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Chapter 1

Scheduling and Resource Allocation

in OFDMA Wireless Systems

Jianwei Huang, Vijay Subramanian, Randall Berry, and Rajeev Agrawal

Dynamic scheduling and resource allocation are key components of emerging broadband

wireless standards based on Orthogonal Frequency Division Multiple Access (OFDMA).

However, scheduling and resource allocation in an OFDMA system is complicated due to the

discrete nature of channel assignments and the heterogeneity of the users’ channel conditions,

application requirements, and constraints. In this chapter, we provide a framework for

joint scheduling and resource allocation for OFDMA communications systems that operate

in an infrastructure/cellular mode, such as IEEE 802.16 (WiMax) and 3GPP LTE. This

framework, which includes both uplink and downlink resource allocation problems as special

cases, assumes a (centralized) scheduler per access point/base station that determines the

assignment of OFDMA tones to users as well as the allocation of power across these tones,

based on the available channel quality feedback. Physical layer resources are allocated in

each time slot to maximize the projection of the users’ rates onto the gradient of a total

system utility function that models the application-layer Quality of Service (QoS). Although

the optimization problem at every scheduling instance is a mixed integer and nonlinear
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2 CHAPTER 1. SCHEDULING AND RESOURCE ALLOCATION IN OFDMA

optimization problem, we show that its optimal solution can often be achieved by solving

a related convex optimization problem using the Lagrangian dual. In general, the resulting

optimal algorithms have high complexity, but they provide intuitions that enable us to design

a family of low complexity heuristic algorithms that achieve close to optimal performance

in simulations. All algorithms take into account many issues and constraints encountered in

practical OFDMA systems.

1.1 Introduction

Channel-aware scheduling and resource allocation is essential in high-speed wireless data

systems. In these systems, the scheduled users and physical layer resource allocation are

dynamically adapted based on the users’ channel conditions and quality of service (QoS)

requirements. Many of the scheduling algorithms considered can be viewed as “gradient-

based” algorithms, which select the transmission rate vector that maximizes the projection

onto the gradient of the system’s total utility [1–4, 8, 9, 23, 25, 26]. One example is the

“proportionally fair rule” [3, 4] first proposed for CDMA 1xEVDO based on a logarithmic

utility function of each user’s throughput. A larger class of throughput-based utilities is

considered in [2] where efficiency and fairness are allowed to be traded-off. The “Max Weight”

policy (e.g. [6–8]) can also be viewed as a gradient-based policy, where the utility is now a

function of a user’s queue-size or delay.

Compared with TDMA and CDMA technologies, OFDMA divides the wireless resource

into non-overlapping frequency-time chunks and offers more flexibility for resource allocation.

It has many advantages such as robustness against intersymbol interference and multipath

fading as well as and lower complexity of receiver equalization. Owing to these OFDMA has

been adopted the core technology for most recent broadband wireless data systems, such as

IEEE 802.16 (WiMAX), IEEE 802.11a/g (Wireless LANs), and LTE for 3GPP.

This chapter discusses gradient-based scheduling and resource allocation in OFDMA sys-

tems. This builds on previous work specific to the single cell downlink [25] and uplink [23]

setting, to provide a general framework that includes each of these as special cases and
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also applies to multiple cell/sector downlink transmissions. Several important practical con-

straints are included in this framework, namely, 1) integer constraints on the tone allocation,

i.e., a tone can be allocated to at most one user; 2) constraints on the maximum SNR (i.e.,

rate) per tone, which models a limitation on the available modulation and coding schemes;

3) “self-noise” on tones due to channel estimation errors (e.g., [11]) or phase noise [22]; and

4) user-specific minimum and maximum rate constraints.

Next we briefly survey related work on OFDMA scheduling and resource allocation. Then

we describe our general formulation together with the optimal and heuristic algorithms to

solve the problem. Finally, we will summarize the chapter and outline some future research

directions.

1.2 Related Work

A number of formulations for single cell downlink OFDMA resource allocation have been

studied (e.g., [12–19]). In [13, 14], the goal is to minimize the total transmit power given

target bit-rates for each user. In [14], the target bit-rates are determined by a fair queueing

algorithm, which does not take into account the users’ channel conditions. In [16–18], the

focus is on maximizing the sum-rate given a minimum bit-rate per user; [15] also considers

maximizing the sum-rate, but without any minimum bit-rate target. A special case of

the problem we study that assumes a fixed set of weights, no constraints on the SNR per

carrier, no rate constraints, and no self-noise was considered in [12,19]. In [12], a suboptimal

algorithm with constant power per tone was shown in simulations to have little performance

loss. Other heuristics that use a constant power per tone are given in [15–17]. In [19], a

dual-based algorithm similar to ours is considered, and simulations are given which show

that the duality gap of this problem quickly goes to zero as the number of tones increases.

Finally, in [20], the information theoretic capacity region of a single cell downlink broadcast

channel with frequency-selective fading using a TDM scheme is given; the feasible rate region

we consider, without any maximum SNR and rate constraints, can be viewed as a special

case of this region. None of these papers consider self-noise, rate constraints or per user SNR
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constraints. Moreover, most of these papers optimize a static objective function, while we are

interested in a dynamic setting where the objective changes over time according to a gradient-

based algorithm. It is not a priori clear if a good heuristic for a static problem applied to

each time-step will be a good heuristic for the dynamic case, since the optimality result

in [1–3, 6–8, 26] is predicated on solving the weighted-rate optimization problem exactly in

each time-slot. Simulation results in [25] show that this does hold for the heuristics presented

in Section 1.4.

Resource allocation for a single cell OFDMA uplink has been presented in [29–36]. In

[29], a resource allocation problem was formulated in the framework of Nash Bargaining,

and an iterative algorithm was proposed with relatively high complexity. The authors of

[30] proposed a heuristic algorithm that tries to minimize each user’s transmission power

while satisfying the individual rate constraints. In [31], the author considered the sum-rate

maximization problem, which is a special case of the problem considered here with equal

weights. The algorithm derived in [31] assumes Rayleigh fading on each subchannel; we

do not make such an assumption here. In [32], an uplink problem with multiple antennas

at the base station was considered; this enables spatial multiplexing of subchannels among

multiple users. Here, we focus on single antenna systems where at most one user can be

assigned per sub-channel. The work in [33–36] is closer to our model. The authors in [33]

also considered a weighted rate maximization problem in the uplink case, but assumed static

weights. They proposed two algorithms, which are similar to one of the algorithms described

in this chapter. We propose several other algorithms that outperform those in [33] with

similar or slightly higher complexity. Paper [34] generalized the results in [33] by considering

utility maximization in one time-slot, where the utility is a function of the instantaneous rate

in each time-slot. Another work that focused on per time-slot fairness is [36]. Finally, [35]

proposed a heuristic algorithm based on Lagrangian relaxation, which has high complexity

due to a subgradient search of the dual variables.

Resource allocation and interference management of multi-cell downlink OFDMA systems

were presented in [39–46]. A key focus of these works is on interference management among

multiple cells. Our general formulation includes the case where resource coordination leads

to no interference among different cells/sectors/sites. In our model, this is achieved by
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dynamically partitioning the subchannels across the different cells/sectors/sites. In addition

to being easier to implement, the interference free operation assumed in our model allows us

to optimize over a large class of achievable rate regions for this problem. If the interference

strength is of the order of the signal strength, as would be typical in the broadband wireless

setting, then this partitioning approach could also be the better option in an information

theoretic sense [28].

1.3 OFDMA Scheduling and Resource Allocation

1.3.1 Gradient-based Wireless Scheduling and Resource Allocation Problem

Formulation

In each time-slot, the scheduling and resource allocation decision can be viewed as selecting

a rate vector rt = (r1,t, . . . , rK,t) from the current feasible rate region R(et) ⊆ RK
+ , where

et indicates the time-varying channel state information available at the scheduler at time t.

Here, this decision is made according to the gradient-based scheduling framework in [1–3,26].

Namely, an rt ∈ R(et) is selected that has the maximum projection onto the gradient of

a system utility function U(Wt) :=
∑K

i=1 Ui(Wi,t), where Ui(Wi,t) is an increasing concave

utility function of user i’s average throughput, Wi,t, up to time t. In other words, the

scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(Wt)
T · rt = max

rt∈R(et)

∑

i

U ′
i(Wi,t)ri,t, (1.1)

where U ′
i(·) is the derivative of Ui(·). As a concrete example, it is useful to consider one class

of commonly used iso-elastic utility functions given in [2, 5],

Ui(Wi,t) =






ci
α (Wi,t)α, α ≤ 1, α %= 0,

ci log(Wi,t), α = 0,
(1.2)
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where α ≤ 1 is a fairness parameter and ci is a QoS weight. In this case, (1.1) becomes

max
rt∈R(et)

∑

i

ci(Wi,t)
α−1ri,t. (1.3)

With equal class weights, setting α = 1 results in a scheduling rule that maximizes the total

throughput during each slot. For α = 0, this results in the proportionally fair rule.

