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Abstract—All opportunistic scheduling algorithms solve
simpler optimization problems at each scheduling instance
in order to achieve good long-term performance. The
analysis of these algorithms assumes that the simpler opti-
mization problems are solved exactly. However, in contrast,
real-life implementations only approximately solve these
problems but still yield close to optimal performance. We
formalize this observation by explicitly bounding the long-
term performance in terms of the error in the approxima-
tion made at every stage.

I. INTRODUCTION

The emergence of wireless data spurred on by de-
velopments in WLANs (802.11) and WANs (2.5/3/4G
cellular technologies) has produced significant research
on opportunistic scheduling in stochastic processing
networks. An abbreviated list of the body of work in
this area can be found in the following articles [20],
[1], [12], [13], [3], [19], [18], [17], [6], [9], [7], where
the scheduling decision can be mathematically abstracted
as finding the control decision that maximizes the pro-
jection of the resulting rates vectors with the gradient
of an appropriate utility function. In all of these it
is demonstrated that exactly solving this optimization
problem yields solutions that (asymptotically) achieve
utility maximizing solutions, ensure stability of the un-
derlying queueing processes or both. However, owing to
tight timing requirements or computational complexity
constraints, in real practice [2], [19], [10], [11] a close
to optimal solution is what is used. Since the control de-
cisions influence the evolution of the system, it is a priori
not immediate that implementing a close to optimal
solution to the resulting optimization problem at every
decision instance will closely approximate the optimal
solution. Restricting attention to throughput-based utility
maximizing solutions, it has been shown [2], [19], [10],
[11] for some examples and through simulations that one
achieves a close to optimal solution by approximately
solving the optimization problem at every decision in-
stance. Our aim in this paper is to formally justify such
a result for the throughput-based utility optimization
problem in the general setting. Before proceeding we
should point out to the reader that it was shown (using
different methods) in [9, Sect. 4.7 & Sect. 5.2 (Cor. 5.2)]
that for a specific class of policies, sub-optimality of

rate allocation within an additive constant yields per-
formance within the additive constant while aiming for
sub-optimality within a multiplicative constant (x < 1)
can only provably guarantee performance relative to a
scaled (by x) rate-region.

II. THE MODEL

Consider a wireless communication system with d
users. The channel conditions are time varying and
captured by a stochastic channel state ηk ∈ S at time
k, where S is the channel state space; we assume that
the channel state space S is finite, i.e., S = {1, . . . ,m}
for some positive integer m. Associated with each state
η ∈ S we have a rate-region R(η) ⊂ Rd+. Thus when the
channel is in the state η, the users may transmit at any
vector of rates r = (r1, . . . , rd) ∈ R(η). We will assume
throughout this paper that R(η) ⊆ K for some compact
set K ⊂ Rd+ and for all η ∈ S . We will also assume
that the process {ηk} evolves according to an ergodic
homogeneous Markov chain with transition probability
matrix P , i.e., for all k ≥ 0,

Prob {ηk+1 = j | ηk = i} = Pij , ∀ i, j ∈ {1, . . . ,m},

and with the stationary distribution vector γ ∈ Rm++. We
will further assume that R(η) is convex and closed for
every η. Then, it can be seen that the steady-state rate
region R̄, given by

R̄ =


m∑
j=1

γjwj | wj ∈ R(j), ∀ j = 1, . . . ,m

 , (1)

is also convex and compact. Note that R̄ is precisely
the set of all achievable steady-state long-term empirical
throughput vectors. See [2], [19], [10], [11] for exam-
ples of some specific wireless communication systems
including TDMA and CDMA cellular systems and adhoc
networks that fit the above mathematical model.

We assume that the d users are rate-adaptive and
need to share the channel described above, fairly and
efficiently. The problem that we would like to solve can
be translated into the following utility maximization:

sup
w∈R̄

d∑
i=1

Ui (wi)
(
4
= U(w)

)
, (2)



where each function Ui(·) is concave and continuously
differentiable on <+. From the above observations on
R̄, it follows that a maximizer exists.

