stable as well.

Variant 1 throughput curves.

Scenario: 3 users with 2-state Markovian rate process.

$$\Phi = \begin{bmatrix} 8.68e - 4 & 0.885 & 0.535 \\ 0.165 & 0.984 & 0.39 \end{bmatrix}$$

$$R = \begin{bmatrix} 0.994 & 0.972 & 0.235 \\ 0.257 & 0.975 & 0.515 \end{bmatrix}$$

 $\alpha = 10, \phi = 0.0001, \text{time} = 100000.$

	User 1	User 2	User 3
Theory - $\beta = 2, \gamma = 0.5$	0.414	0.4	0.0678
Sim - $\beta = 2, \gamma = 0.5$	0.414	0.4	0.068
$\beta = 2, \gamma = 0$	0.415	0.401	0.0669

 \bar{W} : Theory 0.4223, Sim 0.4228, 0.4227, 0.4229.

Scenario: 2 users i.i.d Exponential rates R=[0.9905 0.294], β = 2, γ = 1, ϕ =0.005, time=10000.

Variant 2 throughput

Variant 3 throughput

	User 1	User 2
Theory	0.885	0.161
V2 sim	0.895	0.157
V3 sim	0.901	0.161
$\beta = 2, \gamma = 0$	0.764	0.0673

Variant 3 with $\beta = 2$ and different uncertainity in rates.

Variant 3 with $\beta = 2$ with different distributions.

Future Work

- Approximate solutions to aid in predicting performance or optimizations.
- Investigate the second-order performance incorporates effect of the correlation structure of channel rate variations.
- Present analysis based on infinite-backlog assumption. What is the capacity region shaped like with queues and arrival processes?

Conclusions

- Significant advantages to using current channel condition information. Tails of the distributions of the rate processes impact the gains.
- ullet For small enough ϕ Variant 1 does not exploit inherent multiuser diversity.
- ullet For small enough ϕ Variants 2 and 3 exhibit the same performance.
- For every $\beta > 0$ there seems to be a best γ the value of which depends on the level of uncertainity of the current rates of the users.