In general, we consider the problem of

max
rt∈R(et)

∑

i

wi,tri,t, (1.4)

where wi,t ≥ 0 is a time-varying weight assigned to the ith user at time t. In the above

example these weights are given by the gradients of the utilities; however, other methods

for generating the weights (possibly depending upon queue-lengths and/or delays [6–8]) are

also possible. We note that (1.4) must be re-solved at each scheduling instance because

of changes in both the channel state and the weights (e.g., the gradients of the utilities).

While the former changes are due to the time-varying nature of wireless channels, the latter

changes are due to new arrivals and past service decisions.

1.3.2 General OFDMA capacity regions

The solution to (1.4) depends on the channel state dependent rate region R(e), where we

suppress the dependence on time for simplicity. We consider a model appropriate for general

OFDMA systems including single cell downlink and uplink as well as multiple cell/sector/site

downlink with frequency sharing; related single cell downlink and uplink models have been

considered in [12,20,23,25]. In this model, R(e) is parameterized by the allocation of tones

to users and the allocation of power across tones. In a traditional OFDMA system at most

one user may be assigned to any tone. Initially, as in [13, 14], we make the simplifying

assumption that multiple users can share one tone using some orthogonalization technique

(e.g. TDM).1 In practice, if a scheduling interval contains multiple OFDMA symbols, we

1We focus on systems that do not use superposition coding and successive interference cancellation within a tone, as such
techniques are generally considered too complex for practical systems.
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can implement such sharing by giving a fraction of the symbols to each user; of course, each

user will be constrained to use an integer number of symbols. Also, with a large number

of tones, adjacent tones will have nearly identical gains, in which case this time-sharing can

also be approximated by frequency sharing. The two approximations becomes tight as the

number of symbols or tones increases, respectively. The formulae for our rate regions with

the Shannon capacity functions where we use time-sharing are obtained from [20, 28]. We

discuss the case where only one user can use a tone in Section 1.4.

Let N = {1, . . . , N} denote the set of tones2 and K = {1, 2, . . . , K} the set of users.

For each j ∈ N and user i ∈ K, let eij be the received signal-to-noise ratio (SNR) per unit

transmit power. We denote the transmit power allocated to user i on tone j by pij, and

the fraction of that tone allocated to user i by xij. As tones are shared resources, the total

allocation for each tone j must satisfy
∑

i xij ≤ 1. For a given allocation, with perfect channel

estimation, user i’s feasible rate on tone j is rij = xijB log
(
1 + pijeij

xij

)
, which corresponds to

the Shannon capacity of a Gaussian noise channel with bandwidth xijB and received SNR

pijeij/xij.3 This SNR arises from viewing pij as the energy per time-slot user i uses on tone

j; the corresponding transmission power becomes pij/xij when only a fraction xij of the tone

is allocated. Similarly this can also be explained by time-sharing as follows: a channel of

bandwidth B is used only a fraction xij of the time with average power pij which leads to

the power during channel usage to be pij/xij. Without loss of generality we set B = 1 in the

following.

Self-noise

In a realistic OFDMA system, imperfect carrier synchronization and channel estimation may

result in “self-noise” (e.g. [11,22]). We follow a similar approach as in [11] to model self-noise.

Let the received signal on the jth tone of user i be given by yij = hijsij + nij, where hij, sij

and nij are the (complex) channel gain, transmitted signal and additive noise, respectively,

2In practice, tones may be grouped into subchannels and allocated at the granularity of subchannels. As discussed in [25],
our model can be applied to such settings as well by appropriately redefing the sub-channel gains {eij} and interpretting N as
the set of sub-channels.

3To better model the achievable rates in a practical system we can re-normalize eij by γeij , where γ ∈ [0, 1] represents the
system’s “gap” from capacity.
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with nij ∼ CN (0, σ2).4 Assume that hij = h̃ij + hij,δ, where h̃ij is receiver i’s estimate of

hij and hij,δ ∼ CN (0, δ2
ij). After matched-filtering, the received signal will be zij = h̃∗ijyij

resulting in an effective SNR of

Eff-SNR =
‖h̃ij‖4pij

σ2
ij‖h̃ij‖2 + δ2

ijpij‖h̃ij‖2
=

pijeij

1 + βijpijeij
, (1.5)

where pij = E(‖sij‖2), βij =
δ2
ij

‖h̃ij‖2
and eij = ‖h̃ij‖2

σ2
ij

.5 Here, βijpijeij is the self-noise term. As

in the case without self-noise (βij = 0), the effective SNR is still increasing in pij. However,

it now has a maximum of 1/βij.

In general, βij may depend on the channel quality eij. For example, thie happens when

self-noise arises primarily from estimation errors. The exact dependence will depend on the

details of channel estimation. As an example, using the analysis in [21, Section IV] for the

estimation error of a Gauss-Markov channel from a pilot with known power, we consider the

cases when the pilot power is either constant or inversely proportional to channel quality

subject to maximum and minimum power constraints (modeling power control). In both

cases β is inversely proportional to channel condition for large e. On the other hand βij = β

is a constant when self-noise is due to phase noise as in [22]. For simplicity of presentation,

we assume constant βij = β in the remainder of the paper (except in Fig. 1.1 where we we

allow β(e) ∝ 1/e to illustrate the impact of self-noise on the optimal power allocation). The

analysis is almost identical if users have different βij’s.

We assume that eij is known by the scheduler for all i and j as is β (equivalently, the

estimation error variance). For examples, in a frequency division duplex (FDD) downlink

system, this knowledge can be acquired by having the base station transmit pilot signals,

from which the users can estimate their channel gains and feedback to the base station. In

a time division duplex (TDD) system, these gains can also be acquired by having the users

transmit uplink pilots; for the downlink case, the base station can then exploit reciprocity

4We use the notation x ∼ CN (0, b) to denote that x is a 0 mean, complex, circularly-symmetric Gaussian random variable
with variance b := E(‖x‖2).

5This is slightly different from the Eff-SNR in [11] in which the signal power is instead given by ‖hij‖4pij ; the following
analysis works for such a model as well by a simple change of variables. For the problem at hand, (1.5) seems more reasonable
in that the resource allocation will depend only on h̃ij and not on hij . We also note that (1.5) is shown in [21] to give an
achievable lower bound on the capacity of this channel.
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to measure the channel gains. In both cases, this feedback information would need to be

provided within the channel’s coherence time.

With self-noise, user i’s feasible rate on tone j becomes

rij = xij log

(
1 +

pijeij

xij + βpijeij

)
=: xijf

(
pijeij

xij

)
, (1.6)

where again xij models time-sharing of a tone and where

f(s) = log

(
1 +

1

β + 1/s

)
, β ≥ 0. (1.7)

More generally, we assume that a user i’s rate on channel j is given by

rij = xijf

(
pijeij

xij

)
, (1.8)

for some function f : R+ → R+ that is non-decreasing, twice continuously differentiable

and concave with f(0) = 0, (without loss of generality)6 f ′(0) := df
ds(0) = lims↓0

f(s)
s =

sups>0
f(s)

s = 1, and limt→+∞
df
ds(t) = 0. We also assume by continuity 7 that xf(p/x) is

0 at x = 0 for every p ≥ 0. From the assumptions on the function f(·) it follows that

xf(p/x) is jointly concave in x, p; this can be easily proved by showing that the Hessian is

negative semidefinite. It is easy to verify that f given by (1.7) satisfies the above properties.