III. A GRADIENT BASED SCHEDULING ALGORITHM

Let Rk = (R1,k, . . . , Rd,k)T ∈ R(ηk) be the rate
selected at time k. Define Wk = (W1,k, . . . ,Wd,k)T to
be the empirical throughput as follows:

Wk+1 = Wk + µk(Rk −Wk), k ≥ 0,

starting with W0 = 0. In this paper, we consider a
diminishing step-size viz., µk = 1/(k + 1), k ≥ 0, and
we are interested in the value of U(Wk) as k → +∞.

To do so, one usually considers a myopic view of the
optimization problem: optimize U(Wk+1) by choosing
Rk ∈ R(ηk) appropriately given that R0, . . . ,Rk−1

have already been chosen. Note that for µk � 1,

U(Wk+1)− U(Wk) ≈ µk∇U(Wk)T (Rk −Wk),

Thus, for small enough µk the best choice given the past
decisions is to choose a point Rk in the capacity region
that satisfies Rk = arg maxr∈R(ηk)∇U(Wk)T r. This
defines a set-valued function Hη(w), given by

Hη(w) = arg max
r∈R(η)

∇U(w)T r, (3)

for w ∈ Rd+ and for every channel state η ∈ S.
Remark We make the following observations:

1) This leads to a gradient-based scheduling algo-
rithm. In the optimization literature this is the
conditional gradient or Frank-Wolfe algorithm [4].

2) With the convex rate region assumption, this is a
convex problem at each scheduling instance.

3) When the region is a simplex for every state, we
obtain a TDM-type algorithm where only one user
is allowed to transmit at a time.

Often owing to tight timing requirements or compu-
tational complexity restrictions, we do not solve for an
optimal solution to (3) but select a solution from the εk-
optimal set H̃η(w) ⊆ R(η) such that for all v ∈ H̃(w),

∇U(w)Tv ≥ max
r∈R(ηk)

∇U(w)T r− εk. (4)

We let W̃k be the empirical throughput up to time k and
set Ṽk ∈ H̃ηk(W̃k) to be the rate selected at time k.
Then, we update the empirical throughputs as follows:

W̃k+1 = W̃k + µk(Ṽk − W̃k), k ≥ 0, (5)

with W̃0 = 0. We would like to understand the behavior
of U(W̃k) as k → +∞. In particular, we would like to
identify the limit points of U(W̃k) when εk → ε.

IV. ANALYSIS OF SUBOPTIMAL ALGORITHM

In our analysis of the algorithm (5), we use some
well-known results as well as some implications of these
results, which are given in the following subsection.

A. Preliminaries
We give some convergence results on Markov chains,

a set sequence and a scalar sequence.
1) Results on Markov chains: For an ergodic homoge-

neous Markov chain with transition matrix P , the matrix
P k converges, as k → ∞, to a matrix whose each row
is equal to the steady state distribution γ ∈ Rm++. The
results that we will use are: (a) For all i ∈ {1, . . . ,m},
the entries P kij converge to γj with a geometric rate, i.e.,∣∣P kij − γj∣∣ ≤M0ρ

k, ∀ j = 1, . . . ,m, ∀ k ≥ 0, (6)

where M0 and ρ are some scalars with M0 > 0 and
ρ ∈ (0, 1); and (b) if κk(j) is the number of visits to
state j up to time k, then for any initial distribution on
states, with probability 1,

lim
k→∞

κk(j)
k + 1

= γj , ∀ j = 1, . . . ,m. (7)

The result in part (a) can be found in [14] (see there
Section 6-10), while the result in part (b) can be found
in [8] (see there Theorem 1 on page 154).

2) Set convergence: Given a sequence of nonempty
sets {Ck} with Ck ⊆ Rd for all k, the outer limit and
the inner limit of the set sequence {Ck} are the sets
lim supk→∞ Ck and lim infk→∞ Ck, which are defined
as follows (see [16], Chapter 4):

lim sup
k→∞

Ck = {x | ∃{xk}K s.t. lim
k→∞
k∈K

xk = x

and xk ∈ Ck,∀ k ∈ K},
lim inf
k→∞

Ck = {x | ∃{xk} s.t. lim
k→∞

xk = x

and xk ∈ Ck,∀ k ≥ k̄ for some k̄}.

