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Broad-Band Fading Channels: Signal Burstiness and
Capacity

Vijay G. SubramanianMember, IEEEand Bruce HajekFellow, IEEE

Abstract—Médard and Gallager recently showed that very noise channel. Atthe same time, there has been substantial work
large banQW|dths on certain fading channels cannot be effectlvely on the capacity of such channels. In this paper, we are interested
used by direct sequence or related spread-spectrum systems. Thisgyaifically in the case in which neither the transmitter nor the

paper complements the work of Médard and Gallager. First, it is . S
shown that a key information-theoretic inequality of Médard and receiver knows the channel but both know the statistics of the

Gallager can be directly derived using the theory of capacity per channel. An important aspect of our assumption is that we do
unit cost, for a certain fourth-order cost function, called fourthegy. not assume feedback to the transmitter. In particular, this rules

This provides insight into the tightness of the bound. Secondly, out power control. Note that there can also be the case where
the bound is explored for a wide-sense-stationary uncorrelated e js 1o knowledge of the statistics of the channel. Lapidoth

scattering (WSSUS) fading channel, which entails mathematically . .
defining such a channel. In this context, the fourthegy can be and Narayan [16] give a comprehensive treatment of such chan-

expressed using the ambiguity function of the input signal. Finally, Nels and Biglieriet al. [3] give a detailed survey of capacity-re-
numerical data and conclusions are presented for direct-sequence lated results on fading channels.
type input signals. Broad-band channels are a special case of channels with a
Index Terms—Channel capacity, fading channels, spread spec- large number of degrees of freedom. In a seminal work, Gal-
trum, wide-sense-stationary uncorrelated scattering (WSSUS) lager [9] discussed energy-limited channels, i.e., channels where
fading channels. the energy per degree of freedom is very small. He showed
that the reliability function per unit energy can be computed
exactly for all rates if there is a finite capacity per unit en-
] o _ergy. Telatar [26] specialized Gallager's results to the Rayleigh-
A PRIO'M”\AEng' featur(? Cc’jf erelhess mIeQIa 1S t'me;’f?ry'anading channel and obtained the capacity divided by energy as
\ multipath fading. A fading channel is a very differenf fynction of bandwidth and signal energy, concluding from
entity from an additive Gaussian noise (AGN) channel. If th@js that the infinite bandwidth Rayleigh fading channel has the
channel changes rapidly, then it may be better to adopt nonggme capacity as the infinite bandwidth additive WGN (AWGN)
a structure to measure and track the channel accurately. Rgfst functions and derived a simple expression for the capacity
erences [15], [18], and [25] present examples of noncohergg ynit cost for memoryless channels for certain cost functions.
receiver structures that achieve capacity for certain channelskennedy [15] considered the capacity per unit time of
Another important fact is that for pure Rayleigh-fading chaniffyse wide-sense-stationary uncorrelated scattering (WSSUS)
nelsZ the output signal has mean zero for any input S|g_ne_1l. Thesding channels. Using ail-ary frequency-shift-keying (FSK)
the input signal only affects the second-order statistics agfnaling set and under the assumptions that certain bandwidth
directly affects the mean of the output signal for AGN channelgyists between blocks over which this input is transmitted,
Owing to these differences, principles of signal design us@@nnedy derived the reliability function using the optimum
for _addltlve Gaussian noise channels do not directly apply §amodulator and showed that for the infinite-bandwidth
fading channels [2]. WSSUS fading channel, the capacity is the same as that for
~ Even though wireless channels have been used for a IQfg infinite-bandwidth AWGN channel with the same average
time, they are not as well understood as the additive Gaussﬁﬁhal-to-noise ratio (SNR). Jacobs [14] presented the latter
result in a simpler context, and [8, Sec. 8.6] gives a nice
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chastic signal plus white noise, less the capacity of the amplitusiguares of the local energy in time—frequency bins. For fixed

modulated channel (see [28, p. 418]). In particular, the chanmawer, nonbursty signals, the fourthegy per unit time tends to

capacity tends to zero as the doppler spread tends to infinity, asro, and hence, by the basic inequality, so does the informa-
suming a diffuse doppler spectrum. The paper explains that tien rate. We show that the fourthegy is a function of the signal

uncertainty or randomness of the fading subtracts directly frommbiguity function and this aids us in evaluating the fourthegy

the capacity of the channel. This gives intuitive appeal to the udieectly for DS-CDMA-like signals. This avoids imposing con-

of the relation straints on the fourth moment of coordinate values for a decom-
position of the continuous-time signals, as in [10], or an asymp-
IY; U)=IY; H U)-I(Y; HU) totic analysis based on peak-value constraints in time—frequency

bins, as in [24]. Numerical bounds are given on the information

which is used in Appendix A of this paper to give an alternativéates possible for DS-CDMA-type signals.

proof of a key inequality. Another contribution of this paper is making the notion of the
Médard and Gallager [10], [19] analyzed a broad-ban®dSSUS channel model mathematically precise. For complete-

channel with WSSUS fading. They consider a time—frequengss, we also discuss in Section IV-C the amount of informa-

expansion of the input signal. A constraint is imposed th#en that can be transmitted per unit energy for a WSSUS fading

is satisfied by direct-sequence code-division multiple-acce®@annel, using a similar approach.

(DS-CDMA) type signals—namely, each coefficiektin the The organization of this paper is as follows. Section Il briefly

signal expansion is assumed to satiBfyX |{] < ae?, wheree reviews the notion of capacity per unit cost, and presents the

is a bound onE[| X |?] and« is a bound on the peakedness ofapacity per unit fourthegy for a vector memoryless Rayleigh

the distribution ofX . They showed that the mutual informationchannel. Section Ill presents the basic definitions and a math-

per unit time between the input and the output for a broad-bafithatical foundation for WSSUS fading channels, and is inde-

system is upper-bounded by a constant timeghe interpreta- Pendent of Section Il. Section IV points out that the definition of

tion of this bound is as follows: as the spread factor increag@sirthegy and the basic bound on information per unit fourthegy

without bound ¢, which is inversely proportional to the spreaddentified in Section Il carry over to the WSSUS channel model

factor, decreases to zero, and therefore, the mutual informatigscribed in Section Ill. Section IV goes on to describe several

per unit time between the input and the output decreasespt@perties of fourthegy, and complementary results are given.

zero. The intuitive explanation given for the poor performanckhe basic inequality is applied in Section V to DS-CDMA sig-

of DS-CDMA is that spreading the energy too thinly does ndtls over broad-band WSSUS fading channels. We conclude in

allow the channel to be measured accurately enough, whigfction VI with some discussion. All capacity computations are

ultimately limits the performance of DS-CDMA. in natural units for analytical simplicity. One natural unit, nat, is
Telatar and Tse [25] considered specular multipath channgigy = 1.4427 b. Itis also to be understood théit= Z,.+jZ;

with multipath components subject to time-varying delaydas the complex normal distributi@V'(y, var) with meany

and with no ISI, such that each channel can be approxima®ed variancear, if Z, andZ; are independent Gaussian random

by a time-invariant system. They showed that the capackgriables with meanRe(;:) andlm(), respectively, and with

of an infinite-bandwidth WSSUS channel is the same as thariancevar/2 each.

capacity of an infinite bandwidth AWGN channel with the

same average SNR and that with DS-CDMA-type input thell. FOURTH MOMENT INFORMATION BOUND FOR AVECTOR

mutual information between the input and the output varies RAYLEIGH CHANNEL

inversely with the number of effective diversity paths. Biglieri

et al. [3, pp. 2636-2638] give a nice exposition on the Subjegélnthls section, the theory of capacity per unit cost is applied

derive a basic information inequality for a vector Rayleigh-

of bandwidth scaling, including a unifying discussion an Lding channel.