We should, however, point out that using the theory of subgradients [24], our mathematical

results easily extend to a general f(·) that is only non-decreasing and concave. For instance,

it can be easily proved from first principles that xf(p/x) is jointly concave in (x, p) if f(·)
is merely concave. We consciously choose the simpler setting of twice continuously differen-

tiable functions to keep the level of discussion simple, but to aid a more interested reader,

we will strive to point out the loosest conditions needed for each of our results. Another

important point is that, operationally f(·) is a function of the received signal-to-noise ratio

6Using the idea that Shannon capacity log(1+s) is a natural upper bound for f(s), it follows that 0 < df
ds (0) ≤ 1. Therefore,

if f ′(0) += 1, then we can solve the problem using a scaled version of function, i.e., f̃(s) = f(s)/ df
ds (0), after scaling the rate

constraints by the same amount; the power and subchannel allocations will be the same in the two cases. The Shannon capacity

upper bound also yields that 0 ≤ limt→+∞
df
ds (t) ≤ lims→+∞

f(s)
s ≤ lims→+∞

log(1+s)
s = 0, as concavity of f(·) and f(0) = 0

imply that df
ds (t) ≤ f(t)

t for all t > 0.
7Using the Shannon capacity function, log(1 + s), upper bound, we have for p > 0, that limx↓0 xf(p/x) = p limt↑+∞

f(t)
t ≤

p limt↑+∞
log(1+t)

t = 0. For p = 0, we directly get the property from f(0) = 0.
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and abstracts the usage of different single-user decoders.

General power constraint - single cell downlink, uplink and multi-cell downlink

with frequency sharing

Let {Km}M
m=1 be non-empty subsets of the set of users K that form a covering, i.e., ∪M

m=1Km =

K. We assume that there is a vector of non-negative power budgets {Pm}M
m=1 associated with

these subsets, so that
∑

i∈Km

∑
j pij ≤ Pm for each m. This condition ensures that there

is no user who is unconstrained in its power usage. This provides a common formulation

of the single cell downlink and uplink scheduling problems as described in [25] and [23],

respectively. For the single cell downlink problem M = 1 and K1 = K, and for the single

cell uplink problem M = K and Ki = {i} for i ∈ K. More generally, if {Km}M
m=1 is a

partition, i.e., mutually disjoint, then we can view the “transmitters” for users i ∈ Km as

colocated with a single power amplifier. For example, such a model may arise in the downlink

case where M := {1, 2, . . . ,M} represents sectors or sites across which we need to allocate

common frequency/channel resources, but which have independent power budgets. A key

assumption, however, is that we can make the transmissions from the different sectors/sites

non-interfering by time-sharing.

Capacity Region - max SNR and min/max rate constraints

Under these assumptions, the rate region can be written as

R(e) =

{
r : ri =

∑

j

xijf
(

pijeij

xij

)
and Rmin

i ≤ ri ≤ Rmax
i , ∀i,

∑

i∈Km

∑

j

pij ≤ Pm, ∀m,
∑

i

xij ≤ 1, ∀j, (x, p) ∈ X
}

,

(1.9)

where

X :=
{

(x, p) ≥ 0 : xij ≤ 1, pij ≤ xijsij

eij
∀i, j

}
, (1.10)
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with x := (xij) and p := (pij). The linear constraint on (xij, pij) using sij models a constraint

on the maximum rate per subchannel due to a limitation on the available modulation and

coding schemes; if user i can send at a maximum rate of r̃ij on tone j, then sij = f−1(r̃ij). We

have also assumed that each user i ∈ K has maximum and minimum rate constraints Rmax
i

and Rmin
i , respectively. In order to have a solution we assume that the vector of minimum

rates {Rmin
i }i∈K is feasible. For the vector of maximum rates, it is more convenient to have

{Rmax
i }i∈K be infeasible. Otherwise the optimization problem associated with feasibility (see

Section 1.3.5) will yield an optimal solution. Typically we will set Rmin
i = 0 and Rmax

i to

be the (time-varying) buffer occupancy. However, with tight minimum throughput demands

one can imagine using a non-zero Rmin
i to guarantee this.

1.3.3 Optimal Algorithms

From (1.4) and (1.9), the optimal scheduling and resource allocation problem can be stated

as:

max
(x,p)∈X

V (x, p) :=
∑

i

wi

∑

j

xijf
(

pijeij

xij

)
(P2)

subject to:
∑

j

xijf

(
pijeij

xij

)
≥ Rmin

i ∀i ∈ K (ηi)

∑

j

xijf

(
pijeij

xij

)
≤ Rmax

i ∀i ∈ K (γi)

∑

i

xij ≤ 1 ∀j ∈ N (µj)

∑

i∈Km

∑

j

pij ≤ Pm ∀m = 1, 2, . . . ,M (λm)

As a rule, variables at the right of constraints will indicate the dual variables that we will

use to relax those constraints while constructing the dual problem later.

One important point to note is that as described above, the optimization problem (P2) is

not convex and does not satisfy Slater’s conditions. In particular, note that the maximum

rate constraints have a concave function on the left side. To show that we still have no
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duality gap, we will consider a related convex problem in higher dimensions that has the

same primal solution and the same dual. The new optimization problem (P1) is given by

max
∑

i

wiri (P1)

subject to: ri ≤
∑

j

xijf

(
pijeij

xij

)
, ∀i ∈ K (αi)

∑

i

xij ≤ 1, ∀j ∈ N (µj)

∑

i∈Km

∑

j

pij ≤ Pm, ∀m = 1, 2, . . . ,M (λm)

Rmin
i ≤ ri ≤ Rmax

i , ∀i ∈ K

(x, p) ∈ X .

This problem is easily seen to be convex due to the joint concavity of xf(p/x) as a func-

tion of (x, p), and thus satisfies Slater’s condition. The problem (P1) can be practically

motivated as follows: the physical (PHY) layer gives the scheduler (at the MAC layer) a

maximum rate that it can serve per user based upon power and subchannel allocations, and

the scheduler then drains from the queue an amount that obeys the minimum and maximum

rate constraints (imposed by the network layer) and the maximum rate constraint from the

PHY layer output. If the scheduler chooses not to use the complete allocation given by the

PHY layer, then the final packet sent by the MAC layer is assumed to be constructed using

an appropriate number of padded bits. However, we will now show that at the optimal,

there is no of loss optimality in assuming that the scheduler never sends less than what the

PHY layer allocates, i.e., the first constraint in Problem (P1) is always be made tight at an

optimal solution.

Assume that there is an optimizer of (P1) at which we have a user i for whom ri <
∑

j xijf(pijeij

xij
). We will now construct another feasible solution that will satisfy the above

relationship with equality. Let γ ∈ [0, 1] and set p̃ij := γpij. Note that by convexity both the

power and subchannel constraints are satisfied for every value of γ. Now
∑

j xijf(γ pijeij

xij
) is a

non-decreasing and continuous function of γ taking values 0 at γ = 0 and
∑

j xijf(pijeij

xij
) at

γ = 1. Therefore exists a γ∗ ∈ (0, 1) such that ri =
∑

j xijf(γ∗ pijeij

xij
), giving us what we need.
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This procedure can be followed for every user i for whom ri <
∑

j xijf(pijeij

xij
), so that at the

end we satisfy ri =
∑

j xijf( p̃ijeij

xij
) for a feasible (x, p̃). Therefore both the optimal value and

an optimizer of problem (P1) coincides with the problem (P2). The loosest condition needed

for the above to hold is f(·) being non-decreasing and concave with f(0) = 0. Henceforth

we will only work with Problem (P1).

Before proceeding to solving the problem by dual methods, we first define some key

notation. For two numbers, x, y ∈ R we set x ∧ y := min(x, y), x ∨ y := max(x, y) and

(x)+ = [x]+ := x ∨ 0.

Dual of Problem

We now proceed to derive a closed form expression for the dual function for problem (P1).

The Lagrangian obtained by relaxing the marked constraints of (P1) is given by

L(r, x, p, α, µ, λ) =
∑

i

(wi − αi)ri +
∑

j

µj +
M∑

m=1

λmPm +
∑

i,j

αixijf

(
pijeij

xij

)

−
∑

j

µj

∑

i

xij −
∑

m

λm

∑

i∈Km

∑

j

pij. (1.11)

Optimizing over ri we get

L(x, p, α, µ, λ) =
∑

i

(wi − αi)+Rmax
i −

∑

i

(αi − wi)+Rmin
i +

∑

j

µj +
M∑

m=1

λmPm

+
∑

i,j

αixijf(
pijeij

xij
)−

∑

j

µj

∑

i

xij −
∑

m

λm

∑

i∈Km

∑

j

pij.

. The optimizing r∗ is given by

r∗i ∈






{Rmax
i } if αi < wi;

{Rmin
i } if αi > wi; and

[Rmin
i , Rmax

i ] if αi = wi

(1.12)
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Note that the last term of equation(1.11) can be rewritten as

∑

m

λm

∑

i∈Km

∑

j

pij =
∑

i,j

pij

∑

m:i∈Km

λm =
∑

i,j

pijλ̂i (1.13)

where λ̂i :=
∑

m:i∈Km
λm.