When the outer and the inner limit are equal, we say
that the set sequence Ck is convergent. We denote the
limit set by C and we write limk→∞ Ck = C.

We next discuss a convergence property of a weighted
sum of closed sets, in fact compact sets. For each
j = 1, . . . ,M , we assume that {uj,k} is a random scalar
sequence such that limk→∞ uj,k = ûj with probability
1. The set convergence result that we will use (without
proof) is the following: if {Xj , j = 1, . . . ,M} is a
finite collection of nonempty closed sets in Rd that are
contained in a compact superset K ⊂ Rd, then the
sequence of sets {

∑M
j=1 uj,kXj} converges to the set∑m

j=1 ûjXj with probability 1, i.e.,

lim
k→∞

M∑
j=1

uj,kXj =
m∑
j=1

ûjXj w.p. 1. (8)

3) Scalar sequence convergence: The following result
on convergence of a scalar sequence can be found for
example in [15], Chapter 2.

Lemma 1. Let {uk} be a scalar sequence satisfying the
following relation

uk+1 ≤ qkuk + αk ∀ k ≥ 0,



where qk ∈ [0, 1) and αk ≥ 0 for all k,
∑∞
k=0(1−qk) =

∞, and limk→∞
αk

1−qk = 0. Then, lim supk→∞ uk ≤ 0.

B. Convergence Analysis
For ease of exposition and to more easily refer to the

optimization literature, we will work with f(·) = −U(·)
Thus, method (4)–(5) reduces to:

W̃k+1 = W̃k + µk(Ṽk − W̃k), k ≥ 0, (9)

with W̃0 = 0, and Ṽk ∈ R(ηk) such that

∇f(W̃k)T Ṽk ≤ min
r∈R(ηk)

∇f(W̃k)T r + εk, (10)

where εk > 0.
We consider the properties of the sequences {Ṽk} and
{W̃k} under the following assumptions.

Assumption 1. The sets R(j) ⊂ Rd, j = 1, . . . ,m, are
convex, closed and contain the origin. Moreover, each
set R(j) is contained in a compact superset K ⊂ Rd.

Assumption 2. The function f is convex and contin-
uously differentiable on Rd+. Furthermore, its gradient
∇f(x) is Lipschitz continuous with constant L, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖, ∀ x, y ∈ Rd+.

By Assumption 1, the average rate region R̄, as given
in (1), is convex and compact. Thus, an optimal solution
for the problem minw∈R̄ f(w) exists, but need not be
unique. It is unique when f is strictly or strongly convex.

When f is differentiable with Lipschitz gradients, we
have the following relation for all x, y ∈ Rd,

f(y) ≤f(x) +∇f(x)T (y − x) +
L

2
‖x− y‖2, (11)

where L > 0 is the Lipschitz constant for the gradients
(see e.g., [4, Prop. A.24, pg. 667]).

Using descent relation (11), we establish a basic rela-
tion for the values f(W̃k+1), as given in the following.

Lemma 2. Let Assumptions 1 and 2 hold. Let µk ∈ [0, 1]
for all k in Eq. (9), and let {εk} be any positive scalar
sequence. Then, we surely have:
(a) The sequences {Ṽk} and {W̃k} are bounded. In

particular, {W̃k} is contained in the compact set
conv(K).

(b) For all k ≥ 0,

f(W̃k+1) ≤f(W̃k) + 2µ2
kLD

2

+ µk∇f(W̃k)T
(
Ṽk − W̃k

)
,

where D := maxu∈conv(K) ‖u‖.

Proof: Since Ṽk ∈ R(ηk) ⊂ K for all k, it follows
that {Ṽk} ⊂ K. From the definition of W̃k in (9), we
have for all k ≥ 0,

W̃k+1 =µkṼk +

(
k−1∑
t=0

(1− µk) · · · (1− µt+1)µtṼt

)
+ (1− µk) · · · (1− µ0)W̃0.