physical interpretations of results of [10], [18], [19], [25], [28],
and other works. The paper of Gaatial.[11] considers several ) )
of the concepts considered here, such as channels with mem’(’-)\ry'Background: Capacity Per Unit Cost
capacity per unit cost, wide-band limit, and spread-spectrumWe briefly review the notion of capacity per unit cost in
signaling, though the focus of that paper, namely mismatchtds section, following [27]. Consider a discrete-time channel
decoding, is considerably different. without feedback and with arbitrary input and output alphabets
A central theme in [10], [19] is that burstiness in time—fredenoted byA and B, respectively. An(N, M, 3, ¢) code is
guency is necessary to achieve capacity in broad-band fadowge in which the block length is equal 1¥; the number of
channels. To expound on this further, we define the notion cbdewords is equal td{; each codewordz,,1, ..., Zmn),
fourthegy of an input signal, which is related to the number et = 1, ..., M, satisfies the constrairﬁjf:‘r=1 hMEmn) < B,
diversity paths of Kennedy. A key inequality of [10] shows thawvherei: A — [0, +o0) is a function that assigns a cost to
the capacity per unit fourthegy of Rayleigh-fading channels &ach input symbol, and the average probability of decoding
finite. We show that the inequality can be proved by using tlihe message is at leabt— ¢. Given0 < ¢ < 1 ands > 0,
notion of capacity per unit cost. An implication of the inequalitya nonnegative numbek is ane-achievable rate with cost per
is that if the mean fourthegy of the input signal is small, ssymbol not exceeding if for every~ > 0 there existsV, such
will be the number of bits that can be transmitted reliably. Thihat if N > Ng, then an(N, M, N3, ¢) code can be found
fourthegy of a signal is roughly proportional to the sum of thehose rate satisfiewg M > N(R — v). Furthermore R is
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said to be achievable if it isachievable for ald < « < 1. The cost is often equal to the infinite bandwidth limit of capacity
maximum achievable rate with cost per symbol not exceeflingdivided by cost per second.
is the channel capacity denoted®y3). Results in information
theory about the capacity of an input-constrained memoryle8s The Information Bound for a Vector Rayleigh-Fading
channel imply that’(-) is given by Channel

A single use of a discrete-time memoryless vector Rayleigh-

cp) = X:E[Shlg)()]g,ﬁ I(X;Y) fading channel is given by the following equation:
where the supremum is taken to be zero if the set of distribu- Y=HU+N (4)

tions therein is empty. The capacity per unit cost is then tr\}v ere I/ is the channel input irc™, Y is the output of

maximum number of bits per unit cost that can be transmitt . . . i N
, . le channel, N is additive Gaussian noise distributed as
through the channel. Verdu [27] showed the capacity per unj (0, 021, ), andH is ann x n matrix of jointly circularly

cost for a memoryless channel satisfies . : .

symmetric mean-zero Gaussian random variables, for some

o cp) I(X;Y) n > 1. In addition,V, H, andU are assumed to be mutually
ot =N B T Y ER(X)] (1) independent. The columns &F are denoted b1, .. ., h,, (SO

H = [hq|hz]---|hy]), and the complex conjugate transpose of
Verdu [27] also showed that if there is a unique input symbgf is denoted byH .
“0” with zero cost, then the capacity per unit cost is given by et § = HTU denote the output signal without the additive
minimizing a ratio of the divergence between two measures afgise termV. The conditional covariance & givenU = v is
the cost function given by

D(Py|x =z ||Pyx=0)

Ccost = Sup h, . (2) Eu = E[SS”U = U,]
In particular, it follows that _ WER A W Ehohllu - wfE[h,hiu
Sup A sup DiPrxeel Pyemo) ®3) TE I: hi 'E /: hi TE /: hi
x ERX)]  2nexo h{z) wElhihlJu  w ElhohlJu - wE[h,hf]u

the cost function we consider %&-(«) = Trace(3:2) which in

The relation (3) is interesting in itself, even though it does ngt. - .
is specific case is

involve the capacity per unit cost. Only basic measurabili

assumptions are requireq for the abovg result§, as shown by Jo(u) = Z)\ZQ _ Z |uTE[hth»]u|2

Verda [27]. The assumption that there is a unique, zero-cost -

input symbol was explored by Gallager [9] in the context

of reliability functions per unit cost. The assumption greatiywhere{);}7_, are the eigenvalues af,. We call Jc(v) the

S|mp||f|es the Computation af..:, Since the supremum in (2) fourthegy of the vector, relative to the channel. The name is

is over the input space, rather than over the space of probabiliiptivated by the fact that-(u) is fourth order inu, and that it

distributions on the input space. is a positive sounding name (like energy) rather than a negative
In many contexts, the capacity per unit cost for a givegpunding name, like cost.

channel with constrained input signal bandwidth is equal to theLet C;; denote the capacity per unit cost where cost is mea-

limit of the capacity (in bits per second) divided by cost pegured by the fourthegyc.

second (€.g., power) for the same channel in the limit as thepyghosition 11.1: The capacity per unit fourthegy for the dis-

bandwidth of the channel tends to infinity, with the cost pglete-time memoryless vector Rayleigh-fading chann@ljis=
second fixed. Reference [27] illustrates this with the AWGN1 |, particular, for anyl/

channel. One can explain this in the following manner. Suppo%%4

2%

that there is a discrete-time memoryless channel (DTMC) such U Y) < 1 E[Je(U)] )
that use of the original channel with input signals constrained ’ = 204 ' '

to bandwidthiV is equivalent to using the DTM®&’ times per Proof: We will prove that

second. In particular, suppose that the cost for an input signal

for the original channel is equal to the cost of the equivalent sup D(u) _ 1 (6)
signal for repeated use of the DTMC channel, and that there is a w0 Jo(u) 20

unigque zero cost input for the DTMC. Then the original channel
and the DTMC have the same capacity per unit cost. Given'"
code f_or the DTMC v_vh|ch achieves a given information rate D(w) = D(Pyyy—u| Py j=0)-

per unit cost, by varying the number of ugésof the DTMC

per second, we obtain a code that has a given cost per uditce (6) is proved, (2) will imply the expression given {dy,
time, and the same ratio of information per unit cost. While th@) will imply (5), and the proof will be complete. Conditioned
assumptions of this explanation are rarely exactly satisfied,oih I/’ = u, Y is a mean-zero Gaussian random vector with
at least offers a heuristic explanation for why capacity per uribvariance matrixZ[Y Y |U = u] = X, + 021, ,, having

ere
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eigenvalueg \; + o2}, . This covariance matrix is Hermitian
and can therefore be diagonalized by a linear transformation of
space by a unitary matrix. That transformation leaves the distri-
bution of NV invariant, it transforms the conditional distribution
of Y givenw into a vector ofn independent complex normal
random variables with respective variandes + o2}%_;, and

Thus, the capacity per unit fourth moment of the dis-
crete-time scalar Rayleigh fading channel is proportional
to the capacity per unit fourthegy of the same channel,
and therefore, is finite. It is interesting to compare the
capacity per unit fourth moment of the discrete-time
scalar Rayleigh-fading channel with the capacity per unit

it preserves the value of the divergeno€||). Therefore, fourth moment of the discrete-time AWGN channel. A
single use of the AWGN channel is givenby=U + N

whereN ~ N(0, o2). For this case it is evident that
=1 D(Pyy=ullPyjy=0) 1
|ul*

2022
so the capacity per unit fourth moment for the AWGN
channel is infinite.

where¢ is defined by
$(A) = D(CN(0, A+ o*)[[CN(0, o%))

A A
:;—10g<1+p>. @)

Using the faclog(1 + z) > = — % for eachr > 0, we have

Dy =Y oY =

204~ 2

3) Alternative Proof An alternative proof of (5) along the
lines of [3], [28] is given in Appendix A.

Il. THE WSSUS RDING CHANNEL

A wireless channel can be reasonably modeled as a time-
varying linear channel. The observed outpiit) can be rep-
resented by

=1 =1

This proves (6) with =" replaced by <.” To complete the
proof, scalex by ¢ for somee > 0. Note that this scales the

eigenvalues by?. Therefore, y(t) = / h(t, Yu(t — 1) dr + n(t) ©)
. D(ue) 1T & e
lim To(ue) ~ &, im —==— =273 where u(t) is the input,h(t, 7) is the time-varying channel
Z A7 =1 impulse response function, amdt) is white Gaussian noise.
=t Owing to the high complexity of such channels, a stochastic
Thus, (6) is established, and the proof is complete. O characterization is useful. Considering a single tone transmitted
Notes: to a moving receiver with isotropic scattering, Clarke [5]

showed that the complex envelope of the signal at the receiver
1) Inequality (5) is a key inequality of [10], [19]. Proposi-is a complex-valued wide-sense stationary (WSS) Gaussian
tion I.1 shows that the inequality (5) is asymptoticallyandom process with the zeroth-order Bessel function as the
tight for I/ an on—off signal, as the on probability tendsutocorrelation function. The magnitude at each time instance
to zero and the on signal value is scaled toward zero. Ihnas the Rayleigh distribution. Bello [1] analyzed random
equality (5) is applied to a WSSUS channel model in Setime-varying linear channels and gave a statistical characteriza-
tions IV and V, but in the spirit of Médard and Gallagertion in time and frequency variables. Usuallyt, ) for fixed
one can make, right away, for a simple channel and inpstis assumed to be a WSS process, igh(t, 7)] = u(7),
scaling, the argument that capacity goe8 &s the band- and E[h(s, 7)h*(¢, 7)] = Ru(s — t, 7). We can also have
width goes tocc. Suppose the channel is block-fading:(¢, 7) uncorrelated for different values of. This is called
in frequency: there aré frequency bands that fade in-uncorrelated scattering (US). Often these two simplifying
dependently. The fourthegy for the total input is the surfeatures are combined (see [7]), leading to the consideration of
of the fourthegies over the individual bands. If energy igySSUS fading channels. For a WSSUS channel, the second
spread evenly across théands, then the fourthegy permoments ofh have the form
band scales as/b? asb — oo, so the total fourthegy
scales with bandwidth ak/b. Moreover, if the channel

also decorrelates in time, then the fourthegy for a cor&—inaIIy it is often assumed that the random procksis a

stant power input over an interval of lendthis asymp- )
: : ! complex Gaussian random process. See, for example, the urban
totically linear in7". Hence, for channels that decorrelate . ;
propagation model or the GSM propagation model [7].