Now maximizing the Lagrangian over p requires us to maximize

αixij

[
f

(
pijeij

xij

)
− λ̂i

αieij

pijeij

xij

]
(1.14)

over pij for each i, j. From the assumptions on the function f , it is easy to check that the

maximizing p∗ij will be of the form

p∗ijeij

xij
= g

(
λ̂i

αieij

)
∧ sij, (1.15)

for some function g : R+ → [0,∞] with g(x) = 0 for x ≥ f ′(0). Specifically if df/ds

is monotonically decreasing, we may show that g(·) =
(

df
ds

)−1
(·), i.e., the inverse of the

derivative of f(·). Otherwise, since df/ds is still a non-increasing function we can set g(x) =

inf{t : df/ds(t) = x}. Using the non-increasing property of df/ds we can see that g(x)∧ y =

g
(
x ∨ df

ds(y)
)
. Note that we have assumed df/ds(0) = 1 and limt→+∞ df/ds(t) = 0 but we

do not assume that lims→+∞ f(s) = +∞ (e.g., see the self-noise example). In case f(·) is

not differentiable, then we would define the function g(·) using the subgradients of f(·). In

all cases the key conclusion from (1.15) is that the optimal value of p∗ij is always a linear

function of xij.

Note that when f = log(1 + 1
β+1/s), β ≥ 0, as given by (1.7), then

g(x) = q((1/x− 1)+),

where

q(z) =






z, if β = 0,
(

2β+1
2β(β+1)

) (√
1 + 4β(β+1)

(2β+1)2 z − 1
)

, if β > 0.
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Figure 1.1: Optimal power p∗ij as a function of the channel condition eij. Here xij = 1,

αi = 1, sij = +∞, and λ̂i = 15.

Figure 1.1 shows p∗ij in (1.15) as a function of eij for the specific choice of f from (1.7) with

three different values of β = 0, 0.01, 0.1. When β = 0, (1.15) becomes a “water-filling” type

of solution in which p∗ij is non-decreasing in eij. For a fixed β > 0, this is not necessarily true,

i.e., due to self-noise, less power may be allocated to “better” subchannels. We also consider

the case where β = 10/e to model the case where self-noise is due to channel estimation

error.

Inserting the expression for p∗ij into the Lagrangian yields

L(x, α, µ, λ) =
∑

i

(wi − αi)+Rmax
i −

∑

i

(αi − wi)+Rmin
i +

∑

j

µj +
M∑

m=1

λmPm

+
∑

i,j

xij

[
αif

(
g

(
λ̂i

αieij

)
∧ sij

)
− λ̂i

eij

(
g

(
λ̂i

αieij

)
∧ sij

)
− µj

]
, (1.16)
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which is a linear function of {xij}. Now optimizing over xij yields the dual function for (P1)

L(α, λ, µ) =
∑

i

(wi − αi)+Rmax
i −

∑

i

(αi − wi)+Rmin
i +

∑

j

µj +
∑

m

λmPm

+
∑

i,j

[
αif

(
g

(
λ̂i

αieij

)
∧ sij

)
− λ̂i

eij

(
g

(
λ̂i

αieij

)
∧ sij

)
− µj

]

+

=
∑

i

(
(wi − αi)+Rmax

i − (αi − wi)+Rmin
i

)
+

∑

m

λmPm

+
∑

j

(
∑

i

[
µij

(
αi,

λ̂i
αieij

)
− µj

]

+

+ µj

)
, (1.17)

where

µij(a, b) := a

(
f
(
g(b) ∧ sij

)
− b

(
g(b) ∧ sij

))

Any choice

x∗ij ∈






{1}, if µij

(
αi,

λ̂i
αieij

)
> µj,

[0, 1], if µij

(
αi,

λ̂i
αieij

)
= µj,

{0}, if µij

(
αi,

λ̂i
αieij

)
< µj

(1.18)

will optimize the Lagrangian in (1.16).

Optimizing the Dual Function over µ

Lemma 1 For all α, λ ≥ 0,

L(α, λ) := min
µ≥0

L(α, λ, µ)

=
∑

i

(
(wi − αi)+Rmax

i − (αi − wi)+Rmin
i

)
+

∑

m

λmPm +
∑

j

µ∗j(α, λ),
(1.19)

where for every tone j, the minimizing value of µ∗j is achieved by

µ∗j(α, λ) := max
i

µij

(
αi,

λ̂i

αieij

)
. (1.20)
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The proof of Lemma 1 follows from a similar argument as in [9]. Note that (1.20) requires

searching for the maximum value of the metrics µij across all users for each tone j. Since

L(α, λ) is the minimum of a convex function over a convex set, it is a convex function of

(α, λ).

Optimizing the Dual Function over (α, λ)

In the single cell downlink case with no rate constraints, this reduces to a one dimensional

problem in λ and hence, it can be minimized using an iterated one dimensional search

(e.g., the Golden Section method). Since there is no duality gap, at λ∗ = arg minλ≥0 L(λ),

L(λ∗) gives the optimal objective value of problem (P1). Similarly, in the absence of rate

constraints, the multiple sites/sectors problem with a partition of the users {Km}M
m=1 also

leads to a one dimensional problem within each partition.

In general, however, one would need to use subgradient methods [24] to numerically solve

for the optimal (α, λ). The following lemma characterizes the set of subgradients of L(α, λ)

with respect to (α, λ).

Lemma 2 About any (α0, λ0) ≥ 0,

L(α, λ) ≥
∑

i

d(α0
i )(αi − α0

i ) +
∑

m

d(λ0
m)(λm − λ0

m), (1.21)

with

d(λm) = Pm −
∑

i∈Km

p∗ij = Pm −
∑

i∈Km

x∗ij
eij

g

(
λ̂i

αieij

)
∧ sij (1.22)

d(αm) =
∑

j

x∗ijf

(
g
( λ̂i

αieij

)
∧ sij

)
− r∗i (1.23)

where x∗ijs satisfy

∑

i

x∗ij ≤ 1 and µj(α, λ)

(
1−

∑

i

x∗ij

)
= 0; ∀j,
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and satisfy the equation (1.18) with µj = µ∗j(α, λ) as given in equation (1.20), and r∗i satisfy

equation (1.12). Thus the subgradients d(λm) and d(αi) are parameterized by (r∗, x∗) and

are linear in these variables. Moreover, the permissible values of r∗ lie in a hypercube and

those of x∗ in a simplex.

Observe that the dual function at any point (α, λ) is obtained by taking the maximum

of the Lagrangian over (r∗, p∗, x∗) satisfying
∑

i xij ≤ 1, ∀j ∈ N , (x, p) ∈ X . In case,

(r∗, p∗, x∗) is unique, then the resulting Lagrangian is a gradient to the dual function at

(α, λ). In case there are multiple optimizers, the resulting Lagrangians are each a subgra-

dient. The lemma follows easily by substituting for the optimal (r∗, p∗, x∗).

Having characterized the set of subgradients, we can use a method similar to that used

in [23] for the single cell uplink problem to solve for the optimal dual variables (α∗, λ∗)

numerically. In each step of this method we change the dual variables along the direction

given by a subgradient subject to non-negativity of the dual variables. The convergence of

this procedure (for a proper step-size choice) is once again guaranteed by the convexity of

L(α, λ) (see [24, Exer. 6.3.2], [23]).

Optimizing the dual function over α

Since the dimension of α equals the number of users and the dimension of µ equals the

number of tones, it may be computationally better to optimize over α instead of µ if the

number of users is greater, and then use numerical methods to solve the problem. Next we

detail the means to optimize over α before µ. The dual function contains many terms that

have definitions with (·)+, and therefore we would need to identify exactly when these terms

are non-zero. For this we need to solve a non-linear equation which is guaranteed to have a

unique solution. We first discuss this and then apply it to optimizing the dual function over

α.

Given y, z ≥ 0, define by v(y, z) the unique solution with 1 ≤ x < +∞ to

xf

(
g
(1

x
∨ df

ds
(z)

))
− g

(1

x
∨ df

ds
(z)

)
= y,
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where it is easy to show that xf

(
g
(

1
x ∨

df
ds(z)

))
−g

(
1
x ∨

df
ds(z)

)
is a monotonically increasing

function taking value 0 at x = 1 and increasing without bound as x → +∞. If y ≥
f(z)/(df/ds(z)) − z

(
≥0

)
, then v(y, z) = (y + z)/f(z) where it is easy to verify that

v(y, z) ≥ z/f(z) ≥ 1/(df/ds(z)) ≥ 1/(df/ds(0)) = 1 from the concavity of f(·) and from

f(0) = 0. Otherwise we need to solve for the unique 1 ≤ x ≤ 1/(df/ds(z)) such that

xf

(
g
(1

x

))
− g

(1

x

)
= y.