When µk ∈ [0, 1] for all k, each W̃k is a convex combi-
nation of W̃0 and the vectors Ṽ` for ` = 0, . . . , k−1, all
of which belong to the set K. It follows that each W̃k

belongs to the convex hull of K, i.e., W̃k ∈ conv(K)
for all k. Since K is compact, so is its convex hull (see
[5], Proposition 1.3.2).

Using descent relation (11), we obtain for all k,

f(W̃k+1) ≤f(W̃k) +
L

2
‖W̃k+1 − W̃k‖2

+∇f(W̃k)T (W̃k+1 − W̃k).

Since W̃k+1 − W̃k = µk(Ṽk − W̃k) (see relation (9)),
we have for all k,

f(W̃k+1) ≤f(W̃k) + µ2
k

L

2
‖Ṽk − W̃k‖2

+ µk∇f(W̃k)T (Ṽk − W̃k).

In view of Vk ∈ K and W̃k ∈ conv(K) for all k, it
follows that ‖Ṽk − W̃k‖ ≤ 2D for all k, with D =
maxu∈conv(K) ‖u‖, implying the desired relation.

C. Diminishing Step-size

Consider algorithm (9)–(10) with the step-size given
by µk = 1

k+1 for all k. From the definition of W̃k in
(9), it can be seen that for all k ≥ 1 and 0 ≤ t < k,

W̃k+1 =
t

k + 1
W̃t +

1
k + 1

k∑
s=t

Ṽs. (12)

For this step-size, we show that the accumulation
points of the throughput sequence {W̃k} belong to the
steady-state rate region R̄, as seen in the following.

Lemma 3. Let Assumption 1 hold. Then, with probability
1, all of the accumulation points of {W̃k} belong to the
steady-state rate region R̄.

Proof: Using relation (12) we can show that
W̃k+1 ∈

∑m
j=1

κk(j)
k+1 R(j). The result then follows by

using relations (7) and (8).
We now show that all accumulation points of the

sequence are ε-optimal, provided that the errors εk → ε.

Theorem 1. Let Assumptions 1 and 2 hold. Let {W̃k} be
the iterate sequence generated by method (9)–(10) with
µk = 1

k+1 and the nonnegative scalar sequence {εk}
such that limk→∞ εk = ε and limk→∞

εk−εk+1
µk

= 0.
Then,

lim sup
k→∞

E[f(W̃k)] ≤ f∗ + ε.

Proof: Since f is continuous over the compact set
R̄, there exists x∗ ∈ R̄ attaining the minimum of f
over R̄. Moreover, since R̄ =

∑m
j=1 γjR(j), there exist

vectors x∗j ∈ R(j), j = 1, . . . ,m such that

x∗ =
m∑
j=1

γjx∗j . (13)



Define the random sequence {r∗k} as follows:

r∗k = x∗j when ηk = j, ∀ k ≥ 0. (14)

By the definition of Ṽk in (10) and the relation

min
r∈R(ηk)

∇f(W̃k)T (r− W̃k) ≤ ∇f(W̃k)T (r∗k − W̃k),

we obtain for all k,

∇f(W̃k)T (Ṽk − W̃k) ≤ ∇f(W̃k)T (r∗k − W̃k) + εk.

By combining the preceding relation with the inequality
of Lemma 2, we surely have for all k ≥ 0,

f(W̃k+1) ≤ f(W̃k) + µkεk + 2µ2
k LD

2

+ µk∇f(W̃k)T
(
r∗k − W̃k

)
, (15)

where D = maxu∈conv(K) ‖u‖.
We now estimate ∇f(W̃k)T (r∗k−W̃k) using the past

throughput W̃t for some t < k, enabling us to exploit
the properties of the underlying Markov chain. For any
t < k, we have

∇f(W̃k)T (r∗k − W̃k)

≤ |(∇f(W̃k)−∇f(W̃t))T (r∗k − W̃k)|
+∇f(W̃t)T (r∗k − W̃k).