sgfﬂmen_tly n time and input signals that are evenly dis® In this paper, we assume thatis WSSUS, Gaussian, and
tributed in time and frequency, the overall fourthegy per

L : . ~7. " tnean zero. The second variabtejndexes the path delays, and
unittime, and hence the mutual information per unit time
is finite and tends to zero agh ash — oo We aI;o assume thaft, 7) = 0 unlessr € [0, Tyax), Where
’ Twax is @ bound on the maximum delay spread of the channel.
2) Scalar ChannelFor the scalar Rayleigh-fading channeBuch a model, for suitable choices 8f;, fits empirical mea-
with H ~ CN(0,4?) the fourthegy is given by surement data and has been used extensively in evaluating the
Jo(u) = ~*ul* In other words, the fourthegy is performance of various systems like GSM, ATDMA, I1S-95, etc.,
proportional to the fourth power of the signal magnitudeas mentioned in the COST and CODIT studies [7]. The channel

E[h(t, TR (s, v)] = Ry (t — s, )8(r —v).  (10)
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model allows for two extreme cases, namely, specular whérke channel is said to be specular if there is a countable set of
there is a set of distinct paths, and diffuse where there is a cgath delays(w;} C [0, Timax] and positive constantd™; } so
tinuum of irresolvable paths. The general WSSUS model allowsat for any setd ¢ R
for a mixture of these two extremes [20]. Lol A) — 1, . oT

A nice feature of a WSSUS channel is that the ratio of the #(A) =D LneaLh-
mean output energy (excluding the additive noise) to input en- !

ergy does not depend on the choice of input signal. This ratiofstiS case, the J)””CtiORH described at the beginning of the
called the energy gairG; 7, and is given by section Is given by

Ry(t, 7) =Y 8(r = 7)llyru(t, 7).
§

Gy = / Ry (0, 7)dr. (11) In general, the measui&; can have both discrete and contin-
uous components.
We generally assume théty is finite. We refer the reader to  The (I'y, rx(t, 7)) notation is used in Appendix A, and
Proakis [22, Ch. 14] for a detailed treatment of WSSUS fadirgyoids the use of generalized functions. Ther, 7 (%, 7)) is
channels. also used quite often in other sections of the paper for ease of
We have introduced the WSSUS channel model in standd&xposition. In the next section of this paper, we also use the no-
engineering terminology. In the remainder of this section, vigtion R (¢, 7), primarily to maintain compatibility with the
describe how the channel can be put on a firm mathematidégrature.
foundation. The assumption of uncorrelated scattering mean§n the basis of Proposition I1I.1, we can write the observed
that the processi(t, 7) is white-noise-like as a function output of the WSSUS channel for a finite energy inputs
of 7, as evidenceq by the delta function.in (10). AI;o, the Ys = Sout (1; 8) + s, $>0 (13)
observed output signa} has AWGN. Despitei(t, 7) being
white-noise-like as a function of, it can be shown that the Wheren is complex Gaussian white noise with one-sided power
required integrals involvingi(t, 7) are ordinary square-in- spectral density?. A standard mathematical interpretation of
tegrable random variables, in the same way that white noigs (see, for example, [17], [21], [29]), that avoids the use of
integrals yield square integrable random variables. generalized random processes is that the observed signal is
The following will be used instead aR;; in order to sum- (Y:: ¢ = 0) defined by
marize the channel statistics, and then the connection back to t
Ry will be made. Lel; be a finite measure oR with support Y, = /0 Sout (3 v) dv + oW,

[0, Tax]- This measure is the power gain distribution across . .
different path delays. The total gain [ (®) = Gy. Let where(W,: t > 0) is a standard complex Wiener process. The

ru(t, 7) be a positive-definite function for fixed which has processy” takes values "C[O’_T]’ the set of continuous com-
ru(0, 7) = 1 and which is jointly measurable ift, 7). The plex—v_alued func_tl_ons on the interv, 1. The S'gf_‘a‘S n the
functionrg (¢, 7), for 7 fixed, is the normalized autocorrela-fOIIOWIng proposition can be taken to Bgy. for a fixed finite

tion function for the set of paths with delay We shall give a energy input signak.
description of a WSSUS fading channel with power gain distri- Proposition 111.2: Let T < oc and lets(t) be a measurable
butionI' z and normalized autocorrelation functiog . Gaussian random process wiﬂ’{fOT |s(t)]?dt] < oo and let

Proposition I11.1: GivenI'y, ri(-, -) andT < +oc, there >($: t) be the covariance function eft). Let

exists on some probability space a family of jointly Gaussian,
measurable random processes,: (v; t): uw € L2[0, T]) with
finite average energy such that for allv € L?[0, 7] and a.e.
s, t e R

t
Y, = / s(v) dv+ oWy, foro<t<T (14)
0

whereW, is a standard complex Weiner process ane- 0.
ThenX(s, t) has associated nonnegative eigenvalirggs2,

Elsou(t: 5)sou (v £)7] and eigenfunction$);(¢) }32, such that

Tinax ©o T
= / u(s —m)rg(s—t, Tv(t — 1) Lyldr). (12) Z Ai = / N, t)de
0 i=1 0

anduy andu,w are each absolutely continuous with respect

Proof. Refer to Appendix B. 4 : A )
to the other with the Radon—Nikodym derivative given by

The channel is said to be diffuselify has a densityyy.

d
In this case, the functio®y described at the beginning of the ] NYY =L
section is given by How N
—exp S tog(1+ 2 L MEE Y g
Ry(t, )=y (r)rgt, 7) =P P 08 o? a?(Ai +0?)
so that where the coordinates of are given by

T
ru(t, )l g(dr) = Ry (t, 7)dr. Z; = /0 Yiabi(t) dt.
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The coordinateZ; is CA/(0, \) underuy andCA (0, A + o2)  In view of (16), the relations in (8) hold withi” replaced by
underuy . “00.” Thus,
Proof: Refer to Appendix C.

D) _ 1 20

Since for the fading channel modek= s, depends on the ii% Je(u) = 20% (20)
input signak:, the eigenvalue§); }5°, also depend on. In the

analysis that follows, we will be scaling the input and letting th&? the theorem follows from (3). [

scale factor either tend to zero or to infinity. Scaling the input v/arious complements to Theorem IV.1 are given in Sec-

does not change the eigenfunctions, but scales the eigenvaly$|v-c. Applications of the theorem are given in Section V.
by the square of the scale factor farA consequence of Propo-

sition 111.2 is that B. Properties of Fourthegy

_ ! e ‘ LetSu (-, 7) denote the Fourier transform &f-, =) for each
D (Py1r—u||Pyiv=0) = Ey[log Loo] = \i 16 -Stop (-, 7) . ’ _
(Priv=ullPriv=o) v [log Loc] Z o) (19) 7 fixed. Forr fixed, Sy (-, 7) is the power spectral density of
the channel fading for delay. Using

Ru(s—t.1)= [ Sulf,n)e02! g

=1

where¢(-) is given by (7).