For our results we will be interested in v
(

µjeij

λ̂i
, sij

)
, using which we also define

νij :=
λ̂iv

(
µjeij

λ̂i
, sij

)

eij
and ζij :=

µj + sij λ̂i

eij

f(sij)
,

where νij = ζij if µjeij

λ̂i
≥ f(sij)

df(sij)

ds

− sij.

First note that we can rewrite the function in (1.17) as follows

L(α, µ, λ) =
∑

j

µj +
∑

m

λmPm +
∑

i

L̃i,

where L̃i = (wi − αi)+Rmax
i − (αi − wi)+Rmin

i

+
∑

j

λ̂i

eij

[
αieij

λ̂
f

(
g
( λ̂i

αieij

)
∧ sij

)
−

(
g
( λ̂i

αieij

)
∧ sij

)
− µjeij

λ̂

]

+

.

Now using the quantities defined earlier in this section, one can write L̃i as follows

L̃i =
∑

j

λ̂i

eij

[
1{0≤αi≤ζij}

(αieij

λ̂i

f(sij)− sij −
µjeij

λ̂i

)
+

1{ζij<αi≤νij}

(
αieij

λ̂i

f

(
g
( λ̂i

αieij

))
− g

( λ̂i

αieij

)
− µjeij

λ̂i

)]

+ (wi − αi)+Rmax
i − (αi − wi)+Rmin

i .

Minimizing L̃i over αi ≥ 0 can now be accomplished by a simple one dimensional search;
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we define the optimal vector of αis to be α∗(λ, µ). Thereafter one would need to use a

subgradient method [23, 24] to numerically minimize over (µ, λ). A subgradient of L̃ with

respect to λm is given by Pm−
∑

i∈Km
p∗ij where p∗ij is taken from (1.15) where one substitutes

x∗ij from (1.18). A subgradient of L̃ with respect to µj is given by 1 −
∑

i x
∗
ij where we

substitute for x∗ij from (1.18). Note, however, that it is important that we also meet the

following constraints for all i, namely,

Rmin
i ≤

∑

i

x∗ijf

(
p∗ij
x∗ij

)
≤ Rmax

i ;

if α∗i < wi, then
∑

j

x∗ijf

(
p∗ij
x∗ij

)
= Rmax

i ; and

if α∗i > wi, then
∑

j

x∗ijf

(
p∗ij
x∗ij

)
= Rmin

i .

The proof of this follows by retracing the steps of the proof of Lemma 2 with the roles of α

and µ being switched.

1.3.4 Primal optimal solution

For the general OFDMA problem we presented two methods to solve for V ∗: in the first

method we showed how to characterize µ(α, λ) and then we proposed numerically solving

for the optimal (α∗, λ∗) using subgradient methods, while in the second method followed the

same strategy after switching the roles of µ and α. However, we still need to solve for the

primal optimal solution. Concentrating on the first method we know by duality theory [24]

that given (α∗, λ∗) we need to find one vector from the set of (r∗, x∗, p∗) that also satisfies

primal feasibility and complementary slackness. These constraints can easily be seen to

translate to the following:

d(λ∗m) ≥ 0, d(λ∗m)λ∗m = 0, ∀m; (1.24)

d(α∗i ) ≥ 0, d(α∗i )α
∗
i = 0, ∀i. (1.25)
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From the linearity of d(λ∗m), d(α∗i ) in (r∗, x∗) it follows that the primal optimal (r, x, p) are

the solution of a linear program in (r∗, x∗).

For the single cell downlink case with no rate constraints, searching for the dual optimal

is a one dimensional numerical search in λ. In this the search for primal optimal solution

turns out to have additional structure as shown in [25].

1.3.5 OFDMA Feasibility

The feasibility problem involves solving for

V ∗ = min σ (1.26)

subject to: Ri ≤
∑

j

xijf(
pijeij

xij
), ∀ i (αi)

∑

i

xij ≤ 1 ∀ j (µj)

∑

i∈Km

∑

j

pij

Pm
≤ σ ∀ m (λm)

(x, p) ∈ X .

The vector of rates (Ri) is feasible if V ∗ ≤ 1. We need to check that (Ri) = (Rmin
i ) is

indeed feasible; otherwise problems (P1) and (P2) are both infeasible as well. Moreover, if

(Ri) = (Rmax
i ) is also feasible, then r = (Rmax

i ) is the optimizer for problems (P1) and (P2).

In which case, the optimal solution to the problem above with (Ri) = (Rmax
i ) will also yield

an optimal solution to the scheduling problem. Note that this problem is convex and satisfies

Slater’s conditions. Finally, we also note that other alternate formulations of the feasibility

problem are possible where one could either apply the σ constraint also on the subchannel

utilization or switch the roles of subchannel and power utilization. All of these will yield the

same conclusion about feasibility although the actual solutions, in terms of (x∗, p∗), would

possibly be different.
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The Lagrangian considering the marked constraints is

L(σ,x, p, α, µ, λ) = σ

(
1−

∑

m

λm

)
−

∑

j

µj +
∑

i

αiRi

+
∑

ij

µjxij −
∑

ij

(
αixijf

(
pijeij

xij

)
+ pijλ̃i

)

where λ̃i :=
∑

m:i∈Km

λm
Pm

. As before, minimizing over pij yields
p∗ijeij

xij
= g

(
λ̃i

αieij

)
∧ sij.

Substituting this in the Lagrangian, we get

L(σ, x, α, µ, λ) =
∑

i

αiRi −
∑

j

µj + σ

(
1−

∑

m

λm

)

−
∑

i,j

xij

[
αif(g(

λ̂i

αieij
) ∧ sij)−

λ̂i

eij
(g(

λ̂i

αieij
) ∧ sij)− µj

]
.

Minimizing over 0 ≤ xij ≤ 1 yields

L(σ,α, µ, λ) =
∑

i

Li −
∑

j

µj + σ

(
1−

∑

m

λm

)

where

L̃i = αiRi −
∑

j

[
αif(g(

λ̂i

αieij
) ∧ sij)−

λ̂i

eij
(g(

λ̂i

αieij
) ∧ sij)− µj

]

+

.

Next we minimize L over all values of σ. Since there are no constraints on σ, it follows that

the resulting L is finite only when
∑

m λm = 1; for all other values we would get L = −∞.

Hereafter we will assume that
∑

m λm = 1. Thus

L(σ, x, α, µ, λ) =
∑

i

L̃i −
∑

j

µj.

Note that as before, as a function of αi the problem is now separable. Therefore we only
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need to maximize L̃i over αi ≥ 0. Similarly we can write L as follows too

L(σ, x, α, µ, λ) =
∑

j

L̂j +
∑

i

αiRi,

where we have

L̂j = −
(

µj +
∑

i

[
αif(g(

λ̂i

αieij
) ∧ sij)−

λ̂i

eij
(g(

λ̂i

αieij
) ∧ sij)− µj

]

+

)

As a function of µj the problem is now separable, and we only need to maximize L̂j over

µi ≥ 0.

Thus, we could optimize first over either µ or α, once again based upon whether the

number of users or subchannels is smaller. In either case, the methodology and the functions

that appear are very similar to the corresponding problem in the scheduling problem (P1),

and due to space constraints we do not elaborate on this. Care must be take, however, while

evaluating subgradients with respect to λ and, in addition, we propose using a projected

gradient method [24] based upon the constraint
∑

m λm = 1 to numerically solve for the

optimal λ.

1.3.6 Power allocation given subchannel allocation

In many of the suboptimal scheduling algorithms that we will discuss, a central feature will

be a computationally simpler (but still close to optimal) method to provide a subchannel

allocation. Once the subchannel allocation has been made, all that will remain is the power

allocation problem, subject to the various constraints that we discussed earlier. Here we

discuss how this can be solved in an optimal manner. A similar question can also be asked

about the feasibility problem, hence we also discuss this here. In all cases, we assume that

we are given a feasible subchannel allocation.

Since we are given a feasible subchannel allocation x, the Lagrangian of the new scheduling

problem (power allocation only) can be easily derived by setting µ = 0. For this we once
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again use the formulation based upon Problem (P1). The optimal power allocation is then

given by p∗ij = xij

eij

(
g
(

λ̂i
αieij

)
∧sij

)
. The Lagrangian that results from substituting this formula

is

L(x, α, λ) =
∑

m

λmPm +
∑

i

(wi − αi)+Rmax
i −

∑

i

(αi − wi)+Rmin
i

+
∑

i

∑

j

αixijf

(
g
( λ̂i

eijαi

)
∧ sij

)
− λ̂ixij

eij

(
g
( λ̂i

eijαi

)
∧ sij

)
.