Using the Cauchy-Schwartz inequality and the Lipschitz
gradient property of f , we further have

|(∇f(W̃k)−∇f(W̃t))
T (r∗k − W̃k)| ≤ 2LD ‖W̃k − W̃t‖,

where in the last inequality we use W̃k ∈ conv(K) and
r∗k ∈ K for all k, and D denotes the maximum norm of
the vectors in the set conv(K). Thus, we have

∇f(W̃k)T (r∗k − W̃k) ≤ ∇f(W̃t)T (r∗k − W̃t)

+∇f(W̃t)T (W̃t − W̃k) + 2LD‖W̃k − W̃(t)‖.

For the term ∇f(W̃t)T (W̃t − W̃k) we have

∇f(W̃t)T (W̃t − W̃k) ≤ C‖W̃t − W̃k‖,

where C = maxx∈conv(K) ‖∇f(x)‖, which is finite
by the continuity of ∇f and compactness of conv(K).
Hence, for all k > 0 and 0 ≤ t ≤ k,

∇f(W̃k)T (r∗k − W̃k) ≤
c1‖W̃k − W̃t‖+∇f(W̃t)T (r∗k − W̃t),

(16)

where c1 = 2LD + C.
Now, we estimate ‖W̃k − W̃t‖. From relation (12),

we have for k ≥ 1 and 0 ≤ t < k,

W̃k+1 − W̃t =
t− k − 1
k + 1

W̃t +
1

k + 1

k∑
s=t

Ṽs

The vector k+1−t
k+1

1
k+1−t

∑k
s=t Ṽs is a scaled convex

combination of vectors Ṽs ∈ K, s = t, . . . , k, hence it
belongs to k+1−t

k+1 conv(K). Since W̃k ∈ conv(K), we

have ‖ 1
k+1−t

∑k
s=t Ṽs−W̃t‖ ≤ 2D, implying that for

all k ≥ 1 and 0 ≤ t < k,

‖W̃k+1 − W̃t‖ ≤
k + 1− t
k + 1

2D. (17)

Substituting the preceding estimate in (16), we obtain

∇f(W̃k)T (r∗k − W̃k) ≤k + 1− t
k + 1

c2+

∇f(W̃t)T (r∗k − W̃t),

where c2 = 2Dc1. Finally, by combining the preceding
inequality with relation (15), we obtain for all k ≥ 1 and
any t with 0 ≤ t < k,

f(W̃k+1) ≤ f(W̃k) + µkεk + 2µ2
k LD

2

+ µk∇f(W̃t)T (r∗k − W̃t) + µk
k + 1− t
k + 1

c2. (18)

Let Fk denote the σ-field generated by {ηs}ks=0. Tak-
ing the expectation conditioned on Ft, with 0 ≤ t < k,
from relation (18) we have

E[f(W̃k+1) | Ft] ≤ E[f(W̃k) | Ft] + 2µ2
k LD

2

+ µk∇f(W̃t)T (E[r∗k | Ft]− W̃t)

+ µk
k + 1− t
k + 1

c2 + µkεk. (19)

We now estimate the term ∇f(W̃t)T (E[r∗k | Ft] −
W̃t) for t < k. By the definition of process {r∗k} and
the ergodicity of {ηk}, it follows that

E[r∗k | Ft] =
m∑
j=1

P k−tηt,j
x∗j =

m∑
j=1

γjx∗j+
m∑
j=1

(P k−tηt,j
−γj)x∗j .

Since
∑m
j=1 γjx

∗
j = x∗ (see Eq. (13)), it follows

∇f(W̃t)T (E[r∗k | Ft]− W̃t) ≤ ∇f(W̃t)T (x∗ − W̃t)

+ ‖∇f(W̃t)‖
(

max
1≤`≤m

|P k−tηt,`
− γ`|

) m∑
j=1

‖x∗j‖.