IV. FOURTH MOMENT INFORMATION BOUND FOR A

WSSUS GIANNEL in (18) yields
A. Definition of Fourthegy and the Information Bound u(s — T)Ry(s —t, T)u*(t — 7) dr|*ds dt
In this section, a bound analogous to (5) is proved, using es-
sentially the same proof, for the WSSUS channel model (9) de- = / / / / Su(fi, T)Su(f2, 72)
scribed in the previous section. The notation and assumptions LoJz YT
of the previous section are in force. In particular, for each fi- % </ w(s — 7 )ut(s — 7-2)6j2775(f1—f2) ds)
nite-energy input signal, the covariance functio(s, ¢) of
the output signaé = sy IS given by % </ w(t — o )ut (t — Tl)e—jQﬂ-t(fl—fz) dt)
Tinax
Y(s, t) = / ws—7m)Ry(s—t, T)u"(t —7)dr X dra dry dfa dfy
0
oo / / / / Su(fi, 11)Su(f2, T2)
Z (s (17) v e I
=1 X |x(m2 — 11, f2 — f1)|? drz dry dfz dfs (21)

As noted in Appendix B, we can also consideto be the kernel wherey (v, 7) is the symmetric ambiguity function [4] of the
of anintegral operator, also callefand the eigenvalues associsjgnalw(t) which is defined as

ated withX are the eigenvalues of that operator, and are denoted

by {12 N / w(t 4+ 7/2)ut (t = 7/2)e 2 dp.(22)
Define the fourthegy/ () of the inputu by —oo
Thus, (21) can be rewritten to yield a fourth useful expression
/ / (s, t)|? dsdt. 18) for Jo(u)
= /. 2 /. /
An equivalent expression fok is Jo(u) = Trace(X2) where Jo(u) _/V i (v )P (v, ) dlr d (23)

¥.2 denotes the kernel convolution &F with itself. Equation
(17) yields a third expressionic(u) = > o, A7. This defini-
tion is consistent with the definition of fourthegy for a vector

Rayleigh channel given in Section II-B. As before, scaling the Py, 7) = / / Su(f, )Su(f +v, t+7)dtdf.

input by a given factor scales the fourthegy by the fourth power St

of the factor. Some basic properties.kf are given in the next ~ An important property of ambiguity functions is the volume
subsection. The following theorem gives the key bound on imvariance property [4, p. 153]

formation per unit fourthegy.

_ )2 _
Theorem IV.1: For any measurable input random procé’ss/ (v, T dr dv = x(0, 0)? </|u ) dt) = B(w)”.
that has finite energy with probability one (24)

wherey (v, 7), called the channel response function, is given

IU;Y) < % E[Je(U)] (19) Since|x(v, 7)| < x(0, 0) = E(w)? for all v, 7, Jc is bounded
20 above as follows:
whereY is the output random process and the expectation is
carried out with respect to the measurd bf Jo(u) <E / / Yu(v, 7)dr dv
Proof: Let

= U 2 : = U 2G2 .
D(u) = D(Py 0 —al Py iumo)- = E{w) </f/ Sulf, 1) dt df ) By Gy
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The expression (23) shows th&t(«) captures both time and and the fourthegy«(«) is the integral of the ambiguity function
frequency aspects of the signalFor example, it can be shownsquared with respect to this measure, i.e.,

that Jo(u) < Ki [ |[u(t)|*dt andJc(u) < K, [|U()* df, )

whereU( f) is the Fourier transform af(t), as follows. By (23) Jo(u) = / Ix(v, D" (v, dr) dv.

Jo(U) < / [mgx Y (v, T)} </ Ix (v, T)|2dl’> dr c. Complements
and the ambiguity function has the following property [4, p.. Vari_ous _compleme_nts to_the other results of this section are
154]; given in this subsection. First, we note that Kennedy [15] de-
fined the number of effective diversity pathsto be the recip-
/ Ix(v, T)> dv = / Ix (v, 0)|2e7™7 d. rocal of Jo(u). In [15], » is the M -ary FSK waveform while
v v here it is the on signal for on—off keying. Thus, Kennedis
Using this gives increasing without bound implies thd¢ () decreases to zero
) and the result of the error exponent fdr-ary FSK going to zero
/ Ix(v, T2 dv < / Ix(v, 0)? dv = / lu(t)|* dt. in [15] is mirrored by the mutual information between the input
v v and the output going to zero.
Therefore, Second, the astute reader will note that Theorem IV.1 does
not mention the notion of capacity per unit fourthegy for the
Je(u) < Kl/|u(t)|4 dt WSSUS fading channel model, unlike Proposition 1.1. The
reason is that the bound given in Theorem IV.1, essentially a

converse half of a coding theorem, has a clean proof and is all

ith : L ) .
w that is needed for the applications of the next section. Still, for
o completeness, we pursue the notion of capacity per unit four-
K = B dr. L X )
! /T g Yu(v, 7)dr thegy here. To begin with, we claim that egquallty actually holds
Similart in (20). To prove this, note that singe< <38 — 2 < 2
imitarty, for y > 1, Taylors formula yields
2
Jo(u) < K2/|U(f)|4df z—log(l+z)= % —n(x) (26)
where where
373
Ky, = / max Yy (v, 7)dv. 0 < n(z) < 37 for z 2 0.

o ) ) Using (16) and (26) yields
A drawback of the definition of fourthegy is that, unlike the 1
definition of energy, it involves the channel. However, applying D(u) = 251 Jeo(u) — alu) 27)

the Cauchy—Schwartz inequality to (23) yields wherea satisfies

Jo(u) < \/// |x (v, T)|*dr dv \/// Yy (v, 7)2 drdv. 7‘; Al
vJT vJT 0< alu) < —/———. 28
5) <alw) < T (28)
The right-hand side of (25) is the product of two terms, the firdthus,
involving only the input signal, and the second involving only D(ue) 1 aue)
the channel. Perhaps the first term on the right-hand side would T () = 5g4 Jo(ue)’
be a good channel-independent notion of fourthegy, but it seems ) )
too complicated to work with. The eigenvalues are scaled yif « is scaled by, so 244 —

Recall that in Section Il a general alternative way to descritbgl) ase — 0, which, in turn, shows that equality holds in (20)
the statistics of a WSSUS channel was given, involving a powgs claimed.
gain distribution'; and normalized autocorrelation function one consequence of this claim is simply that the bound of
ru(t, 7). Ifwe were to follow through with that general notationtheorem IV.1 is tight in the sense that the ratio of the right-hand
in this section we would see that the channel response functigge to the left-hand side tends to one for an on—offinput process

is best considered as the measure given by in which the on probability tends to zero and the on signal is
scaled toward zero.
$u(v; dr) = // sulf, sulf +v t+7) Another consequence is that we can apply (2) to conclude

XTI g (dt)T g (dt + dr) df that the capacity per unit fourthegy of the WSSUS channel is
equal tol /2¢*. However, this result requires repeated indepen-
dent use of the WSSUS channel to form a discrete-time memo-

I ryless channel. Intuitively, if the channel memory has a reason-
sp(f, 7) = /C r(t, 7)dt able decay rate, one can simulate repeated independent use of

where
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. Delay

Doppler

Fig. 1. Ambiguity function of a typical signal.

the WSSUS channel by using a single WSSUS channel and sigput as the on input for the on—off keying scheme with the en-
naling in time intervals well separated by guard bands. Henceergy tending to infinity and the average energy tending to zero.
can be shown under reasonable conditions that information d&fe should note thaf'y, is exactly the same as the capacity per
be reliably sent at rates arbitrarily closelt(®o* nats per unit unit energy of an AWGN channel with the same gain and noise
fourthegy over a single WSSUS channel. The bound of Theorexfmaracteristics. In view of the heuristic connection between ca-
IV.1 shows that higher rates are not possible. pacity per unit cost and capacity with infinitely many degrees
The third and final item in this subsection concerns the caf freedom discussed at the end of Section II-A, this is exactly
pacity per unit energy for the WSSUS channel. This capacigs expected from the results of [14], [15], and [25].
denoted byCg, is given by

o D(u) V. DS-CDMA SGNALS OVER BROAD-BAND

; = sup

E o E(u) FADING CHANNELS

whereE(u) = [ |u(s) J|? ds is the energy of the input waveform _ Before deriving the actual ambiguity function for DS-CDMA

nals, we intuitively explain why the capacity of DS-CDMA
o The d|scu55|on O.f the previous paragraph applies for the ps?gnals over diffuse WSSUS fading channels tends to zero as
itive part of the coding theorem.