Now it is easy to argue that if Rmin
i = 0 and Rmax

i = +∞ and if the Kms form a partition,

then within each partition the λms can be solved for as in Section 1.3.3. In any case, in this

setting solving for the optimal αi ≥ 0 is easier, but uses some of the functions described

at the end of Section 1.3.3. However, after this step we would still need to solve for λ

numerically; if the partitions assumption holds, then it would only need a single dimensional

search within each partition. A finite-time algorithm for achieving the optimal λ has been

given in [23,25] under the assumption that f(·) represents the Shannon capacity as in (1.7)

with β = 0.

Feasibility check

Under the assumption that a feasible subchannel allocation has already been provided, even

the feasibility check problem becomes a lot easier. As before we can assume
∑

m λm = 1,

and that the optimal power allocation is given by p∗ij = xij

eij

(
g
(

λ̃i
eijαi

)
∧ sij

)
, and substituting

this we get

L(x, α, λ) =
∑

i

αiR̂i −
∑

j

xij

[
αif

(
g
( λ̃i

eijαi

)
∧ sij

)
− λ̃i

eij

(
g
( λ̃i

eijαi

)
∧ sij

)]
.

Again solving for the optimal αi is simpler. Once again the λ vector would need to be

computed numerically, subject to it being a probability distribution, , i.e.,
∑

m λm = 1 and

λm ≥ 0 for each m.
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1.4 Low Complexity Suboptimal Algorithms with Integer Chan-

nel Allocation

There are two shortcomings with using the optimal algorithm outlined in the previous section

for scheduling and resource allocation: (i) the complexity of the algorithm in general is not

computationally feasible for even moderate sized systems; (ii) the solution found may require

time-sharing a channel allocation, while practical implementations typically require a single

user per sub-channel. One way to address the second point is to first find the optimal primal

solution as in the previous section and then project this onto a “nearby” integer solution.

Such an approach is presented in [25] for the case of a single cell downlink system (M = 1)

without any rate constraints. In that setting, after minimizing the dual function over µ,

one optimizes the function L(λ), which only depends on a single variable. This function will

have scalar subgradients which can then be used to develop rules for implementing such an

integer projection. Moreover, in this case since L(λ) is a one-dimensional function the search

for the optimal dual values is greatly simplified. However, in the general setting, this type

of approach does not appear to be promising.8

In this section we discuss a family of sub-optimal algorithms (SOA’s) for the general

setting that try to reduce the complexity of the optimal algorithm, while sacrificing little

in performance. These algorithms seek to exploit the problem structure revealed by the

optimal algorithm. Furthermore, all of these sub-optimal algorithms enforce an integer tone

allocation during each scheduling interval. In the following we consider the general model

from Section 1.3.1 with the restriction that {Km} forms a partition of the user groups (i.e.

each user is in only one of these sets) and that Rmin
i = 0 for all i. In a typical setting both

of these assumptions will be true.

In the optimal algorithm, given the optimal λ and α, the optimal tone allocation up to

any ties is determined by sorting the users on each tone according to the metric µij(αi,
λ̂i

αieij
)

(cf. (1.18)). Given an optimal tone allocation, the optimal power allocation is given by

(1.15). In each SOA, we use the same two phases with some modifications to reduce the

8See [23] for a more detailed discussion of this in the context of the uplink scenario.
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complexity of computing (λ, α) and the optimal tone allocation. Specifically, we begin with

a subChannel Allocation (CA) phase in which we assign each tone to at most one user. We

consider two different SOAs that implement the CA phase differently. In SOA1, instead of

using the metric given by the optimal λ and α we consider metrics based on a constant

power allocation over all tones assigned to a partition. In SOA2, we find the tone allocation,

once again through a dual based approach, but here we first determine the number of tones

assigned to each user and then match specific tones and users. In all cases we assign the tones

to distinct partitions which will, in turn, yields an interference-free operation. After the tone

allocation is done in both SOAs, we perform a Power Allocation (PA) phase in which each

user’s power is allocated across the assigned tones using the optimal power allocation in

(1.15).

1.4.1 CA in SOA1: Progressive Subchannel Allocation Based on Metric Sorting

In this family of SOAs, tones are assigned sequentially in one pass based on a per user metric

for each tone, i.e., we iterate N times, where each iteration corresponds to the assignment

of one tone. Let Ni(n) denote the set of tones assigned to user i after the nth iteration. Let

gi(n) denote user i’s metric during the nth iteration and let li(n) be the tone index that user

i would like to be assigned if he/she is assigned the nth tone. The resulting CA algorithm is

given in Algorithm 1. Note that all the user metrics are updated after each tone is assigned.

We consider several variations of Algorithm 1 which correspond to different choices for

steps 4 and 5. The choices for step 4 are:

(4A): Sort the tones based on the best channel condition among all users. This involves

two steps. First, for each tone j, find the best channel condition among all users and denote

it by µ̃j := maxi eij. Second, find a tone permutation {αj}j∈N such that µ̃α1 ≥ µ̃α2 ≥
· · · ≥ µ̃αN , and set li (n) = αn for each user i at the nth iteration. Each max operation

has complexity of O(K), and the sorting operation has a complexity of O(N log(N)). The

total complexity is O (NK + N log N). We note that this is a one-time “pre-processing”

that needs to done before the CA phase starts. During the tone allocation iterations, the
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Algorithm 1 CA Phase for SOA1
1: Initialization: set n = 0 and Ni (n) = ∅ for each user i.
2: while n < N do
3: n + 1.
4: Update tone index li (n) for each user i.
5: Update metric gi (n) for each user i.
6: Find i∗ (n) = arg maxi gi (n) (break ties arbitrarily).
7: if gi∗(n)(n) ≥ 0 then
8: Assign the nth tone to user i∗ (n):

Ni (n) =

{
Ni (n− 1) ∪ {li (n)} , if i = i∗n;
Ni (n− 1) , otherwise.

9: else
10: Do not assign the nth tone.
11: end if
12: end while

users just choose the tone index from the sorted list.

(4B): Sort the tones based on the channel conditions for each individual user. For each

user i at the nth iteration, set li(n) to be the tone index with the largest gain among all

unassigned tones, i.e., li(n) = arg maxj∈N\∪iNi(n−1) eij. This requires K sorts (one per user);

these also need to be performed only once (since each tone assignment does not change a

user’s ordering of the remaining tones) and can be done in parallel. The total complexity of

the K sorting operations is O (KN log N), which is higher than that in (4A).

During the nth iteration, let ki(n) = |∪j∈Km(i)Nj(n)| denote the number of tones assigned

to users in the group to which user i belongs, i.e., m(i). The choices for Line 5 are:

(5A): Set gi (n) to be the total increase in user i’s utility if assigned tone li (n), assuming

the power for each user group is allocated uniformly over the tones assigned to that group,
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i.e.,

gi(n) =





wi

[(
∑

j∈Ni(n−1)∪{li(n)} f

(
Pieij

ki(n−1)+1 ∧ sij

))
∧Rmax

i

−
(

∑
j∈Ni(n−1) f

(
Pieij

ki(n−1) ∧ sij

))
∧Rmax

i

] ,if ki(n− 1) > 0;

wi

[(
∑

j∈Ni(n−1)∪{li(n)} f

(
Pieij

ki(n−1)+1 ∧ sij

))
∧Rmax

i

]
,otherwise.

(1.27)

(5B): Set gi (n) to be user i’s gain from only tone li (n), again assuming constant power

allocation within each group, i.e.

gi (n) = wi

[
f

(
Piei,li(n)

ki(n− 1) + 1
∧ sij

)
∧Rmax

i

]
.

Compared with (5A), this metric is simpler to calculate but ignores the change in user i’s

utility due to the decrease in power allocated to any tones in Ni(n − 1). It also does not

accurately enforce the maximum rate constraint, since it only considers one tone at a time.

The complexity of either of these choices over N iterations is O(NK), and so the total

complexity for the CA phase is O (NK + N log N) (if (4A) is chosen) or O (KN log N) (if

(4B) is chosen). Algorithms similar to SOA1 with (4B) and (5B) have been proposed in the

literature for both the single cell downlink setting [12]9 and the uplink [33] without rate or

SNR constraints. In the single cell downlink case, the algorithm instead of is [12] is shown via

numerical examples to have near optimal performance. In the uplink case, this also performs

reasonably well in simulations, but [23] shows that better performance can be obtained using

(4B) and (5A) instead.