By relation (6), we have |P k−ti` − γj | ≤ M0ρ
k−t for

any i, ` = 1, . . . ,m. Furthermore, by the compactness
of conv(K) and the continuity of ∇f , we have that
maxw∈conv(K) ‖∇f(w)‖ = C is finite. Also, since
x∗j ∈ R(j) ⊂ K, it follows ‖x∗j‖ ≤ D. Therefore,

∇f(W̃t)T (E[r∗k | Ft]− W̃t) ≤
∇f(W̃t)T (x∗ − W̃t) + c3 ρ

k−t,

with c3 = CM0mD. Further, by convexity of f , we have

∇f(W̃t)T (x∗ − W̃t) ≤ f(x∗)− f(W̃t)

≤ f(x∗)− f(W̃k) + ‖∇f(W̃k)‖‖W̃k − W̃t‖.

The gradients ∇f are uniformly bounded over the set
conv(K) by the scalar C. Therefore, by relation (17),

∇f(W̃t)T (x∗ − W̃t) ≤ f(x∗)− f(W̃k) +
k − t
k

c4,



with c4 = 2CD. Thus, for all k, t with 0 ≤ t < k,

∇f(W̃t)T (E[r∗k | Ft]− W̃t) ≤

f(x∗)− f(W̃k) +
k − t
k

c4 + c3 ρ
k−t.

Using the preceding estimate in relation (19), we obtain

E[f(W̃k+1) | Ft] ≤ E[f(W̃k) | Ft]

+ µk

(
f(x∗)− f(W̃k)

)
+ µk

k + 1− t
k + 1

c2

+ µk
k − t
k

c4 + µkc3ρ
k−t + µkεk + 2µ2

kLD
2.

By taking the total expectation, using k+1−t
k+1 ≤ k−t

k +
1
k+1 , subtracting the term f∗ + εk+1 from both sides of
the preceding relation, it can be seen that for all k > 0
and any t with 0 ≤ t < k,

E[f(W̃k+1)]− f∗ − εk+1

≤ (1− µk)
(
E[f(W̃k)]− f∗ − εk

)
+ (εk − εk+1)

+ µkc

(
k − t
k

+
1

k + 1
+ ρk−t + µk

)
, (20)

where c = max{c2 + c4, c3, 2LD2}. For t = k − dkeβ
with β ∈ (0, 1), relation (20) reduces to

E[f(W̃k+1)]− f∗ − εk+1 ≤ (εk − εk+1) + µkc ak

+ (1− µk)(E[f(W̃k)]− f∗ − εk),

with ak = dkeβ
k + 1

k+1 + ρdke
β

+ µk.

Using
∑
k µk = ∞, limk→∞

εk−εk+1
µk

= 0, and
limk→∞ ak = 0, we can see that the conditions of
Lemma 1 are satisfied, with the following identification:
uk = E[f(W̃k)] − f∗ − εk, qk = 1 − µk, and
αk = (εk − εk+1) + µkc ak. By Lemma 1, it follows
that lim supk→∞(E[f(W̃k)] − f∗ − εk) ≤ 0, which in
turn yields

lim sup
k→∞

E[f(W̃k)] ≤ f∗ + lim
k→∞

εk = f∗ + ε.

The condition limk→∞
εk−εk+1
µk

= 0 of Theorem 1
requires that the rate of change in εk goes to zero faster
than the step-size value µk, as k → ∞. This condition
is satisfied for example when εk is kept constant, i.e.,
εk = ε > 0 for all k.

By the convexity of f , we also have f(E[W̃k]) ≤
E[f(W̃k)]. Thus, as a special consequence of Theo-
rem 1, we obtain lim supk→∞ f(E[W̃k]) − f∗ ≤ ε,
showing that the accumulation points of {E[W̃k]} are
ε-suboptimal. If ε = 0, then every accumulation point of
the expected throughput E[W̃k] is optimal. In addition,
if f has a unique minimum x∗ over R̄, then E[W̃k]
converges to the minimum x∗.

V. CONCLUSIONS

For the problem of utility optimal throughput al-
locations at a single scheduling station, we showed
that choosing ε-optimal solutions at every scheduling
instance results in a long-term solution that is ε-optimal
in terms of utility maximization over the steady-state
rate region. While we showed this for the decreasing
step-size case, in future work we aim to show this also
for the constant step-size case.
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