- the spreading increases. The ambiguity function of a typical
Note thatfi(u) = Tr(>)/ Gy and DS-CDMA signal is shown in Fig. 1. The ambiguity function
Te(X > A looks like a thumb-tack. From the volume invariance propert

_ r(2)_210g<1+_2>. property

stated in (24) and assuming that the energy of the signal is
normalized to bel, we can compute the dimensions of the
Therefore, thumb-tack. The dimensions of the stump are as follows:
f o ‘(1 n ﬁ) height, which is (normalized) energy squared,lislength
Dw) Gnp & g ) Gy Gy along the delay axis is the inverse of the Gabor bandwiidth
Bw) o2 T = 52 S — which is 7, for DS-CDMA-like signals, and the width along
the Doppler axis is the inverse of the Gabor time widia
which for DS-CDMA-like signals is%. The dimensions of the
box are as follows: (normalized) height;f; length along the

and fixing an arbitrary but nonzero, finite-energy signalve

have that delay axis is27’, and width along the doppler axis #&. Thus,
. D(uwa) Gg most of the volume of the thumb-tack is contributed by the
}E{}o E(ua) o2 box. Heuristically, it is reasonable to expekt(u) to decrease
to0as7, | 0,i.e., as the bandwidth of the DS-CDMA signal
Therefore, we have established tlat = , and for any isincreased. This happensyify (7, »') is continuous with com-

random input signal/, I(U; Y) < CEE[Enelgy( U))]. Fur- pact support. This is typical for the channel response function
thermore, the capacity can be approached by using any nonzzsallustrated in Fig. 2. For example, By (¢, 7) = sinc(Fyt)
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4 Delay

Doppler

Fig. 2. A typical channel response function.

forall v € [0, Tinax), theng(r, ) has support—Tax, Tmax)
along the delay-axis anfi-Fy, I;] along the Doppler-axis. W

Thus, we expect the rate of information that can be reliabl

transmitted with DS-CDMA signals over (nice) Gaussial QQQ
WSSUS fading channels to tend to zero as the spreading fac vy, @QQO
increases.

Fig. 1is actually a generic picture for any signal. Specializin : : OQ

to frequency-hopping-like signals or id-ary FSK signals, we
find that the length of the stump along the delay axis is inverse
proportional to the width of the individual frequency slots. Sinc:  y
that width of the frequency slots is fixed irrespective of thei
number, the bound does not decrease to zero for such sign..... T

This is in conformance with [15_]’ [10]’ and [25] Fig. 3. A typical signal energy distribution pattern for DS-CDMA signal.
As another means of looking at the difference between

DS-CDMA and frequency-hopping CDMA performance, W%uppose a time—frequency bin is selected at random, uniformly

look at thg distribution of theIS|gnaI energy across the t!me frgver theWT" bins corresponding to a durati@hobservation of
quency grid. Roughly speaking, the fourthegy function is a sum . . " O

. : . a signal of bandwidth’. This induces a probability distribution
over time and frequency bins of the local signal energy squarée

Thus, the choice of the distribution of the local signal ener Qf the local energy of the transmitted signalThe mean is the

has a significant impact on the value of the fourthegy. It is mggpergy per unit time—frequency. The variance of the local en-

convenient to illustrate this foR(z, 7) = (/24275 Using ergy ofu is equal to the fourthegy per unit time—frequency (i.e.,
the mean square local energy) minus the square of the mean

this gorrelatpn functlon.lt can be ShO\.Nn by expanding out II%cal energy. Fig. 3 illustrates the signal energy distribution of
detail and using properties of the Fourier transform that DS-CDMA signals. Itis clear that DS-CDMA signals distribute

Jelu) = / / |(e—m2 Y sy (8)[* dt df the sigr_lal energy ev_enly, in othgrwords, in a nonbursty manner.
Assuming that the signals are fixed power signals, the energy is
~ Z(|Oca| energy’. proportional to the duration of the sigrifll Let W be the band-

width of the signal. For DS-CDMA signals, the sum of the local
The equivalence ofic(u) with the sum of the local energy- energy squared is given by
squared holds if we imagine the signal to assume approximately 1
constant values in balls of unit radius in the time—frequency Z(Iocal energy’ ~ WTW =T/W.

plane. We also have that Therefore, as the spreading increases, the fourthegy decreases,

—rt? j2nft 2 g df — 1 P and so also the mutual information decreases. The variance of
(™™ ™) xut)]" dt df = 5 (). the local energy of these signals is zero. Fig. 4 illustrates the
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wherey, (v, 7) is the ambiguity function o&(¢). The support
0 of s(t) is [0, T¢], so the support of(r, v) along ther-axis is

@ [-T., T¢], and, therefore,
xs (v, T+ (m—n)T)x: (v, 7+ (n—m)T.)= 0, if n#£m.
@@ This observation, and the independence and zero-mean assump-
tions on theu,,’s yields that
0000r:
Y = Y Ella]1E[ail]

n,i:n#Ei

T x exp(—j2mv{n —i)T,)|xs(v, 'r)|2

Fig. 4. A typical signal energy distribution pattern for frequency-hopping + Z EllanP1E[|am|]|xs (v, 74 (m — n)T.)|?
CDMA (FH-CDMA).

n, m: nEm

: S _ + Ellan] Il (v, T
signal energy distribution for frequency-hopping CDMA (FH- n
CDMA) signals. Note that for such signals, the distribution i?herefore,
not even andis, in fact, bursty with large regions on the time—fre-
quency grid having no energy. For FH-CDMA signals the suné/[|x(; )]

of the local energy squared is given by N-1 '
_ E[|an|2]2 Z (N _ |Tn|)e—127rmuTC
> (local energy* ~ 7. m=—N+1
Thus, it is clear that the fourthegy of an FH-CDMA-like signal +N(E[|an]*] = Ellan*1D | |xs(v, 7)?
does not decrease with an increase in the bandwidth. The vari-
ance of the local energy for such signals is not zero. + El|an]}? Z (N = [m|)|xs (v, 7 +mT.)|2

. L m:1<|m|<N-1
A. Bound on DS-CDMA Capacity Per Unit Time (31)
So far, we have given two qualitative arguments to explain . .
how the capacity of DS-CDMA signals decreases as t%?By (23), the mean fourthegyE[Jc(U)] is the integral
S

b \
spreading increases. From this point onwards, the objective’ls 21X (. 7)I’] times the channel response function. The

to justify this with quantitative/numerical results. The informa[‘ext step is to use this fact and the expression (31) to bound

tion rate for DS-CDMA is less than or equal to the product OI?[’]C(U)] above. _For simplicity, take a s_eparable channel, i.e.,
the fourthegy per unit time of DS-CDMA times the maximun® channel for which each path fades similarly. Thus, assume

information per unit fourthegy for the channel. By Theorequat
IV.1, the second term is bounded b¥;, so that
. . ElJco(U)] 1 . .
Information Rate< Thm w 251" (29) or, equivalently, that gz (f, 7) = sy (f), wheresy (f, 7) is the
- o Fourier transform of (¢, 7) and sy (f) is the Fourier trans-
In the rest of this section we restrict our attention to diffusirm of r; (¢). Therefore,
WSSUS channels.
In view of (23), a good first step in calculating the mean four- Bt 7) =ru®)yu(r) and Yy (v, 7) = dr@)Pr(r)
thegy of DS-CDMA signals per unittime is to compute the meaghere
magnitude squared of the ambiguity functibfix (v, 7)|?] of a
DS-CDMA signal. The DS-CDMA signals are given by Yr(v) = / sa(f)su(f+v)df,

7’H(t7 T) = TH(t)v V12> 0,

N-1

u(t) = Z ans(t —nT.) (30)

n=0

and r(r) = [ ultpmte+ o)

Assume without loss of generality (sineé can be varied) that
wherea,, are independent and identically distributed (i.i.d.'#(R) = [, v#(t)dt = 1; in other words Gy = 1. Finally,
zero-mean, complex-valued, random variables af#d, with assume that constant modulus symbols are used, meaning that
support[0, 7%.] and energyT.., is the chip waveform. All mo- |a,| is constant. Note that
ments and integrals that appear are assumed to be finite.
Expandingy(x, 7) yields that / Yr(r)dr =Gy =1
N-1N-1 and

* 7"27rum’—+nTC
x(v, 7)= Z Z andy,e 2 “oxs(v, TH(m—n)T;) / Yr(v)dv = 1.

n=0 m=0
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(from 75 (0) = 1). Using (23), (31), and the fa¢t, (v, 7)| < If sg(f) is band-limited with bandwidth less thaﬁ— ie.,