9The main difference with the algorithm in [12] is that after each iteration n, it then checks to see if
∑

i wiri is increasing
and if not it stops at iteration n− 1. Such a step can be added to Algorithm 1; however, unless the system is lightly loaded it
is unlikely to have a large impact on the performance.
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1.4.2 CA in SOA2: tone Number Assignment & tone User Matching

SOA2 implements the CA phase through two steps: tone number assignment (CNA) and

tone user matching (CUM). The algorithm is summarized in Algorithm 2.

Algorithm 2 CA Phase of SOA2
1: subChannel Number Assignment (CNA) step: determine the number of tones ni allo-

cated to each user i such that
∑

i∈K ni ≤ N .
2: subChannel User Matching (CUM) step: determine the tone assignment xij ∈ {0, 1} for

all users i and tones j, such that
∑

j∈N xij = ni.

subChannel Number Assignment (CNA)

In the CNA step, we determine the number of tones ni assigned to each user i ∈ K. The

assignment is calculated based on the approximation that each user sees a flat wide-band

fading tone. Notice that here we do not specify which tone is allocated to which user; such

a mapping will be determined in the CUM step. The CNA step is further divided into two

stages: a basic assignment stage and an assignment improvement stage.

Stage 1, Basic Assignment : Here, the assignment is based on the normalized SNR av-

eraged over all tones. Specifically, we model each user i as having a normalized SNR

ei = 1
N

∑
j∈N eij, and then determine a tone number assignment ni for all i by solving:

max
{ni≥0,i∈K}

∑

i∈K

winif

(
Pm(i)ei∑
j∈Km(i)

nj
∧ si

)

subject to:
∑

i∈K

ni ≤ N

nif

(
Pm(i)ei∑
j∈Km(i)

nj
∧ si

)
≤ Rmax

i .

(SOA2-CNA)

Here, we are again assuming that power is allocated uniformly over all the channels assigned

to a given user group.

Unfortunately, in general the objective in Problem SOA2-CNA is not concave. However,
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in the special case of the uplink (Km(i) = {i}) it will be.10 In the case of the single cell

downlink, if nf(a/n) is increasing for all a > 0 (as in our general formulation), then the

problem can be re-formulated to have a concave objective by noting that in this case it

must be that
∑

i∈K ni = N at any optimal solution. Additionally, due to the maximum rate

constraint, the constraint set may not be convex; this can be accommodated by considering

a higher dimensional problem as in Section 1.3.3.

Next, we focus on solving Problem SOA2-CNA in the uplink setting without maximum

rate constraints. In this case, the problem will have a unique and possibly non-integer

solution, which we can again use a dual relaxation to find. Consider the Lagrangian

L(n, λ) :=
∑

i∈K

winif

(
Piei

ni
∧ si

)
− λ

(
∑

i∈K

ni −N

)
.

Optimizing L(n, λ) over n ≥ 0 for a given λ is equivalent to solving the following K sub-

problems,

n∗i (λ) = arg max
ni≥0

winif

(
Piei

ni
∧ si

)
− λni,∀i. (1.28)

Problem (1.28) can be solved by a simple line search over the range of (0, N ]. Substituting

the corresponding results into the Lagrangian yields

L(λ) :=
∑

i∈K

win
∗
i (λ) f

(
Piei

n∗i (λ)
∧ si

)
− λ

(
∑

i∈K

n∗i (λ)−N

)
,

which is a convex function of λ [24]. The optimal value

λ∗ = arg min
λ≥0

L(λ) (1.29)

can be found by a line section search over: [0, maxi wif( Piēi
N/K )]11. For a given search precision,

the maximum number of iterations needed to solve either (1.28) or (1.29) is fixed.12. Hence,

the worst case complexity of the solving each subproblem is independent of K or N . Since

10Some care is required at the point where the SNR constraint becomes active as the objective is not differentiable there;
nevertheless, by evaluating left and right derivatives the concavity can be shown.

11The upperbound of the search interval can be obtained by examining the first order optimality condition of (1.28).
12For example, if we use bi-section search to solve (1.28) and stop when the relative error of the solution is less than N/210,

then we only need a maximum of ten search iterations.
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there are K subproblems in (1.28), it follows that the complexity of the basic assignment step

is O(K). If the resultant channel allocations contain non-integer values, we will approximate

with an integer solution that satisfies
∑

i∈K ni = N .13 Since each user is allocated only a

subset of the tones, the normalized SNR ei = 1
N

∑
j∈N eij is typically a pessimistic estimate

of the averaged tone conditions over the allocated subset. This motivates us to consider the

following assignment improvement stage of CNA.

Stage 2, Assignment Improvement : Here, assignment is performed by means of iterative

calculations using the normalized SNR averaged over the best tone subset. Specifically, we

iteratively solve the following variation of Problem SOA2-CNA (stated here for the uplink

without maximum rate constraints):

max
n(t)≥0

∑

i∈K

wini(t)f

(
Piei (t)

ni(t)
∧ si

)

subject to:
∑

i∈K

ni (t) ≤ N

nif

(
Pm(i)ei (t)∑

j∈Km(i)
nj
∧ si

)
≤ Rmax

i ,

(SOA2-CNA-t)

for t = 1, 2, .... During the t-th iteration, ei (t) is a refined estimate of the normalized SNR

based on the best 2ni (t− 1)3 (or 4ni (t− 1)5) tones of user i; additionally, ni(0) := N for

all i. The iteration stops when the tone allocation converges or the maximum number of

iterations allowed is reached. An integer approximation will be performed if needed.

The complete algorithm for the CNA phase of SOA2 is given in Algorithm 3. In order

to perform the assignment improvement, we need to perform K sorting operations, with a

total complexity O(KN log(N)). Note that this only needs to be done once. Step 4 of each

iteration has complexity of O(K) due to solving K subproblems for a fixed dual variable.

The maximum number of iterations is fixed and thus is independent of N or K. The integer

approximation stage requires a sorting with the complexity of O(K log(K)). So the total

13One possible integer approximation is the following. Assume n∗i is the unique optimal solution of Problem SOA2-CNA.
First, sort users in the descending order of the mantissa of n∗i , fr

(
n∗i

)
= n∗i − .n∗i /. That is, find a user permutation subset

{αk, 1 ≤ k ≤ N} such that fr
(
n∗α1

)
≥ fr

(
n∗α2

)
≥ · · · ≥ fr

(
n∗αM

)
. Second, for each user i, let ñ∗i = .n∗i /. Third, calculate

the number of unallocated tones, NA = N −
∑

i ñ∗i . Finally, adjust users with large mantissas such that all the tones are
allocated, i.e., ñ∗αi

= ñ∗αi
+ 1 for all 1 ≤ i ≤ NA. The resulting {ñ∗i }i∈K give the integer approximation.
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complexity for the CNA phase of SOA2 is O(KN log(N) + K log(K)).

Algorithm 3 CNA Phase of SOA2
1: Initialization: integer MaxIte> 0, t = 0, ni(0) = N and ni(1) = N/2 for each user i.
2: while (ni (t + 1) %= ni (t) for some i) & (t <MaxIte) do
3: t = t + 1.
4: For each user i, ei (t) = average gain of user i’s best ni (t− 1) tones.
5: Solve Problem (SOA2-CNA-t) to determine the optimal ni (t) for each user i.
6: end while
7: let n∗i = ni(t) for each user i.

subChannel User Matching (CUM) Step

After the CNA step, we know how many tones are to be allocated to each user. However,

we still need to determine which specific tones are assigned to which user. This is accom-

plished in the CUM step by finding a tone assignment that maximizes the weighted-sum rate

assuming each user employs a flat power allocation, i.e. we solve the problem:

max
xij∈{0,1}

∑

i∈K

∑

j∈N

xijwif

(
Pieij

n∗i
∧ si

)

subject to:
∑

j∈N

xij = n∗i ,∀i ∈ K,

∑

i∈K

xij = 1,∀j ∈ N ,

(SOA2-CUM)

where n∗ = (n∗i , i ∈ K) is the integer tone allocation obtained in the CNA step. Since

we solved Problem (SOA2-CNA-t) using the average of the best n∗, then concavity of f(·)
ensures that any feasible tone allocation for Problem (SOA2-CUM) will satisfy the maximum

rate constraint.

Problem SOA2-CUM is an integer Assignment Problem whose optimal solution can be

found by using the Hungarian Algorithm [27].14 To use the Hungarian algorithm here, we

need to perform “virtual user splitting” as explained next. For user i, let rij = wif
(

Pieij

n∗i
∧ sij

)
,

and let

ri = [ri1, ri2, · · · , riN ]
14A similar idea has been used to solve various single cell downlink OFDMA resource allocation problems (e.g., [18]) as well

as to find user coalitions for Nash Bargaining in an uplink OFDMA system in [29].
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be user i’s achievable rates over all possible tones. We can then form a K ×N matrix R =
[
rT

1 , rT
2 , · · · , rT

M

]T
. Next, we split each user i into n∗i virtual users by adding n∗i − 1 copies

of the row vector ri to the matrix R. This expands R into a N ×N square matrix. Solving

Problem SOA2-CUM is then equivalent to finding a permutation matrix C∗ = [cij]N×N such

that

C∗ = arg min
C∈C

−C · R := arg min
C∈C

−
N∑

i=1

N∑

j=1

cijrij. (1.30)

Here C is the set of permutation matrices, i.e., for any C ∈ C, we have cij ∈ {0, 1},
∑

i cij = 1

and
∑

j cij = 1 for all i and j. This problem can be solved by the standard Hungarian

algorithm which has a computational complexity of O (N3), where N is the total number of

tones. The detailed algorithm can be found in [27]. After obtaining C∗, we can calculate

the corresponding tone allocation x∗. For example, if c∗kj = 1 and virtual user k corresponds

to the actual user i, then we know x∗ij = 1, i.e., tone j is allocated only to user i.

1.4.3 Power Allocation (PA) phase

We can follow the tone allocation (CA) phase in either SOA1 and SOA2 with a power

allocation phase in which power is optimally allocated among the tones assigned to the users

in each partition.15 After this optimization it is possible that some tone is allocated zero

power due to its poor tone gain. Alternatively, one can simply use a uniform power allocation

as was assumed in the CA phase. For certain single cell downlink scenarios, such a uniform

allocation has been shown to be nearly optimal in [12,25].

Since the tone allocation is given, optimizing the power allocation for each group is

equivalent to the problem considered in Section 1.3.6 and can be addressed in a similar

way, i.e. by considering the dual formulation and numerically searching for the optimal dual

variables. We note that in the uplink scenario without any maximum rate constraint, we

need to solve one such problem for each user and for each problem only a single dual variable

needs to be introduced (corresponding to the user’s power constraint). Hence, the optimal

dual value can be found through a simple line search, with a constant worst-case complexity

15In this section, we again consider the case where {Km} forms a partition of the users and allow for maximum rate constraints.
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Table 1.1: Worst Case Computational Complexity of Suboptimal Algorithms

Suboptimal Algorithm Worst Case Complexity
4A & 5A O (NK + N log N)

subChannel Allocation (CA) 4A & 5B O (NK + N log N)
4B & 5A O (KN log N)

SOA1 4B & 5B O (KN log N)
Power Allocation (PA) O (KN)
Total (CA + PA) O (KN log N)

subChannel Allocation (CA) CNA O (KN log N + K log K)
CUM O (N3)

SOA2 Power Allocation (PA) O (KN)
Total (CA+PA) O (N3 + KN log N + K log K)

given a fixed search precision as in our discussion of (1.28).

1.4.4 Complexity and performance of Suboptimal Algorithms for the Uplink

Scenario

In this section we discuss the complexity and performance of the suboptimal algorithms in

an uplink scenario without any maximum rate constraints 16. The worst case computational

complexities of the variations of SOA1 and SOA2 for this setting are summarized in Table 1.1.

Next we briefly discuss the performance of this algorithms with a realistic OFDMA sim-

ulator assuming parameters and assumptions commonly found in the IEEE 802.16 stan-

dards [10]. These results are for a single cell with 40 users. All users are infinitely back-logged

and assigned a throughput-based utility as in (1.2) with parameter ci = 1 and α = 0.5. Each

user i has a total transmission power constraint Pi = 2W. We calculate the achievable rate

of user i on tone j as

rij = Bxij log

(
1 +

pijeij

xij

)
,

where B is the tone bandwidth and eij is generated according to a product of a fixed location-

based term and a frequency-selective fast fading term. A detailed description of the simu-

lation set-up can be found in [23] with further results. Scheduling decisions are made every

16It can be argued that this will also be the worst-case setting for the general problem assuming partitions and no rate
constraints.
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20 OFDM symbols, which corresponds to one fading block.

Table 1.2 shows simulation results for the following four algorithms:

1. Integer-Dual: integer tone allocation (with tie breaking) based on optimal dual-based

algorithm and optimal power control. To reduce computational complexity in the case

of too many ties, we randomly inspect up to 128 ways of breaking the ties with an

integer allocation and select the allocation among these with the largest weighted sum

rate (before reallocating the power).

2. SOA1: tone allocation as in Section 1.4.1 and power control as in Section 1.4.3. There

are four versions of SOA1, depending on how steps 4 and 5 in Algorithm 1 are imple-

mented; we present results for each.

3. SOA2: tone allocation as in Section 1.4.2 (with up to 10 iterations) and power control

as in Section 1.4.3.

4. Base-line: each tone j is allocated to the user i with the highest eij, without considering

the weights wi’s and the power constraints. Each user’s power is then allocated as in

Section 1.4.3.

In this table it can be seen that SOA1 (with 4B & 5A) and SOA2 achieve the best

performance in terms of total utility. Their performance is even better than the Integer-

Dual approach, which was obtained based on the optimal value of the relaxed problem. This

is likely because only 128 ways to break ties are considered which is typically not sufficient.

Since the Integer-Dual algorithm achieves an optimality ratio of 0.9412, this suggests that

SOA1 and SOA2 achieve very close to optimal performance as well. The base-line algorithm

always has poor performance.

Here, and in other uplink simulation reported in [23], all of the SOAs have good perfor-

mance with SOA1 (with 4B & 5A) and SOA2 consistently achieving the best performance

in terms of total utility. From Table 1.1, we note that these have slightly higher complexity

than some of the other SOAs. Hence if lower complexity is desired, this can be provided

with only a slight loss in performance. We also note that in each case the SOAs and the
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Table 1.2: Example Uplink resource allocation performance

Algorithms Utility Log U Rate Scheduled Users
Integer-Dual 53922 514.0 21.56 37.5

4A & 5A 52494 510.7 22.86 34.6
SOA 1 4A & 5B 51697 509.2 20.22 28.1

4B & 5A 54165 513.3 22.25 35.0
4B & 5B 53156 511.4 21.43 28.6

SOA 2 54316 513.6 22.33 35.1
Base Line 21406 -1960.5 16.13 2.66

integer-dual algorithm schedule a large number of users on average in each time-slot. A

potential cost from this is that it may increase the needed signaling overhead. One way to

reduce this cost is to add a penalty term to our objective which increases with the number

of users scheduled.

1.5 Conclusions and Open Problems

In this chapter, we have considered a general model of gradient-based scheduling and resource

allocation for OFDMA systems. This model includes single cell downlink, uplink, and multi-

cell downlink with frequency sharing, and incorporates various practical constraints such as

per carrier SNR constraints, self-noise due to imperfect channel estimates or phase noise, and

minimum and maximum per user rate constraints. Essentially the problem can be reduced

to solving a weighted rate maximization problem in each time-slot. We address this problem

with a Lagrangian dual relaxation method. By exploiting the structure of the OFDMA rate

region, we can express the dual function in terms of a small subset of dual variables. The

optimal values of these variables can be found through standard numerical search methods.

An interesting observation is that recovering the optimal primal solutions given optimal dual

variables is rather straightforward in most cases, since the optimal channel allocations often

turn out to be integer “automatically”. In the case when this is not true, we need to calculate

the channel allocation by either allowing time-sharing or picking a good integer solution, and

optimize the power allocation accordingly. Based on the intuition derived from the optimal

algorithms, we demonstrate that it is possible to design a class of heuristic algorithms that
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are low in complexity but perform very well in simulation studies.

All algorithms presented in this chapter are centralized. This is not an issue for the single

cell downlink case or even for a multi-sectored site, where the resource allocation decisions are

made by the base station. In the uplink and multi-cell downlink cases, however, a distributed

algorithm is more desirable since the decisions are made by the multiple network entities

(either multiple mobile users or multiple base stations). Some preliminary results towards

a fully distributed algorithm have been reported in [37, 38] and more work is needed along

this line.
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