T.1|-<1,} Yields the following upper bound: the maximum doppler frequency is less tlﬁn (WhICh Would
be common in practice) then the sampling theorem yields
E[Je(U)] < T2E[|an|?2 / d 1
[Je(U)] £ T7 Ean|”] < |T|<T Yr(r)dr 5 S ra(mL)PT. = Teo
/ / Z (N = |m) whereT,,y, is the coherence time of the channel defined some-
v what arbitrarily by
m=—N+1 .
X eI (F ) dodf To=g [Ir®Fat=5 [ lsn(nfar
- f
+ 2NT3E[|an|2]2/ / Yu(v, T)drdv. (32) The delay power density is said to be uniform if
v T 1
Note that YH = Tmaxl[o, Thnax]®
Nl i Corollary V.2: Suppose that the maximum doppler fre-
> (V- |m|)/ e’ csp(f+v)dy quency is finite and less thag}-, and suppose the delay power
m=-—N+l1 v density is uniform. Then the ‘information rate for DS-CDMA
rl 2T signaling with constant modulus symbols transmitted over a
= Z (N = [ml)ra(=mTec)e © (33 separable WSSUS fading channel satisfies the following:
m=—N+1 P 2 oT
Information Rate< T, (14 2=, 36
and nformation Ral <N0> < + max) (36)
The corollaries imply that for fixed power, DS-CDMA sig-
/ / Z (N — |m|)e 7% Tesy(f +v)drdf  nals convey less information per unit time, as the spreading in-
Y m=—N+1 creases (i.e., d5. — 0). In fact, the rate is proportional .,
N-1 and hence inversely proportional to the bandwidth over which
= > (N—|m)ru(-mT.)rg(mT.). the signalis spread.
m=—N+1 The bounds in Corollaries V.1 and V.2 hold for any time-lim-

ited chip waveform (time-limited to the chip duration). Tighter

Sincery(—t) = ru(t)” and(N — |m|) < N, itfollows that 1) 1145 can be obtained for specific chip waveforms. In the rest

E[Je(U)] of this section, we will specialize to the case of a rectangular
-7 chip waveform for which
J— _ + .
NTE[an2? = , X6 (v, T = (T = |7])Fsine(AT, — |7])
< T > lra(mT)PT. /|T|<T Pr(T) AT \whereat = max(z, 0). For a rectangular chip waveform it is
NT m=—NHL - clear thatlxs(», 7)| < (T — |7|)™. Using this, rather than the
49 —¢ TCE[IanIQ]Q/ Pr(v) d:// P (T) dr. weaker but more general boutg, (v, 7)| < Telqjr <z} in
T v ™ (31) yields the following modification to (34):
Therefore, =
lim E[L(UQ)]Q_ 201+ Z |71 (mT,)|?
: E[JC(U)] 212 T=eo TEHCL | ] m=—oco
lim < El|a,|7]
T—oo T |7_|
+oo XTC/ < —?> ”(/T(T)d’l' . (37)
X <2Tc + Z |7’H(mTc)|2Tc/ (1) d’r) . (3% |7I<Te c
m=—o0 |7I<T. With the uniform power density assumption, Corollaries V.1 and

V.2 can be modified as follows.
The rat|o of received signal power to noise spectral den—

sity is N , where P is the received S|gnal power given by Corollary V.3: The information rate for DS-CDMA sig-
P = E[ja,|?], andN, = 2. Of course,N - N x (data haling with constant modulus symbols and a rectangular chip
rate), wherek, is the received energy per bit. Combmmg (29yvaveform transmitted over a separable WSSUS fading channel

and (34) yields the following corollary to Theorem IV.1. with a uniform power density satisfies the following:
Information Rate

Corollary V.1: The information rate for DS-CDMA sig-

2 +oo
naling with constant modulus symbols transmitted over a _ P 1 2
. - . ~ T+ ’ )| T:
separable WSSUS fading channel satisfies the following: ~\ Mo + 2 Z s (mTe)|

m=oo

Py’ 7y’
Information Rate< X/ 1- Yr(r)dr | . (38)
No 7| <T. 1.

+oo
1 Corollary V.4: Suppose that the maximum doppler fre-
(T4 [ I Tc“‘Tc/ dr). (35 y V.4: Supp pp
< 2< frr(me)] ) |T|<TC¢T(T) T) (39) quency is finite and Iessthaﬁi,and suppose the delay power

m=o<
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Fig. 5. Upper bound (39) for variouswith % =2 x 10* Hz.

density is uniform. Then the information rate for DS-CDMAof 10 kbit/s operating Witl% = 3 dB. The data rate 10 kbits/s
signaling with constant modulus symbols and a rectangularoughly the minimum data rate, and the value 3 dB is roughly

chip waveform transmitted over a separable WSSUS faditige value off,g, targeted for third-generation cellular systems
channel satisfies the following: such as the emerging wide-band CDMA systems proposed for
P2 9T, UMTS. We also take bandwidth % Fig. 5 displays the upper
Information Rate< <Fo> T, <1 + 3TCO ! ) (39) bound (39) for different values af. A region of interest in the

figure is the set of bandwidths such that the upper bound falls
] below the capacity of an AWGN channel with the saﬁre As
B. Numerical Results expected, the upper bound converges to infinity Ends td).5.

The bounds on information rate for DS-CDMA signals The remainder of the numerical results are for the channel
given in Corollaries V.1-V.4 depend strongly on the correlatiotprrelation given by a two-sided exponential
function, or equivalently the doppler spectrum, of the channel.
In particular," > __|ry(mT.)]> needs to be finite for the Bu(t, m) = exp(—Falt])
bound in (35) and (38) to be finite. Frequently in the literature;his correlation function decays more quickly than the varia-
the doppler spectrum is assumed to be the Clarke spectryioins of the Clarke spectrum considered above. Again, assume
which corresponds to a uniform distribution of received powey uniform power density. The upper bound in (38) and the in-
over all angles of arrival in two dimensions. For such spectrumqualityl + = < exp(z) yield
the correlation function tends to zero B4/%, so thatZ,, is

1 [0 T ] .
CTnla.x ’ )

Information Rate

infinite. Therefore, the bounds given in Corollaries V.1-V.4 2

s o . P T. 1
are infinite for the Clarke spectrum. Moreover, it is shown in <|— ) T.1+ + . (40)
Appendix D thatZZ2lPll ., . for DS-CDMA signaling over No Hmax — 3FqTmax

a channel with the Clarke spectrum. Thus, the approach Fjg. 6 displays this bound for several different valueggfwith
considering fourthegy per unit time is not fruitful for the casev, = 2 X 10" Hz andZj,q = 1 pis as before. _
of the Clarke spectrum. The numerical results reported in this!n future years, even more sensitive transmission systems will

section are thus for channels for which the correlation decay@ Sought, so that smaller values{f may be relevant. As an
more quickly than for the Clarke spectrum. example of how this changes the bounds, Fig. 7 shows the same

For the first set of channels it is assumed that, = 1 us UPPer bound for the same correlation function as in Fig. 6, ex-
and the maximum doppler frequency & = 200 Hz. The C€pt that]\—f; is halved to 16 Hz. Here we find that the band-

family of channel correlation functions considered is given byvidth at which the upper bound falls below the AWGN channel
capacity is approximately half of the same value for the larger

sp(f) x ;ﬂ, for0 < a < 0.5. A—”O Detrimental effects of overspreading are indicated in Fig. 6
<1 _ (FL) ) for a bandwidth of 8 MHz, and are indicated in Fig. 7 for a band-
¢ width of 4 MHz. These bandwidths are in the range of currently

If « convergest@.5, this spectrum converges to the Clarke speemerging third-generation commercial systems.

trum, whereas if; is nearo, the spectrum has much milder sin- The bound (40) can also be used to produce a lower bound
gularities, so that the correlation function decays much mooa fg for a given bandwidth and data rate, as illustrated in
quickly. The value for]\’,’0 is assumed to be ® 10* Hz. This Fig. 8. The figure is based on a 20-MHz DS-CDMA system

numerical value arises, for example, for a system with a bit raising #; = 1000 Hz andl;,., = 1 us. Data rates from 8 to
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Fig. 6. Upper bound (40) for various, with % =2 x 10* Hz.
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Fig. 7. Upper bound (40) for various, with % = 104 Hz.

256 kbits/s are considered. For each data rate, the bound (@6ppler spread tends to infinity for fixed bandwidth. Viterbi
implies a Iower bound orf— As noted in Section IV-C, it is [28] showed that for FSK that is not bursty in the tlme domam

fading AWGN Channel) The Iarger of these two lower boundS reflected in Figs. 6 and 7 because for practlcal systems
is pictured for each data rate. Note that the requfeds con- the dominant term in (40) is the last one, which is inversely
siderably larger for the smaller data rates. Fig. 8 is qualitativeyoportional toF;. The remaining terms in the bound (40) do
the same as a figure based on extensive system engineeringi@idconverge to zero aB; — oo, but an alternative analysis
simulation for the emerging WCDMA standard for UMTS [13applied to the expressions for fourthegy per unit time w(th)
Fig. 10.4]. assumed to be a rectangular pulse can be used to show that the
The focus of this section is on upper bounds on thigformation rate indeed converges to zerofas— oc. Since
information rate of DS-CDMA as the bandwidth is increasedhe remaining terms are very small for practical systems, the
for fixed power. Another interesting limit is the case that theetails are omitted.
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Eb/NO in dB

-1.5

-2

8 16 32 64 128 256
Data rate in Kbps

Fig. 8. Lowerbound onEVi requirement for different data rates for DS-CDMA system with bandwidth 20 Midz= 1000 Hz, andl},,.x = 1 s for two-sided
exponential correlation function.

C. Specular Multipath Channels with

In this subsection, we concentrate on specular WSSUS
multipath fading channels. Since we are considering a Gaussian

channel it is sufficient to specify the correlation functio

Ry (t, 7). For anL-path specular WSSUS multipath Channgt%&efore going into detail, let us pause briefly to summarize how
the fo]lowing form forRH(t 7 holds: we will proceed to bound(w) from above. Roughly speaking,

if there are many paths each with approximately the same en-
ergy, and if the total average received energy is fixed, thgn
Dorg(t, 7)é(r — 41 o .
Z a7t 1)8(r —m) (41) scales asL Considering DS-CDMA-type signals for small
where{r;, 72, ..., 71} are the time offsets of the various mul-en%UQWEtme C‘Zn e(;(pe(;t Tze d?goné':lhterd'g Otftjll dommat(:
tipath components. Thuss (f, 7) is given by in the right-hand side of (42). Since there are chlgominan
terms, we can expect the mutual information between the input
o Z s u(f, 7)S(r — ) and the output to be small for large spreading factors. In the rest
HEHA, T ! of the subsection we make this statement precise.
Let

z/J%(’/) = F%F’}{/ sa(f, m)su(f +v, n)df.

=1
wheresy (f, 7) is the Fourier transform ofy (¢, 7). Therefore,
Yy (7, v) is given by

T. < min |7 — 7]
V(1) / Su(f, Su(f + v, t+7)dtdf

k,ie{l,2,.., L}: ksl

then the terms in the right-hand side of (42) fall into two groups.

= ZZ riqr’;{/ su(f, ) i) { = k. From (31) we have that
=1 k=1 2
X sg(f+v, ) df6(t + 1 — 7). Ellx(+ 0)f7] N1
Finally, the following expression fofe(u ) hOldS' _ E[|an|2]2 Z (N — |m]) exp(—j2nmvT,)
m=—N+1
0= [t ot _ZZ S X o, O) + N(Ellan ] = Ellan ) (v 0)F.
where Let

= / Ix(v, i — 1) (v) dv (43) r(t, 0) = F (x5 (v, 0)%)
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be the inverse Fourier transform|gf, (-, 0)|2. Note that-(¢) =
|s(#)|? * |s(—t)|?. Considering individual terms gives

// eIy (v, O s (f + v, 7)su(f, ) df dv
v/ f

:/ 3H(f; 7_1)/ ej271'mz/TC
f v

X sg(f —v, n)dvdf
_ / ru(t, )r(t — mTs, 0)(ru(t, 7)) dt (Parseval

t

xs(v, O)|2

_ / (s (E, 70)|2r(t — mTy, 0) dt.

Therefore, we have

> [ Bl )Pl dv
=1 7Y

=Z<i

=1

(L4 e (2, n>|2>

N—-1

Y N —=[|m]yr(t —mT., 0)

m=—N+1
+ N(E[lan|*] = Ella, ")

= 2
X / <Z (T4 |ru(t, n)|2> r(t, 0) dt.

=1

x| EfJan|?? dt

i) [ # k. Then we have; — 7, = T, + 6 wherem is an
integer not equal té or —1, andé > 0. Define

r(t,m) = FH(|xa (v, 1)

Then the contribution of such terms E{.J~(U)] is given by

/ (v, 71— )P () o
Y N—-1
= Ellan S0 (N - m)T T,

m=1
X /7’H(t, ) (rg(t, n)r(t, mIe, mI,. + 6))* dt
t

wherer (¢, s, 7) is given by

t,s, )=r(t—s—7,s+7)+r{t+s—7, —s+ 7).
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In this case, we can upper-boufl./~ (/)] as
E[Jc(U)]

< NTE[a, P Y (1Y)’ /

—NT.

NT,
[ (1)) dt

L T.
+ NTe(Ellan]*] = Ellan'1) ) (F%)Q/ [ (1)) dt

=1 T

T
(Ph)“‘) IR

L
+ 2E[|a,|?]?NT. <1 -

i

Thus,
. [Je(U)]
fm =

L 2
< Ellan P2 Y (1) / i (]2 dt
=1

+(Ellan )= BB (05" [ o) ar

=1 Te

L 5 T.
+ 2l PP (1 3 () ) [ vt

=1 c
Now, letting7’. tend to0, we get

L 2
< Ella, 1S (1Y) / ()2 d.
=1

(44)
If it is now assumed that all paths have equal energy, then

ElJo())]

T

lim lim
T.—0 T—o0

l 1 - 1 \2 1
My =7 and > () =7
=1

Therefore, the capacity per unit time is inversely proportional
to the number of paths. Specializing to the case of [25] with
Gaussian fading and realizing that

Ella,)?]=P and ry(t) = max <1 - TL’ 0)
coherence
whereT,.nerence 1S the coherence time of the channel as defined
in [25], we can extend their upper bound on the capacity per
unit time for very large spreading factors, namé@fgj\?g’%,
to channels with ISI. Hence, we can conclude that if there are
many multipath components, then the information rate that can
be transmitted reliably with DS-CDMA-like signals is small.

VI. DISCUSSION

This paper reinforces the conclusions of Médard and Gal-
lager [19] that signals need to be bursty in time and/or frequency
to be able to achieve constant information rates per unit power
over very-wide-band WSSUS fading channels. Smooth signals

For simplicity, consider the case in which the chip waveform {&e those used in direct-sequence spread-spectrum systems do
a rectangular pulse, the channel is separable, and the gain {80t have enough fourthegy per unit energy to achieve signifi-

Then

r(t. 1) = (. - [7)* = |eh* and ST =1.

cant values of reliably communicated bits per unit energy for
a WSSUS fading channel. In particular, detrimental effects of
overspreading on the required energy to interference ratio are
observed in Section V-B for a channel and modulation scheme
not far from currently emerging CDMA systems operating at
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their lowest data rates. This loss in capacity for DS-CDMA sigFherefore, writingh;(I/) for the eigenvalues ot and using
nals has also been observed in practice [13, p. 245] where ithg inequalitylog(1 + x) > x — %
stated that, “The main reason why thg/ Ny depends on the bit

rate is that the [control channel] is needed to keep the physicalf(y:; U) < E {i? Tr(Xy) — log <det <_r + i? sz)ﬂ
layer connection running and it contains reference symbols for g g

channel estimation and power control signaling bits. Eh&V,
performance depends on the accuracy of the channel ... estima- =E Z P(N(U))
tion algorithms.” ‘
i i i i 1 1
Nume(lcal evaluation of the upper bound_s on _the information <—F Z NU?| = — E[Je(U)]
rate for direct-sequence spread-spectrum-like signals shows that 20 - 20

these bounds are informative for large bandwidths which are _
close to the bandwidths for future broad-band systems. The f3-that (5) is proved.
merical bounds suggest that for ultra-wide-band systems (20-50
MHz or more and for data rates in the tens of kilobits per second)
DS-CDMA-type signaling is inefficient. This may well explain
why most proposals for ultra-wide-band systems call for pulse-First we define a family of random procesgegs all on the
position modulation or on—off modulation with long off periodssame probability space, and we will defihby lettingn — oo.
which are highly bursty in the time domain. Define
A caveat to these conclusions is that they are based on nu- i
merical examples for a few specific channel correlation func- ha(t, ) =n Zn i(t), if S ST
tions. For some correlation functions, such as that for the two-di- . .
mensional isotropic scattering (Clarke’s spectrum), the upp\gpere for eachh Z’” IS a mean-zero Gaussian random process
bounds on capacity are infinite. with autocorrelation function
/ r(t, T y(dr).
(

7'+1]

i
n? o

APPENDIX B
ProOOF oFProPOSITIONIII.1

1+1

APPENDIX A

ALTERNATIVE PROOF OF(5) Suppose that th&,, ; are independent for distinct valuesof

and that whenevet = 2% for somek > 0
The following alternative proof of the basic inequality (5) was

suggested by a reviewer. The proof uses the equation Zn,i(t) = (Z2n, 2 (t) + Zon, 2i41(1))- (45)
The above requirements are consistent since (45) implies
IY; U)y=1(Y; H,U) - I(Y; H|U) E[Z,,i(t+ 5)Z} (s)]
= E[Zan,2i(t + 5)Z3, 2(5)
which was exploited by [28], as discussed in the Introduction, + Zop, 2i41(t + 8) Z3 9ip1 (t+5)]

and highlighted by [3]. The notation,,, ¢(u), andJ(u) used
in this appendix is the same as in Section II-B. Sihcdepends

7‘H(t, T)FH(dT)

on H and U only through the produc§ = H*U, it follows (i, 5 U0 57
that!/(Y; H, U) = I(Y; S). SinceS is a mean zero vector, its = / r(t, 7 g (dr)
covariance matrix is given bg[SST] = E[Xr]. Here,Xy is L,

the matrixz,, evaluated at, = U, and the expectation B[]
is with respect td/. SinceY’ is obtained fromt by the addition | o Co(R) be the collection of all continuous functions in

of Gaussian noise, the mutual informatitfY’; S) is less than ,ih compact support. Let € Co(R) and lett € R. We show
or equal to what it would be it were Gaussian with the samey, 5+

covariance. This and the inequallyg(1 + 1) < 1 applied to
the eigenvalues ab’>};; yield z, 2 / h(t, 7)(7) dr

as required.

IV H. U < log [ det { 1 1 B converges ir.? asn = 2* — +oc. It suffices to show thatZ,,)
(3 H, U) < log | det | 1+ Pl is a Cauchy sequence or equivalently fhat, ,,, ... E[Z,Z%]
exists and is finite. Now

E[Z,Z.]=E { / (£, 1)) dr / B (t, 0)p" (o) do

On the other hand, for a givén, Y is the output of a Gaussian — // H(T) Ry, m(t, 7, 0)$*(0) dr do
additive noise channel with inpd, so that ’

1 1
S ; TI“(EEU) =F |:; TI"(EU):| .

where

I(Y; HU)=E |:10g <det <I+ iQ 20)} . Ry m(t, 7, 0)= mn/_ . ]m(t, ) p(dr)
o 4 il

(5 5
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if 7€ (L, 2] and to an isomorphism for all ofL?([0, T]) into H, which we
i i1 i1 again call®. For anyw in L%([0, 17), we definesoy;(u; .) to
S <—7 } C <i, J } be Gy ®(u). Note thats,,,(u; .) is a measurable Gaussmn
m m n n

random process, (47) holds, and (12) continues to hold.
and, otherwiseR,, ,.(¢t, 7, o) = 0. Without loss of gener-
ality we have assumed that < m. So the measure given APPENDIX C
by R, w(t, 7, 0)drdo converges weakly to the measure PrROOF OFPrOPOSITIONIII.2
r(t, T)é(r - o—)FH(dr) andZ, converges in.>.

If 6, v € Co(R) ands, ¢ € R Sinces is a measurable Gaussian random process with finite

mean energy, the measure inducedbyn the Borel subsets

Vo(p, t, 1, s) of C[0, T is absolutely continuous with respect to the measure
A . . induced byo W [17, Theorem 7.16]. This result does not require
=E [/ ha(t, 7)o(7) dT/ by (s, ¥)¢* (o) do thats be mean-square-continuous. We shall now present a proof

of this fact, and at the same time identify the Radon—Nikodym
/ )R (t — s, 7, 0)y(0) dr do derivative.

Let L2[0, T denote the space of complex-valued square in-

where tegrable functions ofo, 7] with inner product given by
Roftoroo)=n® [ rult, Caldr) "
o 6.9= [ owe
if 7, o € (L, L] for somei, and, otherwiseR, (¢, 7, o) = 0. 0
So The autocorrelation functiol of s is the kernel of a linear

operator on.2[0, T, which we again calt, defined by

V(s b, b, 5) = / Do)t — 5, THEL (s (dr)

where N S(s) = /0 " s, () db.
(/)n(T):n/_ (7)) dr, forr € <i7 'L—i-l}
(4,4 n n

n?! n

The operato: is symmetric (i.e.{v, 2£) = (£, X+)*) and
nonnegative (i.e.(¢, X¢») > 0). Also, for an arbitrary com-

andzy,, is defined similarly. Bu,, uniformly andy,, '
v Y- Bubn = ¢ yandfy = plete, orthonormal basig),,) of L2[0, 77

uniformly, so
= /(/)(T)TH(t - T)"‘/)*(T)FH(CZT)- Z wna Ewn Z E Z/}nv | ] = Z| wm ]
Thus, we have described a limiting procedure allowing us to " T
construct a random variab#(¢, ¢) for each(¢, t) with ¢ € —-E / 1s(t))?| dt < oo
Co(R) andt € R so that 0

E[6(¢, O™ (¢, s)] = / Hmyru(t — s, )" (1)L g(dr).  so thatx has finite trace given by

(46) T
We thus taked (¢, ¢) to be the definition off ¢(7)k(t, 7) dr. Trace(X) = Z(z/}n, Sipn) = / (¢, t) dt.
For the specific case @f(r) = u(t — 7) for u € Co(R) and n 0

t fixed, we can define :
Hence, X~ is also a compact operator and, by the

Sout(u; 1) 2 /u(t — 7)h(t, 7)dr. Hilbert—-Schmidt theorem, it has a complete orthonormal
basis of eigenfunction&),,) and associated eigenvalugs, )
Relation (12) is a consequence of (46)adfe Co(R), then [23]. ThereforeY.4p,, = A1, and alsoIrace(3) = 3", A,.
sout (13 t) IS mean-square continuous, so by results of [6, pphe observationgY;: 0 < ¢t < T') have the same information
61-62] there exists a separable and measurable versionc@fitent up to sets of measure zerd ds: » > 1), whereZ, is
Sout (15 ). Moreover defined by mean-square integration

B[ ([ ot 02 a)| =G [t @n = Vbt de

Let H be the Hilbert space of measurable mean-zero Gaussian ) _
random processes on the underlying probability space witR see this, start with the fact that for each
norm(E[[ |s(¢ (t)|2dt]) 2. The mappingd(-) defined by

1 Y; = lim (%, p)Z, (Mmean square sense
O(u) = Sout (5 +) e ;

@

is an isomorphism fronCy(R), which is a dense subset ofwherep' denotes the indicator function of the interyal ¢].
L?([0, T]), to H. The mapping® can, therefore, be extendedViean square convergence implies almost sure convergence
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along a subsequence, ai@ only needs to be recovered forwhere it is implicitly assumed th&t > 1 and7, < T'.x - By

rational values ot since it is sample continuous. Thus, up t¢31)

sets of measure zero, the information(if,,) is indeed the

same as that df . UnderY’, the Z,,’s are independent witlr,, E[|x(, 7)|°]

distributed a€ N (0, A, + o2) for eachn, and under W, the

Z.’s are i.i.d. with distributiorCA’(0, o2). = Efla,[*]? <
The Radon—Nikodym derivative fat observationsz? =

(Z1, ..., Zy) [29] is given by

2

sin(mvT.N) a(v, 7)
————— ) |xsly, T

sin(mvTe)
+ N(Ellan*] = EllanPT)xs(v: 1)
+E[al’P > (N =|m]lx.(v, 7 +mT)

d/vLZ” n < )\z ) )‘i|zi|2 m: 1< |m|<N-1
L,= L —ex —logll+—= |+———— | .
dpigw P <1z=:1 s o2 a?(N\;+02) Thus,

| 2

By general theory, the sequengk,,: » > 1) is a martingale E[Jc(U)]
under the measure ofi¥. Direct computation shows that jif T
=0 | Ela.|*]? < < )TQ/

)
-

is a number withl < p < min(X; + o2)/);, then E[LZ] is T

uniformly bounded im:, where the expectation is taken under e

the measure of V. Hence, the sequen¢é,,: n > 1)isauni- _ g <E[|an|2]2 <i> Tlog (T)) asT — oo,

formly integrable martingale. It therefore converges in fHe Tnax ’

sense with its limitL ., being given by (15). Moreover, by gen-

eral theoryL.. is equal to the Radon—Nikodym derivative of the! "erefore,

measure of” with respect to that of W [29, Proposition 1.4, E[Je(U)] o <E[| 2 <
= an

(—log |v|)sinc? (vT) dl/)

)
3

p. 212 and Proposition 7.6, p. 33]. Finally, sinkg, is strictly
positive with probability one (in fact, it is bounded below), it
follows that the two measures are equivalent. See [12, Ch. Vfljlls
Sec. 4] for more references and information related to the r
resentation (15).

TT—HX) 1og<T>) (48)

T — oo. Thus,w tends to infinity ag” — oo but only
efs’log(T). Therefore, the bound on the information rate given
by the capacity per fourthegy result is infinite.
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